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FACE FLIPS IN ORIGAMI TESSELLATIONS

Hugo A. Akitaya,* Vida Dujmovié,! David Eppstein,t Thomas C. Hull® Kshitij Jain,¥
Anna Lubiw!

ABSTRACT. Given a locally flat-foldable origami crease pattern G = (V, E) (a straight-
line drawing of a planar graph on the plane) with a mountain-valley (MV) assignment
u: E — {—1,1} indicating which creases in E bend convexly (mountain) or concavely
(valley), we may flip a face F of G to create a new MV assignment pr which equals p except
for all creases e bordering F', where we have up(e) = —p(e). In this paper we explore the
configuration space of face flips that preserve local flat-foldability of the MV assignment for
a variety of crease patterns GG that are tilings of the plane. We prove examples where pup
results in a MV assignment that is either never, sometimes, or always locally flat-foldable,
for various choices of F. We also consider the problem of finding, given two locally flat-
foldable MV assignments p; and o of a given crease pattern GG, a minimal sequence of face
flips to turn p; into pe. We find polynomial-time algorithms for this in the cases where G
is either a square grid or the Miura-ori, and show that this problem is NP-complete in the
case where G is the triangle lattice.

1 Introduction

An origami crease pattern (G, P) is a straight-line drawing of a planar graph G = (V, E) on
a region P of R?, where we allow for the case P = R? and G is an infinite graph. A flat
origami is a function f : P — R? from an origami crease pattern (G, P) to the plane that
is continuous, an isometry on each face of G, and non-differentiable on all the edges and
vertices of G. If a flat origami function can be found for a given crease pattern (G, P), we
say that the origami crease pattern is phantom foldable, a term that is meant to indicate
that the crease pattern can fold flat ignoring whether or not the region P, thought of as a
sheet of paper, would have to intersect itself; this term is adopted from [7]. However, the
important object of study is the crease pattern (G, P), since a flat origami function, if it
exists, can be generated from (G, P) by fixing a face Fjy of G and then reflecting about the
edges in G to determine where all the other faces of G map when all the crease lines are

folded (see [6] for details).

We say that an origami crease pattern is globally flat-foldable if more conditions are
met. Specifically, we record the state of each crease segment with a function p: £ — {—1,1},
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where p(e) = —1 means that the crease e is a valley crease (meaning it bends the paper
in a concave direction) and p(e) = 1 means that e is a mountain crease (so it bends in a
convex direction). We refer to u as a mountain-valley (MV) assignment on G. We then say
that a crease pattern is globally flat-foldable if a MV assignment can be found that creates
a superposition order on the faces of a refinement of the crease pattern that satisfies non-
crossing conditions, which are meant to model how the folded paper avoids self-intersecting
when folded flat; see [16] for details. Determining if a crease pattern is globally flat-foldable
is cumbersome and has been shown to be NP-complete [1,5].

In this paper we will only be concerned with crease patterns (G, P) that are locally
flat-foldable, which means that for each vertex v of G in the interior of P, the sub-crease
pattern (G, P,) made from the faces of G in P that are adjacent to v is globally flat-foldable.
As we will see in Section 2, it is easy to determine if a single vertex is globally flat-foldable.
However, locally flat-foldable crease patterns possess rich combinatorial structures [6,14] that
have been studied in statistical mechanics [2] and applied to polymer membrane folding [7].
For an example that connects locally flat-foldable crease patterns to more traditional areas
of graph theory, consider that counting locally valid MV assignments (that make a crease
pattern locally flat-foldable) for the family of crease patterns known as the Miura-ori has
been shown to be equivalent to counting proper 3-colorings of the vertices of grid graphs [10].

A new combinatorial tool that shows promise for helping explore locally valid MV
assignments is the face flip. If F' is a face in a flat-foldable crease pattern (G, P) and we
have a MV assignment p, then a face flip of F' in (G, P) under p is a new MV assignment
wr where pp = p for all edges in G except those that border F', where we have up = —pu.
That is, we “flip” the creases bordering F' from mountain to valley and vice-versa. The
fundamental question, then, is whether pp will be locally valid given that p is. If the
answer is “yes" then we say that F' is a flippable face relative to p.

Face flips seem to have been first introduced by Kyle VanderWerf in [21]. While face
flips are otherwise mathematically unexplored, they are related to studies in materials science
and mechanical engineering on applied origami (such as [2,8,20]). Face flips provide a way of
studying the likelihood of a material either being manipulated from one MV assignment to
another, or folding to a state that is “close" to the target MV assignment state, where “close”"
could be interpreted as two vertices close to each other in the origami flip graph configuration
space (to be defined in Section 2). Further, if the origami flip graph is disconnected, then
its different components could identify folded states that have very little chance of being
achieved by an actual folded material with a given target MV assignment.

In this paper, we examine the properties of face flips on flat-foldable crease patterns
(G, P) where G is certain regular tilings of the plane. Such flat origamis are also known as
origami tessellations, and they are of central interest in applications and prior work on flat
foldings [2,7,8,10, 18, 20].

Specifically, after setting up background results in Section 2, we will see in Section 3
families of quadrilateral crease patterns where any face flip on a MV assignment will preserve
its local validity, another where only certain faces may be flipped, and yet another where no
face flip will result in a valid MV assignment. In Section 4 we will prove that any locally-valid
MYV assignment of the Miura-ori crease pattern can be converted to any other via face flips,
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thus showing that the configuration space of locally-valid MV assignments of the Miura-ori
is connected under face flips. In Section 5 we consider the considerably more complicated
case of origami tessellations whose crease pattern is the triangle lattice, showing that its
configuration space is also connected. However, we show that, unlike the quadrilateral
cases, determining the minimum number of face flips needed to convert one locally-valid
MYV assignment of the triangle lattice to another is NP-complete using a reduction from
minimum vertex cover with maximum degree three in a hexagonal grid.

2 Preliminaries

The most fundamental result of flat-foldability is Kawasaki’s Theorem:

Theorem 2.1 (Kawasaki). Let (G, P) be an origami crease pattern where G has only one
vertex v in the interior of P and all edges in G are adjacent to v. Let aq,...,qp be the
sector angles, in order, between the consecutive edges around v. Then (G, P) is globally
flat-foldable if and only if k = 2n is even and

a1 —oag+ag— - — g, =0.

See [14] for a proof.

One of the most basic requirements for a MV assignment to be locally valid is for
there to be an appropriate number of mountains and valleys at each vertex.

Theorem 2.2 (Maekawa). Let v be a vertex in a globally flat-foldable crease pattern with
MYV assignment p and let A be the set of crease edges adjacent to v. Then

Z pule) = £2. (1)

e€A

This is known as Maekawa’s Theorem, although it is often written as M — V = £2
where M and V are the number of mountain and valley creases, respectively, at v. A proof
can be found in [14]; it relies on the fact that the cross section of a physically-flat-folded
vertex will be a closed curve with winding number 1 about any point in its interior, giving
us that 7tM — 7V = £27.

Kawasaki’s and Maekawa’s Theorems state necessary conditions for flat-foldability at
a vertex. If the sector angles around a vertex are all equal in a single-vertex crease pattern,
then Maekawa’s Theorem becomes necessary and sufficient.

Theorem 2.3. Let v be a vertex in a globally flat-foldable crease pattern where the sector
angles between consecutive creases at v are all equal. Then a MV assignment p will be locally
valid at the vertex v if and only if u satisfies Equation (1) at v.

Proof. Sufficiency can most easily be seen by an inductive argument, although to do this
one must extend the concept of flat foldability to single-vertex cone folds, where a crease
pattern is embedded on a cone C and the only vertex of the crease pattern in the interior
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of C is at the cone’s apex. The proof Maekawa’s Theorem for cone folds (the necessary
direction of the current theorem) is the same as it is for flat paper (see [14]). In the other
direction, suppose we have a crease pattern (G, P) where G has only one vertex v in the
interior of P, the sector angles between the consecutive creases at v are all equal, P is a
subset of R? or a cone with v at its apex, and 3 u(e) = £2 where the sum is over all edges
e adjacent to v. Then the degree of v must be even (since, if M and V are the number of
mountains and valleys, respectively, at v, we have deg(v) = M +V = M -V +2V =2V £2).
Inducting on n where deg(v) = 2n, we have that the base case has two creases, equal sector
angles, and either two mountains or two valleys, which clearly can fold flat. If n > 2, then
there must exist two consecutive creases (say, going clockwise around v) with different MV
parity; these two creases may be folded, and the others left unfolded, to turn (G, P) into a
new crease pattern (G’, P') with two fewer creases, equal sector angles, smaller cone angle,
and Y p(e) = £2 in G'. By induction, (G, P") will globally fold flat (which is equivalent
to local flat foldability since G has only one interior vertex), implying that (G, P) will as
well. 0

When the angles between consecutive creases around a flat-folded vertex are not all
equal, then Maekawa is only a necessary condition. Nonetheless, other constraints on valid
MV assignments for such vertices can be deduced. For example, if we have consecutive
sector angles «o;_1, v, ajr1, with «; between crease edges e; and e;y1, at a vertex with a
valid MV assignment u, where «; is strictly smaller than both of the other angles, then we
must have p(e;) = —u(e;41). This is because if p(e;) = pu(e;41) then the two sectors with
angles a;—1 and a1 would be folded over, and more than cover, the sector with angle «;
on the same side of the paper, causing the sectors of paper with angles a;_1 and «;41 to
intersect each other. This constraint, where u(e;) = —u(e;q1) is forced, is sometimes called
the Big-Little-Big Angle Lemma. This is actually a special case of the following theorem,
proved in [14]:

Theorem 2.4. Let v be a vertex in a globally flat-foldable crease pattern with MV assignment
w, and suppose that we have a local minimum of consecutive equal sector angles between the
crease edges e, ... eirp+1 at v. That is, a; = i1 = -+ = oy where a1 > o; and
Qitk+1 > ;. Then
Hfl _ 0 if k is even,

ples) = { +1 if k is odd.

j=i

Remark on local vs. global flat-foldability: In the Introduction we commented
that determining the global flat-foldability of a crease pattern is cumbersome. At the same
time, we need to know when a single vertex in a crease pattern will be globally flat-foldable
under a given MV assignment in order to determine the local validity of a MV assignment
(and thus the local flat-foldability of the crease pattern). Fortunately, determining the global
flat-foldability of a single vertex crease pattern is more easily done by modeling how a single
vertex folds flat using concepts like the winding number, the alternating sum of the sector
angles around the vertex, and the “big-little-big angle" constraint. These tools make the
proofs of Theorems 2.1, 2.2, 2.3, and 2.4 rigorous, as seen in [6,14,16]|. This is what allows us
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to speak with confidence about the combinatorial geometry of locally valid MV assignments
for flat-foldable crease patterns.

In the Introduction we defined face flips of a flat-foldable crease pattern with a locally
valid MV assignment. We also say that two locally valid MV assignments p and uo are
face-flippable if there exists a sequence of flippable faces (thus preserving the local validity
of the MV assignments along the way) in the crease pattern whose flipping will turn p; into
L2, OT Vice-versa.

We now formalize the concept of the configuration space of locally valid MV assign-
ments with a variation of the flip graph from discrete geometry. Given a flat-foldable crease
pattern (G, P), define the origami flip graph to be the graph whose vertices are locally valid
MV assignments of (G, P), and where two MV assignments p; and py are adjacent in this
graph if and only if u; is face-flippable to s by flipping exactly one face. We then say that
the configuration space of MV assignments for (G, P) is connected if its origami flip graph
is a connected graph.

For examples of crease patterns with a given MV assignment, see the two shown in
Figure 1(a). In this Figure, and throughout the paper, bold lines indicate mountain creases
and non-bold lines represent valleys. Both of the MV assignments p; and ug are clearly
locally valid (each vertex satisfies Mackawa’s Theorem and the sector angles around each
vertex are all 90°, so Theorem 2.3 applies). They are also globally flat-foldable with these
MV assignments, however. us can be folded by making the vertical valley creases first,
say rolling the paper from left-to-right to get a 3 x 1 strip, and then folding the horizontal
creases. p1 is much harder to fold (try folding the entire bottom-most horizontal crease line
first).

3 Square and kite tessellations

In this section we will analyze three families of quadrilateral-based origami tessellations to
demonstrate different kinds of face flip-behavior and different configuration spaces. Specifi-
cally, we will see:

e Square grid crease patterns, where any face can be flipped and the configuration space
of MV assignments is connected.

o Huffman grid tessellations, where no face flips are possible and thus the configuration
space is totally disconnected.

e Square twist tessellations, where only half of the faces can be flipped but the configu-
ration space is still connected.

3.1 Square grid tessellations

We first consider an m x n grid of squares, denoted G, 5, as our crease pattern, where the
region of paper P will be an m x n rectangle. This will have (m — 1)(n — 1) vertices in the
interior of P, each of which will have degree 4 and 90° angles between the creases. Thus a
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(a) 551 (d)

H2

Figure 1: (a) Two locally-valid MV assignments p11 and 2 of Gi35. (b) The weight w on the
edges of G*(3,5). (c) The graph G*35 with a 2-coloring. (d) The face flip sets.

MV assignment p for Gy, , will be locally valid if and only if each vertex satisfies Maekawa’s
Theorem, i.e., has 3 mountains and 1 valley or vice-versa.

Theorem 3.1. Given a square grid tessellation and a locally-valid MV assignment u, flip-
ping any face will result in another locally-valid MV assignment.

Proof. Flipping a face F'in Gy, ,, will affect p for at most four interior vertices in P. Consider
one of them, v, and let eq,...,e4 be the crease edges adjacent to v where e; and es border
F.If pler) = plea) then i, pler) = — iy pres). I pler) = —plez) then pp(er) =
—ur(e2) as well. In both cases we have that Maekawa’s Theorem is still satisfied at v under
pr, and thus pup will be locally valid by Theorem 2.3. O

Lemma 3.2. Let p1 and po be two locally-valid MV assignments of Gy, and let v be an
interior vertex of Gyn. Then among the four edges adjacent to v, ui1 and po can agree on
all four, only 2, or none of the edges, but not on three or one.

Proof. Let the edges at v be ey,...,e4, and suppose that p; and ps agree on only one or
three of these edges. Then in either case we have that [[i_, pu1(ei)pa(e;) = —1, since the
disagreeing pairs of uq(e;) and pa(e;) will each contribute —1 and the agreeing pairs will
contribute 1 to the product. However, this product also equals ]}, p1(ei) [Ti—; pa(es) = 1
since H?:l w(e;) = —1 for all locally-valid MV assignments p. This is a contradiction. [

Our goal is to prove that the MV configuration space for G,y is connected and to
devise an algorithm to find the smallest number of face flips needed to flip between two
given locally-valid MV assignments p1 and po.

To that end, let 111 and o be locally-valid MV assignments of G, 5, such as those
shown in Figure 1(a). We consider the internal planar dual graph, Gy, ,, (that is, the dual of
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G, ignoring the external face). For every edge e of Gy, denote the corresponding edge in
G, by €*. Assign a weight function w to the edges in G7,, ,, given by w(e*) = |u1(e)+pa(e)|.
That is, w(e*) will equal 0 if pui(e) # po(e) and 2 if pi(e) = pa(e). See the example in
Figure 1(b).

Now create a new graph G*,,, made by taking G
middle of every edge e* with w(e*) = 2. See Figure 1(c).

*

mm and adding a vertex in the

Lemma 3.3. The graph G*,,,, is properly 2-vertex colorable.

Proof. This follows from Lemma 3.2; since the four edges e; adjacent to each internal vertex
v of Gy, have 11 (e;) = po(e;) for only four, two, or none of the e;, we have that each square
face of G, ,, will either remain a square, become a hexagon, or become an octagon in G* .
Thus @m,n has only even cycles, which means it is properly 2-vertex colorable. O

Let ¢ : E(G*,,) — {purple, teal} be a proper 2-vertex coloring of G*,,,. Then ¢
will give us a (most likely not proper) 2-coloring of the vertices of Grin:

Theorem 3.4. Let py and ps be two locally-valid MV assignments of Gy, . Then pi and
o are face-flippable, and this can be achieved by flipping the faces corresponding to all the

purple (or all the teal) vertices in Gy, ,, under the 2-coloring c described above.

Proof. Suppose we start with the MV assignment pq and flip all the faces corresponding
to the purple vertices in G}, ,,. Consider an edge e of Gy, where pi(e) = pa(e). Then
w(e*) = 2, and thus the faces in Gy, that border e have corresponding vertices in Gy, ,
that are both colored purple or teal. This means that both of these faces were flipped or
both were not flipped. In either case, the edge e remains with the same MV assignment
after all the purple flips.

Now consider e € E(Gy, ) where pi(e) # po(e). Then w(e*) = 0, so the vertices
adjacent to e* in Gy, ,, are colored differently under ¢, which means one of the faces bordering
e in Gy, is flipped and the other is not flipped. This implies that the edge e will change
its MV assignment after all the purple flips. We conclude that the MV assignment p; will
turn into o after flipping all the faces corresponding to the purple vertices in Gy, ,,, and
the same argument works for the teal vertices. O

It is clear from the construction that the two face flip sets generated by the purple
vertices and by the teal vertices in Gy, ,, are minimal in that removing any face from them
will not result in flipping from py to ps or vice-versa. Could there be some other minimal
set of faces that flips from 1 to pe? No, since every edge e in G, with pi(e) # pa(e)
requires exactly one of its adjacent faces to be in the flip set, and each of these faces are in
a different 2-color class. Furthermore, every edge e with p(e) = ua(e) will either have both
or neither of its adjacent faces in the flip set, which is again determined by the 2-color class.
Therefore, picking a face from one of the 2-color classes forces the rest of that color class to
also be in the face flip set. We conclude that the smallest number of face flips needed to flip

from py to uo is the smaller of the purple and the teal face flip sets. Further, computing

JoCG 11(1), 397-417, 2020 403


http://jocg.org/

Journal of Computational Geometry jocg.org

Figure 2: (a) The kite tile for a Huffman grid. (b) The resulting Huffman grid, with the
short rows highlighted in blue. (c) The crease pattern partially folded and folded flat.! (d)
The face F' flipped.

this minimal set of face flips can be done in linear time on the number of faces, mn, since
each step in the process involves a computation on the vertices or edges of Gy, .

For a few interesting examples, if uq = po then one of the color sets, say purple, will
include all the faces of Gy, , and the other, teal, will be the empty set. Clearly the empty set
is the smaller set, meaning that no flips are needed. If u1(e) = —ua(e) for all e € E(Gy,.p)
then the 2-coloring of G7, ,, will be a simple checkerboard coloring, and if mn is even then
the purple and teal flip sets will have equal size.

3.2 Huffman grid tessellations

A Huffman grid is a type of monohedral origami tessellation introduced by Huffman in [13].
(See also [8].) The generating tile is a quadrilateral with two opposite corners having right
angles, as in Figure 2(a). The other two interior angles are labeled o and m — «, where
we assume « < 7/2. The tiling generated by this tile, shown in Figure 2(b), has vertices
that satisfy Kawaski’s Theorem, and by the Big-Little-Big Lemma, the creases bordering an
angle of o must have different MV parity. The creases that do not border an « angle form
zig-zag paths, which we call short rows; they are highlighted blue in Figure 2(b). Applying
Maekawa’s Theorem at each vertex implies that each short row must be either entirely
mountain or entirely valley creases. As seen in [8], folding large Huffman grids according to
a locally-valid MV assignment will eventually cause the paper to curl up and self-intersect.

Theorem 3.5. Given the Huffman grid tessellation and a valid MV assignment, any face
flip will generate a MV assignment that is not valid.

Proof. Suppose we flip a face F' where we label F’s right angle corners v; and wve, as in
Figure 2(d). Then before we flipped F, the two creases surrounding the angle o at v; had

!The images in Figure 2(c) were generated using R. J. Lang’s Tessellatica 11.1 Mathematica code [17].
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(a) (b)

Figure 3: (a) A square twist tessellation with MV assignment and the folded form.? (b) A
square twist tessellation with the flippable faces colored.

opposite MV parity. After flipping F' these creases will have the same MV parity, which
violates the Big-Little-Big Lemma at v1, and the same thing will happen at vs. Thus if u
was our original locally-valid MV assignment, the flipped assignment pp will not be locally
valid. O

Theorem 3.5 implies that there are no edges in the face flip graph for Huffman grid
tessellations, and thus its configuration space is as disconnected as possible.

3.3 Square twist tessellations

Twist folds are collections of creases that, when folded flat, cause a polygon to rotate from
the unfolded to the flat-folded state relative to the rest of the paper. They are of interest
for their geometric character [9], applications in origami mechanics [20], and their ability to
be used in tessellations [11]. The classic square twist, where identical degree-4 vertices with
sector angles 45°, 90°, 135°, and 90° are used to twist a square, can tessellate in several
different ways; a few examples are shown in Figure 3. (Note that other angles besides the
(45°,135°) pair are possible; see [11,18].) In all classic square twist tessellations the 90°
angles will form square or rectangle faces in the crease pattern tiling, while the 45° and 135°
angles will form parallelograms or trapezoids, as shown in Figure 3(b).

The Big-Little-Big Lemma implies that the two creases bordering the 45° angles in
the vertices of a square twist tessellation must have different MV assignments. Thus, given
any locally valid MV assignment for a classic square twist tessellation, flipping any square or
rectangle face will cause a Big-Little-Big Lemma violation at a 45° angle and make the MV
assignment no longer locally valid. Therefore square or rectangle faces can never be flipped
by themselves. In fact, the only way to flip a square or rectangle face and not violate the
Big-Little-Big Lemma somewhere is to flip all of the square and rectangle faces at the same
time, which is equivalent to flipping all the non-square/rectangle faces.

Therefore the only faces that are safe to flip (and preserve local validity of the MV

2The images in Figure 3(a) were generated using R. J. Lang’s Tessellatica 11.1 Mathematica code [17].
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mountain
valley

A
|
R m

Figure 4: A 4 x 4 Miura-ori crease pattern with the classical MV assignment, along with
how it globally folds flat.

assignment) in a square twist crease pattern are the parallelograms and trapezoids, shown
in blue in Figure 3(b). Since all of these parallelograms and trapezoids are edge-disjoint,
and these represent the only ways to modify a MV assignment of such patterns, we arrive
at the following:

Theorem 3.6. The MV assignment configuration space of a square twist tessellation crease
pattern is connected, and the only faces that are flippable are the parallelograms and trape-
zoids.

Determining the minimum number of face flips needed to flip between two locally
valid MV assignments p; and po of a square twist tessellation can be determined in linear
time, since all it requires is determining which parallelograms and trapezoids differ between
p1 and pio.

4 The Miura-ori

The Miura-ori [10,21] is a folding pattern named after Koryo Miura, formed by a sequence
of equally spaced parallel lines crossed by zigzag paths that divide the paper into equal
parallelograms. These parallelograms tile the plane by reflection across the parallel lines,
and by translation in the direction parallel to the parallel lines; see Figure 4. In its classical
global flat-folded state, the folds of the Miura-ori alternate between mountain and valley
folds along each of the parallel lines, with each zigzag path consisting entirely of mountain
folds or entirely of valley folds (in alternation along the sequence of zigzag paths). However,
the same folding pattern has many locally flat-folded states. In a locally valid MV assignment
of this folding pattern, we have that Maekawa’s Theorem must hold and at each vertex the
crease bordered by obtuse angles must have the same MV type as the majority of the creases
at the vertex (see [10,14]).

The m x n parallelograms of the Miura-ori have the same combinatorial structure
(although different in their symmetry groups) as the square grid, and it will be helpful for
us to use a combinatorial bijection between locally valid MV assignments of the Miura-ori
and proper 3-colorings (with one vertex pre-colored) of the vertices of the internal planar
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= = Mountain, + 1 (mod 3)

= Valley, — 1 (mod 3)

0 1 2 0 1 V; Vj Vj
+1 7—1
J Cji+1 J Cj

Figure 5: Bijection between local flat foldings of the Miura-ori and 3-colorings of the squares
of a grid

dual grid graph Gy, 5, as seen in Section 3.1. To construct the bijection, we position the
Miura-ori as in Figure 5(a), with the top-left sector angle being obtuse, and overlay the dual
grid graph with one vertex in each parallelogram. Let the three colors of the graph coloring
be Z3, the integers modulo three. We then follow a directed path P, through the grid
graph, starting from the top-left vertex, traveling horizontally to the top-right vertex, then
down one edge, traveling horizontally to the left side again, then down another edge, and so
on in a bostrophedon pattern through all the vertices in Gy, 5, (this path is indicated by the
red arrows in Figure 5(a)). This path determines our vertex coloring; we choose the color
corresponding to 0 mod 3 for the first vertex in P,,,, and subsequent colors for the vertices
on this path are calculated as follows: When the path crosses a mountain fold, we add 1
mod 3 to get the color for the next vertex, and when it crosses a valley fold, we subtract 1
mod 3. (See Figure 5.) More formally, if we let s : V(G,,.) — Z3 be a proper 3-coloring of
the vertices of Gy, with the top-left vertex colored 0, that corresponds to a locally valid
MV assignment . We have that for two consecutive vertices v;, v;11 along the path Py, in
Gm,n that cross the crease cy,

$(vi+1) — s(v;) = p(cx) mod 3. (2)

It can be shown that this method of coloring the vertices of G, , produces a proper 3-
coloring for every locally valid MV assignment of the Miura-ori and, conversely, that every
proper 3-coloring of G, , with the top-left vertex colored 0 comes from a locally valid MV
assignment in this way [4, 10].

In order to use this coloring-MV assignment correspondence, we need to know how
face flips change the 3-coloring of the corresponding grid graph.

Lemma 4.1. Suppose we flip a face F' of a Miura-ori to change a locally valid MV as-
signment to another locally valid assignment. Then the corresponding 3-coloring of the grid
graph will change only at the vertex that corresponds to F'. Conversely, if we change a proper
3-coloring of the grid graph at a single vertex, the corresponding Miura-ori MV assignment
will change by flipping a single face.

Proof. First, we extend the directed path P,,, to a direction on the edges in the whole graph
G, as follows: For each e € E(Gy, ) that is in P, retain the direction given by Pry,.
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All edges e not in P,,,, will be vertical edges following the depiction of G, , as shown in
Figure 5; have all such edges be oriented in the downward direction. We claim that in this
new directed version of G, ,, which we denote G’myn, Equation (2) will still hold for the
directed edges not in P,,. That is, if v; is directly above v; in the grid graph, so (v;,v;) is
a directed edge in G'(m,n) that is not in P, and that crosses crease d; in the Miura-ori
crease pattern, we claim that s(v;) — s(v;) = p(d;) mod 3 (where s is the proper coloring
that corresponds to the locally valid MV assignment p). The fact that this claim is true is

implied in [10], but we will provide an explicit argument here.

Label the vertices and creases near the directed edge (v;, v;) as in Figure 5(b), where
the red arrows indicate the directed edges of G’;n’n. We will prove our claim inductively
along the path P,,. Skipping, for now, the base case, let us assume that s(vj4+1)—s(di—1) =
p(d;—1) mod 3, and we wish to show that the equivalent equation will be true for p(d;). First
note that since the MV assignment of d;_; must equal the majority MV assignment of the
creases ¢, d;, ¢j11 (from [10,14]), we have that

pu(di—1) = p(ci) + p(di) + p(cjvr).
Also, by our coloring-MV assignment correspondence, we have
s(vi) — s(vi—1) = p(c;) mod 3 and s(vj41) — s(vj) = p(cjr1) mod 3.
Therefore,

s(vj) —s(vi) = s(vj1) — s(vi-1) — plejr1) — p(e;) mod 3
= p(di-1) — p(cj41) — ple) = p(di-1) mod 3.

Establishing the base case uses similar computations, but is a bit technical since it requires
telescoping a summation of s(v;) terms along the first two rows of P,,,, and using an extension
of Maekawa’s Theorem applied to the first row of vertices in the Miura-ori crease pattern.
See Lemmas 1 and 2 of [10] for the full details.

Now, if we flip face F' that contains vertex v in Gy, p, this will change the MV
assignments of the creases that border F' and thus cause s(v) to change in order to satisfy
Equation (2) along the path P,,,. But this will not cause any of the other colors s(u) to
change for any neighbor u of v in Gy, , because such vertices u are all connected to each
other in the directed grid graph via paths that that do not include the vertex v (and thus
must satisfy their own equations like Equation (2) that do not include v). Conversely, if
we change a single grid graph vertex color, the same correspondence shows that the MV
assignment cannot change except at the edges surrounding the corresponding face F'. O

With this equivalence between flips and vertex recolorings in hand, we can apply
known techniques for grid colorings to obtain the corresponding results for Miura-ori face
flips.

Theorem 4.2. Fvery two locally-valid MV assignments of the Miura-ori crease pattern can
be converted to each other via face flips.
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Proof. This follows from Lemma 4.1 and from the already-known fact that every two 3-
colorings of a grid can be converted to each other via single-vertex recolorings [12, Lemma
4.4]. More strongly, Goldberg et al. [12, Lemma 4.6] prove that the number of recoloring
steps needed, for an m x n grid with m < n, is at most 2mn?. The same bound holds for
face flips of the Miura-ori, where now m and n measure the number of parallelograms in the
pattern in either direction. O

Theorem 4.3. Given any two locally-valid MV assignments of the Miura-ori crease pattern,
it is possible to find a minimum-length sequence of face flips that converts one to the other,
in polynomial time.

Proof. The correspondence between MV assignments and grid 3-colorings, described above,
can be carried out in linear time, since it only requires a simple calculation for every vertex
in G, . An efficient algorithm for finding the shortest number of vertex-recoloring steps to
convert one 3-coloring of any given graph into another (when such a sequence of recoloring
steps exists, as we have already proven to be true in this case) was provided by Johnson et
al. [15]. O

5 Triangle lattice tessellations

In this section we consider crease patterns that are finite regions of the triangle lattice. In
Section 5.1 we show that the configuration space of locally valid MV assignments is connected
under face flips, with a linear diameter. In Section 5.2 we show that it is NP-hard to find
the minimum number of face flips to reconfigure between two locally valid MV assignments.

We begin with some basic facts about locally valid MV assignments in the triangle
lattice. By Theorem 2.3, an MV assignment is locally valid on the triangle lattice if and
only if for any vertex v, either v has 4 mountain folds and 2 valley folds, in which case we
call it a mountain vertex, or v has 4 valley folds and 2 mountain folds, in which case we call
it a valley vertex.

Consider what happens to a locally valid MV assignment p at a vertex v if we flip
an incident face f. If the two edges of f incident to v have opposite creases (one mountain
and one valley), then z1; will remain locally valid at v by Theorem 2.3—in fact, v retains its
mountain/valley designation (Figure 6(a)). If the two edges of f incident to v are mountain
creases and v is a mountain vertex, then flipping f changes v to a valley vertex (Figure 6(b)).
Similarly, flipping two valley creases at a valley vertex creates a mountain vertex. Finally, if
the two edges of f incident to v are mountain creases and v is a valley vertex (Figure 6(c)),
or if the two edges are valley creases and v is a mountain vertex (Figure 6(d)), then f cannot
be flipped, and we say that v causes f to be not flippable. To summarize:

Claim 5.1. A face can be flipped unless it has 2 mountain creases incident to a valley vertez,
or 2 valley creases incident to a mountain vertex.

In particular, note that a face with a mountain and a valley crease has only one
vertex that can potentially cause it to be not flippable.
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Figure 6: (a—d) Some cases for flipping a triangle f incident to vertex v: (a) one mountain
crease (in bold) and one valley crease; (b) two mountain creases at a mountain vertex; (c)
valley vertex v causes face f to be not flippable; (d) mountain vertex v causes face f to be
not flippable. (e) [lustration for Lemma 5.2.

Lemma 5.2. Suppose vertex v causes face f to be not flippable. Let fi1, fa, f3 be the 3 faces
incident to v but not adjacent to f, where fo is the middle face—the one opposite f. Then
at least one of f1, fo, f3 is flippable. Furthermore, if f has both a mountain and a valley

edge then after flipping one of f1, fo, f3, face f becomes flippable.

Proof. Suppose without loss of generality that v is a valley vertex and the two edges of
f incident to v are mountain creases. See Figure 6(e). Note that v cannot cause any of
f1, f2, f3 to be not flippable. Suppose fo = vy is not flippable. Then this is caused by one
of its other vertices, say vertex x, and suppose that x is incident to f; (otherwise relabel fi
and f3). Since zv is a valley, zy must also be a valley, and = must be a mountain vertex, so
its other incident edges must be mountains. Then face f; has a mountain edge opposite v
and is flippable. O

5.1 Reconfiguring a triangle lattice

To show that any locally valid MV assignment of the triangle lattice can be reconfigured to
any other using face flips, we use the standard technique of reconfiguring any locally valid
MYV assignment to a “canonical” MV assignment. To reconfigure A to B via the canonical
configuration C', we reconfigure A to C, and then perform the reverse of the reconfiguration
sequence that takes B to C'. Our canonical configuration C' has mountain folds on the —30°
lines of the lattice, and valley folds on the other lines—see Figure 7(a).

Theorem 5.3. Any locally valid MV assignment of the triangle lattice can be reconfigured
to the canonical configuration C using 2n flips, where n is the number of faces.

Proof. We use an iterative process, proceeding from left to right, first fixing the diagonal
edges down a column (Figure 7(b)), and then fixing the vertical edges down a line (Fig-
ure 7(c)), while always preserving the MV assignment in the “completed” region (shown in
the gray shaded areas in the figures). We address these two cases separately.
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Figure 7: (a) The canonical configuration C. Mountain folds are in bold. (b) Fixing the
diagonal edges down a column. The completed region is shaded gray. (c) Fixing the vertical
edges down a column.

Case 1. Diagonal edges. Suppose all the diagonal edges down a column match the canon-
ical configuration up until the two edges incident with vertex v on the left-hand side of the
column. Let v’s neighbors across the column be x and y, with x above y. Because vertex v
already has 3 incident valley creases from the completed region, v must be a valley vertex
and one of the edges vx, vy must be a mountain and the other a valley.

If edge vz is a valley then vy is a mountain, and the two edges incident to v are
correct for the canonical configuration. Thus, we may suppose that vz is a mountain and
vy is a valley. Let f be the face vxy. Flipping f corrects the two edges incident to v, so if
f is flippable, we are done. Thus, we may suppose that f is not flippable. By Lemma 5.1,
f must be unflippable because of vertex x or y.

We first show that  cannot cause f to be unflippable. Suppose it did. Then both
edges of f incident to x must be the same; furthermore, they must be mountains because
vz is a mountain. Vertex z already had one incident mountain crease from the completed
region. But then z has at least 3 incident mountain edges so it must be a mountain vertex,
and it cannot prevent f from flipping.

Next, suppose that y causes f to be unflippable. Let fi, fo, f3 be the three faces
incident to y and not adjacent to f. By Lemma 5.2 at least one of fi, fo, f3 is flippable.
Note that none of the edges of these faces are in the completed region. (See Figure 7(b).)
Thus, we can flip one of fi, fa, f3 without disturbing the completed region. Furthermore, f
will then be flippable by Lemma 5.2, since f has a mountain and a valley crease.

Case 2. Vertical edges. Suppose that all the vertical edges down a column match the
canonical configuration up until the edge uv with u above v. Let the triangle to the right
of uv be f, and suppose the f’s third vertex is w. If uv is a valley, then it matches the
canonical configuration. So, suppose that uv is a mountain. If face f is flippable, that would
fix uv, so we may suppose that f is not flippable. We claim that neither « nor v can be the
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cause. Observe that u and v each have two incident mountain edges. In order for u, say, to
cause f to be non-flippable, edge uw must be a mountain like uv. But then u is a mountain
vertex so it cannot prevent f from flipping. The same argument applies to v.

Thus, f must be non-flippable because of vertex w. Let f1, fo, f3 be the three faces
incident to w and not adjacent to f. By Lemma 5.2 at least one of fi, fa, f3 is flippable.
Note that none of the edges of these faces are in the completed region. (See Figure 7(c).)
Thus, we can flip one of f1, fo, f3 without disturbing the completed region. Furthermore, f
will then be flippable since neither u, v, nor w cause it to be non-flippable. O

5.2 Finding the minimum number of face flips is NP-complete

We show that the problem of finding the sequence of face flips of minimum length between
two given crease patterns is NP-complete. For hardness, we reduce from k-VERTEX-COVER
in max-degree-3 graphs which is NP-complete [19]. Given graph G the problem asks for a
subset S of V(G) so that every edge in E(G) is incident to at least one vertex in S, and
|S| < k. We assume that our input is a max-degree-3 graph G embedded in the hexagonal
grid. Notice that this does not mean that G is a hexagonal grid graph since the grid is
bipartite and admits a polynomial solution for the k-VERTEX-COVER problem. Rather,
edges in G can be drawn as a path in the grid admitting bends. Such embeddings of
polynomial size can be computed in polynomial time |[3].

) (& &
) i (2

(a) (b) () (d)

Figure 8: Reduction from k-VERTEX-COVER. (a) Filler, (b) deg-3, (c) deg-2, and (d) bend
gadgets. All yellow faces are unflippable and the arrows indicate the vertex that makes it
unflippable.

Theorem 5.4. Given two MV assignments of the triangle lattice A and B, it is NP-complete
to decide whether A can be reconfigured into B using at most m face flips.
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Proof. The membership in NP is a consequence of Theorem 5.3. We proceed with the
reduction from k-VERTEX-COVER. Given a drawing of a graph G in the hexagonal grid,
we construct a MV assignment A as follows. We will use the gadgets shown in Figure 8.
We first obtain a triangular grid by inserting one auxiliary vertex in each hexagon and
connecting it to each vertex of the hexagon. We use the triangle grid to tile the plane using
hexagons so that each hexagon corresponds to either a vertex of the original hexagonal grid
or an auxiliary vertex. If a tile corresponds to a vertex that is not used in the embedding
(a degree-3 vertex), we replace it with a filler gadget shown in Figure 8 (a) (deg-3 gadget
shown in Figure 8 (b)). If the tile corresponds to a degree-2 vertex (bend), we replace
it with the deg-2 gadget shown in Figure 8 (c) (bend gadget shown in Figure 8 (b)) or a
120° rotation. This defines the MV assignment A. B is obtained from A by flipping the
assignment of the perimeter of each yellow diamond or triangle as shown in Figure 9. All
vertices in the interior of gadgets are locally valid. By construction a blue edge of a gadget
will be matched with a red edge. Every vertex on the boundary of a gadget has either zero
or an even number of incident mountains and at least one incident valley. A vertex on a
red edge is always incident to a mountain crease. Then, the MV assignment A and B are
locally valid. We now determine m. Let b be the number of bends in the drawing of G. We
set m = 2k + 8| E(G)| + 14b.

We now give an informal intuition about the construction and then proceed with
the formal proof in the following paragraphs. The assignments A and B only differ on the
boundary of the yellow diamonds or triangles. However, by construction, all yellow faces are
unflippable. In order to minimize the number of flips we want to flip the minimum number
of non-yellow faces so that each vertex that is the tail of an arrow in Figure 8 is adjacent
to a flipped face. That allows us to flip the yellow faces. Such a set of non-yellow faces will
contain only pink faces. We call the pink central triangle of the deg-3 and deg-2 gadgets
vertex triangles. We show that whether a vertex triangle is flipped corresponds to whether
its corresponding vertex is in a minimum vertex cover.

> <P
q <

Figure 9: Changes in the MV assignment.

(=) Assume that the k-VERTEX-COVER instance admits a solution S. We will
construct a sequence of at most m flips that brings A into B. Note that all pink triangles
are flippable and, because no two are adjacent, flipping any subset of them will not render
an unflipped pink triangle not flippable. If a vertex is in 5, flip the vertex triangle of its
corresponding gadget. Every edge corresponds to a chain of an even number of pink triangles
between the vertex triangles of its corresponding endpoints. Since every edge e has at least
an endpoint in S, we can flip alternating pink triangles (1 + 2b. of them where b, is the
number of bends of e) so that every yellow diamond along e has an adjacent flipped triangle.
Let P be the set of faces flipped so far. Note that every face colored yellow is initially
unflippable, but at the current state at least one face in each diamond or one face in each
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group of 4 yellow triangles in a bend gadget is flippable. By flipping such a face, an adjacent
yellow face becomes flippable. Proceed by flipping all yellow faces. Note that a vertex of
a face in P is incident to exactly two yellow faces. Then, every face in P is flippable at
the current state. Now, we can flip all faces in P to obtain B. The total number of flips is
2|S| + 8|E(G)| 4 14b < m.

(<) Assume that there exists a sequence F' of flips transforming A into B. Notice
that it would suffice to flip every yellow face, however, they are unflippable in A. We show
that yellow faces are flipped exactly once and we can assume that pink faces are either not
flipped, or flipped twice. Assume that F’ does not flip a yellow face f. Then, by construction
of B, there are at least two white or pink faces that share an edge with f that must be flipped
an odd number of times. However, flipping those faces create assignments that do not match
B, hence requiring further flips. By propagating this argument, we conclude that every white
and pink face must be flipped an odd number of times, while yellow faces are either never
flipped or flipped an even number of times. The total number of flips is clearly greater then
m if k < |V(G)|, a contradiction. Therefore, yellow faces are flipped an odd number of
times. Since the yellow faces are not flippable in A, at least one face adjacent to each yellow
component must be flipped an odd number of times. If there is a white face f,, flipped
an odd number of times is adjacent to a pink face f}, that is not flipped, we can change
the flipping sequence so that f, is flipped instead of f,, because the same yellow faces (or a
superset) become flippable in both sequences. We can assume that no other faces are flipped
since they must be flipped an even number of times and they do not affect whether yellow
faces become flippable or not. Except for vertex triangles, flipping a pink face can make a
yellow face in at most two different yellow components become flippable. The number of
yellow components between vertex triangles corresponding to an edge e is odd and the total
number of yellow faces in such components is 6 4+ 10b. where b, is the number of bends od
e. Then, excluding flips of vertex triangles, at least 8 4+ 14b. are necessary for each edge e.
If an edge achieves such lower bound, then at least one of its endpoints is a vertex triangle
that was flipped an even number of times. If more than 8 4 14b, flips were performed for a
given edge e, then there is a yellow component adjacent to two pink faces that are flipped
at least twice each. We can modify the sequence while not increasing the number of flips so
that the only such yellow components are the ones adjacent to vertex triangles. In such a
solution, at most k vertex faces can be flipped by the definition of m. Then, we can obtain
a solution for the k-VERTEX-COVER instance by selecting the vertices corresponding to the
vertex faces that are flipped. O

6 Conclusion

We summarize our results in Table 1. The “Flippable Faces" column shows how many of
the faces are flippable, where “depends" indicates dependence on the specific locally valid
MYV assignment being face-flipped.

It is interesting to see how different origami tessellations require such different tech-
niques to analyze their origami flip graph structure. This indicates that face flip configura-
tion space graphs are rich in structure among all flat-foldable crease patterns.
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H Pattern ‘ Flippable Faces ‘ Config Space ‘ Min Complezity H
Square grid all connected linear
Huffman grid none maximally disconnected —

Square twist half connected linear
Miura-ori depends connected poly-time
Triangle lattice depends connected NP-hard

Table 1: A summary of the results presented.

Many questions can be posed for further work. For example: Is the NP-hardness
of finding a minimal path in the origami flip graph in the triangle lattice due to the fact
that the vertices in the crease pattern have degree 6 (aside from the boundary vertices), as
opposed to the tessellations in Sections 3 and 4 whose vertices have degree 47 Are other
origami tessellations in the engineering literature, such as [8], amenable to the face flip
techniques presented here? Specifically, in reference [8] Barreto’s “Mars" is a type of square
twist tessellation, and the chicken wire tessellation is very similar to the Miura-ori and yields
to similar analysis. But the Yoshimura and quadrilateral meshed patterns are unexplored.
More broadly, for a general flat-foldable crease pattern it is not known if finding a minimal
path in the origami face flip graph is in NP, as it is conceivable that a crease pattern family
could exist that requires an exponential number (say in the number of vertices) of face flips
to go from a specific locally valid MV assignment to another. Currently no such crease
pattern is known.
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