On a Caching System with Object Sharing

Nader Alfares
School of EECS
Penn State University
University Park, PA
nna5040@psu.edu

Bhuvan Urgaonkar
School of EECS
Penn State University
University Park, PA
buul@psu.edu

ACM Reference Format:

Nader Alfares, George Kesidis, Xi Li, Bhuvan Urgaonkar, Mah-
mut Kandemir, and Takis Konstantopoulos. 2020. On a Caching
System with Object Sharing. In International Workshop on Mid-
dleware and Applications for the Internet of Things (M4loT
’20), December 7—11, 2020, Delft, Netherlands. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3429881.
3430107

Abstract — We consider a data/content-caching system
located in an edge-cloud that is shared (to reduce costs)
by a number of proxies each serving, e.g., a group of
data-driven IoT devices. Each proxy operates its own
LRU-Ilist of a certain capacity in the shared cache. The
length of objects simultaneously appearing in plural
LRU-lists is equally divided among them, i.e., object
sharing among the LRUs. We give numerical results for
our MemCacheD with Object Sharing (MCD-OS) proto-
type. Also, a working-set approximation for the shared
cache is described and how to reduce ripple evictions is
discussed.

1 Introduction

The still-developing edge-cloud marketplace is impor-
tant to the timely support of data-driven applications of
resource-limited Internet of Things (IoT) devices. In par-
ticular, content-caching services preferably locate at the
edge to reduce networking costs and delays, and address
the limited storage and energy available to IoT devices,
e.g., [8, 11]. One way to reduce the cost of edge-caches
is to have different caching proxies (as, e.g., [14]) share
objects stored in common cache memory.

We herein consider J proxies that each service a large
pool of users/processes making requests for content from
a database with N data-objects via a cache of size B < N
memory units, e.g., caching as part of a Content Distribu-
tion Network (CDN). Each proxy typically operates un-
der a Least Recently Used (LRU) caching policy wherein
the most recently queried for data-objects are cached.

George Kesidis
School of EECS
Penn State University
University Park, PA
gik2@psu.edu

Mahmut Kandemir
School of EECS
Penn State University
University Park, PA
mtk2@psu.edu

XiLi
School of EECS
Penn State University
University Park, PA
xzl45@psu.edu

Takis Konstantopoulos
Mathematics
University of Liverpool
Liverpool, UK
t.konstantopoulos@liverpool.ac.uk

The J proxies share both cache memory and possibly
also the upload network-bandwidth to their users. !

In this paper, we consider a caching system where
the noncooperative proxies each pay for an allocation
of cache memory (and possibly network I/O as well),
thus preventing starvation of any proxy. Objects may
be shared among different LRU-lists (or just “LRUs",
each corresponding to a proxy), as the shared cache of
[13]. That is, the cost of storing a common object in
the LRUs is shared among the proxies. Also, an LRU-
list miss but physical cache hit is accompanied by a
delay corresponding to a physical cache miss. This said,
a proxy may make inferences regarding the LRU-lists
of others by comparing the cache hits they experience
to what they would be without object sharing. Mock
queries may change some near-future LRU-list misses to
hits (particularly for content not in the physical cache),
but will come at the cost of both memory and network
I/O resources (possibly causing some near-future cache
misses that would have been hits). So, the free-riding
behavior described in [13] is disincentivized.

This paper is organized as follows. Related prior work
is discussed in Sec. 2. In Sec. 3, an approach to cache
memory management based on [13] is presented wherein
a cached object’s length is shared among multiple LRU-
lists. In Sec. 4, we described an implementation of Mem-
CacheD with Object Sharing (MCD-OS) and give nu-
merical results. In Sec. 5, we describe an approach to
approximating hitting times for such a system of shared
cache memory under the Independent Reference Model
(IRM) model. In Sec. 6, we describe how a cache with
object sharing can be “overbooked" and thus its mem-
ory is more efficiently used. Finally, we conclude with a
summary and discussion of future work in Sec. 7.

'Note that for caching of encrypted data (e.g., owing to copyright
protections), a layered encryption strategy (as in block chains or legers)
could be used to first encrypt to the network edge and then encrypt to
the individual (authorized) users.

https://doi.org/10.1145/3429881.3430107
https://doi.org/10.1145/3429881.3430107

M4loT '20, December 7—-11, 2020, Delft, Netherlands
2 Related prior work

There is substantial prior work on cache sharing, includ-
ing at the network edge in support of mobile end-users,
e.g., [7, 12, 15]. At one extreme, the queries of the prox-
ies are aggregated and one LRU cache is maintained for
all of them using the entire cache memory. At another ex-
treme, the cache memory is statically partitioned among
the proxies (without object sharing). For example, [2] de-
scribes how cache memory can be partitioned according
to a game wherein different proxy utilities increase with
cache-hit probability. In our object-sharing problem for-
mulation (involving non-cooperative users of a for-profit
caching service), cache memory is not statically parti-
tioned, but there is “virtual" cache memory allocated per
user each of which is used for a LRU-list of potentially
shared data objects.

For a system with a single LRU (LRU-list) in the cache,
a lower priority (paying less) proxy could have a different
tail (least recently used object) pointer corresponding to
lower amount of allocated memory, but different proxies
would then compete for “hot" (higher ranked) objects
stored in the cache. To reduce such competition, an inter-
esting system of [4] also has a single LRU maintained in
the cache but with highest priority (paying most) prox-
ies having access to the entire cache while lower priority
proxies having a head (most recently used object) pointer
corresponding to a lower amount of allocated memory.

Now consider a scenario where the clients of different
proxies may query for (e.g., via a get request in Mem-
cached) the same object. In [13], proxies are assigned a
share of cached content based on their demand. Individ-
ual data objects are shared among different proxy caches
that store them, each according to the LRU policy, i.e., a
share of their length is attributed to each proxy’s cache
(LRU-Iist). In [13], the cache blocks some requests se-
lected at random to deter a proxy from ‘“cheating" by
issuing mock requests for specific content primarily of
interest only to its users in order to keep it cached (hot),
while leveraging cached content apportioned to other
proxies, i.e., more generally popular content, recall the
discussion of Section 1.

3 Object sharing in cache memory

Suppose cache memory is “virtually" allocated so that
proxy i € {1,2,..., J} effectively receives b; < B amount
of memory. Each partition is managed simply by a LRU
linked-list of pointers (“LRU-list" or just “LRU" in the
following) to objects stored in (physical) cache memory
collectively for all the proxies.

Let P (n) c [J] be the set of proxies for which object
n currently appears in their LRU-list, where £ (n) = 0
if and only if object n is not physically cached. Note
that P (n) is not disclosed to the proxies, i.e., the proxies

Alfares, Kesidis, Li, Urgaonkar, Kandemir, and Konstantopoulos
cannot with certainty tell whether objects not in their
LRU-list are in the cache.

Upon request by proxy i for object n of length #£,,
object n will be placed at the head of i’s LRU-list and all
other objects in LRU-list i are demoted in rank.

If the request for object n was a hit on LRU-list i, then
nothing further is done.

If it was a miss on LRU-list i, then

o if the object is not stored in the physical cache then
it is fetched from the database, stored in the cache
and forwarded to proxy i;

e otherwise, the object is produced for proxy i after
an equivalent delay.

Furthermore, add i to £ (n) (as in [13]), i.e.,
P(n) < Pn)U{i}, (1

then add the length £,/|P(n)| to LRU-list i and reduce
the “share" of all other caches containing n to £,/|P (n)]
(from £,/(|P(n)| - 1)).

So, if the query for (get request of) object n by proxy i
is a miss, its LRU-list length will be inflated and possibly
exceed its allocation b;; thus, LRU-list eviction of its tail
(least recently used) object may be required. When an
object m is “LRU-list evicted" by any proxy, the appor-
tionment of ¢, to other LRU-lists is increased (inflated),
which may cause other objects to be LRU-list evicted
by other proxies. A simple mechanism that the cache
operator could use is to evict until no LRU-list exceeds
its allocated memory is to iteratively:

1. identify the LRU-list i with largest overflow (length
minus allocation)

2. if this largest overflow is not positive then stop

3. evict i’s lowest-rank object

4. reassess the lengths of all caches

5. goto 1.

This is guaranteed to terminate after a finite number of
iterations because in every iteration, one object is evicted
from an LRU-list and there are obviously only ever a
finite number of objects per LRU-list.

For example, consider a scenario where object x is in
LRU-list j but not i and object y is in both but at the tail
of i. Also, both caches are full. So, a query for x by i
(LRU miss but cache hit) causes i to evict y. Thus, from
J’s point-of-view, x deflates but y inflates, so evictions
from j may or may not be required.

Also, a set request for an object simply updates an
object in the cache which may cause it to inflate and, in
turn, cause evictions, c¢f. Section 4.

Note that if during the eviction iterations, P (n) — 0
for some object n, then n may be removed from the phys-
ical cache (physically evicted) — cached objects n in the
physical cache that are not in any LRU-lists are flagged

On a Caching System with Object Sharing

as such and have lowest priority (are first evicted if there
is not sufficient room for any object that is/becomes a
member of any LRU-list). Even under LRU-list eviction
consensus, the physical cache may store an object if it
has room to try to avoid having to fetch it again from the
database in the future.

In summary, a single proxy i can cause a new object n
to enter the cache (P (n) changes from 0 to {i}) whose
entire length ¢, is applied to its cache memory allocation
b;, but a consensus is required for an object n to leave the
cache (P (n) — 0). So, the physical cache itself is not
LRU. Also, as objects are requested, their apportionments
to proxy LRU-lists may deflate and inflate over time.

Proposition 3.1. For a fixed set of proxies i, this object-
sharing caching system will have a higher stationary
object hit-rate per proxy compared to a not-shared system
of LRU caches, where each proxy i’s LRU cache has the
same amount of allocated memory b; in both cases.

An elementary proof of this proposition is based on a
simple coupling argument to show that for each proxy,
the objects in the not-shared system’s cache are always
a subset of what’s in the LRU-list of the shared system.
This follows simply because the size of any object n
apportioned to the shared system

b/|P ()] < b,

i.e., not greater than its full size which is apportioned in
the system without object sharing.

4 MemCacheD with Object Sharing
MCD-0S)
4.1 Background on Memcached

Memcached (MCD) is a popular distributed in-memory
cache [10] that offers a set /get key-value API (it of-
fers some additional functions such as update which
is a special case of set so we ignore them). Place-
ment/routing of requests to servers within a cluster is
done via a consistent hashing function that clients apply
to keys. If a get request is a hit, the server holding the
requested key-value pair responds with the value. If the
get is a miss, then the client must fetch the item from
a (remote) database and issue a set command to the
cache. The set command will add the object if it is not
already in the cache, otherwise it will update its value. To
guarantee O(1) access time, MCD maintains a hash table
on the server side linking all objects in cache, where an
object is indexed by the hash value of its key.

The basic unit of storage in MCD is an ifem which
stores a key-value pair and some meta-data such as a
time-to-live (TTL) value. To overcome internal mem-
ory fragmentation, MCD divides memory into multiple
slabs each of which contains items within a range of

M4loT '20, December 7-11, 2020, Delft, Netherlands
sizes. Slabs are IMB large by default. A group of slabs
containing items within the same size range is called a
slabclass. Instead of using the vanilla LRU, MCD uses
type of segmented LRU (S-LRU) that is known to approx-
imate LRU well while posing lower computational needs
(and processing delay) when servicing hits (which is the
common case in a well-provisioned cache). In MCD’s
S-LRU, items are separated into three sub-lists called
HOT, WARM, and COLD. Newly created items always
begin in HOT which is an LRU-based list. An item at
the tail of HOT is moved onto WARM only if it has a
relatively long TTL and has been accessed at least twice
(two or more accesses is taken as indicative of relatively
high popularity). WARM holds popular and long-lived
items and is operated as a first-in first-out (FIFO) list.
Finally, COLD holds relatively unpopular items and is
operated as an LRU list.

4.2 Our implementation

We implement an MCD with object sharing, MCD-OS,
by making modifications to Memcached v. 1.5.16. We
make no changes to the client side of MCD. Our proto-
type is available here [9]. In particular, we retain MCD’s
consistent hashing functionality for client-driven content
placement/routing in clustered settings as is. We make
several changes to the server side of MCD. Requests com-
ing from each proxy are handled by a pool of MCD-OS
threads dedicated to that proxy. We retain the slabclass
functionality for its fragmentation-related benefits and
hash table for quick object access. An item’s slabclass
continues to be determined by its actual (and not in-
flated/deflated) size. However, we remove per-slabclass
LRU lists and instead implement a single LRU per proxy.
Given our specific interest in the LRU replacement pol-
icy, we set up MCD-OS in our evaluation such that: (i)
flat LRU as opposed to S-LRU is used and (ii) there is
only one slabclass. Implementing MCD-OS for S-LRU
with multiple slabclasses is part of our ongoing work.

Note that on an LRU miss, MCD-OS will require the
proxy to fetch the object from a remote database and
issue a set command to store it in cache followed by
adding the item to the front of this proxy’s LRU-list.
Therefore, there is no need for MCD-OS to add an artifi-
cial delay in response to an LRU miss that is a physical
cache hit.

In Table 1, we summarize different types of behavior
offered by MCD-OS in response to set /get requests
from a proxy. We present the key functionalities imple-
mented in MCD-OS to achieve this behavior as a list
of functions below. We selectively list new logic added
by us and omit related functionality that MCD already
implements. In the Appendix, we provide detailed pseu-
docode for these functions.

M41oT '20, December 7—-11, 2020, Delft, Netherlands

proxy i issues get (k) ; hits in LRU i

* promote item with key k to the head of LRU i

proxy i issues get (k) ; misses in LRU i but hits in
cache

* insert the item with key k into the head of LRU i
* update the status of all other LRUs sharing this item
(deflation)

proxy i issues get (k) ; misses in both LRU i and
cache

e return cache miss to client

/I client is expected to fetch the item from database
and issue set (k, V)

proxy i issues set (k, v); key k doesn’t exist in
cache

* package the key-value pair (k, v) into an item, store
in cache

* set virtual length of the item to its actual length

* insert the item to head of LRU i

proxy iissues set (k, v);Kkey k already exists in
cache

« update the item with key k to reflect the new value v
* promote the item to head of LRU i

* update the status of all other LRUs sharing this item
(may involve a combination of inflation and deflation)

Table 1. Summary of MCD-OS behavior in response to
set/get requests from a proxy.

inflate: This new function is invoked when a shared
item needs to be inflated. This happens upon the eviction
of that item from one of the proxy LRUs or if the virtual
length of the item increases after a set operation.

deflate: This new function is invoked when a shared
item needs to be deflated. This happens upon the inser-
tion into a proxy LRU of an item that is shared with one
or more other proxies, or if the virtual length of the item
decreases after a set operation.

insert: This is analogous to the native MCD func-
tion item_1link that inserts an item into the appropri-
ate LRU-list. It is used for item insertion and replacement.
We modify it to also invoke the functions inflate or
deflate corresponding to an increase or a decrease in
the virtual length of the inserted item.

evict: This is analogous to the native MCD function
item_unlink that evicts an item from its LRU-list.
We modify it to also invoke the function inflate after
item eviction to update virtual lengths of copies of the

Alfares, Kesidis, Li, Urgaonkar, Kandemir, and Konstantopoulos
evicted item that still resides in some other proxies’ LRU-
lists.

process_command: This is a native MCD function
that parses client requests and implements get and set
logic. We enhance it to additionally implement object
sharing.

4.3 Overhead of object sharing for MCD-OS

Object sharing introduces additional overhead for set
commands associated with a ripple of evictions among
the LRUs owing to item size deflation/inflation. In the
following, we compare the overhead of set commands
(after a cache miss) for MCD-OS and MCD, the latter
with the same collective get commands but a single
LRU cache of the same collective size (}; b;).

For our experiments, we used J = 9 proxies with
N = 10° items, where each item was 100kB. The total
cache memory was 3 GB. In a typical experiment, we
considered very different proxies i € [J] with Zipf pa-
rameter 0.5 + 0.5(i — 1) and memory allocations: b =100
MB for proxies 1,2,3; b =200 MB for proxies 4,5,6; and
b =700 MB for proxies 7,8,9. The number of get com-
mands issued in each experiment was 3 X 10° after the
cold misses have abated.

0.839

Probability

0.018 0.024 0.030 0.024 0,018

0.005 0.002 0.000

1 2 3 4 5 6 7 8 9 10
Number of evictions

Figure 1. A histogram of the number of evictions per
set request under MCD-OS. There were no set com-
mands observed with more than 10 associated evictions.
Note that the number for MCD without object sharing is
always 1.

The histogram of the number of evictions per set
request for MCD-OS is given in Figure 1. As shown, in
a small number of cases, the size of this “eviction ripple”
can be as large as 9. However, overall only 16% of the
set requests experienced more than one eviction (i.e.,
an overhead beyond what an eviction in MCD would
experience).

On a Caching System with Object Sharing

In Figure 2, the Cumulative Distribution Functions
(CDF) of the set execution times are plotted under both
MCD and MCD-OS. Note that, though there is a single
eviction per set under MCD, there is some variability
when updating the LRU. See Table 2.

)
7/

0.8

0.6 -

CDF

0.4 1

0.2 1

— MCD
0.0 —— MCD-0S

T T Va T T T
200 400 600 . . 5000 10000 15000
Set request execution time (microseconds)

Figure 2. CDFs of the set request execution times com-
paring MCD with MCD-OS.

cache mean | std dev
MCD 412 ps | 111 ps
MCD-OS | 474 us | 127 s

Table 2. Means and standard deviations of set request
execution times under MCD-OS and MCD.

Other experiments showed that when all the proxies
are very similar, the additional set overhead was re-
duced, even negligible. Also, a get under MCD-OS
would obviously require additional overhead to look-up
which LRU (based on proxy identifier) is requested, but
we found it to be negligible.

S Discussion: Working-set approximation

We now describe an approach to computing the approxi-
mate hitting probabilities of the shared caching system
following the Denning-Schwartz “working-set approxi-
mation" [1, 3] for a not-shared cache under the Indepen-
dent Reference Model (IRM). [5, 6] nicely address the
asymptotic accuracy of this approximation.

Let A; ¢ be the mean request rate for object k, of length
., by proxy i. A simple generalization of the working-set
approximation for variable-length objects is: if min; b; >
maxy £ then

N
Vibi=) hikl)
k=1
where
Vi k hjp = 1— e Aekli 3)

M4loT '20, December 7-11, 2020, Delft, Netherlands
and t; are interpreted as (assumed common) mean evic-
tion times of objects k in LRU-list i, i.e., the time between
when an object enters the cache and when it’s evicted
from the cache.

For our shared caching system, only a fraction of an
object k’s length £ will be attributed to a particular LRU-
list i, depending on how k is shared over (eviction) time
t;. For all i, k, let this attribution be L; ; < &, i.e.,

N N
Vi, b; = Z hikLik = Z(l —e ML (4)
k=1 k=1
One may take

n 1

where Z; . are independent Bernoulli random variables
suchthat hjr = P(Z;r = 1) = 1-P(Z;; = 0). That is,
under the assumption of independent LRU-lists, Li(j() is
the stationary mean attribution of the length of object
k to LRU-list i given that k is stored in LRU-list i. For
example, for a system with just J = 2 caches, i.e., j €
{1,2},

1

1
B o (1—hy)+ oy ik
1+Zj¢iZj,k I 2 />

1
=1—~hy_j1.
23],k

So, substituting (5) into (4) gives, for i € {1, 2},

N
1
0=b;— > (1—eukt)(1- SN (6)
k=1

a system with two nonlinear equations in two unknowns
t, ty.

Empirically, we found that using (5) is a good estimate
of when J > 2 (see [9]), but significantly under-estimates
the object hitting probabilities, i.e., Ll.(}c) is too large, when
J =2.In[9], an alternative working-set approximation is
given which is accurate for J = 2. Also, it is shown that
there exists a unique solution to (6) for arbitrary J > 2.

6 Discussion: Overbooking

Consider a caching system as described above with LRU-
lists but without object sharing, i.e., the full length of an
object is charged to each LRU-list in which it resides. In
this case, from the proxies’ point-of-view, the system is
just as static cache partitioning as mentioned in Section 2.
Suppose LRU/proxy i is paying to experience the cache-
hit probabilities it would get if cache memory amount
b} was dedicated to it without object sharing, i.e., b}
is prescribed in the Service Level Agreement (SLA).
Consider a virtual cache memory allocation b; given by
(4) and (5) (accurate for J > 3 LRUs [9]). Specifically,
let h; ,, be the cache hitting probability of object n under

M4loT '20, December 7—-11, 2020, Delft, Netherlands

object sharing (so depends on b; - recall (2)) and hf’n
be that without object sharing (so depends on b;); and
define minimal b; such that

Vi,n, hi, > h;"n = Vi, b <Db]. @)
Object sharing with J LRUs operates so that

J

Z b; < B, 3
i=1

which allows for the possibility of overbooking, i.e.,

J

Z b, > B.)
i=1

For purposes of admission control, before the degree
of object-sharing of a new LRU J + 1 can be assessed,
the cache operator can conservatively admit a new proxy
J+1if

J
i < B—Zbi, (10)
i=1
where the cloud operator estimates the “virtual" cache
allocation b; for existing proxies i € {1,2,...,J}. Once
admitted, the object popularities 4;, can be estimated
and fed into our working-set approximation to compute
cache-hit probabilities under object-sharing toward deter-
mining the proper virtual allocation b;2. Alternatively, the
object cache-hit probabilities can be directly estimated
by simply trial reducing virtual allocation by, starting
from b} +1- O, LRU J+1 can be less conservatively admit-
ted based on a virtual allocation correponding to some
estimated object popularities based on those of existing
LRUs 1,..., J.

7 Summary and Future Work

In this paper, we considered object sharing by LRU
caches as would be deployed in an edge-cloud in sup-
port of data-driven IoT devices. Such sharing will re-
duce the cost of operation at a given level of perfor-
mance (cache-hit probabilities) or improve performance
for given budgets. We developed a memcached prototype
(MemDacheD-OS or MCD-0S) and numerically evalu-
ated the set overhead of object sharing. We also pro-
posed an extension of the classical working-set approx-
imation of cache-hit probabilities to this shared-object
setting (its performance is further detailed in [9]).

We have also implemented MCD-OS for commonly
used Segmented-LRU (S-LRU) with multiple slabclasses,
where S-LRU is designed to reduce memory overhead
for popular (hot) objects. Cache-hit probabilities do not

ZNote that virtual allocations may also need to be recomputed when
LRUs “depart" the cache.

Alfares, Kesidis, Li, Urgaonkar, Kandemir, and Konstantopoulos
change significantly (~ 2 — 3% difference) for S-LRU
with object sharing.

In ongoing work, we are evaluating ways to reduce the
overhead of ripple evictions, e.g., by modestly delaying
evictions and then process them in batches, but likely at
the expense of lower cache-hit rates. We are also evalu-
ating MCD-OS with variable-length objects which are
allocated in different slabs.

Acknowledgements:

This research was supported in part by NSF CNS grants
1526133 and 1717571 and by a Cisco Systems URP gift.

References

[1] H. Che, Y. Tung, and Z. Wang. Hierarchical Web Caching Sys-
tems: Modeling, Design and Experimental Results. /EEE JSAC,
20(7), Sept. 2002.

[2] M. Dehghan, W. Chu, P. Nain, and D. Towsley. Sharing LRU
Cache Resources among Content Providers: A Utility-Based Ap-
proach . IEEE/ACM Transactions on Networking (TON), 27(2),
Apr. 2019.

[3] PJ. Denning and S.C. Schwartz. Properties of the working-set
model. Commun. ACM, 15(3):191-198, March 1972.

[4] A. Eryilmaz and al. A New Flexible Multi-flow LRU Cache
ManagementParadigm for Minimizing Misses. In Proc. ACM
SIGMETRICS, 2019.

[5] R. Fagin. Asymptotic miss ratios over independent references.
Journal Computer and System Sciences, 14(2):222-250, 1977.

[6] C. Fricker, P. Robert, and J. Roberts. A Versatile and Accurate Ap-
proximation for LRU Cache Performance. In Proc. International
Teletraffic Congress, 2012.

[7]1 N. Golrezaei, K. Shanmugam, A.G. Dimakis, A.F. Molisch, and
G. Caire. Femtocaching: Wireless video content delivery through
distributed caching helpers. In Proc. IEEE INFOCOM, 2012.

[8] C.-K. Huang, S.-H. Shen, C.-Y. Huang, T.-L. Chin, and C.-A.
Shen. S-Cache: Toward an Low Latency Service Caching for
Edge Clouds. In Proc. ACM MobiHoc Workshop on Pervasive
Systems in the IoT Era, July 2019.

[9] G. Kesidis, N. Alfares, X. Li, B. Urgaonkar, M. Kandemir,
and T. Konstantopoulos. Working-Set Approximation for a
Caching System with Object Sharing. https://github.com/PSU-
Cloud/MCD-0S/, Aug. 2019; https://arxiv.org/abs/1905.07641,
May 2019.

[10] Memcached. https://memcached.org/.

[11] D. Niyato, D.I. Kim, P. Wang, and L. Song. A novel caching
mechanism for Internet of Things (IoT) sensing service with
energy harvesting. In Proc. IEEE International Conference on
Communications (ICC), May 2016.

[12] K. Poularakis, G. losifidis, A. Argyriou, I. Koutsopoulos, and
L. Tassiulas. Distributed Caching Algorithms in the Realm of
Layered Video Streaming. IEEE Trans. Mob. Comput., 18(4):757-
770, 2019.

[13] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica. FairRide:
Near-Optimal, Fair Cache Sharing. In Proc. USENIX NDSI, Santa
Clara, CA, USA, March 2016.

[14] Squid: Optimising Web Delivery. http://www.squid-cache.org.

[15] Y. Wang, X. Zhou, M. Sun, L. Zhang, and X. Wu. A new QoE-
driven video cache management scheme with wireless cloud com-
puting in cellular networks. Mobile Networks and Applications,
2016.

	1 Introduction
	2 Related prior work
	3 Object sharing in cache memory
	4 MemCacheD with Object Sharing (MCD-OS)
	4.1 Background on Memcached
	4.2 Our implementation
	4.3 Overhead of object sharing for MCD-OS

	5 Discussion: Working-set approximation
	6 Discussion: Overbooking
	7 Summary and Future Work
	References

