Overbooking Microservices in the Cloud

George Kesidis
Pennsylvania State University
University Park, PA
gik2@psu.edu

ACM Reference Format:

George Kesidis. 2019. Overbooking Microservices in the Cloud. In
ACM WOC’19, December 09—13, 2019, Davis, CA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3366615.3368351

1 INTRODUCTION

Public-cloud computing is conducted through Service-Level
Agreements (SLAs), including pricing policies. Also, there is
limited information-sharing regarding workloads between
tenants' and the operator/provider of a neutral public cloud
[12]. Though public-cloud operators may seek to maximize
their revenue and minimize their operating (including amor-
tized capital) expenditures, they may be forced to treat ten-
ants “fairly” according to future neutrality regulations. More-
over, it may not be permitted to profile individual tenants,
though it may be permitted to profile, e.g., a particular service
spanning all tenants that use it.

A variety of cloud-computing services have been broadly
classified as Infrastructure-as-a-Service (IaaS) such as Vir-
tual Machines (VMs), Platform-as-a-Service (PaaS) includ-
ing Function-as-a-Service (FaaS) such as Amazon Lambda
“serverless" computing, and Software-as-a-Service (SaaS) such
as GCE’s TensorFlow. We focus herein on PaaS as offered by
AWS (Lambda), GCE, Azure and IBM Cloud. In the following,
we will call PaaS invocations Lambda functions or Lambda
service instances.

Rather than renting reserved resources through a VM,
under serverless computing multiple stateless Lambda func-
tions are submitted by a tenant for execution in a provisioned
container. AWS Lambda service tiers are based on 128MB
units of memory, with 2 vCPU allocated per 3GB memory
(% vCPU per memory unit). Cost per tier is based on units of

lak.a. customers or users

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ACM WOC’19, December 09—-13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7033-2/19/12...$15.00
https://doi.org/10.1145/3366615.3368351

memory times the time that the Lambda invocation is active.
State spanning plural Lambda invocations is externalized,
e.g., managed by a “master” or “driver" VM or stored in AWS
S3 or Single Queue Service (SQS); also see [9].

Lambda service instances typically require on the order
of tens of milliseconds to a few minutes execution time
[2, 19, 21]; in the lower range of execution times, cold-start
spin-up overhead (including data acquisition) can be substan-
tial. But to avoid such delays, a (cloud controlled) container
may persist after a Lambda function finishes execution in
anticipation of additional demand by the same tenant [21].
However, reserving the IT resources of dormant/paused con-
tainers for future invocations by the same tenant could be
very resource inefficient.

In the following, we assume that an idle IT resource bundle
for Lambda service, considered to be a “Lambda server", can
be used by any tenant at any time as permitted by their SLA.
A disadvantage is that there may not be sufficient isolation
among different cloud tenants under this assumption [14],
e.g., presently, important data may be leaked from one ten-
ant (whose Lambda function terminates) to another (whose
Lambda function shortly thereafter commences in the same
cloud-managed VM) through memory side-channels (i.e., the
memory used by a Lambda function is not erased, or an
equivalent operation performed, upon its termination).

Some providers limit the number of simultaneous cloud-
function service-instances per tenant, e.g., AWS concurrency
limits are described in [1]. There are security and cost risks
to the tenant associated with autoscaling due to faults, the
actions of intrusive malware, deliberate Denial-of-Service
(DoS) attacks, or due to nominal but unexpected resource
congestion (flash crowds) [13]. Concurrency limits may con-
trol such risks?.

Also, the cloud provider generally wishes to operate their
infrastructure efficiently. Efficient cloud operation, and asso-
ciated potential cost savings for tenants, will be particularly
important in edge/fog computing settings where: prices are
generally much higher, concurrency limits per tenant are
likely to be stricter, and servers mounting Lambda functions
are likely to be shared among different tenants (rather than
dedicated to individual tenants).

%A large tenant with several concurrent applications could similarly em-
ploy a token-bucket mechanisms to control how an individual applications
launches Lambda functions.

https://doi.org/10.1145/3366615.3368351
https://doi.org/10.1145/3366615.3368351

ACM WOC’19, December 09-13, 2019, Davis, CA, USA

This paper focuses on the problem of cloud-side sched-
uling and consolidation of Lambda service instances, par-
ticularly principled approaches to overbook resources so as
to improve utilization efficiency and thus maintain greatest
possible service availability to tenant customers. So, from the
tenant’s point of view, the edge-cloud Lambda service will
be more dependable, particularly for autoscaling, notwith-
standing congested (and costly) IT resources.

The following framework may also be useful in a more
“private" setting-up of tenant-rented Virtual Machine (VM) re-
sources housing containers executing a microservice-workload
stream. Here, the aim could be to determine the number of
VMs and their sizes so as to limit the amount of autoscaling
while using these procured resources efficiently.

Finally, note that individual job service times may vary
greatly, even in a microservice setting. So, limiting the job
arrival stream by a token-bucket mechanism and just bound-
ing the job execution times can lead to very inefficient use of
resources. This motivates a simple statistical model for job
service times. (Note that in packet switching, packet sizes
are known a priori.)

This paper is organized as follows. Related work is dis-
cussed in Section 2. The problem is set up in Section 3 and
a no-blocking condition is given when a service quota is
replaced by a token-bucket mechanism governing concur-
rency, i.e., governing how tenants may request homogeneous
Lambda service instances. In Section 4, we show how admis-
sion control can be relaxed considering empirical Lambda-
function execution times resulting in more efficient use of
resources. An extension to multiple service tiers based in
part on allocated resources per Lambda service instance is
discussed in Section 5. The paper concludes with a discussion
of future work in Section 6.

2 RELATED WORK

For decades, token-bucket mechanisms have been used to
control the resource utilization of a workload stream. In a
packet-switching context, e.g., [4, 7, 8], the tasks (packet-
header processing and packet transmission) have very pre-
dictable sizes® compared to workloads of a general-purpose
CPU, call center, etc. For scheduling purposes in the latter
cases, token-bucket controls at the task level may be aug-
mented by statistical models profiling task execution times,
e.g., [5, 6, 11, 18]. In some cases, predictable workloads can
be overbooked to improve resource-utilization efficiency.
Some prior work on resource overbooking has been based
on chance constraints, e.g., involving second-order statistics
3, 12].

Though we assume herein that Lambda-function invoca-
tions are limited by a deterministic token-buck mechanism,

3TP packet lengths are simply given in their headers.

George Kesidis

resource allocation to Lambda functions will also depend
on the distribution of their execution times, as estimated
by the cloud. Such estimates could be continually updated
over time, as new Lambda-function execution-time statistics
are collected. For example, a classical maximum-likelihood
approach can be used to fit a sliding time-window of the
most recent cloud-function execution times to a parameter-
ized distribution model, e.g., of the Gamma [17] or Weibull
type. In an online setting, if updates are based on observa-
tion batches, the old approximate service-time distribution,
p, and the one based on the most recent batch of observed
Lambda execution/service times, ¢, could be combined in
a simple first-order autoregressive manner, ap + (1 — a)q,
where forgetting factor « is such that 0 < a < 1.

3 PROBLEM SET-UP AND A
NO-BLOCKING CONDITION

Consider available resources of a set 7 of heterogeneous
physical servers, including resources unused by existing laaS
instances (VMs)*. Let c; be the amount of IT resource of type
r € R (e.g., R = {vCPUs, memory, network I/O}) available
for Lambda service on server i € 7. In the following, min,
will be short for min,cg, Y;; will be short for) ;. 7, etc.

Consider a set N of tenant-customers of a common type
of Lambda service, with d, being the amount of type r € R
resource allocated per invocation as prescribed by the SLA.
In the following, we assume tenant SLAs stipulate

e IT resources allocated per invocation of the common
type of Lambda service, {d, }rer,

e a maximum execution/activity time Sp,ax per invoca-
tion,

e and some limit to the rate at which tenants can request
different Lambda service instances.

For the case of tenant demand for a single type of Lambda
service, we can consider each available |R|-vector of re-
sources d from the physical server pool I as a “Lambda
server" that pulls in work when idle, e.g., [16].

Suppose that there are K such servers available:

K = min {EJ . (1)
= reR r
Generally, K is time-varying but at a longer time-scale than
that of individual Lambda-service lifetimes or of the time
between successive Lambda-service invocations.

3.1 A quota system

First note that if there is a simple quota, K;, < K, on the
number of active Lambda invocations for tenant n, then by

“4Considering the fleeting nature of Lambda service, some cloud operators
may be tempted to use idling capacity reserved for IaaS for Lambda service.

Overbooking Microservices in the Cloud

Little’s formula, K}, /ES, is an upper bound on the mean rate
at which that tenant can request service, where the random
variable S,, is distributed as the execution time of tenant n’s
Lambda functions. Furthermore, if tenant n’s service-request
process is modeled as Poisson, then the Erlang blocking
formula applies [22].

In the following, we do not assume a Poisson model for
service request processes.

The cloud may overbook resources by, e.g., online esti-
mating the mean and variance of the total number of active
Lambda servers Q < K, respectively E’@ and ‘;2_1;\(Q), using,
e.g., a simple autoregressive mechanism. Admission con-
trol could be based on the current 99%-confident estimate

K- E@ —34/var(Q) of available Lambda servers. SLAs should
capture how such overbooking approaches may sometimes
result in blocking of within-quota requests for Lambda ser-
vice.

3.2 Demand constrained by token bucket
regulators

Instead of a simple quota on the number of active invoca-
tions per tenant, the cloud can accommodate batch Lambda-
service requests while effecting control on such a system
by applying token-bucket allocators. For example, a dual
token-bucket allocator permits only

g(t) = min{b+ nt, o+ pt} (2)
requests for Lambda service over any time-interval of length
t, with peak rate larger than sustainable rate, 7 > p > 0, and
the maximum burst size at the sustainable rate greater than
the number of simultaneous new Lambda-service requests
that can be submitted, o > b.

Note that, just as in a fixed quota system, every tenant
is immediately aware of how many new Lambda service
instances they can invoke at any given time based on their
current token-bucket state.

Different tenants may engage in different service tiers J
corresponding to different dual-token bucket mechanisms
governing their rate of Lambda-service requests. Let j(n) €
J be the service tier of active tenant n corresponding to
burstiness curve g;(n). The maximum service time per Lambda-
service invocation, Sj(n) max, is also assumed to be stipulated
in SLAs.

The following constraint

Zgj(n)(sj(n),max) < K 3)
n

will imply that all Lambda-service requests satisfying (2) will
be invoked upon request [4]. So, if the number of available
servers is K, and N is the current set of active tenants, then

ACM WOC’19, December 09-13, 2019, Davis, CA, USA

a new tenant at service tier j € J is admitted only if

gj(Sj,max) < K- Z 9gj(n) (Sj(n),max)~
neN
If the tiers are designed so that there is an “atomic" tier
1 € J based on its burstiness curve g; (i.e., for every tier
j € J, jisaninteger such that g; = jg;), then a price p; for
tier-j invocations satisfying p; < jp; would correspond to a
volume discount.

4 OVERBOOKING BASED ON
SERVICE-TIME DISTRIBUTION FOR A
SINGLE SERVICE TIER

Consider a single service tier. As (3) may be very conser-
vative, the cloud may instead profile the service-time dis-
tribution S across all tenants and service tiers and employ
our

Theorem 2 of [11] (reinterpreted in Appendix A of [10]).
For an infinite server system, this result uses the Chernoff
bound to show that the probability that the number of busy
servers Q exceeds K,

P(Q>K) < QN) = exp (— sup {G(K —-¢(0))
6>0

9(Smax)
- / log(®(x)e? +1 - cp(x))dx}), (4)
9(0)

where ®(x) := P(g(S) > x) and P(S = 0) = 0 is assumed.

Note that the looser Markov inequality of Corollary 7.2 in
Appendix A (relying only on common mean service times)
does not require independent service times.

In the following, this theorem is extended to multiple
service tiers.

If the distribution of S based on recent Lambda-service
invocations is continually estimated, then ® and, in turn,
the bound Q(N) can be numerically computed for the given
set of active tenants N. If there is a small tolerable aggre-
gate blocking probability of ¢ > 0 (a quantity that could be
stipulated in SLAs), a new tenant n’ is admitted if

QNU{n'}) < ¢

here assuming that the new tenant n” will have negligible
impact on the (collective) execution-time distribution.
Again, Lambda service instances typically require on the
order of tens of milliseconds to a few minutes execution
time [2, 19, 21]°. For a numerical example, suppose the cloud
models Lambda-service instances as having independent
execution-times (lifetimes) S that are (bell-shaped and non-
negative) Weibull distributed with scale parameter 1 and

SNote that the hour-scale “lifetimes" of Fig. 9 of [21] are the overall lifetimes
of the lambda functions, spanning plural such execution (service instance)
times separated by dormant/pause periods.

ACM WOC’19, December 09-13, 2019, Davis, CA, USA

min K s.t.
P(Q > K) < .01 = ¢ | simulated | (4) | (3)
deterministic ‘ 100 ‘ 108 ‘ 145
Poisson ‘ 92 ‘ 108 ‘ 145

Table 1: The minimum number of servers K required
so that P(Q > K) < 0.01 = ¢, i.e., the stationary probabil-
ity that the number of occupied servers Q > K is less
than one percent, for simulated system and according
to the Chernoff bound (4) and the no-blocking bound

@3).

shape parameter 5 so that the mean is 0.915 (minutes), and
truncated so that Sp,x = 1.4 (at which point this Weibull
density is approximately zero). Also suppose the collective
burstiness curve is g(t) = 5 + 100¢, i.e., just a single token-
bucket mechanism. Thus, the mean rate of invoked requests
is less than 100 per second.

In one numerical example, we took two cases for demand.
The first was a maximal g-permitted deterministic demand
process wherein a batch of 5 instance requests were made
every zio second. In the second case, we simulated a Pois-
son process with mean rate 20 and batches of 5 instances
were requested for each Poisson arrival. In the Poisson case,
some requests did not satisfy the burstiness curve g and were
dropped so that the average admitted batch size was only
3.9 (so, a mean rate of 20 X 3.9 = 78 invoked requests per
second). The mean number of occupied servers by simula-
tion (or Little’s formula), EQ = 92 for deterministic batch
requests and EQ = 71 for Poisson batch requests. Numerical
results are given in Table 1 and Figures 1 and 2. We see that
the Chernoff bound (4) does reasonably well indicating the
number of required servers when the burstiness curves well
reflect demand and blocking tolerance ¢ is small, while (3) is
very conservative even in this case.

We numerically found that the Markov inequality given in
[11], though much easier to compute than (4), is much more
conservative even than (3). This said, it is relevant to cases
where the service times S; are dependent (and Eg(S) < K, of
course).

4.1 Overbooking based on empirical weak
burstiness curves on service-request
process

The bound on blocking probability Q(N) may still be con-
servative considering that many tenants may not request
at close to the maximum rates given by (2) of their service
tiers. To this end, an empirical service-request envelope g
can be estimated for all currently active tenants, and g can be
replaced by g in the definition of ®. (That is, g can inform the

George Kesidis

© simulation Chernoff
1.400000 o o o
!

1.050000
/\ 0.700000 O o
S
—
2P

0.350000 ..

0.000000 O

2994292222222 224222 n
99 10 0 08 4 0

75 78 81 84 87 90 93 9%

K

Figure 1: P(Q > K) evaluated by simulation and its
Chernoff bound (4) versus K for Poisson batch re-
quests. Here EQ = 71.

O simulation Chernoff

1.400

P(Q>K)

*

.
0.000 g fCEaaaeeeeaeeeeaaacce
75 78 81 84 87 90 93 96 99 10 05 108 4 0

Figure 2: P(Q > K) evaluated by simulation and its
Chernoff bound (4) versus K for deterministic batch
requests. Here EQ = 92.

burstiness curve requested by the tenant of the cloud.) Here,
g can be any increasing, concave and nonnegative function.

To this end, consider the notion of a “weak" burstiness
curve constraint involving a small positive confidence pa-
rameter § < 1 [15]. Given the aggregate number of service
requests over time interval (s, t], A(s, t], one can track vir-
tual queues (e.g., [7, 8]) V;(t) = maxs<; A(s, t] — r(t —s) for
different service rates r < . For each virtual queue, we can
estimate minimal &, such that

P(V, >6,) < &.

Overbooking Microservices in the Cloud

In particular, the maximum simultaneous aggregate request
observed b = &, for r = . Note that 6, < 6,» if r > r’. Thus,
we can approximate (concave)

g(t) = mind, +tr.
r

5 DISCUSSION: MULTIPLE SERVICE
TIERS FOR ONE RESOURCE POOL

Consider the case where the aggregate demand of tier j € J
has service-request burstiness curve g; and i.i.d. execution-
times ~ S0 < $Y) such that P(S¥) = 0) = 0Vj € 7.
Assume arrival and service processes of each tier are mutu-
ally independent. Furthermore, suppose each Lambda service
instance of type j € J requires an amount d;, of resource
oftyper e R.Forall j € J andr € R, let

aGr = Qidjr
be the total stationary amount of resource of type r allocated
to active Lambda service instances of type j for an infinite
resource system.
Assume that resources for Lambda service are from a sin-
gle pool (physical server), i. Recall that the amount of type-r
resource available is ¢; ,.

COROLLARY 5.1. For physical server i,

24,
P(max j G > 1)

reR Cir

djr
< - - ; d
< exp|—sup {9 Z M,; (9 max o)}

0>0 jeq

where

g<51(njd)x

M;(0) :/ ’ log(CDJ-(x)eg +1-®;(x))dx +0g;(0)
g;(0)

and ®;(x) = P(gj(SU)) > Xx).

Proof: For 6 > 0,

log E exp (0 max 2 Gir)
r Ci,r
Qjd;r
= logEexp |60 max :
& P (r Z Cir

IA

d;

log E exp (QZ Qj max c”)
- r ir
7 .

djr
Z log E exp | 0Q; max ,
J

Cir

where the last equality is by assumed mutual independence
of the Q;, j € J. The proof then follows by the argument for
the single-tier theorem (4) [10, 11] and the Chernoff bound.

[m]

ACM WOC’19, December 09-13, 2019, Davis, CA, USA

5.1 An atomic service in terms of IT
resources allocated
Consider the special case of an atomic service tier in terms
of allocated resources (as in AWS Lambda). That is, suppose
there are constants x; such that
V] € J, re R, dj,r = Kjdl,r- (5)
Regarding Corollary 5.1 for this case, obviously

. J.r dl,r
Vj, max = Kjmax .
o Cir r Cir

Here, a tier-j service instance would consume «x; tokens
upon invocation.

5.2 Extensions to multiple physical servers

To extend the case of multiple service tiers to multiple physi-
cal servers i, one can divide each tenant n’s demand envelope
among them. For example, for nonnegative scalars a;(p);
such that 3; aj(n); = 1, take gj(n),i = ®j(n),igj(n) SO that

Gitm =)\ Gitn.i
i

The weights « for each tenant can then be chosen to balance
load among servers i. Given that, Corollary 5.1 can be used
for each server i.

Obviously, the above approach to admission control could
be separately applied to each tier in J if resources for differ-
ent service tiers are statically partitioned based on demand
assessments.

Note that under (5), the price of type-j Lambda service
instances should be more than k; type-1 (atomic) Lambda
service instances because the former needs to be allocated
on a single physical server.

6 FUTURE WORK

For longer running Lambda functions, if Lambda servers are
available, it may be more resource efficient to invoke requests
that violate their token-bucket profiles but flag them [7, 8]
as preemptible or pausable. Also, blocked in-profile and out-
of-profile requests may be temporarily queued. In future
work, we will study the overhead of preemption and the
performance of policies to price and preempt out-of-profile
invocations.

Nonlinear chance constraints can replace linear “spatial”
resource constraints such as (1). In future work, we will also
consider how the above temporal approach to overbooking
can be combined with instance-placement approaches based
on chance constraints.

ACKNOWLEDGMENTS

This research was supported in part by NSF CNS 1717571
grants and a Cisco Systems URP gift.

ACM WOC’19, December 09-13, 2019, Davis, CA, USA

REFERENCES

[1] AWS. AWS Lambda Function
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-
executions.html, 2019.

[2] R.S. Barga. Serverless Computing - Redefining the Cloud. In Proc.
WoSC, https://www.serverlesscomputing.org/woscl7/presentations/barga-
keynote-serverless.pdf, 2017.

[3] M.C. Cohen, V. Mirrokni, P. Keller, and M. Zadimoghaddam. Overcom-
mitment in Cloud Services Bin packing with Chance Constraints. In
Proc. ACM SIGMETRICS, Urbana-Campaign, IL, June 2017.

[4] R.L. Cruz. Quality of service guarantees in virtual circuit switched
networks. IEEE JSAC, Vol. 13, No. 6:pages 1048-1056, Aug. 1995.

[5] C.Delimitrou and C. Kozyrakis. HCloud: Resource-Efficient Provision-
ing in Shared Cloud Systems. In Proc. ASPLOS, Atlanta, 2016.

[6] C.Delimitrou and C. Kozyrakis. QoS-Aware Scheduling in Heteroge-
neous Datacenters with Paragon. ACM Trans. on Computer Systems,
31(4), Dec. 2013.

[7] J. Heinanen, T. Finland, and R. Guerin. A single rate three color marker.
RFC 2697 available at www.ietf.org, 1999.

[8] J. Heinanen, T. Finland, and R. Guerin. A two rate three color marker.
RFC 2698 available at www.ietf.org, 1999.

[9] A.Jain, AF. Baarzi, N. Alfares, G. Kesidis, B. Urgaonkar, and M. Kan-
demir. SplitServe: Efficient Splitting Complex Workloads across
Faa$ and IaaS, Nov. 2019; https://github.com/PSU-Cloud/splitserve-
spark/blob/master/Paper/SplitServe.pdf.

[10] G. Kesidis. Overbooking Lambda Functions in the Cloud.

https://arxiv.org/abs/1901.09842

G. Kesidis, K. Chakraborty, and L. Tassiulas. Traffic shaping for a loss

system. IEEE Communication Letters, 4, No. 12:pp. 417-419, Dec. 2000.

[12] G. Kesidis, N. Nasiriani, B. Urgaonkar, and C. Wang. Neutrality in
Future Public Clouds: Implications and Challenges. In Proc. USENIX
HotCloud, 2016.

[13] E.Kim. Internal documents show how Amazon scrambled to fix Prime
Day glitches. https://www.cnbc.com/2018/07/19/amazon-internal-
documents-what-caused-prime-day-crash-company-scramble.html,
July 19, 2018.

[14] AWS Lambda. Security Overview of AWS Lambda.
https://d1.awsstatic.com/whitepapers/Overview-AWS-Lambda-
Security.pdf, March 2019.

[15] S.Low and P. Varaiya. A simple theory of traffic resource allocation
in ATM. In Proc. IEEE GLOBECOM, 1991.

[16] G.McGrath and P.R. Brenner. Serverless computing: Design, implemen-
tation, and performance. In IEEE Int’l Conf. on Distributed Computing
Systems Workshops, 2017.

[17] TP. Minka. Estimating a Gamma
https://tminka.github.io/papers/minka-gamma.pdf, 2002.

[18] Sergio Pacheco-Sanchez, Giuliano Casale, Bryan W. Scotney, Sally I.
McClean, Gerard P. Parr, and Stephen Dawson. Markovian workload
characterization for QoS prediction in the cloud. In IEEE CLOUD, pages
147-154. IEEE, 2011.

[19] M. Stein. The Serverless Scheduling Problem and NOAH.
https://arxiv.org/abs/1809.06100, Sept. 2018.

[20] C.Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis. Using Burstable
Instances in the Public Cloud: When and How? In Proc. ACM SIGMET-
RICS, Champaign-Urbana, IL, June 2017.

[21] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking Behind
the Curtains of Serverless Platforms. In Proc. USENIX ATC, Boston,
2018.

[22] RW. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

Scaling.

[11

—

distribution.

George Kesidis

7 APPENDIX A: LOSS SYSTEM WITH
ARRIVALS SATISFYING BURSTINESS
CURVES

In this Appendix, we reinterpret the statement of Theorem

2 of [11] and provide a modified proof. Consider a bufferless

system with K > 1identical servers. Let T; be the arrival time

of job (service request) i and here let S; be its service time.

Consider a (increasing, concave and nonnegative) burstiness

curve g for arrivals, i.e.,

Vs < t, Zl{s<TiSt}Sg(t—s).

Assume a maximum service time Syax.
The number of busy servers (jobs in the system) at time ¢,

00

Z 1T, <t <T;+S;}

j=—00

Q(t)

(o]

Z t-Si <T <t}

j=—o00

(o)

Z l{t_smax<TiSt}

j=—00
g(smax) .

So, if g(Smax) < K, then the K-server system will never block
jobs [4].

IA

IA

THEOREM 7.1. [11]If
P(S=0) = 0 (6)

and the service times S; are independent and identically dis-
tributed, then in steady-state,

logEe?? < 09(0) +

g(smax)
/ Iog(d)(x)ea +1—-®(x))dx
9(0)

M(6)
where ®(x) = P(g(S) > x).

CoROLLARY 7.1. If (6) and the S; are independent and iden-
tically distributed, then in steady-state the Chernoff bound
is

P(Q>K) < exp(—sup{0K—-M(0)}).

6>0

CoROLLARY 7.2. If (6) and the S; are identically distributed,
then in steady-state the Markov inequality is,

Eg(S)
-

Remark: For Corollary 7.2, the S; are not necessarily mutually
independent.

P(OQ>K) <

Overbooking Microservices in the Cloud

Proof of the Theorem: Define a partition {mg}];;'()l of the range
of g:

mg = g(0), mg < mepq Ve, mpi1 = g(Smax)-

Define the job indexes so that T_; < t < Ty and

-1

o) = Z 1t —S; < T, <t}
Thus,
-1 L
Q) = > Y i{t-Si<Ti<t}

i=—o0 £=0

g™ (me) < Si < g7 (mean)}
L -1
2, D, Mt=g me) <Tr <t}

<
=0 i=—o0
g (me) < Si < g7 (mesn)}
L -1
< >0 D) Hgm) <8< g7 (mew))

=0 i=—my4

where the inequalities are by the burstiness constraint g on
{T:}.

Switching the order of summation again gives,

-1 L
Z Z 1{g 7 (me) < Si < g M (mps1)}

Q) <
i=—my =0
-mj—1 L
+ 0 > g7 me) < Si < g7 (mewn)}
i=—my £=1
—-mr—1
fot >0 g7 (mr) < S < g7 (mi)}
i=—mp4
-1
= > g (mo) < Si}
i:—m1
-m;—1
+ > g m) < S}
i=—my
—-mr—1
Fot Z 1{g " (my) < S;}.
i=—mp4

Taking expectation now and letting the partition {m,}:*]

g (Smax)

become infinitely fineas L — ooleadstoEQ < E 5(0) P(g(S) >

x)dx = Eg(S) and Corollary 7.2.
Continuing from the previous display: Since the S; are
identically distributed ~ S,

Vi, Eexp(01{g”'(m;) < Si}) = ®(mp)e’ +1—d(my).

ACM WOC’19, December 09-13, 2019, Davis, CA, USA

Since S; are independent and ®(mg) = 1 (the latter because
P(S=0)=0),

L
EeQ(t) < efmo l_[(CD(mg)ee +1—=®(my))™n—m
£=0
Thus,

log Ee?Y) < 6g(0)

L
+) (mess = me) log(@(my)e? +1 - B(my)
=0

So, as L — oo and the partition {m,} of the range of g be-
comes infinitely fine, this bound converges to the integral,

g(smax)
0g(0) + / log(tb(x)e9 +1-®(x))dx 0O
9(0)

	1 Introduction
	2 Related Work
	3 Problem set-up and a no-blocking condition
	3.1 A quota system
	3.2 Demand constrained by token bucket regulators

	4 Overbooking based on service-time distribution for a single service tier
	4.1 Overbooking based on empirical weak burstiness curves on service-request process

	5 Discussion: Multiple service tiers for one resource pool
	5.1 An atomic service in terms of IT resources allocated
	5.2 Extensions to multiple physical servers

	6 Future Work
	Acknowledgments
	References
	7 Appendix A: Loss system with arrivals satisfying burstiness curves

