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Abstract. Super Resolution (SR) microscopy leverages a variety of opti-
cal and computational techniques for overcoming the optical diffraction
limit to acquire additional spatial details. However, added spatial details
challenge existing segmentation tools. Confounding features include pro-
tein distributions that form membranes and boundaries, such as cellular
and nuclear surfaces. We present a segmentation pipeline that retains the
benefits provided by SR in surface separation while providing a tensor
field to overcome these confounding features. The proposed technique
leverages perceptual grouping to generate a tensor field that enables
robust evolution of active contours despite ill-defined membrane bound-
aries.
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Super resolution (SR) microscopy [24] encompasses a set of imaging techniques
that overcome the diffraction limit [8] of traditional microscopes. SR imaging
enables high-resolution microscopy, enabling biologists to probe tissue structure
at the nanometer scale. In recent years, a number of novel approaches have been
employed to circumvent the diffraction limit, including expansion microscopy
(ExM) [2,5], stimulated emission depletion microscopy (STED) [25], photo acti-
vation localization microscopy (PALM) [9], stochastic optical reconstruction
microscopy (STORM) [19] and structured illumination microscopy (SIM) [7].
SR provides greater spatial detail, enabling differentiation of individual pro-
tein clusters and separating tightly packed membranes (Fig. 1). While these addi-
tional features provide important details for understanding tissue structure, they
challenge automated segmentation algorithms. For example, cellular and nuclear
membranes are often identified by labeling embedded proteins, resulting in non-
continuous punctate boundaries (Fig.1). Algorithms commonly used for tradi-
tional microscopy, such as the FARSIGHT Toolkit [1] produce over-segmented
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Fig. 1. FARSIGHT segmentation results on mouse brain(a, b, e, f) and kidney(c, b)
histological nuclear staining using STED (a, b), using ExM (c, d, g, h), and high-
resolution confocal microscopy (e, f).

results. Other challenges include (1) heterogeneous cell shapes, (2) contrast
disparities, and (3) overlapping/clustered cells and nuclei. In general,
enhanced resolution provides additional spatial detail while making
surfaces less clearly defined.

In this paper, we propose a novel segmentation method localization-reinforced
perceptual grouping (LRPG) that constructs a tensor-based [10] representation
of the image and then refines this field leveraging perceptual grouping methods
[15]. The resulting tensor field forms the basis for a more robust SR segmentation.
Our approach maintains the coherence of punctate surfaces as well as the desired
benefits of surface separability provided by SR imaging. Performance is tested
on SR images acquired using expansion microscopy (ExM) [2] and stimulated
emission depletion (STED) [25]. Performance benchmarks are compared to the
current state-of-the-art in cell and nuclear segmentation, including FARSIGHT
[1], modular interactive nuclear segmentation (MINS) [13], and TIMING 2.0 [14].
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Our perceptually-based approach improves the performance of active contours,
such as level set, and provides a significant benefit over existing algorithms for
SR images.

1 Localization-Reinforced Perceptual Grouping

Our proposed LRPG framework is shown as Fig.2, which includes four main
steps: cell centroid detection, tensor voting, level set evolution, and watershed
segmentation. We first identify cell positions using iterative voting [20], which
requires an initial estimate of cell radius. We then calculate and refine a tensor
field used to guide contours through high-frequency features in the image. This
refinement is based on optimizing the angular discrepancy between the primary
tensor direction and cell centroids. Cell contours are identified using a level set
method evolved from the set of centroids and guided by the refined tensor field.
Finally, watershed method is applied to separate connected cells.

1.1 Cell Seeds Detection

A GPU-based iterative voting method [20] is used to quickly calculate candidate
points representing cell positions. We initialize the voting using the image gra-
dient and apply iterative voting. The voting fields are refined to produce a set
of candidate seeds (Fig. 3). A threshold is specified across the entire voting data
to select candidate cell positions. Note that iterative voting requires an estimate
of the cell radius as input. Since cell sizes can cover a wide range, we apply
scale-space sampling using multiple iterative voting with different radius param-
eters. The voting images are added together and smoothed with a Gaussian filter
(0 = 5) to merge multi-detected cell positions. Finally, a single iterative voting
step is applied to this final image to extract the set of final cell centroids.

1.2 Localization Reinforced Tensor Voting

Tensor voting [12,16,17] is an algorithm for identifying “salient” structures in
multi-dimensional data. This approach uses local features to reinforce global
structure [6]. We leverage this approach to (1) reconstruct cell contours, and
(2) extract refined tensor field flow as force flow for level set segmentation and
gradient flow for watershed segmentation.

A Canny edge detector [21] is applied to identify candidate contour features
defining cell boundaries. These contours are encoded using ball tensors when
construct original tensor field and then iteratively refined using tensor voting
[16]. After each voting iteration, the tensor field is decomposed into eigenvalues
A1, A2 and their corresponding eigenvectors eq, es [10,17], which is defined as:

T = )\1(31(’3%1 + )\2(32(’3%1 = ()\1 — )\2)616%1 + )\2(616{ + 6265), (1)

where (A1 — A2)erel describes a stick tensor Ts and Aa(ejel + egel’) describes
a ball tensor Ts. Each feature is characterized by its curve saliency (A —
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Fig. 2. Pipeline of localization-reinforced perceptual grouping. Input image are pro-
cessed into four main steps: cell seeds extraction, cell saliency feature extraction from
tensor voting, binary mask extraction from level set segmentation and final using seeds
based watershed methods to segment every single cell.

(a) (b)

Fig. 3. Iterative voting for cell seeds identification [20]. (a) Input image. (b) Calculate
the gradient of the input image and each non-zero point of the gradient image can be
a voter. Then calculate voting area of voter and integrate all votes from voters. Local
maximum algorithm is applied to extract cell positions candidates.

A2) with orientation e;, and point saliency Ay with no preferred orientation
(Fig. 4(a)). We apply a threshold (usually 0.05) on curve feature (A — A2) to
remove useless contour sides. Salient cell contours are then reconstructed by
iterative tensor voting (Fig. 5).

We then implement a novel localization-reinforced tensor voting method to
generate and refine a field for contour evolution. A new field S(z, y) is generated
by calculating the structure tensor at each point. We then calculate the angular
discrepancy R(x,y) between cell centroids and principal eigenvectors e;(x,y)
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Fig. 4. (a) Tensor decomposition into a stick tensor and ball tensor. (b) Stick tensor
voting field calculation. O is the voter and P is a receiver, s is the arc length, and [
is OP length, 6 is the angle between the tangent to the osculating circle at the voter

and the line going through the voter and receiver. Voting value is based on saliency
s24ck? .
decay function: Vs(l,0,0) = e +2 , where s = sfig’k = 253—"9. Voting value is zero

if 6 larger than 7/4. (c) Ball voting field is an integration of stick tensor voting field.

Fig. 5. Cell contours reconstruction from iterative tensor voting. (a) Original cell curve
after applying a Canny detector. (b) Cell contours after one time tensor voting. (c) Cell
contours after two times tensor voting.

of S(z,y) by computing their dot product with the gradient of the centroid’s
Euclidean distance field D(z,y):

€1 (.17, y) i VD(Z‘, y)
llex(z,y) - VD(z,y)||
The angular discrepancy R(x,y) can be thought of as a scalar value to quan-

tify each tensor’s reliability. Then we set a threshold ¢, on R to force unreliable
voters’ value to zero (our experiments use ¢, = 0.8).

R(x,y) = (2)
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Then for each voting iteration, the total number of votes received at a pixel
i is given by:
Top1=Tu+RY V(i) (3)
1EW
where the V(i) means the total voting at pixel ¢ integrated from neighbor voters.
We repeat the step of localization reinforced tensor voting until most (usually
90%) tensors are recognized as reliable tensors, which means small angular dis-
crepancy with seeds. Finally, we decompose the final refined tensor field Ty to
extract eigen vector ey as cell contours expansion flow. After the localization
reinforced tensor voting, we can see the original messed tensor field (Fig. 6(c))
becomes the refined tensor field (Fig.6(d)), in which most tensors are aligned
to point to seeds. Most importantly, the tensor field still keeps the original cell
shapes.

© (d)

Fig. 6. Tensor field refining. (a) Original encoded tensor field of Canny edge using ball
tensor. (b) Cell contours tensor field after iterative tensor voting. (c) Original mess
tensor field encoding using image gradient. (d) Refined tensor field after localization
reinforced tensor voting. Color bars indicate tensor reliability. (Color figure online)

1.3 Level Set Contour Evolution

Level set methods [18,22] are commonly used to solve curve evolution problems
with potential topological changes, such as splitting and merging. This approach
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calculates the evolution of an embedded (2D) curve within a higher-dimensional
(3D) space. The curve is initialized as a point at each cell centroid and prop-
agated along a velocity field specified by the refined tensor field using Euler
integration to solve the resulting partial differential equation (PDE) [4,11]. Iter-
ative voting provides high confidence cell centroids used as initial contours. The
eigenvector ej(x,y) provides the outward gradient flow and VI’ provides an
additional inward force. The level set contour moves outward following e; until
balanced by the inward force to achieve a minimum energy state.

Our level set based on refined tensor field performs significantly better than a
traditional level set approach based on gradient. Due to the velocity field design,
traditional level set evolution often stops at local minima. Since refined tensor
field provide continue flow from cell centers to cell boundaries, it can help level
set evolution propagate over dim signal part to real cell boundaries.

1.4 Watershed Segmentation

Watershed algorithm [23] is used to separate connected cells. Due to too many
local minima problem in traditional gradient-descent algorithms, watershed often
results in over-segmentation [3]. From the refined tensor field, we can extract
the smoothing gradient field to filter out local minima. So it can fix over-
segmentation efficiently (Fig.8). To prove that, we reconstruct image I’ using
the Poisson Reconstruction method [26]. In Fig. 7(a), we can see that the recon-
structed cell has the highest intensity in its center with intensity decreasing
gradually from center to boundaries. The gradient from I’ could remove the
impact of noise and quantization errors in watershed. It also can be seen as a
refined cell distance field keeping the original cell shape. Combining extracted
binary mask from level set, seeds from iterative vote and refined tensor field as
gradient flow, watershed yields good results for segmenting every single cell.

Final level set function, 760 iterations

b ioanow

(@) (b) (©)

Fig. 7. Level set active contour movement till inward and outward balance, extract
minimum energy line as final reconstructed cell contour. (a) Poisson reconstructed
image from refined tensor field. (b) Final level set function after 760 iterations; (c)
Final segmentation contour from level set evolution.
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Fig. 8. Segmentation results. (a) Mouse brain STED image. (b) Mouse brain confo-
cal image. (c) Mouse kidney expansion microscopy. (d—e) Mouse testicle expansion
microscopy.
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Fig. 9. Analysis of segmentation results on ExM testicle images (1068 x 1068 x 7 pixels,
5,796 cells in total). (a) Precision-Recall curve comparison of seeds detection using
iterative voting, FARSIGHT and MINS. (b) Segmentation DICE scores and standard
deviation comparison.

2 Results Analysis

We quantified the results on seven ExM mouse testicle images (1068 * 1068)
with 5796 cells in total. Seeds identification results are compared with MINS
[13] and FARSIGHT [1] using precision-recall curves (Fig.9a). Segmentation
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results are quantified using DICE scores (Fig.9b). LRPG yields significantly
better results when segmenting sparsely-labeled cells with punctate features,
where other methods over-segment the nuclei (Fig. 8a—c). LRPG also performs
better when segmenting heterogeneous cells with a wide range sizes and contrasts
(Fig. 9d—e).

3 Conclusion and Future Work

The proposed perceptual grouping approach is highly parallel and is extendable
to higher-dimensional images, as well as multiplex imaging. Potential future
directions include a GPU-based implementation to enable the practical segmen-
tation of large images.

Acknowledgement. This work is funded in part by the National Institutes of
Health/National Heart, Lung, and Blood Institute (NHLBI) #R01HL146745, the Can-
cer Prevention and Research Institute of Texas (CPRIT) #RR140013, the National
Science Foundation I/UCRC BRAIN Center #1650566, and the National Institutes of
Health Training Grant #T15LMO007093.

References

1. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection
and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed.
Eng. 57(4), 841-852 (2010)

2. Artur, C., Womack, T., Eriksen, J.L.J., Mayerich, D., Shih, W.C.: Hyperspec-
tral expansion microscopy. In: 2017 IEEE Photonics Conference (IPC), pp. 23-24,
October 2017

3. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In:
Serra, J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image
Processing. Computational Imaging and Vision, vol. 2, pp. 69-76. Springer, Dor-
drecht (1994). https://doi.org/10.1007/978-94-011-1040-2_10

4. Chan, T.F., Shen, J., Vese, L.: Variational PDE models in image processing. Not.
AMS 50(1), 14-26 (2003)

5. Chen, F., Tillberg, P.W., Boyden, E.S.: Expansion microscopy. Science 347(6221),
543-548 (2015)

6. Guy, G., Medioni, G.: Inferring global perceptual contours from local features. Int.
J. Comput. Vis. 20(1), 113-133 (1996). https://doi.org/10.1007/BF00144119

7. Heintzmann, R., Huser, T.: Super-resolution structured illumination microscopy.
Chem. Rev. 117(23), 13890-13908 (2017)

8. Huang, B., Babcock, H., Zhuang, X.: Breaking the diffraction barrier: super-
resolution imaging of cells. Cell 7(143), 1047-1058 (2010)

9. Huang, B., Bates, M., Zhuang, X.: Super resolution fluorescence microscopy. Annu.
Rev. Biochem. 78, 993-1016 (2009)

10. Jorgens, D., Moreno, R.: Tensor voting: current state, challenges and new trends in
the context of medical image analysis. In: Hotz, 1., Schultz, T. (eds.) Visualization
and Processing of Higher Order Descriptors for Multi-Valued Data. MV, pp. 163—
187. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15090-1_9


https://doi.org/10.1007/978-94-011-1040-2_10
https://doi.org/10.1007/BF00144119
https://doi.org/10.1007/978-3-319-15090-1_9

150

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Li et al.

Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its
application to image segmentation. IEEE Trans. Image Process. 19(12), 3243-3254
(2010)

Loss, L., Bebis, G., Nicolescu, M., Skurikhin, A.: An iterative multi-scale tensor
voting scheme for perceptual grouping of natural shapes in cluttered backgrounds.
Comput. Vis. Image Underst. 113(1), 126-149 (2009)

Lou, X., Kang, M., Xenopoulos, P., Mufioz-Descalzo, S., Hadjantonakis, A.K.: A
rapid and efficient 2D /3D nuclear segmentation method for analysis of early mouse
embryo and stem cell image data. Stem Cell Rep. 2(3), 382-397 (2014)

Lu, H., et al.: TIMING 2.0: high-throughput single-cell profiling of dynamic cell-
cell interactions by time-lapse imaging microscopy in nanowell grids. Bioinformatics
35, 706-708 (2018)

Luo, J., Guo, C.E.: Perceptual grouping of segmented regions in color images.
Pattern Recogn. 36(12), 2781-2792 (2003)

Mordohai, P., Medioni, G.: Tensor voting: a perceptual organization approach to
computer vision and machine learning. 2(1), 1-136 (2006). Morgan & Claypool
Publishers

Moreno, R., Garcia, M.A., Puig, D., Julia, C.: On adapting the tensor voting
framework to robust color image denoising. In: Jiang, X., Petkov, N. (eds.) CAIP
2009. LNCS, vol. 5702, pp. 492-500. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03767-2_60

Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153.
Springer, Heidelberg (2006). https://doi.org/10.1007/b98879

Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic
optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793-796 (2006)
Saadatifard, L., Abbott, L.C., Montier, L., Ziburkus, J., Mayerich, D.: Robust cell
detection for large-scale 3D microscopy using GPU-accelerated iterative voting.
Front. Neuroanat. 12, 28 (2018)

Sahir, S.: Canny Edge Detection Step by Step in Python - Computer Vision, Jan-
uary 2019

Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science, vol. 3. Cambridge University Press, Cambridge (1999)

Shen, J., Jin, X., Zhou, C., Wang, C.C.L.: Gradient based image completion by
solving the Poisson equation. Comput. Graph. 31, 119-126 (2007)

Shtengel, G., et al.: Interferometric fluorescent super-resolution microscopy resolves
3D cellular ultrastructure. Proc. Nat. Acad. Sci. 106(9), 3125-3130 (2009)
Vicidomini, G., Bianchini, P., Diaspro, A.: STED Super-resolved microscopy. Nat.
Methods 15(3), 173-182 (2018)

Willett, R.M., Harmany, Z.T., Marcia, R.F.: Poisson image reconstruction with
total variation regularization. In: 2010 IEEE International Conference on Image
Processing, pp. 4177-4180, September 2010. https://doi.org/10.1109/ICIP.2010.
5649600


https://doi.org/10.1007/978-3-642-03767-2_60
https://doi.org/10.1007/978-3-642-03767-2_60
https://doi.org/10.1007/b98879
https://doi.org/10.1109/ICIP.2010.5649600
https://doi.org/10.1109/ICIP.2010.5649600

)

Check for
updates

DISCo: Deep Learning, Instance
Segmentation, and Correlations for Cell
Segmentation in Calcium Imaging

Elke Kirschbaum2®)  Alberto Bailoni!, and Fred A. Hamprecht!

! Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University,
69120 Heidelberg, Germany
{alberto.bailoni,fred.hamprecht}@iwr.uni-heidelberg.de
2 Amazon Research, 72076 Tiibingen, Germany
elkeki@amazon.com

Abstract. Calcium imaging is one of the most important tools in neuro-
physiology as it enables the observation of neuronal activity for hundreds
of cells in parallel and at single-cell resolution. In order to use the data
gained with calcium imaging, it is necessary to extract individual cells
and their activity from the recordings. We present DISCo, a novel app-
roach for the cell segmentation in calcium imaging videos. We use tempo-
ral information from the recordings in a computationally efficient way by
computing correlations between pixels and combine it with shape-based
information to identify active as well as non-active cells. We first learn
to predict whether two pixels belong to the same cell; this information is
summarized in an undirected, edge-weighted graph which we then parti-
tion. Evaluating our method on the Neurofinder public benchmark shows
that DISCo outperforms all existing models trained on these datasets.

Keywords: Calcium imaging - Cell segmentation + Neuro imaging
analysis

1 Introduction

Calcium imaging is a microscopy technique that allows the observation of the
activity of large neuronal populations at single-cell resolution [3,8,13]. This
makes it one of the most important tools in neurophysiology since it enables
the study of the formation and interaction of neuronal networks in the brain.
The data recorded with calcium imaging is a sequence of images that shows
multiple cells at fixed locations and with varying luminosity. The extraction of
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