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Abstract — Using tiny tasks (microtasks) has long been
regarded an effective way of load balancing in parallel
computing systems. When combined with containerized
execution nodes pulling in work upon becoming idle,
microtasking has the desirable property of automatically
adapting its load distribution to the processing capacities
of participating nodes - more powerful nodes finish their
work sooner and, therefore, pull in additional work faster.
As a result, microtasking is deemed especially desirable
in settings with heterogeneous processing capacities and
poorly characterized workloads. However, microtasking
does have additional scheduling and I/O overheads that
may make it costly in some scenarios. Moreover, the op-
timal task size generally needs to be learned. We herein
study an alternative load balancing scheme - Hetero-
geneous MacroTasking (HeMT) - wherein workload is
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intentionally skewed according to the nodes’ process-
ing capacity. We implemented and open-sourced a pro-
totype of HeMT within the Apache Spark application
framework and conducted experiments using the Apache
Mesos cluster manager. It’s shown experimentally that
when workload-specific estimates of nodes’ processing
capacities are learned, Spark with HeMT offers up to 10%
shorter average completion times for realistic, multistage
data-processing workloads over the baseline Homoge-
neous microTasking (HomT) system.

1 Introduction
Parallel data processing represents a large and important
class of workloads running on public cloud computing
platforms. Load balancing - dividing work among the
execution nodes of a cluster - has an important role in
determining the performance of these workloads. As
needed by an application framework, execution nodes
are allocated as provisioned containers by a cluster man-
ager controlling the Virtual Machines (VMs) that make
up the cluster1. The nodes are often heterogeneous in
terms of their processing capacities. Execution node het-
ergeneity may have to do with how the cluster manager
allocates currently unreserved resources from the VMs
when an application framework has a new job to run. For
example, based on currently available resources in the
VMs, Apache Mesos may offer containers of different
sizes (provisioned resources for task execution) to a given
application frameworks it is supporting, e.g., [6, 11, 13].
Also, lower-cost VMs themselves may exhibit variation
over time in their capacity to execute jobs, e.g., [19, 20].

Such node heterogeneity may have negative impli-
cations for workload performance (such as completion

1Alternatively or in addition, executors may be cloud/Lambda functions
procured directly from the cloud.
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times) and cost incurred by the workload owner or “ten-
ant” (due to resource wastage in under-utilized nodes). In
particular, it may exacerbate the well-known “straggler
problem” [1], wherein a small subset of slow tasks stall
an entire (parallel computed) job stage by causing a syn-
chronization delay at a program barrier (i.e., all parallel
tasks need to complete before the program can proceed,
so the slowest task(s) determine the execution time of the
job stage).

[9] advocates that parallel jobs should be divided into
relatively small-sized tasks (“microtasks”) via fine ho-
mogeneous partitioning of the input dataset on which
processing is being performed2. Microtasking can lead to
good load balancing when combined with a “pull-based”
operation: when underbooked or idle, nodes pull work
(tasks) from a pending queue so faster workers simply
pull in more work. Furthermore, the synchronization de-
lays are reduced without needing knowledge of either the
speed of the nodes or the resources required to achieve
particular execution-times for the tasks. So, we refer to
such approaches as oblivious load balancing. However,
there also exist studies, e.g., [17], that challenge the mi-
crotasking idea, pointing out that the relatively large over-
head of microtasking can, in some cases, significantly
slow down computation.

Although Homogeneous microTasking (HomT) can
provide certain qualities-of-service and load-balancing
efficiencies without detailed information about the cluster
or workload [3, 5, 9], its usefulness may be hindered by
additional processing and disk-IO overhead [8, 9, 22].
Also, optimal microtask sizes need to be learned, cf. the
HomT curves of Figs. 5 and 6.

The contribution of this paper are:
• We consider variants of “skewed" or Heterogeneous

MacroTasking (HeMT) corresponding to different de-
grees of accuracy/certainty in supply or demand char-
acterization ranging from an oblivious, incrementally
adjusted HeMT to a more sophisticated version where
offline/online knowledge of node capacities is also
leveraged.
• Using a variety of Amazon EC2 experiments on our

open-source Spark over Mesos prototype [7, 14] with
different workloads and nodes (regular or burstable
EC2 instances), we show the efficacy of HeMT over
HomT. Representative experiments described herein
employ two important multistage workloads: PageR-
ank and K-Means.
• We identify and suggest interesting directions for fu-

ture work, especially related to adaptive scheduling

2Specifically, [9] suggests microtasks take on the order of 100 ms to
execute on contemporary systems.

across the application frameworks and cluster man-
ager layers, including improved information exchange
between them via enhanced APIs.
This rest of this paper is organized as follows. Hetero-

geneous macrotasking is described in Sec. 2. In Sec. 3,
we study a simple “oblivious" approach to online adapt-
ing the size of heterogeneous macrotasks based on syn-
chronization delays (variations in task execution times)
at program barriers. HeMT for multistage workloads
(K-Means and Pagerank over MapReduce) is descibed
in Sec. 4. (HeMT for simpler workloads on statically
provisioned containers or on burstable instances is de-
scribed in [12].) We conclude with a brief summary and
discussion of future work in Sec. 5.

2 Heterogeneous Macrotasking (HeMT) -
Background

To avoid HomT overhead, the number of tasks can be
set equal to the number of available “computation slots”
(available containerized executors). However, in case
of heterogeneous executors, synchronization delay may
ensue if such “macrotasks” are equally sized. This moti-
vates skewed or Heterogeneous MacroTasking (HeMT).

HeMT will require a reasonably accurate estimation
of workload (reflected by task execution time) which
can be easily obtained for many modern jobs due to
their repetitive nature; e.g., many production workloads
[10] and machine-learning related jobs such EM and K-
Means [2] that consist of multiple iterations of the same
computational complexity. Much recent work on task
scheduling, e.g., [21], is based on such an assumption.

We implemented this HeMT partitioning algorithm on
Spark and compared it with Spark’s default partitioning
scheme in the following, as well as the aforementioned
HomT. Spark’s default partitioning does not consider any
resource heterogeneity of the cluster - it divides the input
data regardless of the speed of computing nodes - and
Spark tends to evenly divide on-memory data into as
many partitions as the number of computing slots (usu-
ally processing cores), i.e., homogeneous macrotasking.
For files located on disk, e.g. HDFS files, baseline Spark,
like Hadoop, assigns one file block to a task. Spark natu-
rally supports HomT: users can specify a desired number
of partitions and Spark would evenly divide data accord-
ing to this number.

The aim of this experimental study is to illustrate
the benefits and challenges of HeMT. We implemented
HeMT in Spark [14] (for an arbitrary number of execu-
tors) using information from middleware (here, Apache
Mesos cluster manager [7]) or directly from monitor-
ing services (e.g., AWS CloudWatch). For scalability,
the application frameworks perform most elements of
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(workload specific) HeMT learning, while the middle-
ware scheduler may only perform more sophisticated
workload scheduling (consolidation)3. The information
exchange in our Spark-Mesos prototype is summarized
in Figure 1.

Figure 1. Overview of proposed modifications to appli-
cation frameworks and cluster manager.

3 Oblivious Adapted HeMT (OA-HeMT)
In some environments, e.g., those without resource iso-
lation leading to significant interprocess interference,
determining the true workload processing power of avail-
able computational nodes may be challenging. So, a sim-
ple “oblivious” approach is needed to allow application
frameworks or cluster managers to dynamically estimate
the processing speed of available computational nodes
according to the previous workloads of the same job, so
that the future tasking can be well balanced.

A Spark-Mesos prototype was implemented to enable
such an oblivious ad-hoc adaptive HeMT. The Mesos
cluster manager obtains and passes on to the Spark appli-
cation framework estimated executor processing speed
through additional fields in their RPC messaging. Based
on this information and the associated task sizes, Spark
estimates the execution speed of different available ex-
ecutors and thereby determines how to partition future
work into well-balanced tasks.

3.1 Different executors of the same task type
In this paper, we model task execution times simply as
linear in the size of the input dataset to be processed
(certainly, more complex models can be learned instead
considering other important factors, e.g., data locality).
3Analogies can be made with “end-to-end" approaches such as exoker-
nels or TCP congestion control in the Internet.

Consider a sequence of datasets of sizes {𝐷𝑘 } that
need to be processed in the same way, i.e., the same job
applied to each dataset. The 𝑘 th dataset 𝐷𝑘 is divided
(by the application framework) into a number of tasks,
one for each executor 𝑖 ∈ 𝐿𝑘 assigned to process the
𝑘 th dataset 𝐷𝑘 (by the cluster manager). These tasks are
created by dividing the dataset 𝐷𝑘 .

For each executor 𝑖 ∈ 𝐿𝑘 , let 𝑣𝑖 be the most recent
estimate of its “speed" for the job under consideration.
Let 𝐿𝑜

𝑘
⊂ 𝐿𝑘 be the set of executors that have not before

been assigned to this job. For all 𝑖 ∈ 𝐿𝑜
𝑘
, let 𝑣𝑖 = 𝑣

where 𝑣 is the average 𝑣 𝑗 for 𝑗 ∈ 𝐿𝑘\𝐿𝑜𝑘 (example other
choices could be the minimum or maximum rather than
the average or the average speed over all executors that
have been applied to this job in the past). Let

𝑉𝑘 =
∑︂
𝑖∈𝐿𝑘

𝑣𝑖 = |𝐿𝑘 |𝑣,

where |𝐿𝑘 | is the number of executors assigned to the
𝑘 th job. Executor 𝑖 ∈ 𝐿𝑘 is assigned a dataset of size
𝑑𝑖 = 𝐷𝑘𝑣𝑖/𝑉𝑘 . That is, the faster executor (larger 𝑣𝑖) is
assigned to work on a larger dataset (larger 𝑑).

Let 𝑡𝑖 be the execution time of executor 𝑖 ∈ 𝐿𝑘 on the
assigned task of size𝑑𝑖 of the 𝑘 th job. For all executors 𝑖 ∈
𝐿𝑘 , their speed can be updated, for example, according
to a simple first-order autoregressive estimator

𝑣𝑖 ← 𝛼
𝑑𝑖

𝑡𝑖
+ (1 − 𝛼)𝑣𝑖

where forgetting factor 1 − 𝛼 is such that 0 < 𝛼 < 1. The
straightforward tradeoff in the choice of 𝛼 is that smaller
𝛼 means that the speed estimate is less responsive to
the latest datapoint 𝑑𝑖/𝑡𝑖 , but will result in less oscilla-
tion/overshoot in a dynamic setting where resources and
workload often change.

For the initial (𝑘 = 1) job, 𝐷1 is evenly divided among
the executors 𝑖 ∈ 𝐿1 and subsequently 𝑣𝑖 = 𝑑𝑖/𝑡𝑖 .

It’s entirely possible that different datasets of the same
size, i.e., 𝑑 = 𝑑 ′, will require different execution times
𝑡 ≠ 𝑡 ′ for the same job type under consideration. Over
time, we expect that such variations will be “averaged
out" in the executor speed estimates; i.e., each executor
will experience the same task-difficulty distribution “per
unit" input data (unless there is some bias so that some
executors tend to receive more difficult tasks per unit
input data for a given job). This motivates a updating
factor 𝛼 that this not close to zero.

Note that different application frameworks (different
job types) will need to maintain their own estimates of
(workload specific) executor speeds.

3.2 An experimental result
To see the effect of such adaptive workload partitioning,
we performed an experiment with a two worker-node
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cluster, where each node is an AWS m5.large VM with
two vCPUs. No resource isolation technology was used,
so Spark executors could share CPU cycles with other
processes. A sequence of fifty Spark WordCount jobs
were presented through a submission queue. We intro-
duced two CPU-interfering processes [15] on one node
at one point in time (because there are two cores per
node), and then on the other node at a later point in time,
thus reducing the processing speed of Spark executors
on those nodes. How Spark jobs adaptively partitioned
to re-balance their workloads with 𝛼 = 0.5 is shown in
Fig. 2.

One can see how overall job execution times (deter-
mined by the slowest task) increased dramatically but
then fell as our modified Spark learns executors’ speed
from previous trials (here, for a given executor, execution-
time variation per unit document was low).

Figure 2. Adaptive workload balancing with introduced
interfering processes at two points in time (𝛼 = 0.5).

We performed another experiment involving two hosts
being statically provisioned with one and 0.4 cores4, i.e.,
heterogeneous executors by initial provisioning. The re-
sults with different forgetting factors are shown in Fig. 3.
Spark learns the optimal way of partitioning the workload
after initial trials. As expected, when executors’ capac-
ity does not change, larger 𝛼 results in faster adaptation
to the heterogeneity. Eventually the map-stage execu-
tion time is reduced to around 60 seconds, which is in
agreement with the results shown in [12] for provisioned
containers where a near-optimal data partitioning can be
simply derived a priori using resource-allocation infor-
mation provided by Mesos.

This online adaptive task sizing can also be applied
to the provisioned containers, lambda functions, and
burstable instances, where the computation capacities
of the nodes can be estimated and quantified a priori,

4See [12] for HeMT experimental results with provisioned containers
and burstable VMs.

Figure 3. Workload re-balance, with 𝛼 equal to 0.5 and
0.25 respectively, when executors are different by initial
provisioning.

and can be further fine-tuned online to achieve better
performance, again see Section 4 below.

4 HeMT - repartitioning on multiple
computation stages

A typical MapReduce workload consists of one or more
jobs, each job has multiple basic computation stages (in-
cluding “hard" parallel-program barriers/synchronization-
points) presented in the previous sections concatenated
together through data shuffling. So for the first compu-
tation stage, we can simply divide the initial input data
according to the computation capacities of the executors.

A partitioner defines how a task assigns its intermedi-
ate results to different “buckets” which will be fetched by
different tasks in the following stage. For the following
stages, task data are fetched from the intermediate out-
puts of the tasks in the previous stages. The tasks in the
previous stages first shuffle the processed records into
different buckets (each corresponding to one fetching
task in a future stage) according to a partitioner function,
then those buckets are written onto storage media for
associated future tasks to fetch. The default hash par-
titioner shuffles those records into those buckets in a
statistically even fashion. So, we need to define a new
partitioner that can skew the shuffle buckets for HeMT.
For concreteness, we give one simple implementation of
skewing using hash code in Algorithm 15.

The comparison of effective data flows when using the
default hash partitioner and our skewed hash partitioner
respectively is shown in Fig. 4. The relevant idea of
balancing workload through partitioner can be found in
[3, 18].

5Certainly, a more sophisticated partitioning algorithm can be made
given more information regarding key distribution and processing com-
plexity of each record.
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Figure 4. Data flows in even hash shuffling and skewed hash shuffling respectively.

Algorithm 1: Partitioning function of skewed
hash partitioner

Data: Record 𝑟 to be assigned to a bucket; array
of executors’ computation capacities,
𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

Result: The index of the target bucket
𝑠𝑢𝑚 = 0;
for 𝑒 from 0 to 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠.length do

𝑠𝑢𝑚 += 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠[e];
𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠[e] = sum;

ℎ𝑎𝑠ℎ = 𝑟 .hashCode mod 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠.sum;
return the number of elements in 𝑒𝑥𝑒𝑐𝑢𝑡𝑜𝑟𝑠

greater than or equal to ℎ𝑎𝑠ℎ.

We present the performance of HeMT using two typ-
ical workloads - K-Means and PageRank. Those two
have different and representative computation patterns.
K-Means consists of repetitive simple two-stage Spark
jobs. PageRank, on the other hand, is a single Spark
job containing multiple computation stages concatenated
together through shuffling.

We ran K-Means on the cluster with two executors
hosted on two containers, one was allocated with one
CPU core, the other was allocated with 0.4 cores. To
make results more consistent, instead of setting a conver-
gence criterion to stop the iterations, we fixed the number
of iterations to 30. The input source was 256 MB data
file on HDFS, with block size 128 MB (so there are two
blocks). The complete-job execution times of HeMT and
homogeneous task-sizing (including HomT) are shown
in Fig. 5 (consistent with the results for single-stage
workloads [12]). Again, for homogeneous task sizing
(the Spark default), execution times are longer: due to

“synchronization" delays (because the executors have dif-
ferent capacities) when there are fewer, larger tasks, and
due to I/O overhead when there are more, smaller tasks.

Figure 5. K-Means execution times with 95% confidence
bars.

On the same cluster, we run PageRank with 256 MB
input data for 100 iterations. The results are shown in Fig.
6. Note that the PageRank, compared with K-Means, is
more sensitive to microtasking, because each iteration of
PageRank is relatively short (around 10s in the default
2-way partitioning), therefore each task is shorter as well.
For example, if we use 64-way partitioning, then each
task generally lasts for only 0.1 - 0.2 seconds. Therefore,
the relative task scheduling overhead would be larger for
the PageRank workload.

Figs. 5 and 6 show HeMT outperforms homogeneous
tasking. The optimal homogeneous task-size is applica-
tion specific and its choice can have significant perfor-
mance consequences, so it also needs to be learned.
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Figure 6. PageRank executing times with 95% confi-
dence bars.

5 Summary and Future Work
In summary, we investigated the pros and cons of het-
erogeneous macrotasking (HeMT) in large-scale parallel
processing workloads that routinely run on modern pub-
lic cloud platforms. We implemented an open-source
prototype of HeMT within the Apache Spark application
framework with complementary changes to the Apache
Mesos cluster manager [7, 14]. Our experimental results,
typical representatives of which were reported above,
showed that HeMT outperformed HomT when accurate
workload-specific estimates of nodes’ processing capac-
ities could be learned. In our representative multistage-
workload experiments, Spark with HeMT was able to
improve average job completion times by about 10%
compared to the default system.

In future work, we will consider application frame-
works and middleware embodying more advanced, in-
tegrated online learning frameworks that leverage infor-
mation from offline workload profiling [16] and service-
level agreements to more precisely (online) characterize
workloads’ resource needs (demand) and executors’ ca-
pacity (supply). Actions by different application frame-
works based on such learning include HeMT at a fast
timescale and determination of preferred types of execu-
tors based on cost/performance tradeoffs. For a budget-
conscious tenant, we also plan to integrate such actions
by application frameworks with scheduling by the clus-
ter manager, i.e., [4] and more efficient, server-specific
alternatives [11], based on sizing executors according to
workload characterizations and considering data-locality
constraints too. That is, the cluster manager’s scheduler
would consider estimates of the resource needs of tasks
of its application frameworks (perhaps as a function of in-
put dataset size) in order to obtain adequate performance
(scheduling in “fine grain” mode).
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