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1 INTRODUCTION
Public-cloud computing is conducted through Service-Level

Agreements (SLAs), including pricing policies. Also, there is

limited information-sharing regarding workloads between

tenants
1
and the operator/provider of a neutral public cloud

[12]. Though public-cloud operators may seek to maximize

their revenue and minimize their operating (including amor-

tized capital) expenditures, they may be forced to treat ten-

ants “fairly" according to future neutrality regulations. More-

over, it may not be permitted to profile individual tenants,

though it may be permitted to profile, e.g., a particular service
spanning all tenants that use it.

A variety of cloud-computing services have been broadly

classified as Infrastructure-as-a-Service (IaaS) such as Vir-

tual Machines (VMs), Platform-as-a-Service (PaaS) includ-

ing Function-as-a-Service (FaaS) such as Amazon Lambda

“serverless" computing, and Software-as-a-Service (SaaS) such

as GCE’s TensorFlow. We focus herein on PaaS as offered by

AWS (Lambda), GCE, Azure and IBM Cloud. In the following,

we will call PaaS invocations Lambda functions or Lambda

service instances.

Rather than renting reserved resources through a VM,

under serverless computing multiple stateless Lambda func-

tions are submitted by a tenant for execution in a provisioned

container. AWS Lambda service tiers are based on 128MB

units of memory, with 2 vCPU allocated per 3GB memory

(
1

12
vCPU per memory unit). Cost per tier is based on units of

1
a.k.a. customers or users
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memory times the time that the Lambda invocation is active.

State spanning plural Lambda invocations is externalized,

e.g., managed by a “master" or “driver" VM or stored in AWS

S3 or Single Queue Service (SQS); also see [9].

Lambda service instances typically require on the order

of tens of milliseconds to a few minutes execution time

[2, 19, 21]; in the lower range of execution times, cold-start

spin-up overhead (including data acquisition) can be substan-

tial. But to avoid such delays, a (cloud controlled) container

may persist after a Lambda function finishes execution in

anticipation of additional demand by the same tenant [21].

However, reserving the IT resources of dormant/paused con-

tainers for future invocations by the same tenant could be

very resource inefficient.

In the following, we assume that an idle IT resource bundle

for Lambda service, considered to be a “Lambda server", can

be used by any tenant at any time as permitted by their SLA.

A disadvantage is that there may not be sufficient isolation

among different cloud tenants under this assumption [14],

e.g., presently, important data may be leaked from one ten-

ant (whose Lambda function terminates) to another (whose

Lambda function shortly thereafter commences in the same

cloud-managed VM) through memory side-channels (i.e., the
memory used by a Lambda function is not erased, or an

equivalent operation performed, upon its termination).

Some providers limit the number of simultaneous cloud-

function service-instances per tenant, e.g., AWS concurrency
limits are described in [1]. There are security and cost risks

to the tenant associated with autoscaling due to faults, the

actions of intrusive malware, deliberate Denial-of-Service

(DoS) attacks, or due to nominal but unexpected resource

congestion (flash crowds) [13]. Concurrency limits may con-

trol such risks
2
.

Also, the cloud provider generally wishes to operate their

infrastructure efficiently. Efficient cloud operation, and asso-

ciated potential cost savings for tenants, will be particularly

important in edge/fog computing settings where: prices are

generally much higher, concurrency limits per tenant are

likely to be stricter, and servers mounting Lambda functions

are likely to be shared among different tenants (rather than

dedicated to individual tenants).

2
A large tenant with several concurrent applications could similarly em-

ploy a token-bucket mechanisms to control how an individual applications

launches Lambda functions.
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This paper focuses on the problem of cloud-side sched-

uling and consolidation of Lambda service instances, par-

ticularly principled approaches to overbook resources so as

to improve utilization efficiency and thus maintain greatest

possible service availability to tenant customers. So, from the

tenant’s point of view, the edge-cloud Lambda service will

be more dependable, particularly for autoscaling, notwith-

standing congested (and costly) IT resources.

The following framework may also be useful in a more

“private" setting-up of tenant-rented VirtualMachine (VM) re-

sources housing containers executing amicroservice-workload

stream. Here, the aim could be to determine the number of

VMs and their sizes so as to limit the amount of autoscaling

while using these procured resources efficiently.

Finally, note that individual job service times may vary

greatly, even in a microservice setting. So, limiting the job

arrival stream by a token-bucket mechanism and just bound-

ing the job execution times can lead to very inefficient use of

resources. This motivates a simple statistical model for job

service times. (Note that in packet switching, packet sizes

are known a priori.)
This paper is organized as follows. Related work is dis-

cussed in Section 2. The problem is set up in Section 3 and

a no-blocking condition is given when a service quota is

replaced by a token-bucket mechanism governing concur-

rency, i.e., governing how tenants may request homogeneous

Lambda service instances. In Section 4, we show how admis-

sion control can be relaxed considering empirical Lambda-

function execution times resulting in more efficient use of

resources. An extension to multiple service tiers based in

part on allocated resources per Lambda service instance is

discussed in Section 5. The paper concludes with a discussion

of future work in Section 6.

2 RELATEDWORK
For decades, token-bucket mechanisms have been used to

control the resource utilization of a workload stream. In a

packet-switching context, e.g., [4, 7, 8], the tasks (packet-

header processing and packet transmission) have very pre-

dictable sizes
3
compared to workloads of a general-purpose

CPU, call center, etc. For scheduling purposes in the latter

cases, token-bucket controls at the task level may be aug-

mented by statistical models profiling task execution times,

e.g., [5, 6, 11, 18]. In some cases, predictable workloads can

be overbooked to improve resource-utilization efficiency.

Some prior work on resource overbooking has been based

on chance constraints, e.g., involving second-order statistics

[3, 12].

Though we assume herein that Lambda-function invoca-

tions are limited by a deterministic token-buck mechanism,

3
IP packet lengths are simply given in their headers.

resource allocation to Lambda functions will also depend

on the distribution of their execution times, as estimated

by the cloud. Such estimates could be continually updated

over time, as new Lambda-function execution-time statistics

are collected. For example, a classical maximum-likelihood

approach can be used to fit a sliding time-window of the

most recent cloud-function execution times to a parameter-

ized distribution model, e.g., of the Gamma [17] or Weibull

type. In an online setting, if updates are based on observa-

tion batches, the old approximate service-time distribution,

𝑝̂ , and the one based on the most recent batch of observed

Lambda execution/service times, 𝑞̂, could be combined in

a simple first-order autoregressive manner, 𝛼𝑝̂ + (1 − 𝛼)𝑞̂,
where forgetting factor 𝛼 is such that 0 < 𝛼 < 1.

3 PROBLEM SET-UP AND A
NO-BLOCKING CONDITION

Consider available resources of a set I of heterogeneous

physical servers, including resources unused by existing IaaS

instances (VMs)
4
. Let 𝑐𝑖,𝑟 be the amount of IT resource of type

𝑟 ∈ R (e.g., R = {vCPUs, memory, network I/O}) available
for Lambda service on server 𝑖 ∈ I. In the following, min𝑟

will be short for min𝑟 ∈R ,
∑︁

𝑖 will be short for
∑︁

𝑖∈I , etc.
Consider a set N of tenant-customers of a common type

of Lambda service, with 𝑑𝑟 being the amount of type 𝑟 ∈ R
resource allocated per invocation as prescribed by the SLA.

In the following, we assume tenant SLAs stipulate

• IT resources allocated per invocation of the common

type of Lambda service, {𝑑𝑟 }𝑟 ∈R ,
• a maximum execution/activity time 𝑆max per invoca-

tion,

• and some limit to the rate at which tenants can request

different Lambda service instances.

For the case of tenant demand for a single type of Lambda

service, we can consider each available |R |-vector of re-

sources 𝑑 from the physical server pool I as a “Lambda

server" that pulls in work when idle, e.g., [16].
Suppose that there are 𝐾 such servers available:

𝐾 =
∑︂
𝑖∈I

min

𝑟 ∈R

⌊︃
𝑐𝑖,𝑟

𝑑𝑟

⌋︃
. (1)

Generally, 𝐾 is time-varying but at a longer time-scale than

that of individual Lambda-service lifetimes or of the time

between successive Lambda-service invocations.

3.1 A quota system
First note that if there is a simple quota, 𝐾𝑛 < 𝐾 , on the

number of active Lambda invocations for tenant 𝑛, then by

4
Considering the fleeting nature of Lambda service, some cloud operators

may be tempted to use idling capacity reserved for IaaS for Lambda service.
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Little’s formula, 𝐾𝑛/E𝑆𝑛 is an upper bound on the mean rate

at which that tenant can request service, where the random

variable 𝑆𝑛 is distributed as the execution time of tenant 𝑛’s

Lambda functions. Furthermore, if tenant 𝑛’s service-request

process is modeled as Poisson, then the Erlang blocking

formula applies [22].

In the following, we do not assume a Poisson model for

service request processes.

The cloud may overbook resources by, e.g., online esti-

mating the mean and variance of the total number of active

Lambda servers 𝑄 ≤ 𝐾 , respectively ˆ︂E𝑄 and
̂︅
var(𝑄), using,

e.g., a simple autoregressive mechanism. Admission con-

trol could be based on the current 99%-confident estimate

𝐾−ˆ︂E𝑄−3
√︂ ̂︅
var(𝑄) of available Lambda servers. SLAs should

capture how such overbooking approaches may sometimes

result in blocking of within-quota requests for Lambda ser-

vice.

3.2 Demand constrained by token bucket
regulators

Instead of a simple quota on the number of active invoca-

tions per tenant, the cloud can accommodate batch Lambda-

service requests while effecting control on such a system

by applying token-bucket allocators. For example, a dual

token-bucket allocator permits only

𝑔(𝑡) = min{𝑏 + 𝜋𝑡, 𝜎 + 𝜌𝑡} (2)

requests for Lambda service over any time-interval of length

𝑡 , with peak rate larger than sustainable rate, 𝜋 > 𝜌 > 0, and

the maximum burst size at the sustainable rate greater than

the number of simultaneous new Lambda-service requests

that can be submitted, 𝜎 > 𝑏.

Note that, just as in a fixed quota system, every tenant

is immediately aware of how many new Lambda service

instances they can invoke at any given time based on their

current token-bucket state.

Different tenants may engage in different service tiers J
corresponding to different dual-token bucket mechanisms

governing their rate of Lambda-service requests. Let 𝑗 (𝑛) ∈
J be the service tier of active tenant 𝑛 corresponding to

burstiness curve𝑔 𝑗 (𝑛) . Themaximum service time per Lambda-

service invocation, 𝑆 𝑗 (𝑛),max, is also assumed to be stipulated

in SLAs.

The following constraint∑︂
𝑛

𝑔 𝑗 (𝑛) (𝑆 𝑗 (𝑛),max) ≤ 𝐾 (3)

will imply that all Lambda-service requests satisfying (2) will

be invoked upon request [4]. So, if the number of available

servers is 𝐾 , and N is the current set of active tenants, then

a new tenant at service tier 𝑗 ∈ J is admitted only if

𝑔 𝑗 (𝑆 𝑗,max) ≤ 𝐾 −
∑︂
𝑛∈N

𝑔 𝑗 (𝑛) (𝑆 𝑗 (𝑛),max).

If the tiers are designed so that there is an “atomic" tier

1 ∈ J based on its burstiness curve 𝑔1 (i.e., for every tier

𝑗 ∈ J , 𝑗 is an integer such that 𝑔 𝑗 = 𝑗𝑔1), then a price 𝑝 𝑗 for

tier- 𝑗 invocations satisfying 𝑝 𝑗 < 𝑗𝑝1 would correspond to a

volume discount.

4 OVERBOOKING BASED ON
SERVICE-TIME DISTRIBUTION FOR A
SINGLE SERVICE TIER

Consider a single service tier. As (3) may be very conser-

vative, the cloud may instead profile the service-time dis-

tribution 𝑆 across all tenants and service tiers and employ

our

Theorem 2 of [11] (reinterpreted in Appendix A of [10]).

For an infinite server system, this result uses the Chernoff

bound to show that the probability that the number of busy

servers 𝑄 exceeds 𝐾 ,

P(𝑄 > 𝐾) ≤ Ω(N) := exp

(︄
− sup

𝜃>0

{︄
𝜃 (𝐾 − 𝑔(0))

−
∫ 𝑔 (𝑆max)

𝑔 (0)
log(Φ(𝑥)e𝜃 + 1 − Φ(𝑥))d𝑥

}︄)︄
, (4)

where Φ(𝑥) := P(𝑔(𝑆) > 𝑥) and 𝑃 (𝑆 = 0) = 0 is assumed.

Note that the looser Markov inequality of Corollary 7.2 in

Appendix A (relying only on common mean service times)

does not require independent service times.

In the following, this theorem is extended to multiple

service tiers.

If the distribution of 𝑆 based on recent Lambda-service

invocations is continually estimated, then Φ and, in turn,

the bound Ω(N) can be numerically computed for the given

set of active tenants N . If there is a small tolerable aggre-

gate blocking probability of 𝜀 > 0 (a quantity that could be

stipulated in SLAs), a new tenant 𝑛′ is admitted if

Ω(N ∪ {𝑛′}) ≤ 𝜀,

here assuming that the new tenant 𝑛′ will have negligible
impact on the (collective) execution-time distribution.

Again, Lambda service instances typically require on the

order of tens of milliseconds to a few minutes execution

time [2, 19, 21]
5
. For a numerical example, suppose the cloud

models Lambda-service instances as having independent

execution-times (lifetimes) 𝑆 that are (bell-shaped and non-

negative) Weibull distributed with scale parameter 1 and

5
Note that the hour-scale “lifetimes" of Fig. 9 of [21] are the overall lifetimes

of the lambda functions, spanning plural such execution (service instance)

times separated by dormant/pause periods.
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min 𝐾 s.t.

P(𝑄 > 𝐾) < .01 = 𝜀 simulated (4) (3)

deterministic 100 108 145

Poisson 92 108 145

Table 1: The minimum number of servers 𝐾 required
so that P(𝑄 > 𝐾) < 0.01 = 𝜀, i.e., the stationary probabil-
ity that the number of occupied servers 𝑄 > 𝐾 is less
than one percent, for simulated system and according
to the Chernoff bound (4) and the no-blocking bound
(3).

shape parameter 5 so that the mean is 0.915 (minutes), and

truncated so that 𝑆max = 1.4 (at which point this Weibull

density is approximately zero). Also suppose the collective

burstiness curve is 𝑔(𝑡) = 5 + 100𝑡 , i.e., just a single token-
bucket mechanism. Thus, the mean rate of invoked requests
is less than 100 per second.

In one numerical example, we took two cases for demand.

The first was a maximal 𝑔-permitted deterministic demand

process wherein a batch of 5 instance requests were made

every
1

20
second. In the second case, we simulated a Pois-

son process with mean rate 20 and batches of 5 instances

were requested for each Poisson arrival. In the Poisson case,

some requests did not satisfy the burstiness curve 𝑔 and were

dropped so that the average admitted batch size was only

3.9 (so, a mean rate of 20 × 3.9 = 78 invoked requests per

second). The mean number of occupied servers by simula-

tion (or Little’s formula), E𝑄 = 92 for deterministic batch

requests and E𝑄 = 71 for Poisson batch requests. Numerical

results are given in Table 1 and Figures 1 and 2. We see that

the Chernoff bound (4) does reasonably well indicating the

number of required servers when the burstiness curves well

reflect demand and blocking tolerance 𝜀 is small, while (3) is

very conservative even in this case.

We numerically found that the Markov inequality given in

[11], though much easier to compute than (4), is much more

conservative even than (3). This said, it is relevant to cases

where the service times 𝑆𝑖 are dependent (and E𝑔(𝑆) < 𝐾 , of
course).

4.1 Overbooking based on empirical weak
burstiness curves on service-request
process

The bound on blocking probability Ω(N) may still be con-

servative considering that many tenants may not request

at close to the maximum rates given by (2) of their service

tiers. To this end, an empirical service-request envelope 𝑔̂
can be estimated for all currently active tenants, and 𝑔 can be

replaced by 𝑔̂ in the definition of Φ. (That is, 𝑔̂ can inform the

Figure 1: P(𝑄 > 𝐾) evaluated by simulation and its
Chernoff bound (4) versus 𝐾 for Poisson batch re-
quests. Here E𝑄 = 71.

Figure 2: P(𝑄 > 𝐾) evaluated by simulation and its
Chernoff bound (4) versus 𝐾 for deterministic batch
requests. Here E𝑄 = 92.

burstiness curve requested by the tenant of the cloud.) Here,

𝑔̂ can be any increasing, concave and nonnegative function.

To this end, consider the notion of a “weak" burstiness

curve constraint involving a small positive confidence pa-

rameter 𝛿 < 1 [15]. Given the aggregate number of service

requests over time interval (𝑠, 𝑡], 𝐴(𝑠, 𝑡], one can track vir-
tual queues (e.g., [7, 8]) 𝑉𝑟 (𝑡) = max𝑠≤𝑡 𝐴(𝑠, 𝑡] − 𝑟 (𝑡 − 𝑠) for
different service rates 𝑟 ≤ 𝜋 . For each virtual queue, we can

estimate minimal 𝜎̂𝑟 such that

P(𝑉𝑟 > 𝜎̂𝑟 ) < 𝛿.
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In particular, the maximum simultaneous aggregate request

observed 𝑏ˆ = 𝜎̂𝑟 for 𝑟 = 𝜋 . Note that 𝜎̂𝑟 ≤ 𝜎̂𝑟 ′ if 𝑟 > 𝑟 ′. Thus,
we can approximate (concave)

𝑔̂(𝑡) = min

𝑟
𝜎̂𝑟 + 𝑡𝑟 .

5 DISCUSSION: MULTIPLE SERVICE
TIERS FOR ONE RESOURCE POOL

Consider the case where the aggregate demand of tier 𝑗 ∈ J
has service-request burstiness curve 𝑔 𝑗 and i.i.d. execution-

times ∼ 𝑆 ( 𝑗) ≤ 𝑆
( 𝑗)
max

such that P(𝑆 ( 𝑗) = 0) = 0 ∀𝑗 ∈ J .

Assume arrival and service processes of each tier are mutu-

ally independent. Furthermore, suppose each Lambda service

instance of type 𝑗 ∈ J requires an amount 𝑑 𝑗,𝑟 of resource

of type 𝑟 ∈ R. For all 𝑗 ∈ J and 𝑟 ∈ R, let
𝑞 𝑗,𝑟 = 𝑄 𝑗𝑑 𝑗,𝑟

be the total stationary amount of resource of type 𝑟 allocated

to active Lambda service instances of type 𝑗 for an infinite

resource system.

Assume that resources for Lambda service are from a sin-

gle pool (physical server), 𝑖 . Recall that the amount of type-𝑟

resource available is 𝑐𝑖,𝑟 .

Corollary 5.1. For physical server 𝑖 ,

P
(︃
max

𝑟 ∈R

∑︁
𝑗 𝑞 𝑗,𝑟

𝑐𝑖,𝑟
> 1

)︃
≤ exp

⎛⎜⎝− sup

𝜃>0

⎧⎪⎨⎪⎩𝜃 −
∑︂
𝑗 ∈J

M 𝑗

(︃
𝜃 max

𝑟 ∈R

𝑑 𝑗,𝑟

𝑐𝑖,𝑟

)︃⎫⎪⎬⎪⎭⎞⎟⎠
where

M 𝑗 (𝜃 ) =
∫ 𝑔𝑗 (𝑆 ( 𝑗 )

max
)

𝑔𝑗 (0)
log(Φ𝑗 (𝑥)e𝜃 + 1 − Φ𝑗 (𝑥))d𝑥 + 𝜃𝑔 𝑗 (0)

and Φ𝑗 (𝑥) = P(𝑔 𝑗 (𝑆 ( 𝑗) ) > 𝑥).
Proof: For 𝜃 > 0,

log E exp
(︃
𝜃 max

𝑟

∑︁
𝑗 𝑞 𝑗,𝑟

𝑐𝑖,𝑟

)︃
= log E exp

(︄
𝜃 max

𝑟

∑︂
𝑗

𝑄 𝑗𝑑 𝑗,𝑟

𝑐𝑖,𝑟

)︄
≤ log E exp

(︄
𝜃
∑︂
𝑗

𝑄 𝑗 max

𝑟

𝑑 𝑗,𝑟

𝑐𝑖,𝑟

)︄
=

∑︂
𝑗

log E exp
(︃
𝜃𝑄 𝑗 max

𝑟

𝑑 𝑗,𝑟

𝑐𝑖,𝑟

)︃
,

where the last equality is by assumed mutual independence

of the𝑄 𝑗 , 𝑗 ∈ J . The proof then follows by the argument for

the single-tier theorem (4) [10, 11] and the Chernoff bound.

□

5.1 An atomic service in terms of IT
resources allocated

Consider the special case of an atomic service tier in terms

of allocated resources (as in AWS Lambda). That is, suppose

there are constants 𝜅 𝑗 such that

∀𝑗 ∈ J , 𝑟 ∈ R, 𝑑 𝑗,𝑟 = 𝜅 𝑗𝑑1,𝑟 . (5)

Regarding Corollary 5.1 for this case, obviously

∀𝑗, max

𝑟

𝑑 𝑗,𝑟

𝑐𝑖,𝑟
= 𝜅 𝑗 max

𝑟

𝑑1,𝑟

𝑐𝑖,𝑟
.

Here, a tier- 𝑗 service instance would consume 𝜅 𝑗 tokens

upon invocation.

5.2 Extensions to multiple physical servers
To extend the case of multiple service tiers to multiple physi-

cal servers 𝑖 , one can divide each tenant 𝑛’s demand envelope

among them. For example, for nonnegative scalars 𝛼 𝑗 (𝑛),𝑖
such that

∑︁
𝑖 𝛼 𝑗 (𝑛),𝑖 = 1, take 𝑔 𝑗 (𝑛),𝑖 = 𝛼 𝑗 (𝑛),𝑖𝑔 𝑗 (𝑛) so that

𝑔 𝑗 (𝑛) =
∑︂
𝑖

𝑔 𝑗 (𝑛),𝑖 .

The weights 𝛼 for each tenant can then be chosen to balance

load among servers 𝑖 . Given that, Corollary 5.1 can be used

for each server 𝑖 .

Obviously, the above approach to admission control could

be separately applied to each tier in J if resources for differ-

ent service tiers are statically partitioned based on demand

assessments.

Note that under (5), the price of type- 𝑗 Lambda service

instances should be more than 𝜅 𝑗 type-1 (atomic) Lambda

service instances because the former needs to be allocated

on a single physical server.

6 FUTUREWORK
For longer running Lambda functions, if Lambda servers are

available, it may bemore resource efficient to invoke requests

that violate their token-bucket profiles but flag them [7, 8]

as preemptible or pausable. Also, blocked in-profile and out-

of-profile requests may be temporarily queued. In future

work, we will study the overhead of preemption and the

performance of policies to price and preempt out-of-profile

invocations.

Nonlinear chance constraints can replace linear “spatial"

resource constraints such as (1). In future work, we will also

consider how the above temporal approach to overbooking

can be combined with instance-placement approaches based

on chance constraints.
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7 APPENDIX A: LOSS SYSTEMWITH
ARRIVALS SATISFYING BURSTINESS
CURVES

In this Appendix, we reinterpret the statement of Theorem

2 of [11] and provide a modified proof. Consider a bufferless

systemwith𝐾 ≥ 1 identical servers. Let𝑇𝑖 be the arrival time

of job (service request) 𝑖 and here let 𝑆𝑖 be its service time.

Consider a (increasing, concave and nonnegative) burstiness

curve 𝑔 for arrivals, i.e.,

∀𝑠 ≤ 𝑡,
∑︂
𝑖

1{𝑠 < 𝑇𝑖 ≤ 𝑡} ≤ 𝑔(𝑡 − 𝑠).

Assume a maximum service time 𝑆max.

The number of busy servers (jobs in the system) at time 𝑡 ,

𝑄 (𝑡) =

∞∑︂
𝑖=−∞

1{𝑇𝑖 ≤ 𝑡 < 𝑇𝑖 + 𝑆𝑖 }

=

∞∑︂
𝑖=−∞

1{𝑡 − 𝑆𝑖 < 𝑇𝑖 ≤ 𝑡}

≤
∞∑︂

𝑖=−∞
1{𝑡 − 𝑆max < 𝑇𝑖 ≤ 𝑡}

≤ 𝑔(𝑆max).

So, if 𝑔(𝑆max) ≤ 𝐾 , then the𝐾-server system will never block

jobs [4].

Theorem 7.1. [11] If

P(𝑆 = 0) = 0 (6)

and the service times 𝑆𝑖 are independent and identically dis-
tributed, then in steady-state,

log Ee𝜃𝑄 ≤ 𝜃𝑔(0) +∫ 𝑔 (𝑆max)

𝑔 (0)
log(Φ(𝑥)e𝜃 + 1 − Φ(𝑥))d𝑥

=: M(𝜃 )

where Φ(𝑥) = P(𝑔(𝑆) > 𝑥).

Corollary 7.1. If (6) and the 𝑆𝑖 are independent and iden-
tically distributed, then in steady-state the Chernoff bound
is

P(𝑄 > 𝐾) ≤ exp(− sup

𝜃>0

{𝜃𝐾 −M(𝜃 )}) .

Corollary 7.2. If (6) and the 𝑆𝑖 are identically distributed,
then in steady-state the Markov inequality is,

P(𝑄 > 𝐾) ≤ E𝑔(𝑆)
𝐾

.

Remark: For Corollary 7.2, the 𝑆𝑖 are not necessarily mutually

independent.
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Proof of the Theorem: Define a partition {𝑚ℓ }𝐿+1ℓ=0 of the range

of 𝑔:

𝑚0 = 𝑔(0), 𝑚ℓ < 𝑚ℓ+1 ∀ℓ, 𝑚𝐿+1 = 𝑔(𝑆max).

Define the job indexes so that 𝑇−1 ≤ 𝑡 < 𝑇0 and

𝑄 (𝑡) =

−1∑︂
𝑖=−∞

1{𝑡 − 𝑆𝑖 < 𝑇𝑖 ≤ 𝑡}.

Thus,

𝑄 (𝑡) =

−1∑︂
𝑖=−∞

𝐿∑︂
ℓ=0

1{𝑡 − 𝑆𝑖 < 𝑇𝑖 ≤ 𝑡}

·1{𝑔−1 (𝑚ℓ ) < 𝑆𝑖 ≤ 𝑔−1 (𝑚ℓ+1)}

≤
𝐿∑︂
ℓ=0

−1∑︂
𝑖=−∞

1{𝑡 − 𝑔−1 (𝑚ℓ+1) < 𝑇𝑖 ≤ 𝑡}

·1{𝑔−1 (𝑚ℓ ) < 𝑆𝑖 ≤ 𝑔−1 (𝑚ℓ+1)}

≤
𝐿∑︂
ℓ=0

−1∑︂
𝑖=−𝑚ℓ+1

1{𝑔−1 (𝑚ℓ ) < 𝑆𝑖 ≤ 𝑔−1 (𝑚ℓ+1)}

where the inequalities are by the burstiness constraint 𝑔 on

{𝑇𝑖 }.
Switching the order of summation again gives,

𝑄 (𝑡) ≤
−1∑︂

𝑖=−𝑚1

𝐿∑︂
ℓ=0

1{𝑔−1 (𝑚ℓ ) < 𝑆𝑖 ≤ 𝑔−1 (𝑚ℓ+1)}

+
−𝑚1−1∑︂
𝑖=−𝑚2

𝐿∑︂
ℓ=1

1{𝑔−1 (𝑚ℓ ) < 𝑆𝑖 ≤ 𝑔−1 (𝑚ℓ+1)}

+... +
−𝑚𝐿−1∑︂
𝑖=−𝑚𝐿+1

1{𝑔−1 (𝑚𝐿) < 𝑆𝑖 ≤ 𝑔−1 (𝑚𝐿+1)}

=

−1∑︂
𝑖=−𝑚1

1{𝑔−1 (𝑚0) < 𝑆𝑖 }

+
−𝑚1−1∑︂
𝑖=−𝑚2

1{𝑔−1 (𝑚1) < 𝑆𝑖 }

+... +
−𝑚𝐿−1∑︂
𝑖=−𝑚𝐿+1

1{𝑔−1 (𝑚𝐿) < 𝑆𝑖 }.

Taking expectation now and letting the partition {𝑚ℓ }𝐿+1ℓ=0

become infinitely fine as𝐿 → ∞ leads to E𝑄 ≤ E
∫ 𝑔 (𝑆max)
𝑔 (0) P(𝑔(𝑆) >

𝑥)d𝑥 = E𝑔(𝑆) and Corollary 7.2.

Continuing from the previous display: Since the 𝑆𝑖 are

identically distributed ∼ 𝑆 ,

∀𝑖, E exp(𝜃1{𝑔−1 (𝑚ℓ ) < 𝑆𝑖 }) = Φ(𝑚ℓ )e𝜃 + 1 − Φ(𝑚ℓ ).

Since 𝑆𝑖 are independent and Φ(𝑚0) = 1 (the latter because

P(𝑆 = 0) = 0),

Ee𝑄 (𝑡 ) ≤ e
𝜃𝑚0

𝐿∏︂
ℓ=0

(Φ(𝑚ℓ )e𝜃 + 1 − Φ(𝑚ℓ ))𝑚ℓ+1−𝑚ℓ

Thus,

log Ee𝑄 (𝑡 ) ≤ 𝜃𝑔(0)

+
𝐿∑︂
ℓ=0

(𝑚ℓ+1 −𝑚ℓ ) log(Φ(𝑚ℓ )e𝜃 + 1 − Φ(𝑚ℓ ))

So, as 𝐿 → ∞ and the partition {𝑚ℓ } of the range of 𝑔 be-

comes infinitely fine, this bound converges to the integral,

𝜃𝑔(0) +
∫ 𝑔 (𝑆max)

𝑔 (0)
log(Φ(𝑥)e𝜃 + 1 − Φ(𝑥))d𝑥 □
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