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Abstract Carbon export out of the surface ocean via the biological pump is a critical sink for atmospheric
carbon dioxide. This process transports organic carbon to the deep ocean through sinking particulate
organic carbon (POC) and the downward transport of suspended POC and dissolved organic carbon (DOC).
Changes in the relative contribution of each pathway can significantly affect the magnitude and efficiency of
carbon export to depth. Net community production (NCP), an analog of carbon export under steady state
assumptions, is typically estimated using budgets of biologically important chemical tracers in the upper
ocean constrained by ship‐board or autonomous platform observations. In this study, we use measurements
from biogeochemical profiling floats, the Ocean Station Papa mooring, and recently developed algorithms
for carbonate system parameters to constrain budgets for three tracers (nitrate, dissolved inorganic
carbon, and total alkalinity) and estimate NCP in the Northeast Pacific from 2009 to 2017. Using our
multiple‐tracer approach, and constraining end‐member nutrient ratios of the POC and DOC produced, we
not only calculate regional NCP throughout the annual cycle and across multiple depth horizons, but also
partition this quantity into particulate and dissolved portions. We also use a particle backscatter‐based
approach to estimate POC attenuation with depth and present a new method to constrain particle export
across deeper horizons and estimate in situ export efficiency. Our results agree well with previously
published estimates of regional carbon export annually and suggest that the approaches presented here
could be used to assess the magnitude and efficiency of carbon export in other regions of the world's oceans.

Plain Language Summary “Carbon export” refers to the amount of carbon dioxide that is
removed from the atmosphere by organisms in the surface ocean and subsequently transported into the
deep sea, either through sinking particles (more efficient process) or downward mixing (less efficient
process), making the ocean a natural sink for atmospheric carbon dioxide and significantly influencing
ocean chemistry. The relative proportion of export through each pathway significantly affects the overall
efficiency of this process and has implications for the pattern of carbon export globally. Measuring carbon
export throughout the year traditionally requires persistent ship‐based observations, which can be costly
and perilous for researchers. Instead, carbon export is often estimated by budgeting nutrient distributions
and changes through time, as they are also controlled by the same processes. These measurements can now
be made remotely using autonomous biogeochemical profiling floats. Here, we present a new approach
utilizing multiple chemical budgets to estimate carbon export over a decade in the Northeast Pacific, which
can be combined to partition export occurring through sinking particles and downward mixing. Our results
are supported by previously published estimates of carbon export and suggest that this method has the
potential to be applied to other parts of the ocean.

1. Introduction

By reducing the partial pressure of carbon dioxide gas (pCO2) in the surface ocean that is in equilibriumwith
the atmosphere, organic carbon export via the biological pump (Volk & Hoffert, 1985) is central to maintain-
ing the vertical gradient in dissolved inorganic carbon (DIC) in the oceans and thus the oceanic sink for
atmospheric carbon dioxide (Sarmiento & Siegenthaler, 1992). Although carbon export can occur through
many pathways (i.e., particle injection pumps [PIPs], Boyd et al., 2019; seasonal mixed layer pump,
Dall'Olmo et al., 2016; eddy subduction of waters with high carbon concentration, Omand et al., 2015;
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and zooplankton vertical migration, Steinberg et al., 2000), the relative contribution of the gravitational
sinking of particulate organic carbon (POC) and downward mixing of dissolved organic carbon (DOC) is
important in determining the magnitude and efficiency of carbon export globally (Hansell et al., 2009;
Lomas & Bates, 2004; Martin et al., 1987). For example, particles typically sink faster than the rate of down-
ward mixing of DOC. Furthermore, the ultimate fate of the products of primary production is influenced by
this partitioning of organic carbon (fueling the mesopelagic macrobial vs. microbial food webs, De La Rocha
& Passow, 2014; del Giorgio & Duarte, 2002). However, measuring the evolution of each quantity over sea-
sons to years is particularly difficult because it traditionally requires persistent ship‐based observations
(Hansell & Carlson, 2001; Owens et al., 2013), including during hostile winter conditions. Thus, a scalable,
remotely monitored, autonomous sampling approach is desirable.

Net community production (NCP) is the difference between gross primary production and total respiration
and is equivalent to the amount of carbon fixed during primary production (both POC and DOC) that is
available for export out of the surface ocean at steady state when integrated over sufficiently long time
and space scales (Brix et al., 2006; Emerson, 1987). Typically, NCP is estimated using budgets of chemical
tracers in the surface ocean (Emerson, 2014), many of which can be measured using sensors on autonomous
platforms (Nicholson et al., 2008; Riser & Johnson, 2008). Biogeochemical (BGC) profiling floats, in particu-
lar, provide a means of persistent observation for multiple annual cycles without the need for continued
maintenance and, because of this, have been increasingly used for carbon export studies (Bushinsky &
Emerson, 2018; Johnson et al., 2017; Llort et al., 2018; Williams et al., 2018; Yang et al., 2017).

In the Northeast Pacific, a region of high atmospheric carbon dioxide gas (CO2) uptake (Ayers &
Lozier, 2012; Takahashi et al., 2009), NCP has been estimated using sensor measurements from floats and
gliders (Bushinsky & Emerson, 2015; Emerson & Stump, 2010; Emerson et al., 2008; Nicholson et al., 2008;
Pelland et al., 2018; Plant et al., 2016) as well as the National Oceanic and Atmospheric Administration
(NOAA) Station Papa mooring, where Fassbender et al. (2016) applied dual tracer budgets (DIC and total
alkalinity [TA]) to calculate NCP and the production of calcium carbonate (CaCO3), a known ballast mate-
rial for sinking particles (Armstrong et al., 2002). Theoretically, if POC and DOC produced through NCP
have distinct nutrient stoichiometries (Letscher et al., 2015), NCP can also be partitioned into the contri-
butions from particulate and dissolved organic pools when the carbon begins its downward journey into
the abyss.

Here, we use measurements from autonomous BGC profiling floats (nitrate [NO3
−] and oxygen [O2]), the

Station Papa mooring (pCO2), and recently developed algorithms for carbonate system parameters (DIC
and TA) (Bittig et al., 2018; Carter et al., 2017) to build one‐dimensional budgets of three biogeochemical
tracers (DIC, TA, and NO3

−) in the Northeast Pacific from 2009 through 2017. Our goals are to (1) calculate
the rates of biweekly to annual NCP (ANCP) and CaCO3 production over the last decade and across multiple
relevant depth zones (similar to the approaches of Fassbender et al., 2016, and Plant et al., 2016); (2) con-
strain transport rates (eddy diffusivity, gas exchange, entrainment velocity, etc.) and nutrient ratios in the
region during community production in the surface ocean and remineralization at depth; (3) partition
budget‐based NCP into POC and DOC production using constraints on the C:N ratio of each carbon pool;
and (4) use particle backscatter measurements to estimate the attenuation of sinking particles with depth
and calculate particle export across deeper horizons.

These production estimates are designed to support the efforts of the ongoing National Aeronautics and
Space Administration (NASA) Export Processes in the Ocean from Remote Sensing (EXPORTS) program
by providing carbon export estimates over multiple timescales from in situ observations made over the last
decade in the same region as the Fall 2018 EXPORTS field campaign. Our unique method of combining che-
mical and bio‐optical (particle backscatter) sensor data that reflect carbon export over different timescales
leverages the information gained from BGC floats, which may help to validate future satellite‐based export
estimates with in situ data. For example, although biweekly budget‐based NCP estimates are useful for
investigating seasonal variability in carbon export, when integrated over the entire annual cycle, they
provide perspective on regional carbon sequestration (Figure 1). Herein, we discuss the potential application
of our approach to other ocean regions via use of new, “fully loaded” BGC Argo floats that carry NO3

−, O2,
pH, and bio‐optical (chlorophyll and backscatter) sensors (Johnson et al., 2017) and consider the opportunity
to combine sustained, in situ export estimates with satellite‐retrievable parameters in order to monitor
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future changes in the ocean carbon cycle. Section 2 describes the platforms, sensors, and calibrations used,
while section 3 describes the mathematical approaches used to budget each chemical tracer. Section 4
presents the data collected, results of the budget calculations, and a discussion of the limitations of each
approach used. Finally, section 5 summarizes the findings and presents concluding remarks.

2. Data
2.1. BGC Argo Floats

Observations presented in this study were measured by six Teledyne/Webb Research APEX BGC profiling
floats (ID: 5143, 6400, 6972, 7601, 6881, 7641; WMO #: 5902128, 5903274, 5903405, 5903714, 5903891,
5904125) that were built at the University of Washington and MBARI (Johnson et al., 2010; Riser &
Johnson, 2008). The floats were typically programmed to profile from 1,000 m to the surface at ~5‐day inter-
vals, giving them a ~4‐yr lifetime. They sample at 60 depths between 7 and 1,000 m with 50‐m resolution
below 400 m, 5‐m resolution above 100 m, and 10‐m resolution in between. Data analysis was restricted
to profiles made within a box bounded by 48.5°N to 53.3°N and 151.5°W to 139°W surrounding the
Station Papa mooring (Figure 2). The six float deployments covered approximately nine years
(2009–2017), resulting in 18 total years of float data within the box. Nitrate and oxygen data were quality
controlled following standard procedures set forth by the international Biogeochemical Argo program
(www.biogeochemical‐argo.org) and the Southern Ocean Carbon and Climate Observations and Modeling
(SOCCOM) project (https://soccom.princeton.edu). All data used can be accessed via the internet (at
https://www.mbari.org/science/upper‐ocean‐systems/chemical‐sensor‐group/floatviz/).

In addition to a standard Seabird conductivity, temperature, depth (pressure; CTD) sensor package, the
floats were equipped with a suite of biogeochemical sensors, including an In Situ Ultraviolet
Spectrophotometer (ISUS) optical nitrate sensor (Johnson et al., 2013) produced at MBARI, and an
Aanderaa 3830 or 4330 optical O2 sensor (Tengberg et al., 2006). Two floats also carriedWETLabs FLBB opti-
cal sensors that measured chlorophyll‐a fluorescence (700 nm) and particulate backscatter (700 nm) for
5.5 yr of the study period. Nitrate concentrations were computed from the UV spectra measured by the
ISUS sensor with the TCSS algorithm (Sakamoto et al., 2009), and any drift or offset was corrected by com-
parison to 1,000‐m climatological values (Garcia et al., 2010). Oxygen concentrations were computed using

Figure 1. Schematic diagram illustrating the various timescales over which the approaches presented in this paper
estimate NCP and POC export rates. The left‐hand side shows colored bars with lengths that correspond to the length
of time over which each corresponding approach integrates. Our geochemical budgets (blue bar) estimate NCP over
approximately 2‐week timescales, but by integrating these estimates over the course of a year, we calculate annual NCP
(green bar). We also calculate seasonal NCP through time‐dependent changes in in situ inventories of chemical
tracers (orange bar), as well as particle export across deeper horizons by combining budget‐based NCP and estimates of
particle depth attenuation using backscatter measurements (yellow bars; two measurements through time are required
for each estimate). The right‐hand side shows an example annual cycle of relative POC (brown) and DOC (green)
concentration with depth produced through NCP at Station Papa (based on actual data shown in Figure 8). The blue line
represents the mixed layer depth. Highest particle export typically occurs in the spring as the mixed layer depth shoals,
and highest mixed layer particle concentration typically occurs throughout the summer months as the mixed layer is
shallowest. We estimate particle attenuation as the difference between depth‐integrated particle concentration in the
upper water column and specified regions below after a lag time to account for sinking.
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manufacture supplied calibration coefficients, and all floats were corrected for pre‐deployment drift. All
floats, except for Float 7601, were corrected for in situ drift during deployment using the method of
Takeshita et al. (2013), using World Ocean Atlas % O2 saturation at the surface. Float 7601 was capable
of making measurements in air, and thus, in situ drift for this float was corrected using air calibration
(Bittig & Körtzinger, 2015; Johnson et al., 2015) using National Centers for Environmental Prediction
(NCEP) reanalysis pO2 at the surface (NCEP reanalysis 1; Kalnay et al., 1996). A comparison of mixed
layer properties measured by the floats and bottle samples collected by the Line P program (http://www.
waterproperties.ca/linep) in the region is presented by Plant et al. (2016).

2.2. Station Papa Mooring

We leveraged mixed layer measurements of pCO2 made at the Station Papa mooring (Sutton et al., 2012), as
well as measurements of wind speed and pCO2made above the sea surface, to close themixed layer DIC bud-
get. Mixed layer pCO2 observations and TA values that were calculated using global algorithms based on
hydrographic data (discussed below) were used to calculate DIC concentration using CO2SYS (van
Heuven et al., 2011) with the constants from Lueker et al. (2000) and Dickson (1990) and the
boron‐chlorinity ratio of Uppström (1974). The calculation of DIC from pCO2 and TA has an estimated error
of ±3.2 μmol kg−1 (Millero, 2007). For consistency, we took daily mean values of all parameters sampled by
the mooring and then subsampled this data set to the dates closest to each float profile before making any
calculations. At the time of analysis, NOAA Station Papa pCO2 measurements were available through
2015, so we used the CANYON‐B algorithm to calculate mixed layer DIC concentration for the remainder
of the data set (through the end of 2017), since the algorithm performed well at this location (±1 standard
deviation of variance from observed values was 13 μmol kg−1; Supporting Information Figure S7).

While the mooring also provides measurements of temperature and salinity at set depth intervals on the
mooring line, we found that after careful comparison, the coarse vertical resolutionmeasured on themooring
line caused significant anomalies in vertical gradients compared to those calculated from float
measurements, which are integral to NCP calculations (see section 3.3). Instead of attempting to interpolate
between mooring sampling depths, we decided to use depth profiles of these variables measured from the
floats instead.

Figure 2. Map of the study region and timeline of float data collection. Colors indicate individual floats, and their
identification numbers are listed in bold. The black box in the upper panel indicates the region of float data used.
Many of the floats continued to operate outside of this region, but these data were not included in our analysis. Station
Papa is shown with a pink triangle. The land mass shown is British Columbia, Canada.
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2.3. Carbonate System Algorithms

In order to calculate the vertical gradients in TA and DIC below the mixed layer, we tested the accuracy of
two recently developed global algorithms for estimating carbonate parameters that apply linear regressions
(Carter et al., 2017) and Bayesian neural networks (Bittig et al., 2018). We performed this analysis using
GLODAPv2 hydrographic data collected near Station Papa, which was included in the training data set
for each algorithm (Figures S1 and S2). Although both algorithms performed nearly identically in this region
(each predicted TA to a standard deviation within ±13 μmol kg−1 of concurrent GLODAPv2 measurements,
<1% of the magnitude, and 3–6% of the range of values in the upper 1,000 m), CANYON‐B was used to
calculate TA and DIC gradients for the budget because both DIC and TA can be calculated directly from this
algorithm. We use location, pressure, temperature, salinity, and oxygen from float measurements as
CANYON‐B input variables.

2.4. Satellite‐Based NPP and Export

In our analysis, we compare our results to satellite‐based estimates of net primary production (NPP) and car-
bon export. Eight‐day NPP estimates from the Vertically Generalized Productivity Model (VGPM)
(Behrenfeld & Falkowski, 1997) and the updated Carbon‐based Productivity Model (CbPM) (Westberry
et al., 2008), as well as ancillary measurements of sea‐surface temperature, near‐surface chlorophyll‐a con-
centration, and euphotic depth, at 1/6° resolution were downloaded from the Oregon State University's
Ocean Productivity website (OSU, 2018). We used the algorithms presented by Laws et al. (2011) and
Henson et al. (2011) to calculate POC export ratios (e‐ratios; export divided by NPP) from these
satellite‐derived variables. The Laws et al. (2011) formulation (Equation 3 in that work) relies on euphotic
zone nitrate uptake rates (which would include both POC and DOC export), as well as POC export estimates
from sediment traps and 234Th budgets for validation (originally presented by Dunne et al., 2005); therefore,
this algorithm likely gives an estimate of carbon export that is between total export (POC + DOC) across the
euphotic depth and POC export deeper than the euphotic depth. TheHenson et al. (2011) algorithm uses data
from 234Th budgets in the upper 100 m for validation and therefore gives an estimate of POC export alone
across this horizon. POC export was then calculated by mixing and matching the NPP and e‐ratio estimates.

2.5. NCEP Reanalysis Winds and Sea Level Pressure Fields

In order to calculate piston velocity at the location of each float, we used a wind speed product from the
NCEP (NCEP reanalysis 1; http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.
html; Kalnay et al., 1996) extracted at the position of each float profile. Wind stress curl‐driven upwelling
velocity was obtained from the Environmental Research Division (ERD) of NOAA (http://las.pfeg.noaa.
gov/thredds/dodsC/Model/FNMOC/) and calculated from fields of sea level pressure from the Fleet
Numerical Meteorology and Oceanography Center (http://www.usno.navy.mil/FNMOC). Ekman depth
and vertical velocity attenuation were calculated following Signorini et al. (2001).

3. Materials and Methods
3.1. Piston Velocity

For estimates of the air‐sea flux of CO2, we first converted 4‐m wind speeds measured daily on the Station
Papamooring to 10‐mwind speeds using the formulation of Hsu et al. (1994) found in theMATLAB toolbox,
gas_toolbox (version 1.0.4), written by C. Manning and D. Nicholson and made publicly available at https://
github.com/dnicholson/gas_toolbox (Manning & Nicholson, 2018; Manning et al., 2016). All calculations of
gas exchange rate were made using this toolbox. Then piston velocity was calculated using the wind
speed‐based gas transfer parameterization ofWanninkhof (2014), applying the Schmidt number relationship
of Wanninkhof (1992).

3.2. Vertical Turbulent Mixing and Advection

To constrain vertical turbulent mixing rates (Kz) at OSP, we balance chemical budgets over a seasonal time-
frame to calculate the mean vertical transport rate using mean rates of seasonal net biological productivity.
To do this, we set the mean spring/summer DIC and nitrate budgets for each year (presented below) equal to
one another by relating the biological terms through amean C:N ratio found during spring/summer nutrient
consumption (8.2 ± 1.4; Figure 6) while applying the average vertical gradients from the same time period.
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This gives a constraint on the total vertical physical transport term, which we then partition into turbulent
diffusive mixing, wind stress curl‐driven advection, and entrainment and solve for a mean Kz rate. Although
there is considerable uncertainty in the C:N ratio (~20%), it is most likely due to interannual variability, and
this approach provides a direct estimate on turbulent mixing rates, which routinely span orders of
magnitude. Our estimates were compared to those of Cronin et al. (2015) who balanced a mixed layer
heat budget using data from the OSP mooring. Our budget method suggests a mean spring/summer value
that is approximately eight times lower than Cronin et al. (2015) (Figure 3d). One reason for this
disagreement may stem from the spacing of the sensors on the mooring array, as we found that, especially
during periods of the year when the mixed layer was deep, budgets using the mooring sensors often
disagreed with those made from the higher‐resolution float‐based measurements. Because our approach
only gives a single seasonal value, we apply the seasonality found by Cronin et al. (2015) to our resulting
Kz value, similar to the approach of Bushinsky and Emerson (2015) who used Kz values of approximately
four times less than Cronin et al. (2015). Izett et al. (2018) estimated an upper limit on Kz at OSP (total
vertical transport due to mixing, advection, and entrainment) in spring of approximately 17 m2 day−1 by
budgeting the mixed layer inventory of N2O with losses due to air‐sea gas exchange and supply from
below. This estimate is approximately 50% greater than our estimate of Kz in spring (~10 m2 day−1) but is
still less than that of Bushinsky and Emerson (2015).

Entrainment velocity was calculated as the change in mixed layer depth (MLD) through time, defined
using the algorithm of Holte and Talley (2009). Typically, MLD is calculated at Station Papa using a den-
sity threshold of 0.03 kg m−3 from a mean of the upper 10 m (de Boyer Montégut et al., 2004), which is in
close agreement with the Holt and Talley algorithm in this region (Figure 3a). Entrainment velocity at
our study location ranged from ~0.25 to 0.75 m day−1 on average when presented as a climatology over
the entire study (Figure 3c) but is negative during times of mixed layer shoaling. The presentation in
Figure 3c neglects any negative values, causing our entrainment velocity climatology to be skewed
positive. This is due to our model formulation where we set negative entrainment velocities to zero during
mixed layer shoaling to avoid biasing the flux calculations in our budgets, as the change in tracer inven-
tory during mixed layer shoaling is accounted for by the change in MLD. Wind stress curl is another
possible source of vertical advection, and estimates were accessed through NOAA ERD, as described
above (Figure 3b).

Figure 3. Climatological plots from float data of (a) mixed layer depth using the algorithm of Holte and Talley (2009) and
a density threshold of 0.03 kg m−3 from the upper 10‐m density (de Boyer Montégut et al., 2004), (b) wind stress
curl‐driven vertical advection, (c) entrainment velocity, and (d) vertical eddy diffusivity at the base of the mixed layer.
The dark blue line in (a)–(c) is the mean value in 2‐week intervals over an annual cycle from 2009 to 2017, and the light
blue cloud represents 1 standard deviation of all years. In panel (d), the blue line is the eddy diffusivity used in this
study, which is equivalent to the Cronin et al. (2015) heat budget result divided by 8, but following the same seasonal
cyclicity. Shown in orange and red are the values used in similar float studies near Station Papa, Bushinsky and
Emerson (2015) and Plant et al. (2016), respectively. Shown with a black dot is an upper limit for spring eddy diffusivity
estimated at the base of the mixed layer by Izett et al. (2018) at OSP.
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3.3. NCP From Budgets of DIC, TA, and NO3
−

The following chemical budgets are one‐dimensional and assume that vertical fluxes are dominant while
horizontal gradients throughout our study region are negligible, which has been shown previously
(Fassbender et al., 2016; Plant et al., 2016). The following budgets of three biogeochemical tracers (DIC,
TA, and NO3

−) are evaluated in a one‐box model with different heights, initially in the surface mixed layer
(variable through time), but we also apply the same calculations in three other depth zones, the euphotic
zone (using monthly climatological mean depths estimated from float observations; ~54–60 m; Figure S3),
the 100‐m horizon (constant), and the maximum MLD (calculated for each year individually, but variable
from year to year). The only difference between these budgets is in regard to the transport terms. For all bud-
gets other than the mixed layer, entrainment velocity becomes zero, negating this term in the budget. For the
euphotic zone budget, eddy diffusivity is set to the annual mean used for the mixed layer budget
(4.6 m2 day−1), since the euphotic depth is approximately the mean MLD at this location. Also, for the
100‐m and maximum MLD budgets, we assume that the influence of wind stress curl‐driven advection is
negligible and eddy diffusivity is set to 1.3 m2 day−1, the same as Plant et al. (2016) and approximately the
minimum value used for the mixed layer budget.

In order to evaluate the equations presented below numerically, we are required to take derivatives of obser-
vational sensor‐based data, which is inherently noisy in nature. In addition, profiling floats are particularly
susceptible to biases associated with vertical tidal motions that are difficult to remove because of their low
profiling frequency (~weekly). This necessitates a filtering and smoothing protocol to dampen noise that
is not representative of the mean environmental signal. We chose to smooth the mixed layer concentration
of each tracer and the change in concentrations through time by using a running three‐point mean to
remove some of the higher‐frequency variability in the signal when evaluating the following equations.
Furthermore, we present the budget results as a climatology throughout the manuscript in order to leverage
the large amount of available data at this location and reduce the overall uncertainty in our analysis of the
annual cycle of NCP. Because we are interested in the mean state of the regional ecosystem throughout this
decade, we use a time‐dependent average of all float years (e.g., if three floats collected data in 2014, each
float year contributes independently to the climatology) at ~2‐week intervals throughout each annual cycle.
We also tested whether interannual variability in NCP biased our climatological results by first averaging all
data from each calendar year but found the ANCP to be within our reported uncertainty using either method
(Figure S4). The only time that annual composites of float observations from the same year are used is in sec-
tion 4.3 to determine profiles of remineralization rate estimates.
3.3.1. Dissolved Inorganic Carbon
We used a DIC budget (calculated from pCO2 and TA) to calculate the biological component contributing to
the change in DIC over time (t), following the formulation of Fassbender et al. (2016):

∂DIC
∂t

¼ ∂DIC
∂t

����
Gas

þ ∂DIC
∂t

����
Phys

þ ∂DIC
∂t

����
EP

þ ∂DIC
∂t

����
Bio

(1)

where the subscripts Gas, Phys, EP, and Bio refer to the gas exchange, physical variability, evaporation/pre-
cipitation, and biological components contributing to the DIC budget, respectively. The following sections
address our approach to constraining each of these terms to solve for the biological contribution.

The gas exchange term (first term on the right‐hand side of the equation) is defined as

∂DIC
∂t

����
Gas

¼ k * KH * ΔpCO2 (2)

where k is the piston velocity, KH is the solubility constant of CO2, Weiss (1974), and ΔpCO2 =
pCO2 sea − pCO2 atm. The second term on the right‐hand side of Equation 1 represents the change in DIC
through time due to physical variability in the surface ocean:

∂DIC
∂t

����
Phys

¼ − wþ ∂h
∂t

� �
DICML − DICh

h

� �
−
Kz

h
∂DIC
∂z

� �
(3)

where DICML is DIC concentration in a mixed layer of depth h, and w, DICh, Kz, and δDIC/δz are the
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vertical velocity, DIC concentration, eddy diffusivity, and vertical concentration gradient evaluated at the
depth of the mixed layer.

The effects of evaporation and precipitation on the surface ocean DIC budget are calculated using the
following:

∂DIC
∂t

����
EP

¼ ∂Sal
∂t

−
∂Sal
∂t

����
Phys

 !
*
DIC
Sal

����
t¼1

(4)

By rearranging Equation 1, we then solve for the biological component to the change in DIC through time,
which is equivalent to the sum of the contributions from NCP and the formation of CaCO3:

∂DIC
∂t

����
Bio

¼ ∂DIC
∂t

����
NCP

þ ∂DIC
∂t

����
CaCO3

(5)

3.3.2. Total Alkalinity
Because TA is influenced by all the same processes as DIC, except gas exchange, we can use the previous
equations to budget TA, as well (Wolf‐Gladrow et al., 2007):

∂TA
∂t

¼ ∂TA
∂t

����
Phys

þ ∂TA
∂t

����
EP

þ ∂TA
∂t

����
NCP

þ ∂TA
∂t

����
CaCO3

(6)

which, after calculating the physical and evaporation/precipitation terms identically to the DIC budget,
also simplifies to

∂TA
∂t

����
Bio

¼ ∂TA
∂t

����
NCP

þ ∂TA
∂t

����
CaCO3

(7)

Biological processes influence DIC and TA at known stoichiometric ratios. For instance, for every mole
of CaCO3 produced, a reduction of 1 mole of DIC and 2 moles of TA occurs. Organic matter production
consumes 1 mole of phosphate, 18 moles of H+, and 117 moles of CO2, causing a 17‐mole increase in TA
(Anderson & Sarmiento, 1994). Therefore, we are able to rearrange Equations 5 and 7 to close the
budget:

∂DIC
∂t

����
NCP

¼
∂TA
∂t

��
Bio

− 2 * ∂DIC
∂t

��
Bio

� �
−2þ −17

117

� � (8)

∂DIC
∂t

����
CaCO3

¼ ∂DIC
∂t

����
Bio

−
∂DIC
∂t

����
NCP

(9)

The last equation represents the production of CaCO3, or PIC, by calcifying organisms in the surface ocean.
3.3.3. Nitrate
Nitrate can also be budgeted in the surface ocean, similar to the approach of Plant et al. (2016):

∂NO3

∂t
¼ ∂NO3

∂t

����
Phys

þ ∂NO3

∂t

����
EP

þ ∂NO3

∂t

����
NCP

(10)

where each term is formulated as in the DIC budget. Of the six floats used in this study, one has anom-
alously high standard deviation in the nitrate data due to low light throughput in the nitrate sensor,
perhaps due to damage incurred during transit or deployment (ID: 6400; Plant et al., 2016). The effect
was most apparent during 2012 and can been seen in Figure 4 (dark blue points). As a result, data from
this float were neglected in all calculations using nitrate data. This did not affect our temporal coverage,
as two other floats overlapped during the entire lifetime of Float 6400 (Figure 2).
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3.4. POC and DOC Decomposition

In order to partition the NCP term, we assume that NCP is the sum of two quantities: the production rate of
the POC portion and of the DOC portion.

∂NO3

∂t

����
NCP

¼ ∂NO3

∂t

����
POC

þ ∂NO3

∂t

����
DOC

(11)

Once the nitrate and DIC budgets are solved for NCP, they can be related via a unique C:N ratio in each
organic matter pool. We can then substitute DIC terms into the nitrate equation and expand, as follows:

∂NO3

∂t

����
NCP

¼ 1
C :NPOC

*
∂DIC
∂t

����
POC

þ 1
C :NDOC

*
∂DIC
∂t

����
DOC

(12)

∂NO3

∂t

����
NCP

¼ 1
C :NPOC

∂DIC
∂t

����
NCP

−
∂DIC
∂t

����
DOC

� �
þ 1
C :NDOC

*
∂DIC
∂t

����
DOC

(13)

∂NO3

∂t

����
NCP

¼ 1
C :NPOC

*
∂DIC
∂t

����
NCP

−
1

C :NPOC
*
∂DIC
∂t

����
DOC

þ 1
C :NDOC

*
∂DIC
∂t

����
DOC

(14)

∂NO3

∂t

����
NCP

¼ 1
C :NPOC

*
∂DIC
∂t

����
NCP

þ 1
C :NDOC

−
1

C :NPOC

� �
*
∂DIC
∂t

����
DOC

(15)

We can then solve for the DOC portion in terms of NCP and the two prescribed nutrient ratios:

Figure 4. The data sets used to calculate mixed layer NCP in this study. Mixed layer (colors) and air (salmon dots) pCO2
measured on the NOAA Station Papa mooring (accessed via www.noaa.gov) subsampled to the float sampling frequency,
nitrate measured by floats, TA calculated from float‐measured pressure, temperature, salinity, and oxygen using the
CANYON‐B algorithm (Bittig et al., 2018), and DIC calculated from TA and pCO2 using CO2SYS. Colors indicate floats
and correspond to the colors in Figure 2. The open symbols in the bottom panel indicate DIC calculated using
CANYON‐B for Float 7641, which we used during the time period when mooring pCO2 data were unavailable.
Solid diamonds are discrete measurements made in our sampling region by the Line P program (accessed via www.dfo‐
mpo.gc.ca).
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∂DIC
∂t

����
DOC

¼
∂NO3
∂t

��
NCP

− 1
C:NPOC

* ∂DIC
∂t

���
NCP

1
C :NDOC

−
1

C :NPOC

(16)

We then calculate the POC fraction by difference:

∂DIC
∂t

����
POC

¼ ∂DIC
∂t

����
NCP

−
∂DIC
∂t

����
DOC

(17)

Using this formulation, we isolate the POC and DOC portions of NCP. As a result of this approach being
unable to distinguish between sinking and suspended particles, all particle production through NCP is
included in the POC term. Because the portion that is suspended has not been exported through sinking, this
makes our POC NCP and total NCP estimates upper limits, but likely within our reported uncertainty. Of
course, this approach is dependent on determining the ratio of carbon to nitrogen in each of the organic
carbon pools. Therefore, we rely on two approaches to constrain the C:N ratios: (1) measurements made
on filtered particles (2018/2019), DOC and dissolved organic nitrogen (DON) (2017) collected during 3
Line P program cruises to the study region at different times of the year (Bif & Hansell, 2019), and (2) in situ
changes through time in the euphotic zone inventories of DIC and nitrate during spring production and
beneath the euphotic zone during fall remineralization of organic matter (bottom half of Table 1). We also
cite literature values in support of our results.

Sinking particles caught in sediment traps at OSP typically have a higher C:N ratio than we chose to repre-
sent particulate organic matter (POM) produced during net production in the surface ocean (~8 at 50–100 m
and increasing with depth, Timothy et al., 2013; Wong et al., 1999). This is because nitrogen is preferably
scavenged by heterotrophic organisms as particles sink, and suspended particles in the surface ocean have
a much lower C:N ratio (~5.5 ± 0.2; mean from 3 cruises between September 2018 and August 2019 during
this study). Therefore, the C:N in total POM being produced in the surface ocean is likely near Redfield stoi-
chiometry (6.6), assuming that suspended and sinking particles are produced at approximately equal propor-
tions. Thus, we use 6.6 ± 1 in our budgets as the C:N in POM produced during this study (±1 represents the
middle 80% of the total range of 2.5).

Dissolved organic matter (DOM) concentrations have been measured at OSP (Bif & Hansell, 2019), and
through discussions with these authors, as well as with C. Carlson and B. Stephens (UCSB), we use a value
of 14 ± 1 for the C:N of DOM production in our budgets (midpoint of 12.5 and 15; ±1 includes 80% of this
range). Although there is likely seasonality in the DOM pool, we have not imposed any variability in the
C:N ratio for two reasons: (1) Its magnitude has not been quantified nor the role of entrainment of deep
waters high in DOC and low in DON into the surface ocean during winter mixing (Bif & Hansell, personal
communication), and (2) the C:N ratio in DOM during its production is likely unique from the C:N in ambi-
ent DOM given the differences in lifetimes in the water column of DOC and DON (Carlson & Stephens,
personal communication). Because nutrient ratios were not measured throughout the entirety of float
deployments, the DIC‐ and nitrate‐based NCP rates may lag each other in time, and some outliers do

Table 1
Total ANCP Estimates and Nutrient Ratios From Budgets and Seasonal Production/Remineralization Rates

Depth zone

Tracer budgets (all in mol m−2 yr−1) Nutrient ratios

O2 DIC NO3 O:C C:N

Mixed layer (ANCP; Figures 5a and 5b) ‐ 2.1 ± 1.0 0.27 ± 0.13 ‐ 7.8 ± 3.0
Euphotic zone (ANCP; Figures 5c and 5d) ‐ 2.0 ± 0.6 0.22 ± 0.07 ‐ 8.8 ± 3.5
Euphotic zone (spring; Figure 6)a ‐ 2.0 ± 0.2 0.24 ± 0.04 ‐ 8.2 ± 1.4
Zeu to 100 m (fall; Figure S10)a −3.9 ± 1.2 2.3 ± 0.7 0.34 ± 0.24 1.76 ± 0.25 7.4 ± 3.7
Zeu to 200 m (fall; Figure S10)a −6.2 ± 2.3 4.0 ± 1.7 0.76 ± 0.66 1.46 ± 0.26 6.2 ± 3.4

Note. Uncertainties reported for ANCP values were determined using the Monte Carlo approach, whereas the uncertainties reported for spring and fall produc-
tion/remineralization and nutrient ratios were determined as the standard deviation of the values for individual years.
aEstimated as the change in in situ inventories in O2, DIC, and NO3

− (shown in Figure 6) during the spring or fall season (~1/3 of the year) divided by 3 to esti-
mate an annual mean rate of net production, assuming that there is no other net production throughout the year.
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exist. We filtered our results by neglecting any values with total C:N (calculated by taking the DIC‐derived
NCP divided by the nitrate‐derived NCP) less than 0 or greater than 15 (found to be the case for 2 out of 32
points in the mixed layer budget climatology) or any values where the POC portion of NCP was larger than
total NCP (found for 7 points). The former were considered outliers and ignored, while the latter were set
equal to total NCP.

3.5. Uncertainty Analysis

Uncertainty in our budget results was determined using a Monte Carlo approach, which calculates NCP for
each float year with 10,000 simulations of randomly selected values within ±1 standard deviation for each of
the most important flux contributors in the chemical mass balance. The important flux contributors and
their uncertainties are vertical advection (±35% determined through balance of physical fluxes, described
above), vertical diapycnal eddy diffusivity (±35% for the mixed layer budget and ±70% for the euphotic zone
budget, as this is not consistent with other physical boundaries), the C:N ratios used for POM and DOM
(±1; the approximate standard deviation of estimates), concentrations and gradients of DIC, TA
(±13 μmol kg−1; ±2 nmol kg−1 m−1), and NO3

− (±0.5 μmol kg−1; ±0.1 nmol kg−1 m−1), determined as
the uncertainty of the carbonate system parameter algorithm in the region and measurement uncertainty
of the ISUS (Figures S1, S2, and S6), and the euphotic zone depth (±6 m; Figure S3). The upper and lower
bounds for NCP were then calculated as 1 standard deviation from the best estimate of all simulations, deter-
mined as the percentile between which 16% and 84% of the simulated production rates were distributed. A
sensitivity analysis of each of the contributions to the overall uncertainty in ANCP was performed by run-
ning the Monte Carlo simulation with each of the contributors to overall uncertainty individually. The
results of this analysis are presented in the supporting information (Table S1) and discussed in section 4.2.

4. Results
4.1. Float NO3, Mooring pCO2, TA, and DIC Records

Figure 4 presents the data sets used in the NCP budgets in this study. Plant et al. (2016) and Fassbender
et al. (2016) have previously presented mixed layer values of nitrate, oxygen, DIC, and TA in this region
through 2015. This data set extends those previous observations by about 2 yr. Additionally, the TA values
presented here are calculated by the CANYON‐B algorithm, whereas the TA values presented by
Fassbender et al. (2016) were calculated by the authors using a salinity relationship, though the results
are similar (Figure S2). DIC presented here is calculated from pCO2 measurements and TA values from
CANYON‐B. Since mooring pCO2 data were unavailable after 2015, we used DIC calculated from
CANYON‐B in the budget from 2015 to 2018 (open symbols; Figure 4) and present these values from 2013
to 2018 to emphasize the agreement with values calculated from pCO2 and TA.

During 2014 and 2015, the Northeast Pacific experienced anomalously high temperature and low salinity (Di
Lorenzo &Mantua, 2016), as well as low nitrate, TA, and DIC concentrations, which is apparent in our data
set (Figure 4). Yang et al. (2018) investigated interannual ANCP variability during these years using O2 and
DIC budgets in this region and found that NCP initially decreased in 2014, then returned to pre‐anomaly
values in 2015, and that the oxygen budget was much more sensitive to this interannual variability than
DIC. Another striking feature of the data is the apparent positive trend in nitrate, TA, and DIC that deviates
from the discrete samples measured at Station Papa after 2015 when only Float 7641 was sampling (cyan
colored points in Figure 4). This deviation from the decadal mean was also observed in temperature and sali-
nity (not shown here; see Plant et al., 2016) and was concurrent with this float moving north within the study
area, which is toward a known high‐nutrient, low‐chlorophyll (HNLC) region in the Gulf of Alaska where
nitrate can accumulate in the surface waters (Martin & Fitzwater, 1988). Due to this, we believe this signal
is not a result of sensor drift, but spatial variability in the water mass properties sampled; thus, a horizontal
gradient must exist within the northern part of our study region. Because there was no discernable variabil-
ity in production rates during this portion of the study period (Figure S5), we chose to include these years in
the analysis presented.

4.2. NCP Across Various Depth Horizons

The climatology of NCP estimated from all float years using the mixed layer budgets of DIC (Figure 5a) and
nitrate (Figure 5b) shows that the two tracer budgets have a similar seasonality, peaking in the spring
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(March–April) before decreasing almost linearly into net heterotrophy in the fall/winter
(October–December). Interestingly, once a constant depth horizon was used (approximately constant for
the euphotic zone [54–60 m], 100 m, and annual maximum MLD), the seasonality shifted, with NCP
occurring later in spring and slightly later net heterotrophy in fall. Additionally, the budgets display two
evenly distributed peaks in the spring and summer for nitrate, and slightly earlier and later peaks for the
DIC budgets (Figures 5c and 5d). These characteristics arise from the fixed depth horizons always being
deeper than the MLD, except during winter. In other words, the mixed layer is shallower than the fixed
depth horizons during more productive periods and deeper during less productive periods.

ANCP, presented in parentheses in Figure 5 (all in mol Cm−2 yr−1) and Table 1, represents the total amount
of NCP over the annual cycle and is calculated by integrating under the NCP curves. It is important to
note that in Figure 5 we use a constant C:N of 7.8, which we found by balancing the mixed layer ANCP
estimates (Figures 5a and 5b), and then apply this to all nitrate‐based depth horizon budgets and ANCP
estimates presented in Figures 5c and 5d. We recognize that NCP likely occurs with a variable C:N over time
and at various depth intervals and this will be discussed in the following sections. We chose to use a constant
C:N for this calculation in order to make a direct comparison between the two tracer budgets. The values
calculated directly from the nitrate budget are presented in Table 1. As expected, the ANCP estimates
decrease with integration depth, as increasingly more dark, net heterotrophic depths beneath the euphotic
zone are included in the budgets. The only discrepancy to this pattern is that the max MLD nitrate budget
ANCP is slightly larger than the 100‐m budget (by 0.2 mol Cm−2 yr−1), but this is well within the uncertainty
of the estimate, and the average max MLD over the decade is ~105 m. The main difference between how the
MLD and other budgets are calculated in this study is that the depth of integration is variable when calculat-
ing a mixed layer budget.

The clouds presented in Figures 5a and 5b represent 1 standard deviation from the mean of NCP in each ~2‐
week interval for all float years presented. This presentation is useful in illustrating the variance between all
of the annual cycles used to calculate the decadal mean NCP climatology. Of course, any interannual varia-
bility is also included in the spread between float years, and thus, this approach may be insufficient to accu-
rately estimate the uncertainty in the NCP climatology produced from the entire data set. Therefore, we also
use aMonteCarlo approach to calculate uncertainty in themean of each ~2‐week interval (Figures S8 and S9)
and the ANCP calculated for the climatology (values in parentheses in Figure 5). The resulting overall esti-
mate for uncertainty in mixed layer ANCP over this decade is ±1.0 mol C m−2 yr−1 and ±0.6 mol

Figure 5. Mixed layer climatological mean (dark lines) and 1 standard deviation (cloud) of net community production
(NCP; in mmol C m−2 day−1) for all float years (gray lines) from the (a) DIC budgets (blue) and (b) nitrate budgets
(red; in mmol N m−2 day−1). (c, d) Same as (a, b), but mean results for the budgets evaluated to the following depth
horizons: euphotic depth (Ez), 100 m, and maximum mixed layer depth for each year (MaxMLD). The values in
parentheses are the integrated annual NCP rates for each budget and uncertainty evaluated using the Monte Carlo
approach (all in mol C m−2 yr−1; nitrate‐based values use a C:N of 7.8 to convert into carbon units).
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Cm−2 yr−1 in our euphotic zone budget. For comparison, Fassbender et al. (2016) reported an uncertainty of
±1 mol C m−2 yr−1 and Plant et al. (2016) reported an uncertainty of ±0.6 mol C m−2 yr−1 using mixed layer
DIC/TA and upper 35‐m nitrate mass balances to calculate ANCP, respectively. Using oxygen mass bal-
ances, Emerson and Stump (2010) reported an uncertainty of ±1 mol C m−2 yr−1 in the surface mixed layer
and Yang et al. (2018) reported an uncertainty of ±0.7 mol C m−2 yr−1 in the upper ~100 m. Our uncertainty
estimate is similar to those previously reported for this region using similar approaches. One reason we are
able to successfully apply this method to this region is due to the large amount of data collected via floats
over this decade (~18 total years of data), which reduces the overall uncertainty when using a
climatology‐based approach. We also present the results of the Monte Carlo simulation after varying each
of the contributors to uncertainty individually (Table S1). The largest contributors to overall ANCP are
the eddy diffusivity rate, advection rate, and DIC gradient, whereas the POC and DOC splits are also sensi-
tive to the choice of C:N ratios, nitrate concentration, and nitrate gradient. It is important to note that as a
result of competing and/or interrelated terms in the overall budget, the total uncertainty (determined by
varying all contributing terms) is similar to that introduced through the physics terms alone (the largest con-
tributors). This suggests that errors may be correlated such that uncertainty estimated by propagating indi-
vidual error terms under the assumption that they are uncorrelated may overestimate the true total
uncertainty. Furthermore, the euphotic zone budgets, as well as the deeper zone budgets, have smaller
uncertainty than the mixed layer because using a constant, or near‐constant, depth horizon greatly reduces
the magnitude of the physical terms.

Although we could have used an oxygen budget to estimate NCP as well, nitrate, DIC, and TA budgets were
chosen for this study due to our interest in euphotic zone NCP and the sensitivity of oxygen budgets on accu-
rate gas exchange rates at the air‐sea interface, which has been addressed in a previous manuscript using the
same float data set (Plant et al., 2016). Furthermore, oxygen has been used as a tracer of NCP in the
Northeast Pacific in many previous studies (Bushinsky & Emerson, 2015; Emerson & Stump, 2010;
Emerson et al., 2008, 2019; Nicholson et al., 2008; Pelland et al., 2018; etc.); thus, we believe our oxygen bud-
get analysis provides no further insight to the contributions cited.

4.3. Nutrient Ratios, Biological Production, and Remineralization Rate Estimates
From Inventories

To first order, we can estimate seasonal biological production rates in the euphotic zone by plotting DIC and
NO3

− inventories through time, then using a least squares linear regression over each spring/summer sea-
son (April through August) to calculate a mean rate of drawdown through net biological consumption dur-
ing this time of year (Figure 6 and Table 1). In doing so, we must assume that all NCP occurs during this
portion of the year because this is the only period of inventory drawdown throughout the year. We neglect
oxygen in this analysis due to the large effect of air‐sea exchange on the near‐surface inventory, and note that
we do not make a correction for gas exchange on the DIC inventory because this effect was estimated to be
within the uncertainty of this approach and due to the time it takes for CO2 to exchange with the DIC reser-
voir to achieve chemical equilibrium with atmospheric CO2 in the region being on the order of a year
(Broecker & Peng, 1974; Yang et al., 2018), this correction would likely introduce unnecessary uncertainty
into our calculation. Additionally, we exclude three years of fits (2010, 2011, and 2017) from the averaging
in which calculated total C:N fell outside of the range we designate as reasonable (0–15). In each of these
three years, the seasonal fit was greater than 15. One caveat to this approach is that the MLD fluctuates
between being above and below the euphotic depth throughout the year at this location; thus, its depth
has an effect on the concentration and inventory of each of these parameters in the euphotic zone, so some
of the variability may be due to this effect, as well as air‐sea exchange, which we neglect in assuming that the
variability is due to biological production alone. Nevertheless, we use the resulting mean ratio (8.2 ± 1.4) as
an indication of likely total C:N ratios during organic material production in the region, and this supports
the value used in our budget calculations (7.8; Figure 5).

To estimate remineralization rates and the elemental ratios in organic material as it is remineralized, we plot
the change in DIC, NO3

−, and O2 along each 0.05 kg m−3 of isopycnal beneath the euphotic zone
(Figure S10), similar to the approach of Hennon et al. (2016). In making this calculation, we assume that
the majority of remineralized material is sourced locally. Thus, the change in concentration over time along
water mass isopycnals that are not locally ventilated gives an estimate of the biological consumption or
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production of the chemical tracer. Integrating the profiles of production/consumption in two depth zones
(Zeu to 100 m and Zeu to 200 m) gives us an estimate of the rate and nutrient ratios of remineralization in
these depth zones (Table 1). In our integrations, we neglect any values that would indicate production of
new organic material (i.e., positive changes in oxygen or negative changes in DIC or nitrate), as this is
most likely indicative of lateral transport and not biological in origin. This was only a significant problem
throughout the fall of 2015.

The bottom half of Table 1 summarizes the results of in situ production rate estimates and nutrient ratios.
The euphotic zone estimates of ANCP agree with those calculated from the DIC and nitrate budget
approaches, well within the estimated uncertainties. Remineralization rates beneath the euphotic zone
and above 100 m agree within uncertainty with ANCP from the euphotic zone, but remineralization rates
calculated from the euphotic depth to 200 m are greater than calculated ANCP above the euphotic depth.
If the system is one‐dimensional, then these are likely overestimates of total remineralization. However, lat-
eral transport could also bias these estimates by contributing to the change through time of tracer concen-
trations in the water column, or by introducing a water mass that acquired organic matter produced
elsewhere. Regardless of a non‐local source of material, we can assess nutrient ratios during remineraliza-
tion by assuming that organic matter is of similar composition throughout the region. NCP C:N ratios (right
side of Table 1) decrease with increasing depth from larger than Redfield in the near‐surface to near‐Redfield
on average between the euphotic depth and 200 m. As discussed in section 3, POM produced during NCP
likely has a lower C:N than sinking particles (~8; Wong et al., 1999) due to preferential nitrate remineraliza-
tion, but the production of DOM likely has a much higher C:N (~12.5–15; Letscher et al., 2015). Therefore,
the C:N of total organic matter produced during NCP is likely larger than Redfield (~6.6), but the C:N during
remineralization beneath the euphotic zone should decrease with depth as an increasing proportion of
organic matter is sourced from particles. This is what we observe and supports of our choice for
end‐member C:N values for POM (6.6) and DOM (14) during NCP in the tracer budget analysis.

4.4. Particulate and Dissolved Portions of Mixed Layer NCP and PIC Production

The climatological results of our mathematical decomposition of NCP into POC and DOC pools for the
mixed layer and euphotic zone budgets, as well as integrated ANCP, are presented in Figures 7a and 7b.
Overall, POC was approximately 76% (±38%) and 70% (±25%) in the mixed layer and euphotic zone budgets,
respectively. Thus, the DOC portions were about 24% (±28%) and 30% (±10%) of total NCP, similar to pre-
vious estimates of net DOC production in the surface ocean (Bif & Hansell, 2019; Carlson et al., 1994;
Hansell et al., 2009). Our estimate of net PIC production follows the same general seasonal pattern and
the annual net production rate (0.1–0.3 mol Cm−2 yr−1) is in agreement, within uncertainty, with previously
published results at this site (0.3 ± 0.3 mol Cm−2 yr−1; Fassbender et al., 2016). One noticeable feature is that
the relative proportions of POC and DOC in NCP vary significantly throughout the year. DOC appears to be

Figure 6. Euphotic zone inventories of DIC and nitrate plotted through time. Least squares linear regressions from April
through August are shown in dark red. The mean slope and standard deviation of these regressions are shown on each
plot, neglecting three outlier years (2010, 2011, and 2017).
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most significant during periods when the mixed layer is deep and vertical mixing rate is large, suggesting
that this may be associated with vertical fluxes. However, the mixed layer budget also neglects some
production in the middle part of the year when the mixed layer is shallower than the euphotic depth.
Furthermore, without detailed measurements of the C:N ratio through time in all organic matter pools,
we are unable to assess the effects of assuming constant ratios in DOM and POM. Using the Monte Carlo
approach, we estimate the uncertainty in our ANCP estimates of POC to be approximately ±35–50% and
of DOC to be approximately ±35–120% in the mixed layer and euphotic zone (Figure S9). This large range
in uncertainty is the result of the relative magnitude of the physics terms in the box model when using a
varying box size (mixed layer) versus a near‐constant box size (euphotic zone), as well as the higher
vertical transport rate at the base of the mixed layer. Nevertheless, these results suggest that this is a
useful approach for distinguishing the relative composition of NCP into POC and DOC pools. However,
the large amount of data collected via floats in this region helps reduce the uncertainty in our analysis, so
the overall uncertainty would likely be larger if applied to parts of the ocean with less data coverage.

4.5. Comparison to Satellite‐Derived Parameters

Figure 8 presents 8‐day NPP estimates from the VGPM and CbPM satellite algorithms (top panel), as well as
carbon export estimated using these NPP rates and the e‐ratio algorithms of Laws et al. (2011) and Henson
et al. (2011), extracted at the location of each of the floats from mid‐2010 to early 2016. Note that the gaps in
each time series during the winter months are due to cloud cover and/or high solar zenith angle. During this
~5‐yr period, two floats (6400 and 7601) were equipped with optical sensors to measure particle backscatter
(bbp; Figure 2 timeline). The bottom panel of Figure 8 presents POC concentration estimated from the back-
scatter data set using the Graff et al. (2015) formulation ([POC] = (bbp*48,811 − 24)/12). Note that during the
year of 2012, the two floats overlapped in time, so a mean of the measurements was used in Figure 8.

Qualitatively, the highest annual POC concentration in the surface mixed layer occurred during the summer
months and corresponded well with highest NPP and export rates estimated by satellite. Particle backscatter
in the mesopelagic (~100–300 m) exhibits the seasonality of typically higher POC inventories in spring/sum-
mer than in fall/winter as well as large spring‐bloom flux events during 2010 and 2015. These months‐long
events were only observed twice in the 6‐yr‐long record of particle backscatter, suggesting that they are aty-
pical of any annual phenomenon. To quantify the annual pattern of particulate transfer with depth, we cal-
culated a transfer efficiency from the surface mixed layer and euphotic zone to the 100‐ and 200‐m horizons,
respectively, by dividing the integrated POC concentration in 400‐m depth zones (from 100 to 500 m and 200
to 600 m) by the integrated POC concentration in the mixed layer and euphotic zone (Figures 9c and 9d).
When calculating the transfer efficiency, we apply a lag to account for the time it takes sinking particles
to reach the deeper horizons. We account for sinking time between MLD or Zeu and 100 or 200 m in our cal-
culations by using the integrated concentration in the deeper depth zone calculated ~2 weeks (for 100m) and
1 month (for 200 m) later than our mixed layer and euphotic zone NCP, respectively, which assumes a sink-
ing velocity of ~5 m day−1. One result of this approach is that the transfer efficiency between the mixed layer
and 200 m is slightly larger than that of the mixed layer to 100 m at three time points in the climatology pre-
sented in Figure 9d (gray and black lines). The main advantage of this approach is that it does not rely on the

Figure 7. Climatological mean NCP over the entire study period (2009–2017; blueline), the POC portion of NCP
(filled blue area), the DOC portion (white space), and PIC production rate (red line), in (a) the mixed layer and (b) the
euphotic zone. The numbers in parentheses are the integrated annual NCP rates for each curve, and uncertainty reported
was determined using a Monte Carlo approach. The time‐varying uncertainty is presented in Figure S9.
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absolute magnitude of POC concentration, but instead, it is independent of the choice of the bbp to [POC]
relationship because we use a ratio of POC inventories in the attenuation calculation. Of course, we
cannot distinguish between sinking and suspended particles in the data set (see Figure 1), so the
calculated transfer efficiencies are likely lower limits, but the uncertainty introduced through including
the suspended portion is likely within our estimated uncertainty in our export estimates (~ ±50%).

As an alternative to budget‐based NCP calculated deeper in the water column, which may be biased due to
laterally advected signals in deeper water masses, we present POC export estimates across the 100‐ and 200‐
m horizons (Figure 9a) calculated as the transfer efficiencies presented in Figures 9c and 9dmultiplied by the
estimates of the POC portion of NCP in the mixed layer and euphotic zone presented in Figure 7. The gray
and blue clouds represent the POC export to horizons of 100 and 200 m. We multiply the transfer efficiency
by the POCNCP because at steady state, this is equivalent to POC exported out of themixed layer and eupho-
tic zone, respectively, and the transfer efficiency is an estimate of the attenuation of particles with depth to
100 and 200 m, respectively. This approach provides an in situ estimate of particle export, which tracer bud-
gets in the mixed layer or euphotic zone alone are unable to achieve because they lack an estimate of particle
attenuation with depth (i.e., the fraction of particles produced that do not escape the depth horizon of inter-
est). We neglect any time periods where there was an estimated net heterotrophy in the mixed layer or
euphotic zone for this analysis. We also plot carbon export estimates derived from satellite parameters
extracted for the same time period averaged over our study region using the algorithms of Laws et al. (2011)
in red and Henson et al. (2011) in orange on the same axes for comparison. Figure 9b shows the resulting
export ratio from our calculated export rate divided by a climatological mean of the CbPM NPP data shown
in the top panel of Figure 8, and those calculated using the Laws et al. (2011) and Henson et al. (2011)
algorithms.

The only portion of the annual cycle of our e‐ratio and export calculated from geochemical budgets and POC
attenuation that agrees with both satellite algorithms between the 100‐ and 200‐m horizons was from the

Figure 8. Net primary production calculated at the float locations using the VGPM and CbPM satellite algorithms
(top panel) over the 5‐yr period that floats collected optical sensor data. Carbon export calculated from the NPP estimates
in the top panel and the algorithms of Henson et al. (2011) and Laws et al. (2011) (middle panel). Gaps are due to cloud
cover in winter and/or high solar zenith angle. Water column POC concentration calculated using the formulation of
Graff et al. (2015) (bottom panel; note that the colorbar is on a log scale) from particle backscatter measured by two floats,
6400 and 7601. The two floats overlapped for 2012, and so a mean of the measurements from each float was
used during that year. White lines indicate the depth horizons used in the POC attenuation calculations: euphotic depth
(Zeu), 100 m, and 200 m.
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mixed layer budget during the spring months (March–May). During the late summer (July–August), the
Henson et al. (2011) algorithm agreed well with both the mixed layer and euphotic zone budget
approaches, but the Laws et al. (2011) algorithm was much larger. For the rest of the annual cycle, both
satellite‐based approaches overestimate e‐ratio and export when compared to the tracer budget and POC
attenuation approach. Furthermore, the seasonality of our export estimates appears to be shifted earlier in
the year than those of Laws et al. (2011) and Henson et al. (2011), and the seasonality of the e‐ratio
appears to agree more with the Laws et al. (2011) approach overall, albeit with a phase shift, whereas the
Henson et al. (2011) approach aligns well with our e‐ratio during the spring and summer months.
Overall, the seasonality of the satellite‐based algorithms does not align with that of our geochemical
budget‐based NCP or POC export, perhaps because of their reliance on the seasonal cycle of NPP.
Previous studies have shown that seasonal cycles in carbon export do not necessarily reflect the seasonal
cycle in primary production (Haskell et al., 2017).

The annually integrated export values show that the Henson et al. (2011) satellite‐based estimates are
approximately ~1.5 to 2 times larger than the best estimates using the tracer budget and attenuation
approach for POC export at 100 m (right side of Table 2), but our estimates have a large associated uncer-
tainty. Furthermore, the Henson et al. (2011) annual export estimate agrees within uncertainty of our DIC
budget‐based approach, and to within ±50% of our nitrate budget approach, when calculated using the
entire upper 100 m of the water column (left side of Table 2). However, the NCP budget approaches include
DOC production as well, whereas the Henson et al. (2011) algorithm was developed using only POC export
estimates at 100 m derived from 234Th budgets for validation. When compared to our budget‐based decom-
position of the POC production in the upper 100 m (column labeled “POC”), the Henson et al. (2011) algo-
rithm is approximately 3 times larger than our estimate. The Laws et al. (2011) algorithm estimates
represent a value between total (POC + DOC) export from the euphotic depth horizon (NCP) and POC
export across a deeper horizon, and while it is ~3–6 times larger than our POC export estimates using
the budget and attenuation approach at 100 and 200 m, it is only ~1.5 and ~2.5 times larger than our bud-
get‐based approaches of total NCP and POC NCP evaluated to the euphotic depth. Regardless of the

Figure 9. (a) Export of organic carbon across the 100‐m (upper/lighter blue and gray lines) and 200‐m horizons (lower/
darker blue and gray lines) calculated by multiplying the climatological results of the mixed layer (gray) and euphotic
zone (blue) tracer budget‐calculated POC portion of NCP by the climatological mean transfer efficiency calculated
from bbp‐calculated POC attenuation shown in (c) and (d). The clouds represent the region between 100 and 200 m.
(b) Export ratio calculated as the export shown in (a) divided by CbPM NPP from the region (top panel in Figure 8).
(c) Transfer efficiency from the euphotic depth to 100 m (light blue) and 200 m (dark blue) calculated as the attenuation
of POC between these two horizons. (d) Transfer efficiency from the mixed layer depth to 100 m (light gray) and 200 m
(black), respectively. For comparison, e‐ratios from the Laws et al. (2011) and Henson et al. (2011) satellite export
algorithms and export calculated from these algorithms using CbPM‐calculated NPP (climatologies of data shown in
middle panel in Figure 8) are presented as dark red and orange lines in (a) and (b). The months of November and
December are linearly interpolated for the satellite‐derived terms due to cloud cover in winter.
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approach used for comparison, the results of this study suggest that the Laws et al. (2011) algorithm also
overestimates POC export in our study region.

Previous studies that compare satellite algorithm‐based export at OSP have found similar results.
Emerson (2014) reported the Laws et al. (2000) algorithm, which is similar to the Laws et al. (2011) algorithm
used here, estimated e‐ratios of 0.18–0.49 (mean 0.31) throughout the annual cycle and a total carbon export
out of the euphotic zone (NCP) of 3.2 ± 0.6 to 4.5 ± 0.5 mol C m−2 yr−1 depending on the use of CbPM or
VGPM NPP, which were both larger than geochemical estimates of 2.3 ± 0.6 mol C m−2 yr−1. Palevsky
et al. (2016) also used the Laws et al. (2000) algorithm in concert with CbPM‐based NPP to calculate an
ANCP of 3.2 ± 0.7 mol C m−2 yr−1 from 2003 to 2013 at OSP but noted that the fortuitous combination of
underestimated NPP from the CbPM model and overestimated e‐ratio is what makes this estimate fall into
the range of uncertainty of the geochemical estimates. These authors add that the combination of VGPM
NPP and Henson et al. (2011) recreated geochemistry‐based ANCP best at OSP, but seasonality at this loca-
tion was not discussed.

For comparison, Wong et al. (2002) and Peña and Varela (2007) determined ANCP rates at OSP of 1.5 ± 0.4
and 1.6 ± 0.6 mol C m−2 yr−1, respectively, by seasonal nitrate drawdown in the upper 35 m from measure-
ments made on Line P cruises spanning over 30 yr. Charette et al. (1999) determined euphotic zone POC
export to be approximately 2.0 ± 1.0 mol C m−2 yr−1 based on 234Th budgets and POC:234Th measured on
filtered particles. Other geochemical‐based budgets using measurements of oxygen and nitrate summarized
by Emerson (2014) indicate ameanANCP of 2.3 ± 0.6mol Cm−2 yr−1. All of these estimates are in agreement
with our euphotic zone budgets of DIC and nitrate within uncertainty of the approaches. To our knowledge,
the shallowest published sediment trap data at Station Papa are from 200 m from 1989 to 2006 (Timothy
et al., 2013; Wong et al., 1999). Wong et al. (1999) reported an annual POC export of 0.55 ± 0.22 mol m−2 yr−1

at this depth horizon, and after this time series was continued through 2006, Timothy et al. (2013) reported an
annual POC export rate of 0.46 ± 0.32 mol m−2 yr−1 at 200 m. These POC export rates agree well with our
estimates at 200 m, which converge to 0.4 ± 0.2 mol m−2 yr−1 using both the mixed layer and euphotic zone
budgets (Table 2). Overall, our POC attenuation approach provides a new method to estimate in situ POC
export from surface geochemical budgets across a range of depth horizons using a combination of chemical
and bio‐optical sensor measurements on autonomous sampling platforms.

5. Discussion and Conclusions

In this study, we use observations of chemical and optical properties measured by autonomous BGC profil-
ing floats over the last decade, as well as carbonate system parameters calculated from recently developed
algorithms, to calculate NCP, an analog of carbon export out of the surface ocean. We chose to make these
calculations for multiple depth zones (Figure 5), in part, to demonstrate the importance of this choice. Many
carbon export studies neglect to address the implications for using a constant depth horizon in their
estimates of the sink for atmospheric carbon dioxide. Evaluating the amount of carbon export that is avail-
able to be sequestered in the deep sea would mean that even if it is remineralized back to inorganic carbon, it
still escapes ventilation when the seasonal winter MLD reaches its maximum (Palevsky & Doney, 2018;
Palevsky & Quay, 2017). For example, export across the euphotic depth in spring, just after seasonal mixed
layer shoaling, is likely to have enough time to sink past the local maximum MLD by winter when deep

Table 2
Annual NCP and POC Export Estimates Across Various Horizons Derived From the Various Approaches Presented (all in mol C m−2 yr−1)

Horizon

Budgets DIC budget + POC attenuation Satellite

DIC NO3
a POC MLD Zeu Laws Henson

MLD 2.1 ± 1.0 2.1 ± 1.0 1.6 ± 0.8 ‐ ‐ ‐ ‐

Zeu 2.0 ± 0.6 1.7 ± 0.6 1.4 ± 0.5 ‐ ‐ 2.9 ‐

100 m 1.7 ± 0.7 1.0 ± 0.4 0.5 ± 0.2 0.9 ± 0.5 0.8 ± 0.4 ‐ 1.5
MaxMLD 1.4 ± 0.6 1.2 ± 0.5 −0.5 ± 0.2 ‐ ‐ ‐ ‐

200 m ‐ ‐ ‐ 0.4 ± 0.2 0.4 ± 0.2 ‐ ‐

Note. Uncertainties estimated using the Monte Carlo approach described in the text and the values in the POC column are derived from the DIC budget.
aEstimated using a C:N of 7.8, found by balancing MLD ANCP.
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mixing occurs, whereas after the summer months, only export across the maximumMLD is likely to escape
re‐entrainment and thus be separated from the atmosphere over long timescales. Furthermore, particle sink-
ing speeds likely vary through time as particles are deteriorated by heterotrophic organisms along their
journey to the deep. Because of this, our biweekly and annual NCP rate estimates (each point in Figure 5)
across any single horizon are likely insufficient to estimate actual annual carbon sequestration. Using a
time‐variable depth horizon tuned for each individual annual cycle may further improve the quantification
of true particle export, which is beyond the scope of this project.

We then use estimates of the C:N ratio of POM and DOM in our study region to further partition NCP into
net production of POC and DOC in our budgets (Figure 7). Our estimate of the mean POC:DOC ratio in NCP
is similar to the commonly reported value of ~70/30, and our net DOC production rates are similar to
previously published estimates at our study site during the same time period (Bif & Hansell, 2019). As often
observed in this region, we found net heterotrophy in the surface ocean during the winter months, and while
our results suggest that a portion of this negative NCP is supported by POC, the majority is supported by the
DOC pool, which has been hypothesized as an explanation for concurrent net heterotrophy and sinking
particle export (Fassbender et al., 2016). Net calcium carbonate production was observed in late spring in
the mixed layer and euphotic zone budgets, coinciding with the spring bloom, and in the euphotic zone
budget, there is a second calcite production period in early fall.

In order to estimate particulate carbon export across deeper horizons (100 and 200 m) aided by information
gathered by particle backscatter measurements (Figure 8), we calculate a transfer efficiency of sinking
particles using optical measurements from the base of the mixed layer and euphotic zone to these deeper
horizons and then multiplied these values by the budget‐calculated NCP of POC in the mixed layer and
euphotic zone (Figure 9). These POC export estimates agree well with our budget‐calculated results to
100 m and previously published sediment trap export rates at 200 m (Table 2). However, concurrent
satellite‐derived carbon export estimates do not accurately capture the seasonal cycle and are typically
significantly larger in magnitude than the in situ data through the year, indicating that they may overesti-
mate carbon export in this region.

The largest contributor to uncertainty when using any biogeochemical budget approach to estimate biologi-
cal production rates is typically the constraint on physical dynamics in the model (Haskell & Fleming, 2018;
Teeter et al., 2018). We intentionally chose a region of the ocean where we could reliably parameterize the
transport terms to test this new approach in deconstructing NCP into POC and DOC pools, and we urge that
careful consideration of possible physical biases to the biological signal be given by researchers applying this
method in more dynamic regions of the ocean. Furthermore, this work describes a carefully applied
approach to a specific region of the ocean with available concurrent and historical measurements to lever-
age. While broad‐scale application of this method to BGC floats could improve our understanding of upper
ocean carbon cycling, more work is needed to test and improve methodology robustness in other domains.

As new, “fully loaded” BGC Argo floats (NO3
−, O2, pH, and bio‐optical sensors; Johnson et al., 2017) are

used more widely in the oceanographic community, the approaches described in this work could be applied
with less reliance on carbonate system algorithms and further our understanding of the patterns of global
carbon export to the deep. The relative partitioning of NCP into sinking particles and downward mixing
of DOM, as well as the production/dissolution of the ballast material CaCO3, has significant implications
regarding the efficiency with which our ocean biosphere can sequester carbon originally sourced from the
atmosphere (Bach et al., 2016; Hansell et al., 2009; Henson et al., 2019). This work represents a step toward
a robust approach to estimate POC and DOC production and export in the oceans using autonomous, in situ
observations for monitoring future changes in the ocean carbon cycle in near real‐time. We have also shown
the utility of relating in situ, autonomous biogeochemical observations to satellite‐retrievable parameters,
which we hope will be applied in efforts to improve satellite‐based remote observations of ocean
biogeochemistry.

Data Availability Statement

All data presented here are archived and can be accessed from MBARI FloatViz (https://www.mbari.org/
science/upper‐ocean‐systems/chemical‐sensor‐group/floatviz/) or Station Papa website (http://www.water-
properties.ca/linep).
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