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Abstract

Detection of protein structure similarity is a central challenge in structural bioinformatics.
Comparisons are usually performed at the polypeptide chain level, however the functional
form of a protein within the cell is often an oligomer. This fact, together with recent growth of
oligomeric structures in the Protein Data Bank (PDB), demands more efficient approaches
to oligomeric assembly alignment/retrieval. Traditional methods use atom level information,
which can be complicated by the presence of topological permutations within a polypeptide
chain and/or subunit rearrangements. These challenges can be overcome by comparing
electron density volumes directly. But, brute force alignment of 3D data is a compute inten-
sive search problem. We developed a 3D Zernike moment normalization procedure to orient
electron density volumes and assess similarity with unprecedented speed. Similarity
searching with this approach enables real-time retrieval of proteins/protein assemblies
resembling a target, from PDB or user input, together with resulting alignments (http:/
shape.rcsb.org).

Author summary

Protein structures possess wildly varied shapes, but patterns at different levels are fre-
quently reused by nature. Finding and classifying these similarities is fundamental to
understand evolution. Given the continued growth in the number of known protein struc-
tures in the Protein Data Bank, the task of comparing them to find the common patterns
is becoming increasingly complicated. This is especially true when considering complete
protein assemblies with several polypeptide chains, where the large sizes further compli-
cate the issue. Here we present a novel method that can detect similarity between protein
shapes and that works equally fast for any size of proteins or assemblies. The method
looks at proteins as volumes of density distribution, departing from what is more usual in
the field: similarity assessment based on atomic coordinates and chain connectivity. A vol-
umetric function is amenable to be decomposed with a mathematical tool known as 3D
Zernike polynomials, resulting in a compact description as vectors of Zernike moments.
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The tool was introduced in the 1990s, when it was suggested that the moments could be
normalized to be invariant to rotations without losing information. Here we demonstrate
that in fact this normalization is possible and that it offers a much more accurate method
for assessing similarity between shapes, when compared to previous attempts.

Introduction

Structure similarity searching within the growing PDB archive [1, 2] revolutionized our under-
standing of protein evolution [3, 4, 5]. Over billions of years organisms in the natural world
have generated stable, functionally useful three-dimensional protein shapes, which have been
repeatedly reused on scales ranging from short structural motifs to oligomeric complexes.
With more than 150,000 publicly-available PDB structures, efficient methods for detecting and
quantifying protein structure similarity are essential.

Structure superposition tools were initially developed in the 1970s [6, 7] and the first algo-
rithms for general structural alignment came in the 1990s [8, 9, 10], with more advanced meth-
ods appearing over the following decade [11, 12, 13, 14]. As the PDB grew, efficient searching
of the entire archive became both important and difficult. Archive wide retrieval was first
addressed by the Dali server [15] and subsequently by PDBeFold [16] and TopSearch [17] (see
Hasegawa and Holm [18] for a review of the field). With a few exceptions, these methods have
focused on the task of aligning single polypeptide chains or parts thereof.

Protein functional units are, however, not necessarily confined to the boundaries of
domains or individual chains. They are often oligomeric, sometimes with multiple distinct
quaternary structures resulting in similar functional units. Today, approximately half of the
structures in the PDB are oligomeric (as of April 2020). In the wake of the 3DEM “resolution
revolution” the fraction of oligomeric structures represented in the archive is growing year-
on-year.

The ever-increasing amount of structural data, combined with rising complexity of the
structures, requires development of faster, more accurate methods to process and classify
structure similarity. Traditional comparison methods use atom level information, which can
be complicated by the presence of topological permutations within a polypeptide chain and/or
subunit rearrangement(s) within an oligomeric assembly. While solutions that address these
problems exist [14, 19, 20, 21], they are computationally expensive and will not necessarily
scale with continued growth of the PDB.

Alternative approaches looking beyond purely atomic information have been explored.
One utilizes geometric descriptors, e.g., interatomic distance distributions, yielding fast but
less precise methods [22, 23]. Other related methods compare surface shapes. This research
community has coalesced around the SHREC 3D shape retrieval contest [24], which occasion-
ally features a protein track (most recently in [25]). For surface descriptor-based protein struc-
ture analysis, 3D-Surfer [26] has implemented a fast shape comparison service with numerous
applications [27]. Surface descriptions of proteins, however, completely disregard information
contained in the density distribution beneath the surface. These challenges can be circum-
vented by aligning and comparing electron density volumes. However, this has proven to
result in a computationally-intensive search problem [28, 29, 30].

Herein, we exploit a 3D Zernike moment normalization procedure to implicitly orient elec-
tron density volumes and assess similarity in moment space with unprecedented speed. The
general approach was suggested in [31] but has not been applied to date. Our normalization
procedure produces rotation-invariant features that retain information about the shape of the
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original object. Differences in features can be readily visualized. This approach to shape
retrieval is highly performant, yielding structure alignments as byproducts of the normaliza-
tion procedure. Since the method uses electron density volumes, it is agnostic with respect to
topological differences in either the tertiary or quaternary structures.

Based on these principles, we have developed a search system that enables real-time
retrieval of similar protein assemblies to a target assembly, obtained from the PDB or uploaded
by a user, together with their alignment (http://shape.rcsb.org). The system uses coarse grained
volumes created out of atomic models, though the method presented here is applicable to any
kind of volume, be it experimental or simulated. An exhaustive search of 600,000+ bioassem-
blies and chains in the PDB requires less than one second on a single core of a typical CPU
(e.g., Intel Core i7-7567U), without precomputed clustering or results caching. The BioZernike
software library used for normalizations and alignments is open source and freely available
(https://github.com/biocryst/biozernike).

Methods

We follow the derivations by Canterakis in [31], who introduced 3D Zernike polynomial
decomposition of an arbitrary volumetric function f(x) defined in the unit sphere (illustrated
in Fig 1):

flx) = zn(x), (1)

Order (n)
> omzm
ILm

Cumulative
density

Order (n)
> omzm
Im

Cumulative
density

Fig 1. Electron density decomposition into 3D Zernike moments, using human deoxyhaemoglobin (PDB ID 4HHB). Top
Layer: values of weighted 3D Zernike functions of order # in gradient from red (negative) to blue (positive). Bottom Layer:
reconstruction of order n obtained by summation of all values up to order n (only positive density is shown).

https://doi.org/10.1371/journal.pcbi.1007970.9001
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where

X

Zy(x) = an(lx\)Y["(M) (2)

are the (orthonormal in unit sphere) 3D Zernike polynomial functions, 7, the corresponding
moments, n € [0, N] (with N the maximum polynomial order of the decomposition). I'and m
are the degree and order of the spherical harmonic functions Y}", I € [0, n] so that (n - I) is
even, and m € [, I]. R,; are the radius-dependent normalizing factors.

The moments can be expressed as a (2] + 1)-dimensional vector

Q= (Qil’ Q;l’ Qan? 0 ocY Q;ll) (3)

whose norm corresponds to the trivial rotational invariant descriptor (3DZD) popularised by
Novotni and Klein [32]:

Fnl :H in || (4)

Canterakis norms for complete 3D zernike moment invariants

As in [33], we use {-coding for 3D Zernike moment rotation. Briefly, given Cayley-Klein
parameters a and b which define a rotation R(a, b):

R{a*>+ b’} —TJ{a’* -1V} 23{ab}
R(a,b) = | J{a* +b*} R{a®>-0b*} —2R{adb} |, (5)
23{ab*} 2R{ab"} aa* — bb*
where a,b € C and
aa* + bb* = 1, (6)

and the modified 3D Zernike moments

where

V2IF 1)(Z;I—m)!(l—m)!7 (8)

Y (—
=
the rotation can be expressed as:

@0 = (=T “>)l (5t o)

To obtain the rotated value for a particular (Q <)o We expand expression 9 and collect coef-

ficients for {". For example,
(@), = a'Q3, — @b Qy + a(67)°QY, + a(b) ()" + () (€,)° (10)
As the SO(3) group has three degrees of freedom and Zernike moments are complex num-

bers, we follow by setting one moment and the imaginary part of another to zeros (see Fig 2a).
In terms of computation, this corresponds to solving a system of two polynomial equations.
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Fig 2. Moment normalization. (a) Rotational degrees of freedom are fixed by constraining values of chosen moments with respect to the 3D rotation
group. The solution defines a rotation of the weighted 3D Zernike functions to a ‘standard’ position. (b) Alignment of two structures of human
transportin 3: in unliganded form (4COP) and in complex with ASE/SF2 (4C00). Normalization order 2 is equivalent to alignment of the densities’
principal axes. Normalization order 6 matches finer detail in the density, such as a-helical bundles, at the expense of reduced overlap at the termini. (c)
Multiple density alignment of 10 homologs of human transportin 3 as performed by the BioZernike library. Normalization order 4 is selected
automatically with the alignment descriptor (see Methods).

https://doi.org/10.1371/journal.pchi.1007970.g002

Let us continue with the example 10 and fix the first two degrees of rotational freedom by

setting Q R);z = 0. After substitution ;= — t we obtain a 4™ degree polynomial equation in #:
Q§2t4 - Q%zt?) + Q32t2 + (952)*t + (ng)* =0 (11)

that can be solved trivially using libraries of mathematical routines. (N.B. Both the coefficients
of the polynomial and its roots are complex numbers).
Next, we fix one more degree of freedom by setting the imaginary part of another moment
to 0. Let us choose J {Q;l} = 0 for this example. Following algebraic manipulations, we obtain
a{b}

a2™ degree equation in Ry S

({1} (0, — 2%, )R{1)) + () (1 + 3{1)* — R{1)))s+
2R} * (O, +23{0,}3{1)) + R{Q,}(L+ ()" — R{1)))s+ (12)
2RO, }I{AR(r) — QL(1} + I} (1 - (1) + R{Y) = 0
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Assuming Jt{b} >0 without loss of generality, solving Eqs 11 and 12, and using identity 6
provides eight pairs of values for a and b:

14is
b = ; (13)
I+ 1)1+
1—is
a = -t (14)

(L+1t)(1+ )

which correspond to eight rotations defined by matrix 5. (N.B. The form of Eqs 11 and 12
depends only on the indices [ and m, and therefore can be derived analytically in advance for
efficient computation at run-time.)

Finally, the rotated 3D Zernike moments can be obtained from:

aew (S DA

BioZernike descriptors

BioZernike descriptors include two rotation-invariant shape descriptors: one based on the
Canterakis Norms (CNs) and one based on the simple geometric features (GEO). In addition,
we provide a CN-based alignment descriptor (Fig 3).

For the 3D Zernike moments calculation, the structure coordinates are converted to the
volumetric representation as follows. First, the grid width is chosen in the range 0.25A-16A to
keep the volume’s average dimension between 50A and 2004, if possible. Subsequently, for
every representative atom a Gaussian density is placed into the volume that corresponds to the
amino acid/nucleotide weight and spherically averaged size. Representative atoms are defined
as Ca for amino acids and backbone phosphate groups for nucleotides. The volume is scaled
into a unit sphere centered at the volume’s center of mass with the scaling coefficient defined
as 1.8 times the structure’s gyration radius. Zernike moments are calculated up to the order of

20. CNs of orders n = 2, 3, 4, 5 are computed by setting (QR)iz = 0 ifniseven and (QR)iS =0
if n is odd. As the absolute values of the multiple solutions are averaged in each case, the third

degree of freedom is lost and choice of a particular J{Qn’”l} = 0 has no effect. Every such CN
for order N = 20 yields a vector of size 946 (expansion of the 3 indices #, I, m with negative m
indices omitted), as opposed to 121 parameters obtained for a 3DZD (where index m is not
present). The final CN-based descriptor is a concatenation of the CNs of chosen orders and
has 3784 components.

For the vector of geometric features GEO, we calculate the distance distribution from the
center of mass of the structure to all its representative atoms. Next, we include in the vector
moments of this distribution: standard deviation, skewness, kurtosis, as well as 10, 20",
...90" percentiles. In addition, we include the structure radius of gyration, nominal molecular
weight, and standard deviation of the coordinates along the principal axes, corresponding to
the dimensions of the structure. The final GEO descriptor has 17 components.

The alignment descriptor consists of two components: complete 3D Zernike moments cal-
culated up to the order of 6 and the coordinates of the structure’s center of mass (required
because this information is not preserved by the volume scaling procedure). To perform struc-
ture alignment, we compute all possible CNs of the given moments and find a normalization
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Fig 3. BioZernike descriptors workflow. Every atomic structure in the PDB (a) is converted to a volume by selecting representative atoms per residue
(b) and placing a gaussian density in their place (c). The geometric features (GEO) can be calculated directly from the representative atoms coordinates,
whilst the Zernike moments and their Canterakis Norms of various orders are calculated out of the volume (note that different normalizations are offset
in y axis for clarity) (d). The vector of concatenated geometric features and CNs of selected orders constitute the composite BioZernike shape
descriptor. The distance between descriptors (composing both GEO and CNis) is calculated by learning optimal weights on a training set (e). The
alignment descriptor is obtained directly from the CNs.

https://doi.org/10.1371/journal.pcbi.1007970.9003

R,p; (and the induced rotation) that minimizes distance D(s,, s,|R) between the rotated
moments of the structures s; and s, as follows:

e @)26) — (276
DlsualB) = D 1o s+ @) +1 (16)

nlm

Then the optimal rotation R, is selected by

Rapt(SD 52) = arg min D(Sv 52|R) (17)
ReCN
The Eqs 16 and 17 generalize trivially to an arbitrary number of structures.
After applying the rotation, the structures are superposed using coordinates of their centers
of mass.
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Shape descriptors distance function

For the distance function training, we prepared a CATH-based dataset as follows: A non-
redundant subset of CATH domains with up to 40% sequence identity was obtained from
www.cathdb.info. Homologous super-families with fewer than 20 members were removed.
Structures within each superfamily were superposed with TM-align using an all-versus-all
strategy. A representative domain was selected for each superfamily with the maximal median
TM-score of alignments to other members of the superfamily. The dataset was subsequently
pruned so that the domains within each superfamily align with the representative domain with
TM-score at least 0.75. Finally, we selected super-families starting from the most populous
ones, which have TM-score between their representative domains at most 0.45. This procedure
yielded 2685 structures (divided among 151 families). All-versus-all comparisons produced a
training set with 46572 ‘positive’ (same super-family) and 3556698 ‘negative’ (different super-
families) data points.

We defined the distance function for the composite BioZernike feature vectors as:

Ng
L 20g (i) — :
D(g,,m,,g,,m,) = > w,(i) + w, (i)|m, (i) — m,(i)]|
v e ;g 1+|g1(1‘+|g2 ,Zl: ' ?

where g; and g, are the geometric feature vectors being compared, m; and m, are the CN-
based feature vectors, and wg and wy, are the respective weights.

The weights were fitted to the training set using regularized logistic regression. 10-fold
cross-validation was performed on the superfamily level. The regularization parameter that
maximized the Matthews correlation coefficient of the predictions of the excluded data was
used for the final training with the entire dataset. Learned weight coefficients were constrained
to non-negative values, which led to sparse solutions (e.g., 1458 weights were non-zero after
the final training on the CATH dataset).

Importantly, the obtained distance function is by no means definitive, but rather an illustra-
tion of a general approach. The procedure can (and should) be repeated with the problem-spe-
cific training sets, yielding appropriate functions based on the BioZernike descriptors.

Benchmarking

Domains. The domain test set was prepared based on the independent ECOD subset
using the same procedure as for the CATH-based training set. Additionally, if an F-group rep-
resentative domain could be aligned to any CATH superfamily representative domain with
TM-score 0.75 or more, the group was excluded from the test set. Ultimately, 761 domain
structures (divided among 34 families) remained. All-versus-all comparisons resulted in 13603
‘positive’ and 275577 ‘negative’ data points.

Assemblies. 500 biological assemblies were randomly selected from all PDB entries such
that no two assemblies have density correlation score [34] larger than 0.5, to ensure distinct
shapes. Afterwards, normal mode analysis from the ProDy package [35] was used to sample 4
additional conformations of each assembly, resulting in 2500 total structures evenly split into
500 classes. As in the domain set evaluation, all-versus-all comparisons were assessed, yielding
5000 ‘positives’ and 3118750 ‘negatives’.

Reference methods. 3D-Surfer 3DZD descriptors were obtained directly from the web
server using default parameters. During the course of this work, we discovered a bug in the
original 3DZD library [32], which caused the invariants of the same order to be cumulative.
For the sake of fairness, we corrected the descriptors obtained from the 3D-Surfer server for
this bug and notified the server maintainers (the problem has since been solved). The
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correction somewhat improved the discrimination power (S1 Fig). Euclidean distance was
used as the scoring function.

As Omokage score is not available for use with arbitrary structures, we implemented the
procedure described in [23]. First, all structures were converted to representative point-sets
with Situs v3.1 [36]. Second, we calculated the iDR profiles and implemented the Omokage
score according to [23]. The implementation was independently validated using 1000 random
comparisons between structures selected from PDB30. Comparisons were scored with our
implementation and the PDBj omokage-pairwise web service. As shown in S2 Fig, scoring is
consistent between the implementations and insignificant deviations are likely due to the dif-
ferent versions of the Situs package used.

Results

Protein superposition and similarity assessment with complete 3D Zernike
moment invariants

We achieve fast similarity computation using protein structural descriptors. Robust descrip-
tors must capture information relevant to their intended use (e.g., binding sites for virtual
drug screening, solvent-accessible surfaces for protein docking, structural organization for
establishing functional or evolutionary relationships) while being inexpensive to compute,
quick to compare with other descriptors, and readily interpretable. Most high-throughput
structure analysis pipelines involve balancing the tradeoff between speed and accuracy of the
underlying representation.

3D Zernike moments, derived by Canterakis in [31], allow decomposition of an arbitrary
volumetric function f(x) into a set of parameters Q) (see Methods). These parameters are inde-
pendent, insensitive to noise, and, importantly, embody a hierarchy of shape representation.
The latter property is of particular significance, as it enables intuitive interpretation of the
information content in the moments of certain order (Fig 1).

Limiting their use, 3D Zernike moments are not invariant under rotation. While special
properties of the spherical harmonic functions can be exploited to align two sets of moments,
the resulting procedure is slower than classical coordinate-based methods [30]. A popular soft-
ware library [32] implemented the ‘trivial’ rotation invariant descriptors from 3D Zernike

ST O P Q;ll). We will refer to these descriptors
as 3DZDs (3-Dimensional Zernike Descriptors) for consistency with prior work [27]. While
this approach is straightforward and has proven to be widely applicable [26, 37], the informa-
tion loss is obvious: every (2] + 1)-dimensional vector of parameters is reduced to a single
invariant. These simpler 3DZD invariants are the base of 3D-surfer [26], the first widely avail-
able tool that made use of the Zernike moment decomposition for protein shape matching.

In his work Canterakis [33, 31] did derive a special normalization of the 3D Zernike
moments, making them rotationally invariant. However, we found that this normalization

a —1
moments, i.e., norms of the vectors Q , = (Ql (o)

does not perform well for the shapes of proteins and macromolecular complexes due to the
abundance of symmetric oligomeric arrangements.

Here we generalize the approach of Canterakis by developing normalization routines with
wider applicability. These routines yield complete, rotationally invariant 3D Zernike moments
(referred to hereafter as Canterakis Norms or CNs). Conceptually, a CN rotates an object so
that selected moments become equal to predefined values. This orients an object in a uniquely
determined standard position (Fig 2a).

CNs immediately give rise to a computationally inexpensive global structure alignment.
Indeed, if the same moments are normalized to their standard values for two objects, their
induced standard positions are likewise equivalent (Fig 2a). By normalizing moments from
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various orders, we obtain alternative alignments that may be more or less suitable for a particu-
lar application (Fig 2b). Moreover, since the alignment is performed not between any two
objects, but from every object to its standard position, an arbitrary number of structures may
be aligned in linear time (Fig 2c).

It has to be noted that the system of polynomial equations mentioned above has multiple
solutions. While there is a theoretically sound approach to break this ambiguity described in
[33] (fixing signs of the selected moments), in practice it is not universally applicable because
we calculate an approximation of the Zernike functions on a discrete volumetric grid. Thus, if
the selected moment’s value is small at the outset, the gridding effect may lead to its sign
changing randomly based on the initial orientation. Nevertheless, we found that for structure
alignment, we can either choose the ambiguity-breaking rule at runtime, based on the
observed moment magnitudes, or circumvent the problem entirely by testing all possibilities
with negligible loss of performance.

Finally, but most importantly, the complete moments of objects oriented in the same stan-
dard position are comparable. This critical property underpins our novel search procedure
presented below.

Search procedure and evaluation

Our search procedure is depicted schematically in Fig 3, and relies on the newly designed Bio-
Zernike descriptor, a composite descriptor based on several CNs augmented with geometric
features.

The simpler 3DZD descriptors are usually calculated for an object surface, following the
original implementation [32]. We reasoned that the density distribution contains valuable
information for protein structure similarity retrieval. Therefore, we use simulated volumes
(Fig 3c) as the basis for 3D Zernike moments calculation. Thus our newly introduced system
has two important differences with 3D-Surfer [26]: use of full volumetric data instead of sur-
face only and use of the complete CN invariants instead of the simpler 3DZD invariants.

CNis of different orders may be more or less appropriate for various shapes. Moreover,
resolving ambiguity for multiple solutions depends on a particular symmetry that an object
may possess. To make the CN-based descriptor versatile while retaining performance, we used
several CNs of orders 2 to 5 and then average the absolute values of the solutions (Fig 3d).

The 3D Zernike moments are defined for objects scaled to a unit ball which loses size-
related information. To compensate for this fact, we developed a geometry-based descriptor
(GEO). It includes features that can be quickly obtained from the set of representative atoms,
such as structure dimensions along its principal axes or statistical properties of the interatomic
distance distribution (see Methods).

Together the CN-based and the GEO descriptors constitute what we term a BioZernike
descriptor. In order to judge similarity of 2 structures, we developed a distance measure that
compares their BioZernike descriptors. We hypothesized that the often-used Euclidean dis-
tance is suboptimal choice for comparing 3D Zernike moments-based descriptors, because of
the hierarchical structure of the representation (Fig 1). Instead, we have followed a machine
learning approach to determine weights for the descriptor components using a training set.
We used a non-redundant subset of CATH [4] families for this purpose (see Methods).

Retrieval of similar structures was evaluated on a non-redundant subset of ECOD [5] and
on a set of biological assemblies with distinct density shapes. 3D-Surfer [26] and Omokage
[23] were selected for benchmarking purposes, as both operate on similar principles and repre-
sent the current state of the art. 3D-Surfer uses 3DZD descriptors and Euclidean distance to
compare them, considering only the solvent-accessible surface of a protein. Omokage scoring
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Fig 4. Shape retrieval performance comparison of the BioZernike descriptors to the 3D-Surfer and Omokage descriptors. Non-redundant sets of
domains (a,b) and assemblies (c,d) were used for the evaluation. Receiver operating characteristic (a,c) and precision-recall (b,d) curves are shown. For
the domain set, performance of the Canterakis norms (CNs) is plotted separately as well as in conjunction with the geometry descriptor (GEO). 3DZD
(our implementation)’ corresponds to our implementation of the 3DZD descriptors that takes into account the whole density distribution, rather than
the protein surface only.

https://doi.org/10.1371/journal.pcbi.1007970.g004

utilizes properties of the interatomic distance distribution function (similar to our GEO

score).

As shown in Fig 4, 3DZD descriptors applied directly to the density volume retain signifi-

cantly more information pertaining to similarities and differences within the protein domain
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Table 1. Area under curve (AUC) for receiver operating characteristic (ROC) and precision-recall (PR) curves, and the maximal achievable Matthews correlation
coefficient (MCC) are reported for each evaluation plotted in Fig 4.

BioZernike components Reference methods
Weighted CN Weighted 3DZD Density 3DZD GEO Weighted CN+GEO 3DSurfer 3DZD Omokage
Domains
ROC AUC 0.95 0.94 0.93 0.94 0.97 0.85 0.84
PR AUC 0.76 0.73 0.71 0.59 0.79 0.39 0.38
MCC 0.69 0.66 0.65 0.54 0.72 0.38 0.38
Assemblies
ROCAUC - - - 1.0 1.0 0.95 0.99
PR AUC - - - 0.79 0.94 0.71 0.71
MCC - - - 0.75 0.93 0.70 0.71

https://doi.org/10.1371/journal.pcbi.1007970.t001

families. Retrieval performance is further improved by 1) using the custom distance function
obtained via the training set, 2) using CNs instead of 3DZDs, and 3) augmenting CNs with
GEO scoring. (AUCs for all evaluated methods are listed in Table 1).

BioZernike library

An important result of this study is an open-source, customizable library that implements all
routines required to obtain a BioZernike descriptor starting from a protein structure https://
github.com/biocryst/biozernike. It is written in Java language and can be integrated into any
project written in a JVM-compatible language. For instance it can be used together with Bio-
Java to take advantage of its comprehensive structural bioinformatics capabilities [19].

The BioZernike library includes structure-to-volume conversion based on the gmconvert
program [34]. We implemented dynamic scaling of the volume grid size to make both speed
and precision equally suitable for smaller proteins and larger macromolecular assemblies. 3D
Zernike moments were implemented after [32], with further optimization for batch process-
ing. In addition to the classical 3DZD invariants, the library contains routines for calculating
CN-norms introduced here and their application to multiple structure alignments.

The library is developed and continuously validated for processing of large amounts of
structural data, such as those at RCSB PDB, which leads to a highly optimized and efficient
implementation. For example, calculating a full BioZernike descriptor for PDB ID 5]7V (the
largest macromolecular assembly represented in the PDB archive at the time of writing; 8280
component homo-oligomer containing 5,340,600 amino acid residues) takes ~ 10 seconds.
For a more typical oligomeric PDB structure, such as PDB ID 4HHB (hemoglobin a, 3, het-
ero-tetramer containing 574 residues) the processing time is ~ 30 milliseconds. The full pro-
cessing for the entire archive as of November 2019 (all assemblies and all polymeric chains)
takes 7 hours using 6 parallel threads. The time needed for descriptors comparison and
moment alignment is negligible. The performance of the BioZernike library is showcased on
the website shape.rcsb.org. The library’s comprehensive implementation, together with its flex-
ibility and speed makes it especially useful for developers who wish to create novel applications
for classification and comparison of structural data.

The rcsb.org main website also makes use of the BioZernike library since the April 2020
release. The integration enhances the applicability of this system by combining structure
search with other types of searches. Two structure search modes are made available at rcsb.org:
“strict” and “relaxed”. The modes correspond to two different threshold sets, based on training
against the assemblies dataset (see Methods). “Strict” corresponds to maximal Matthews Cor-
relation Coefficient (about 98% recall), whilst “relaxed” corresponds to 99.9% recall.
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Case studies

Similar quaternary structure but different subunits. A very interesting set of compari-
sons is that of folds that are conserved globally across evolution while the subcomponents have
been re-arranged in different ways as a result of gene fusion or duplication. The different bio-
logical assemblies are thus very similar overall but have different stoichiometries.

A striking example of this property is the Macrophage migration inhibitory factor (MIF).
These tautomerase enzymes are conserved across the entire tree of life (Fig 5a). The assembly
fold is composed of 8 — a —  motifs, with a central § barrel formed by the different subunits
coming together around a 3-fold axis of symmetry. Overall the assembly has quasi D3 point
group symmetry. In eukaryotes (human: 4GRO; mouse: IMFIL; nematode: 20S5) and cyano-
bacteria (2XCZ Prochlorococcus marinus) the enzyme is trimeric with a pseudo 2-fold symme-
try within the subunits. In some bacteria the enzyme is hexameric, with both A6 (2X4K
Staphylococcus aureus) and A3B3 (3E]J9 Pseudomonas pavonaceae) systems known.

Another well-known case in this category is that of the DNA-clamps (overall quasi D6 sym-
metry, with A3 stoichiometry in archaea and eukaryotes and A2 in bacteria) [38], also detect-
able with our system.

Domain swaps are a further example that belong to this category and represent a wide-
spread phenomenon in structural biology [39]. These assemblies do not present different stoi-
chiometries but rather conformational changes in the subunits that allow for domains to be
swapped with partner subunits. Conservation of quaternary structures between swapped and
non-swapped assemblies is also detectable with our BioZernike system.

(b)

1GTF (A11)

1PV8 (A6)

1E51 (A8)

Fig 5. Structure search modes. (a,b) Global shape search finds similar assemblies regardless of a particular stoichiometry. (c) Search-by-parts mode
allows discovery of the ‘transformer’ proteins that form different assemblies from similar components.

https:/doi.org/10.1371/journal.pcbi.1007970.g005
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Different quaternary structure but similar subunits. Another case we can easily study
and find using the BioZernike system involves divergent quaternary structure assemblies com-
posed by the identical or highly similar subunits.

For example, the TRAP (trp RNA-binding attenuation protein) proteins from Geobacillus
stearothermophilus have been determined to have both A11 and A12 stoichiometries, respec-
tively with C11 and C12 point group symmetries (Fig 5b). Since both the global shape (low
order Zernike moments) and the details (high order Zernike moments) are matching well, this
case does not represent a problem for our retrieval system.

Other well-known cases were revealed through a mutation or an environmental change
(e.g., pH) that favored one assembly relative to the other. One case in which conformational
changes in the individual subunits lead to very different quaternary structures is porphobilino-
gen synthase (PBGS) [40], which exists as both a hexamer (1PV8) and octamer (1E51) (Fig 5¢).
Here, a single point mutation F12L dramatically shifts the equilibrium from octamer to hex-
amer, which produces an altered pH-rate profile; the hexameric assembly is active only at basic
pH. Proteins, like PBGS, that can come apart, change subunit conformation, and reassemble
differently with functional consequences have been named morpheeins, and can reflect a dis-
sociative allosteric mechanism [41].

Our search system makes possible automatic identification of such proteins. In this case,
the search can be performed only on parts of an assembly, such as an individual chain or a
domain. Moreover, a distance function can be designed specifically to focus on higher-order
Zernike moments so that structural features of the sub-components are weighted more heavily
than the overall shape of the assembly.

Discussion

Protein structure retrieval and alignment with volumetric data provides several advantages
versus traditional atomic-data based systems. First, it avoids the challenge of dealing with
chain topology (arrangement of secondary structure components along the polypeptide chain)
important in many biological systems (e.g., in circular permutants). Second, it obviates the
problem of quaternary structure topology, be they local changes as in domain swapping or
global changes with subunits that merge or split while conserving the overall quaternary
arrangement. A further advantage of our method is that it automatically solves the chain
matching problem [21]. These advantages combined with speed, yield a system that compares
favorably to quaternary structure search and alignment tools in terms of scalability [14, 42, 20,
19]. Moreover, this method does not rely on atomic models and thus can be applied directly to
the growing number of experimental maps obtained using 3D electron microscopy (3DEM)
and available from the EMDB data resource (www.ebi.ac.uk/pdbe/emdb/). In fact the proper-
ties of 3D Zernike moments make them very suitable for experimental data: robustness to
noise and hierarchical description from low to high resolution features. On the other hand,
3DEM maps present a few issues to address in a practical application, such as selection of an
appropriate map contour level and consistent radial scaling of the volume into the unit sphere,
which are complicated by a relatively high degree of noise density in a typical EM volume.

At the same time, volumetric data preserves information content far better than shape
based on surface representation. Thus, as the benchmarks above demonstrate, there are clear
advantages of our volume-based system when compared to surface based methods [26, 27].
Trivial examples such as hollow viral capsid versus a full spherical protein assembly can readily
exemplify the difference.

On the negative side, one important disadvantage of this method is the inability to find
local matches, e.g. finding a conserved domain between 2 chains that have different domain
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architecture and thus do not match globally. However there are ways of working around the
problem, for instance domain decomposition of both query and database to perform searches
specific to domains.

A key to the success of our method is the fact that the newly derived Canterakis normaliza-
tions (CNs) preserve much more information than the widely used 3DZDs. This is clearly
demonstrated by the alignments that are naturally obtained from CNss.

As shown in the benchmark, our system outperforms other fast descriptor-based search
approaches in terms of both precision and sensitivity. At the same time, it allows real-time
(milliseconds) PDB archive-wide retrieval without the need to resort to ad-hoc strategies for
speeding up the calculation. Run times of currently available services (Dali, TopSearch, PDBe-
Fold) are measured in seconds or minutes solely because of additional speed-up strategies like
pre-clustering or parallelization. Our system’s faster performance applies equally to user input
atomic coordinates, adding only minimal overhead typically measured in milliseconds. Such a
system constitutes a valuable tool for structural biologists, allowing for real-time hypotheses
generation at the conclusion of a structure determination campaign.

Importantly, the speed and accuracy of this method opens up the possibility of automated
structural classification at any level, an avenue that we shall explore in future work. One inter-
esting application is multiple structure profiles: using normalized complete moments to
parameterize entire protein families. A related ‘consensus shapes’ notion was introduced in
[30], however we feel that using descriptor profiles rather than simple averages is the key. Akin
to multiple sequence profiles, it would enable more sensitive searching through profile-to-pro-
file alignments. Moreover, shape variation can be easily studied and visualized for an ensemble
of structures. Further applications include scalable multiple structure alignment, alignment of
3DEM maps, and automated structural model-to-electron density (or 3DEM) map fitting.

Supporting information

S1 Fig. (a) The 3DZD library bug results in characteristic non-decreasing wave pattern (red)
of the descriptor, often found in literature. The same descriptor without the bug is shown for
comparison in blue. (b) Precision-recall curve using Euclidean distance on the test set
improves with the corrected version of the descriptor.

(TIF)

S2 Fig. Omokage score validation. The score calculated by our implementation (axis X) is
plotted versus the score obtained from the PDBj server (axis Y) for 1000 random comparisons
between structures in PDB.

(TIF)
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