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Abstract

We present a thermal–mechanical–chemical-phase field model that captures the multi-physical coupling effects of pre-
cipitation creeping, crystal plasticity, anisotropic fracture, and crack healing in polycrystalline rock at various temperature
and strain-rate regimes. This model is solved via a fast Fourier transfer solver with an operator-split algorithm to update
displacement, temperature and phase field, and chemical concentration incrementally. In nuclear waste disposal in salt formation,
brine inside the crystal salt may migrate along the grain boundary and cracks due to the gradient of interfacial energy and
pressure. This migration has a significant implication on the permeability evolution, creep deformation, and crack healing within
rock salt but is difficult to incorporate implicitly via effective medium theories compared with computational homogenization.
As such, we introduce a thermodynamic framework and a corresponding computational implementation that explicitly captures
the brine diffusion along the grain boundary and crack at the grain scale. Meanwhile, the anisotropic fracture and healing are
captured via a high-order phase field that represents the regularized crack region in which a newly derived non-monotonic
driving force is used to capture the fracture and healing due to the solution–precipitation. Numerical examples are presented
to demonstrate the capacity of the thermodynamic framework to capture the multiphysics material behaviors of rock salt.
c� 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Rock salt formation has been widely considered as one of the potential repositories for nuclear waste disposal
for decades. The design of these salt repositories often involves re-consolidated crushed salt as buffer or backfill
materials to reduce excavation void space and the time required for the salt to close in around the nuclear waste.
Due to the high thermal conductivity, the low permeability, the self-healing properties, and the ready availability
of crushed salt in a repository, the re-consolidated crushed salt has attracted a significant amount of interest
and becomes a major focus point in many studies by the US Department of Energy for heat-generating waste
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Fig. 1. Microstructure of rock salt with pores and intergranular brine: (a) SEM image [19]; (b) schematic illustration.

(e.g. Kuhlman [1],Martin et al. [2]). However, during the excavation, micro-cracks may form in the salt materials
within the excavation damaged zone (EDZ) near the repository surface. Meanwhile, the reconsolidation of the
crushed rock salt (which is often used as a backfill material) will also introduce defects and impurities such as
brine, micro-cracks, pores, and a small amount of clay. These imperfections will evolve under thermal–mechanical
loadings via different mechanisms, such as the deformation-induced perlocation [3], microcrack propagation [4],
and crack healing [5–8]. To prevent leakage of the radioactive materials, it is necessary to understand how effective
permeability of rock salt evolves under different temperatures and in situ stress.

This article is Part II of the paper series Computational thermomechanics of crystalline rock, preceded by Na and
Sun [9], which focuses on the modeling of single-crystal salt. Our objective in this new contribution is to propose
a computational framework for polycrystalline rock salt that explicitly captures the rate-dependent multi-physical
coupling mechanisms that lead to a variety of anisotropic creeping, fracture, healing and plasticity under different
temperature and pressure ranges at the mesoscale level. Due to the coupling nature of the healing, fracture, solution–
precipitation creep, and heat transfer across length scales, it is difficult to derive macroscopic predictive models
that capture the interactions of those complex mechanisms via phenomenological or even microstructure-inspired
path-dependent material laws. As a result, our goal is to propose a model that directly simulate those multiphysics
phenomena occurred at the polycrystalline microstructures, rather than introducing phenomenological constitutive
laws for a homogenized effective medium [10,11].

1.1. Fracture and healing in rock salt: experimental evidence

The path-dependent deformation of polycrystalline rock salt is primarily dominated by three mechanisms across
different length and time scales — dislocation creeping, solution–precipitation, and micro-cracking dilatancy [12].
The dislocation creep typically refers to the dislocation sliding along the slip planes or climbing perpendicular
to the slip planes. Dislocation creep is the major deformation mechanism when the strain rate is larger than
1.0⇥ 10�7 s�1 [12]. When the strain rate is below 1.0⇥ 10�7 s�1, solution–precipitation becomes the major
deformation mechanism due to the existence of intergranular brine. Fig. 1 shows the typical microstructure of
a polycrystalline rock salt specimen with “island-channel” type grain boundaries. For a rock salt in a natural envi-
ronment, the grain boundary regions are usually filled with saturated brine, which assists the solution–precipitation
process. Meanwhile, the creeping due to intergranular solution–precipitation is the result of three sequential physical
processes (cf. Kruzhanov and Stöckhert [13]): (1) the dissolution of solid phase across solid/liquid interface at
high-pressure region; (2) the solute diffusion within intergranular brine due to the concentration gradient; and
(3) the solute precipitation from brine to the solid phase at the low-pressure region. The efficiency of the solution–
precipitation is pre-dominated by the slowest of these three sequential processes, which is diffusion rather than
dissolution or precipitation for wet rock salt [14]. Therefore, solution–precipitation is largely influenced by pressure
gradient [15], grain boundary structure [16], grain boundary misorientation [17], and concentration of aqueous trace
metals [18].

The long-term creep behavior is also affected by the grain boundary or crack healing process [19], which not only
reduces the permeability but also restores the stiffness [5]. Three major mechanisms account for crack healing [5,6]:
(1) instantaneous mechanical closure due to increased grain boundary normal pressure; (2) diffusive crack-healing
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driven by surface energy reduction; and (3) crack healing by recrystallization. Among these healing mechanisms,
the diffusive crack healing driven by surface energy reduction is the most important in the long term crack healing
of natural rock salt. Along with the pressure-induced solution–precipitation, the crack tip curvature also reduces
the chemical potential of the solid phase, providing an additional driving force for precipitation [5,6,16]. The crack
healing rate is controlled by solute diffusion instead of solution and precipitation [5], and the diffusivity within the
thin film is measured [6]. Moreover, a detailed observation of the brine distribution in grain boundaries has revealed
that the healed grain boundaries provide a threshold for the solution–precipitation process [19].

The deformation mechanism within the polycrystalline rock is so complicated that it is difficult for phenomeno-
logical based models to quantitatively describe dislocation creep, solution–precipitation, microcrack dilatancy,
and crack healing simultaneously. Therefore, physics-based models and explicit representation of polycrystalline
structure are necessary for a fundamental understanding and quantitative prediction of the deformation and
permeability evolution within rock salt.

1.2. Fracture and healing in rock salt: material modeling

Numerous researches have been conducted toward a unified field formulation to predict multi-physical behaviors
of rock salt and other crystalline rock. For instance, a self-consistent homogenization method is used such that the
crystal plasticity simulations were upscaled to predict the anisotropic plastic deformation of polycrystalline rock
salt [20,21]. A general kinematic framework was formulated to describe the diffusion and convection of brine and
air inclusions within polycrystalline rock salt [22]. Kruzhanov and Stöckhert [13] modeled the solution–precipitation
creep by introducing an inelastic displacement field that maximizes the creep deformation potential defined along
the grain boundary. Front tracking technique and adaptive mesh technique are combined at the expense of numerical
accuracy and efficiency to simulate grain boundary migration and diffusion in a Lagrangian framework by Bower
and Wininger [23].

Predicting crack initiation, crack propagation, and crack healing within damaged rock salt through numerical
simulations has received significant attention due to the ever-increasing demand for evaluating the permeability
of crushed salt after re-consolidation. Crack healing has traditionally been considered within the framework of
continuum damage mechanics [24,25]. A phenomenological model is proposed to describe the competitive effect
between mechanical damage and healing in the excavation damaged zone (EDZ) through continuum damage
mechanics [26]. More recently, this model is extended to capture the thermo-mechanical crack healing model
to simulate the competition between mechanical damage and crack healing in rock salt [27]. Furthermore, the
effect of solution–precipitation on the micropore healing process within polycrystalline rock salt is simulated by a
diffusion-based homogenization model in Shen and Arson [28].

While those phenomenological models can replicate some aspects of the constitutive behaviors of rock salt,
the number of material parameters required for curve-fitting is large and those material parameters often lack
significant physical underpinnings and hence over-fitting may occur when those models are used for blind predictions
[29–31]. To circumvent this situation, multiscale DEM–FEM or FEM2 approaches are sometimes used to upscale the
simplified microscopic behaviors from the grain scale to the macroscopic scale [10,32–35]. However, this upscaling
procedure is only meaningful if the interplay of the coupled mechanisms such as microcracking dilatancy, solution–
precipitation creeping, crack healing, crystal plasticity, and heat transfer can be sufficiently replicated at the grain
scale. The objective of this paper is to provide this important theoretical framework and an FFT solver that explicitly
captures these multi-physical coupling mechanisms, and as a result, enables us to explain, understand and upscaling
these responses for macroscopic predictions.

1.3. Outlines, major contributions and notations

In this paper, a thermodynamic framework is proposed which explicitly incorporates crystal plasticity, solution–
precipitation creep, strongly anisotropic cracking, and crack healing starting from the previous work [9]. The ductile
plastic deformation and dislocation creeping of each crystal grain under different temperature and confining pressure
are captured via crystal plasticity, whereas a high-order phase-field model is introduced to predict the anisotropic
crack propagation in polycrystalline rock salt with a non-convex cleavage energy determined by the preferential
fracture plane of rock salt. Meanwhile, the solution–precipitation creep is replicated by simulating the transport of



4 R. Ma and W. Sun / Computer Methods in Applied Mechanics and Engineering 369 (2020) 113184

chemical species along the grain boundary. The chemical concentration then induces deformation. This approach
is inspired by recent investigations that capture both Herring and Coble creeps at high homologous temperature
[36–38]. In this work, our new contribution is that we incorporate this diffusion problem into a unified framework
to predict how the solution–precipitation creep affects both the fracture and the healing process. Since the healing
often starts at the crack tip, we introduce a measure of the curvature of the phase-field into our derivation of
chemical potential such that the healing mechanism depends on the surface areas [5]. Finally, considering the high
computational cost of the coupled equations and the global C1 continuity requirement of the strongly anisotropic
phase-field model, an FFT-based method is adopted to solve the coupled equations in an operator split manner.

This paper will proceed as follows. Section 2 discusses the balance law for mass, linear momentum, microforce,
and energy, respectively. Section 3 presents the constitutive relation for small strain crystal plasticity, solution–
precipitation, crack healing, and high-order phase-field. In Section 4, three examples are presented to demonstrate
the capability of the proposed framework to represent the multiphysics behavior of rock salt in mesoscale. Section 5
summarizes the major results and concluding remarks.

As for notations and symbols, bold-faced letters denote tensors (including vectors which are rank-one tensors);
the symbol ’·’ denotes a single contraction of adjacent indices of two tensors (e.g. a ·b = ai bi or c·d = ci j d jk ); the
symbol ‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher (e.g. C : "e = Ci jkl"

e
kl);

the symbol ‘::’ denotes a fourth contraction of adjacent indices of tensor of rank four or higher (e.g. C :: D =

Ci jkl Di jkl); the symbol ‘⌦’ denotes a juxtaposition of two vectors (e.g. a⌦b = ai b j ) or two symmetric second order
tensors (e.g. (↵⌦�)i jkl = ↵i j�kl); the symbol ‘F’ and ‘F�1’ represent forward and backward Fourier transformation,
respectively. Materials are assumed to possess cubic symmetry throughout this paper unless specified.

2. Balance laws

In this section, the governing equations of the thermal–mechanical–chemical-phase field framework are intro-
duced. These equations constitute the boundary value problem that replicates the multiphysical material behaviors
of polycrystalline rock salt in the geometrically linear regime. We first introduce an interfacial indicator function
that defines the location of the grain boundary and regularized crack region. Then the balance principles for mass,
linear momentum, and microforce (material force) are derived by extending the model in [9]. Finally, the energy
balance equation and dissipation inequality are derived for the multiphysics problem.

2.1. Definition of interface region and indicator function

Cryogenic experiments have revealed the island—channel structure of the rock salt grain boundary region, where
the saturated brine exists and solution–precipitation occurs [19]. The solution–precipitation in return will also
influence the porosity of the grain boundary, and crack healing is enabled by the thin brine films within the crack
region [39]. However, the morphology of the grain boundary region and the crack region is highly irregular and
therefore difficult to capture via conformal meshes or embedded discontinuities [40,41]. To overcome this problem,
we introduce regularized interfacial regions represented by phase fields to capture the multiphysical coupling process
occurring along the grain boundary and the crack [36,42]. First, the indicator for the grain boundary region is
introduced as

dGB(X) =

(
0, X in the lattice region
1, X in the grain boundary region,

(1)

where X denotes the coordinate of the material point. A similar concept is also proposed in [16] to derive a
theoretical model for solution–precipitation within rock salt. The indicator for the interfacial region (including grain
boundary region and crack region) is defined as:

di (dc, dGB) = 1�
⇥
1� d2

c (X)
⇤ ⇥

1� d2
GB(X)

⇤
, (2)

where dc(X) 2 [0, 1] is the phase field of the crack region. The square terms of the phase field dc and the grain
boundary indicator dG B are consistent with Sharma et al. [42,43]. Note that in the numerical simulation, the value
of dGB within the grain interior region is a small positive number 0 < dGB ⌧ 1 instead of exact zero to avoid
singularity in the diffusion equation Eq. (42).
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Fig. 2. A schematic representation of (a) A solid body ⌦ with crack discontinuity �c and grain boundary discontinuity �G B ; (b) Grain
boundary region ⌦G B with finite thickness and grain boundary indicator dG B ; (c) A regularized crack region ⌦c by fracture phase field
dc; (d) A regularized interfacial region ⌦i = ⌦G B [⌦c by interfacial indicator di .

Consider a periodic domain ⌦ with nsd the spatial dimensions, this domain ⌦ can be divided into the bulk region
⌦bulk and the interfacial region ⌦i through the interfacial indicator (see Fig. 2):

⌦bulk = {X|di (X) < tol, X 2 ⌦}, ⌦i = {X|di (X) � tol, X 2 ⌦}, (3)

where tol 2 (0, 1) is a small enough positive number. The interfacial region contains the physical interface between
the solid and liquid phase, and also involves plastic deformation at the solid–solid contact region [16].

The actual grain boundary of rock salt has an island-channel structure, as shown in Fig. 1. NaCl ions diffuse
within the interfacial brine, together with mass transfer between the solid phase and liquid brine. The grain boundary
thickness in numerical simulation should be chosen as a compromise between the real grain boundary, where
solution–diffusion–precipitation occurs, and the computational cost. Previously, either 0.1⇥ grain size [36] or
4 µm [38] is used as the grain boundary thickness to simulate Coble creep. We choose 0.05⇥ grain size as the
grain boundary thickness in this paper. .

2.2. Balance of mass

Let ⇢s denotes the intrinsic density of solid halite, ⇢l denotes the intrinsic density of brine, c denotes the intrinsic
molar concentration of brine, and � represents the local porosity of the interfacial domain. Let D/Dt denotes the
material time derivative with respect to the solid phase, according to the mixture theory [44], the mass balance
equations can be written as:

8
>><

>>:

D
Dt [(1� �)⇢s] + (1� �)⇢sr

x · v = ��rc M, in ⌦i

D
Dt (�⇢l) + �⇢lr

x · v + rx · [�⇢l(vl � v)] = �rc M, in ⌦i

D
Dt (�c) + �crx · v + rx · [�⇢l(vl � v) + J] = �rc, in ⌦i .

(4)

Here, v is the velocity of the solid phase, vl is the velocity of the liquid phase, J is the diffusion flux, rc is the
molar dissolution rate, and M is the molar mass of halite.

We made several assumptions to simplify the mass balance equations. First, we assume that the bulk porosity �
remains constant in time scale and homogeneous in the spatial domain. Furthermore, the material parameters are
measured from upscaling a representative elementary volume which may contain voids. However, the diffusivity
of the crystalline material is mainly attributed to the interconnected interface domain, i.e. the grain boundaries and
the cracks, which can be identified from the interfacial indicator di [45]. To further simplify the model, we follow
the treatment in Garikipati et al. [36] and Villani et al. [38], which assume that the volumetric strain of the solid
constituent (and hence the porosity change) and the divergence of the Darcy’s velocity (vl � v) have negligible
effect on the solution–precipitation creep rate, the change of the liquid density and the specie concentration. While
incorporating the effect of the porosity change and the fluid flux terms could be important for leakage or for high
porosity rock salt, such an extension is out of the scope of this study and will be considered in the future. As a
result, the mass balance equations (4) can be simplified as:

8
><

>:

"̇c
= �rc⌦vn⌦ n, in ⌦i

⇢̇l = rc M, in ⌦i

ċ + rx · J = rc, in ⌦i .

(5)
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In this equation, "̇c is the solution–precipitation creep rate, ⌦v is the molar volume of solid rock salt, and n is
the normal direction of the interfacial region. The solution–precipitation creep rate "̇c is also used to model Coble
creep deformation within the grain boundary region [36–38]. The mass flux J is a function of the chemical potential
gradient. The source term rc is proportional to the difference between the equilibrium concentration ceq and the
brine concentration c, as illustrated in Section 3.2.

2.3. Balance of linear momentum and microforce

To complete the field theory, the balance laws of linear momentum and microforce (material force) are briefly
summarized. While the balance of linear momentum constrains the stress field, the microforce balance provides an
additional governing equation for the degradation evolution within the crystal grains and grain boundaries (cf. Na
and Sun [9]). Moreover, microforce corresponding to the second-order gradient of phase-field is introduced to
incorporate the strongly anisotropic fracture observed in rock salt.

First, it is assumed throughout this paper that all the governing equations and corresponding physical quantities
are defined in a cubic shape representative volume element (RVE) with periodic boundary conditions, and no body
force or inertia force is considered. As a result, the balance of linear momentum requires that the divergence of the
Cauchy stress � vanishes everywhere:

r
x
· � = 0. (6)

The Cauchy stress � is, under small strain assumption, power-conjugate with the infinitesimal strain rate "̇. The
strain energy equivalence principle is adopted here to simplify the coupling relationship between the phase field
and the Cauchy stress, where we assume that a fictitious undamaged body exists with possibly unbalanced linear
momentum corresponding to the damaged counterpart. The total stress � within the damaged body and the effective
stress �̂ within the undamaged body are assumed to be co-axial and can be related by introducing a scalar
degradation function g(dc), defined as

� = g(dc)�̂ , g(dc) = (1� k)(1� dc)2
+ k (7)

where 0 < k ⌧ 1 represents the residual portion of stiffness within the damaged region to retain the well-posedness
of the problem. Note that the degradation function g(dc) is an isotropic function of the phase field dc, so that the
fictitious effective stress �̂ and the actual stress � are coaxial. The phase field anisotropy is incorporated in the
phase field free energy  d in Eq. (24).

The existence of microforce power conjugate to the phase-field is postulated together with the balance law for the
microforce, such that the phase-field theory can be incorporated into the coupling equations with thermodynamic
consistency [46]. Supposing that ⇡ , ⇠ , and ⌘ are the microforces power conjugate to the phase field ḋc and its first
rx ḋc and second order gradient rxrx ḋc respectively, then the balance law of the microforces requires that

⇡ �rx
· ⇠ + (rx

r
x) : ⇣ = 0. (8)

It is also assumed that the body force of the microforces vanishes.
The anisotropic microfracture can be incorporated into the crystal plasticity model to predict the brittle–ductile

transition in rocks [47]. Here, we try to model the microcrack propagation explicitly in order to provide a deep
understanding of the multi-physics material process within rock salt. Note that in our previous work [9], multi-phase-
field is adopted for strongly anisotropic fracture. While this approach is feasible to replicate strongly anisotropic
fracture, the introduction of multiple phase fields may significantly increase the computational resources required to
solve the problems numerically. To improve efficiency, we have adopted the higher-order phase field fracture model
(cf. Li et al. [48],Li and Maurini [49] where only one phase field is required to replicate the strong anisotropy.
The global continuity of the interpolated phase field required to resolve the higher-order terms is fulfilled by the
trigonometric function basis of the FFT model [50].

2.4. Balance of energy and dissipation inequality

In this section, the thermodynamic laws are presented in terms of the mechanical work, structural heating, crack
surface energy, and chemical potential. Our starting point is the derivation from Na and Sun [9] with the following
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improvements and modifications. (1) A high-order phase-field is introduced to replace the multi-phase-field to
improve computational efficiency and to reduce the number of material parameters. (2) The dissipation due to
fluid diffusion as well as those due to dissolution and precipitation are incorporated in the formulation to model
the solution–precipitation creeping and crack healing.

The total infinitesimal strain " is therefore decomposed into three parts:

" = "e
+ " p

+ "c, (9)

where "e is the elastic strain, " p is the plastic strain, and "c is the strain caused by the solution and precipitation
of intergranular brine.

Define e as the internal energy per unit volume. The first law of thermodynamics requires that the internal energy
changing rate ė equals to the total energy input rate:

ė = � : "̇ �rx
· q + r✓ + ⇡ ḋc + ⇠ · r

x ḋc + ⇣ :
�
r

x
r

x ḋc
�
+ µċ � J · r

xµ + (µse � µ) rc, (10)

where q is the thermal flux, r✓ is the heat source, µ is the chemical potential of the salt solute within the
intergranular brine, and µse is the chemical potential of the rock salt in solid phase. The thermal, mechanical, and
chemical part of the external energy input rate is consistent with Gurtin et al. [51] and Anand [52]. The internal
energy corresponding to the phase field and its gradient is consistent with Part I of this paper series [9], except that
the high order term ⇣ :

�
rxrx ḋc

�
is introduced for strong anisotropy. The internal energy changing rate due to

solution and precipitation across the solid–liquid interface (µse � µ) rc is also incorporated similar to the model for
Li ions battery [53] and polycrystalline rock [54]. Here, the chemical potential of the solid phase µse is a function
of the stress and the solid–liquid interfacial radius [16,54], as shown in Eq. (39). Furthermore, the Clausius–Duhem
inequality takes the following form [51]:

Z

V

⇣
⌘̇ �

r✓
✓

⌘
dV +

Z

@V

⇣q
✓

⌘
· n dS � 0, (11)

where ⌘ is the entropy per unit volume, and V is an arbitrary domain within ⌦ with n represents the outward-
pointing normal direction. The local form of the Clausius–Duhem inequality Eq. (11) reads:

⌘̇ � �rx
·

⇣q
✓

⌘
+

r✓
✓

. (12)

Consider that the energy balance equation Eq. (10) can be re-written as:

�r
x
·

⇣q
✓

⌘
+

r✓
✓

=
1
✓

�
�r

x
· q + r✓

�
+

1
✓2 q · r

x✓

=
1
✓

h
ė � � : "̇ +

1
✓

q · r
x✓ � ⇡ ḋc � ⇠ · r

x ḋc � ⇣ :
�
r

x
r

x ḋc
�

�µċ + J · r
xµ� (µse � µ) rc

i
,

(13)

the local entropy inequality Eq. (12) can be re-written by substituting the above equation as:

ė � ✓⌘̇ � � : "̇ +
1
✓

q · r
x✓ � ⇡ ḋc � ⇠ · r

x ḋc � ⇣ :
�
r

x
r

x ḋc
�
� µċ + J · r

xµ� (µse � µ) rc  0. (14)

The Helmholtz free energy  is introduced through the Legendre transformation of the internal energy e as:

 = e � ✓⌘. (15)

Then, the local entropy inequality Eq. (14) can be written as the free energy inequality:

 ̇ � ⌘✓̇ � � : "̇ +
1
✓

q · r
x✓ � ⇡ ḋc � ⇠ · r

x ḋc � ⇣ :
�
r

x
r

x ḋc
�
� µċ + J · r

xµ� (µse � µ) rc  0. (16)

We assume that the Helmholtz free energy  takes the general form:

 =  
�
"e, dc,r

xdc,r
x
r

xdc, c, ✓
�
, (17)
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following the treatment in Anand [55] where the free energy  is assumed to be independent of the internal variable
⌧̃ . Then, the free energy inequality Eq. (16) can be written as

D =

✓
� �

@ 

@"e

◆
: "̇e

+ � : "̇ p
�

✓
⌘ +

@ 

@✓

◆
✓̇ �

1
✓

q · r
x✓

+

✓
⇡ �

@ 

@dc

◆
ḋc +

✓
⇠ �

@ 

@rxdc

◆
· r

x ḋc +

 

⇣ �
@ 

@
�
rxrx ḋc

�
!

:
�
r

x
r

x ḋc
�

+

✓
µ�

@ 

@c

◆
ċ � J · r

xµ + � : "̇c
+ (µse � µ) rc � 0.

(18)

According to the Coleman–Noll argument, the arbitrary changing rate of the state variables "̇e, ✓̇ , and ċ requires
that:

� =
@ 

@"e , ⌘ = �
@ 

@✓
, µ =

@ 

@c
. (19)

Furthermore, the arbitrariness of the phase field ḋc and its gradient rx ḋc and
�
rxrx ḋc

�
requires that:

⇡ =
@ 

@dc
, ⇠ =

@ 

@rxdc
, ⇣ =

@ 

@
�
rxrx ḋc

� . (20)

With the Coleman–Noll argument Eqs. (19) and (20), the dissipation inequality Eq. (18) can be simplified as:

D = � : "̇ p
| {z }
Dloc

�
1
✓

q · r
x✓

| {z }
Dcon

�J · r
xµ| {z }

Ddi f f

+ � : "̇c
+ (µse � µ) rc| {z }

Dtran

� 0, (21)

where Dloc represents the mechanical dissipation, Dcon represents the thermal conduction dissipation, Ddiff represents
the diffusion dissipation, and Dtran represents the dissipation due to dissolution and precipitation.

A sufficient condition for the total dissipation D to be non-negative is that all the dissipation components are
non-negative individually. The diffusion dissipation and solution–precipitation dissipation are given by

(
Ddiff = �J · rxµ � 0
Dtran = � : "̇c

+ rc (µse � µ) = rc [µse � µ� ⌦v� : (n⌦ n)] � 0.
(22)

These two inequality conditions pose restrictions to the admissible mass diffusion and solution–precipitation
constitutive relations as shown in Section 3.2. The thermal conduction dissipation Dcon is guaranteed positive by
the Fourier’s law and a positive scalar thermal conductivity  (or a positive definite thermal conductivity tensor).
The Fourier’s law is used to correlate the heat flux q and the temperature ✓ :

q = �rx✓ (23)

where the scalar variable  is the isotropic thermal conductivity.

2.5. A specific form of free energy

The following expression is adopted for the total free energy  , which is split into the elastic free energy  e,
the crack surface energy  d , the chemical free energy  c, and the thermal contribution of the stored energy  ✓ :

 =  e("e, ✓, dc) +  d (dc,r
xdc,r

x
r

x ḋc) +  c(c, ✓) +  ✓ (✓ ). (24)

A specific form of free energy is proposed based on our previous work [9] with the following modifications:
(1) Chemical free energy  c is included for solute diffusion within interfacial brine; (2) High-order phase-field
cleavage energy is used instead of multi-phase-field cleavage energy; (3) An initial phase-field penalizing term is
included to avoid the sharp material contrast between the crack region and the intact region. The five parts of the
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Fig. 3. Phase field distribution when the phase field value at the center is enforced as unity. The phase field distributions minimize the total
phase field free energy  d . (a) Phase field distribution corresponding to isotropic phase field free energy (A = I); (b) Phase field distribution
corresponding to low-order phase field, where phase field is a convex function with one preferential cleavage direction [50]; (c) Phase
field distribution corresponding to high-order phase field in Eq. (25), where phase field is a non-convex function with two perpendicular
preferential cleavage directions determined by the fourth order anisotropic tensor A.

Helmholtz free energy  take the following form:
8
>>>>><

>>>>>:

 e = g(dc)we
+

("e, ✓) + we
�

("e, ✓)

 d = Gc


1

2l0
d2

c +
l0
4 r

xdc · rxdc +
l3
0

32

�
rxrx ḋc

�
: A :

�
rxrx ḋc

�
+

1
2�i p f (dc � 1)2

�

 c = µ0c + R✓c
⇣

ln c
c0
� 1

⌘

 ✓ = cv [(✓ � ✓0)� ✓ ln(✓/✓0)]

(25)

Here, Gc is the cleavage energy per unit mass, l0 is the character length, �i p f is the penalty coefficient for the initial
phase field, ✓0 is the initial temperature, and cv is the specific heat coefficient per unit mass. The 4th order tensor
A makes the phase field free energy  d an anisotropic function of the phase field dc as shown in Fig. 3, where
the spatial distribution of the phase field dc is a non-convex function with two preferential cleavage direction. The
isotropic phase field free energy  d can be recovered by replacing A with the 4th order identity tensor I. Note that
in the mesoscale Coble creep models, either statistical thermodynamics based chemical free energy density  c [36]
or classical lattice-void free energy density  c [37,38] is utilized. For the interfacial brine, the chemical free energy
density  c for ideal fluid is used, although other choices remain applicable.

The positive part we
+

and negative part we
+

of the elastic strain energy in equation Eq. (25) are also defined to
avoid crack propagation under volumetric compression:

(
we

+
=

1
2 K h"e

vi
2
+

+ µ
�
"e

d : "e
d
�
� 3↵K (✓ � ✓0)h"e

vi+

we
�

=
1
2 K h"e

vi
2
�
� 3↵K (✓ � ✓0)h"e

vi�,
(26)

where "e
v is the volumetric elastic strain, "e

d is the deviatoric elastic strain, ↵ is the thermal expansion coefficient,
and K and µ are Lamé constants.

To further simplify the balance of energy equation, we assume that the entropy change due to chemical diffusion
and crack propagation is negligible compared with plastic dissipation, such that:

✓
@2 

@✓@c
ċ = R✓ ln

c
c0

ċ ⌧ Dloc, ✓
@2 

@✓@dc
ḋc = �3↵✓K g0(dc)h"e

vi+ḋc ⌧ Dloc. (27)

Substitute the Legendre transformation Eq. (15) and the specific form of free energy  Eq. (24) into the energy
balance equation (Eq. (10)), and consider the Coleman–Noll arguments (Eq. (19)) and (Eq. (20)) and the above
equation, the energy balance equation can be written as:

cv ✓̇ = ✓
@2 

@✓@"e : "̇e
+ � : "̇ p

�r
x
· q + r✓ = �3↵K ✓ I : "̇e

+ � : "̇ p
�r

x
· q + r✓ . (28)

Considering that the phase field dc is non-conserved and brittle fracture (instead of creep damage) is rate-
independent, Ginzburg–Landau type phase-field equation is derived based on the specific form of free energy  (24).
Substitute the Coleman–Noll relation (20) into the microscopic force balance equation (8), and assuming that the
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fourth order anisotropic tensor A is piecewise constant:

Gc

l0
dc �

Gcl0

2
r

x
· r

xdc +
Gcl3

0

16
A :: r

4dc + �i p f (dc � 1) = 2 (1� dc)H, dc 2 H 4
# , (29)

where H 4
# denotes the Sobolev space of ⌦ -periodic functions [56]. Note that the 4th order gradient of the phase field

dc exists in the strong form Eq. (29), the 4th order derivative of the solution field should be quadratically integrable.
Here, the phase field driving force H is a function of the fictitious stored strain energy without degradation:

H = max
⌧2[0,t]

⇣
we

+

⌘
, (30)

where the positive part of the elastic stored energy we
+

and the accumulated plastic work w p will be introduced in
the following section. The Macaulay brackets h·i represent the ramp function. The plastic deformation threshold
w

p
0 is introduced to control the contribution from accumulated plastic work w p to ductile fracture. Note that the

phase-field driving force H in Eq. (30) is monotonically increasing, which will be modified in Section 3.3 to enable
diffusion controlled crack healing.

3. Constitutive relations

This section introduces the constitutive relations used in this paper. First, a small strain crystal plasticity model
is revisited with a Voce type hardening relation. Then, a diffusion model is introduced which allows the solution,
diffusion, and precipitation of NaCl solute along the grain boundary region and the crack region. Chemical potential
depending on pressure and solid/liquid interface curvature is considered which enables pressure gradient driven and
crack tip driven solution and precipitation. Finally, a fourth-order anisotropic tensor representing the preferential
cleavage direction is presented for the high-order phase-field model, together with a modified phase-field driving
force to enable diffusion-controlled crack healing.

3.1. Small strain crystal plasticity

The current small strain crystal plasticity model is re-formulated based on the finite strain counterpart [57,58].
The elastic constitutive relation is derived based on the effective stress �̂ defined in Eq. (7), the additive
decomposition in Eq. (9), the Coleman–Noll argument in Eq. (19), and the elastic free energy in Eq. (25) as:

�̂ = Ĉ : "e, "e
= " � " p

� "c (31)

where � is the Cauchy stress, " is the total strain rate, "✓ is the thermal expansion, "c is the chemical
deformation, and C is the 4th order elastic stiffness tensor. The chemical deformation is an explicit function of
the solution–precipitation rate rc, as defined in Eq. (5).

In polycrystalline material, the plastic strain is achieved by dislocation slide on each slip system. Let n(s) and
b(s) represent the normal and slip direction of the (s) th slip system, Then the total plastic strain is the tensorial
summation of the shear strain on each slip system:

"̇ p
=

nslipX

s=1

�̇ (s)m(s), m(s)
= sym

�
b(s)
⌦ n(s)� . (32)

For small strain problem, the anti-symmetric part of the slip system does not contribute to the plastic strain.
In this investigation, the Voce model is adopted as the constitutive relation considering that rock salt is strain rate

sensitive. Note that the Voce model is temperature independent, and temperature dependence can be introduced by
replacing the Voce model by other crystal plasticity models such as the mechanical threshold (MTS) model [59].
The relationship between the shear strain rate of the (s) th slip system �̇ (s) and the resolved shear stress ⌧ (s) is
assumed to follow the power law:

�̇ (s)
=
�̇0

⌧̃

����
⌧ (s)

⌧̃

����
n�1

⌧ (s). (33)
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Here, �̇0 is the reference slip rate, and ⌧̃ is the isotropic hardening variable. In this model, Taylor hardening is
assumed where all slip systems contribute equally to the hardening variable ⌧̃ . The slip system resistance ⌧̃ is
decomposed into the intrinsic (yield) resistance ⌧y and the extrinsic (hardening) resistance ⌧w

⌧̃ = ⌧y + ⌧w. (34)

The extrinsic resistance ⌧w evolves as a function of the slip system activity �̇ (s)

⌧̇w = h0

✓
1�

⌧w

⌧v

◆m nslipX

s=1

���̇ (s)�� (35)

where ✓0 is the initial hardening rate, and the work hardening saturation strength ⌧v sets the upper bound of ⌧w.
The exponents m and n are separate parameters. Note that the hardening variable ⌧̃ is monotonically increasing, so
the current crystal plasticity model is not suitable for creep loading. Dislocation creep deformation can be modeled
by introducing a dislocation annihilation model [60].

3.2. Constitutive relation for interfacial diffusion

This section provides the derivation of the constitutive relation for the diffusion problem. To capture the
fully coupled chemical–mechanical effect, the constitutive relation for the chemical potential µ is derived from
a corresponding Gibbs free energy [36]. We assume that the chemical potential of the solute in brine does not
explicitly depend on stress. Hence, the chemical potential µ [unit: J mol�1] for ideal solution is derived based on
the Coleman–Noll argument Eq. (19) and the chemical free energy Eq. (25) as:

µ = µ0 + R✓ ln
c
c0

, r
xµ =

R✓
c
r

xc + R ln
c
c0
r

x✓, (36)

where µ0 and c0 are the reference chemical potential and reference concentration, respectively.
The diffusion of brine along grain boundaries and cracks contributes to the solution–precipitation creep and crack

healing. It is assumed that the diffusion coefficient D0 is independent of the grain boundary normal pressure, so
that the diffusion equation remains linear. Assuming that the temperature-gradient driven diffusion is negligible
compared with the concentration-gradient driven diffusion, the flux of the salt solution J along the grain boundary
is proportional to the gradient of the chemical potential µ, i.e.,

J = �
di (dc, dGB) D0c

R✓
r

xµ = �di (dc, dGB) D0r
xc (37)

where D0 [unit: mm2 s�1] is the diffusion coefficient of saturated salt solution. This diffusion coefficient D0 is a
positive scalar such that the diffusion dissipation Ddiff is non-negative. The interface indicator di (dc, dGB) ensures
that the diffusion flux outside the interfacial region ⌦i approximately vanishes [42].

Assuming that the brine concentration is close to the halite equilibrium concentration ceq , the solution–
precipitation rate rc is proportional to the difference between the equilibrium concentration ceq and current
concentration c based on the experimental observations on mineral solution–precipitation [15,18]:

rc = di (dc, dGB)↵sks
�
ceq � c

�
, (38)

where ↵s [unit: mm�1] is a material coefficient which is inversely proportional to the grain boundary thickness,
and ks [unit: mm s�1] is the solution–precipitation coefficient which denotes the speed of salt migrating across
the solid/liquid interface. Note that the solution coefficient ks is positive such that the second part of Dtran � 0.
In Eq. (38), the equilibrium concentration ceq depends on the pressure, temperature, and solid/liquid interface
curvature [61]. If the current concentration c is lower than the equilibrium concentration ceq , the solution rate
is larger than the precipitation rate and the source term rc is positive; otherwise, the source term rc is negative.
Note that the new crack region is assumed to be filled promptly with saturated salt solution.

Remark 1. The material coefficient ↵s is introduced to fix the difference of the source term between Eq. (38)
and the expression in Alkattan et al. [18]. In Eq. (38), the source term rc has the unit mol m�3 s�1, while the
source term rc in Alkattan et al. [18] has the unit mol m�2 s�1 representing the amount of salt migrating across the
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solid/liquid interface. In this paper, the material coefficient ↵s [unit: mm�1], which is inversely proportional to the
grain boundary thickness, converts the surface source term to the volumetric source term by assuming that the mass
migration across the interface region is evenly distributed across the grain boundary region. This coefficient also
includes the ratio between the actual grain boundary area and the homogenized grain boundary area.

Furthermore, the crack tip curvature may also influence the chemical potential of the solid phase and provide
the driving force for diffusion-controlled crack healing. In the meantime, the equilibrium chemical concentration
Ceq of the interfacial brine can be derived through the equality between the solid-phase chemical potential µse and
the brine chemical potential µ at equilibrium status. At the room temperature, the chemical potential of the solid
phase µse is a function of the pressure p and principle curvature 1/r (only one component for 2D):

µse = f + p⌦v +
⌦v�sl

r
= µ0 + 2R✓ ln

Ceq

C0
, (39)

where f is the free energy of the solid phase under atmospheric pressure, ⌦v is the molecular volume of the solid,
�sl is the interfacial energy between solid and liquid phase, and µ0 and C0 are the reference chemical potential
and concentration. The crack tip radius is positive for convex a solid interface. With the expression in Eq. (36) for
chemical potential, the equilibrium concentration ceq is defined such that the chemical potential of the solute in
brine equals to that of the adjacent solid-phase µse. Therefore, the equilibrium concentration (ceq ) at crack tip can
be written as an explicit function of the pressure p and principle curvature 1/r (2D):

ceq = c0
eq exp

✓
p⌦v

2RT
+
�sl⌦v

2r RT

◆
⇡ c0

eq

✓
1 +

p⌦v

2RT
+
�sl⌦v

2r RT

◆
, (40)

where c0
eq is the equilibrium concentration at atmosphere pressure and room temperature with a straight solid–liquid

interface.
When using the phase-field model to predict the fracture behavior, it is usually assumed that the crack tip is sharp

and the crack tip radius is zero when the length-scale parameter l0 approaches zero. Therefore, it is impossible to
compute the crack tip curvature numerically. To overcome this problem, a user-input crack tip radius is assigned to
the crack tip region with the help of the Heaviside function H (x) for 2-dimensional case:

r =

(
r0, l3

0

���rxrxdc �r
2dc I

�
· rxdc

�� � tol.
1, otherwise

(41)

where tol is the tolerance to differentiate the crack tip region from the crack region. Note that the second-order
gradient of the phase-field is difficult to compute in finite element method, since the gradient of the polynomial shape
function is not continuous across the element edge. The effect of Eq. (41) in capturing the crack tip region is shown
in Fig. 4, where the phase field dc is computed by the penalty term with H = 0 in Eq. (29). Fig. 4(a) and (b) show
the phase field and crack tip indicator of a ‘C’ shape crack, while Fig. 4(c) and (d) show the phase field and crack
tip indicator of two crossed cracks. The proposed criterion is effective in capturing the crack tip region even for a
curved crack. Note that Eq. (41) can be only applied for high-order phase-field model. For second-order phase-field
model, the second-order gradient has singular values, which will cause numerical issues when determining the crack
tip region.

Combining Eqs. (5), (37), and (38), the final form of the diffusion equation can be written as:

ċ � D0r
x
·
�
dir

xc
�

= di (dc, dGB)↵sks
�
ceq � c

�
, (42)

where the equilibrium concentration ceq depends on local pressure and solid–liquid interface curvature.

3.3. Constitutive relations for anisotropic phase field and crack healing

In this section, the anisotropic tensor A for the high-order phase field problem (29) is introduced. Furthermore,
a crack propagation driving force H taking account of both cracking and healing is proposed.

In the high-order phase-field problem (29), the fourth-order anisotropic tensor A forms non-convex cleavage
energy in the polar plot. For material with cubic symmetry, the anisotropic tensor A adopts the general form [62]:

A = I + ↵ap f (A1 ⌦ A1 + A2 ⌦ A2) + �ap f sym(A1 ⌦ A2), (43)
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Fig. 4. Effectiveness of using Eq. (41) to detect the crack tip region. Both the phase field and the crack tip indicator are computed
numerically with spectral basis functions. The crack region detection criteria takes the value l3

0
���rxrxdc �r

2dc I
�
· rxdc

��. (a) Initial
phase field distribution of curved crack using high-order phase-field model; (b) Crack tip determination criteria of curved crack; (c) Initial
phase field distribution of intersecting crack using high-order phase-field model; (d) Crack tip determination criteria of intersecting crack.

where I is the fourth order identity tensor, ↵ap f and �ap f are material parameters penalizing the anisotropy, and A1
and A2 are second order anisotropic tensors determined by the preferential cleavage plane of rock salt. The phase-
field problem reduces to an isotropic case if the coefficients ↵ap f and �ap f vanish. In order for the anisotropic tensor
A to be positive definite, the following criteria shall be met:

↵ap f > �1, |�ap f | < 2|1 + ↵ap f | (44)

Let a1 and a2 represent the normal directions of two perpendicular cleavage planes of single crystal rock salt which
are determined by the initial orientation, then the second order anisotropic tensors A1 and A2 can be defined as:

A1 = a1 ⌦ a1, A2 = a2 ⌦ a2. (45)

In the typical phase-field based brittle fracture model, the driving force H is forced to be monotonically increasing
by keeping its maximum historical value, since the crack healing process is not prevented by the thermodynamic
laws. Herein, it is assumed that the healing process is activated when the total strain is volumetric compression
by allowing the phase-field driving force to decrease. The phenomenological model for halite cleavage plane
healing based on solution–precipitation kinetics is proposed in this paper, considering that the stiffness recovery
rate becomes slower along with the healing process [28]:

Hn+1 = max
⇥
Hn � ↵hHnh�rciVm�t, we

+

⇤
. (46)

Here, w
p
0 is the reference plastic work controlling the contribution of accumulated plastic work w p on phase field

evolution, and ↵h is a non-dimensional coefficient indicating the percentage of contribution from precipitation to
stiffness recovery.

Note that the crack healing is also possible when the crack is opening [6]. In this case, the healing process is
accomplished through solution–precipitation in a thin water film coated on the crack wall. This process is much
slower than the crack closure case when the crack region is filled with brine, and therefore is not considered in this
model.

4. Numerical aspect on FFT-based method

The boundary value problem consists the following governing equations: balance of linear momentum equation
Eq. (6), the energy balance equation Eq. (28), the phase field problem Eq. (29), and the diffusion equation Eq. (42).
These coupled equations are solved in an operator-split manner by a collocation FFT-based solver to take advantage
of its globally C1 continuous basis functions and more efficient computational cost.

The mechanical equation can be efficiently solved by the matrix-free conjugate gradient method [63,64], even
though the equivalent stiffness matrix is non-symmetric. Balance of linear momentum (6) can be re-formulated in
a periodic domain with the help of the Green’s operator G independent of the reference material [65]:

(
G ⇤ � = 0 in spatial domain
F
�1
h
Ĝ : F (� )

i
= 0 in frequency domain.

(47)
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Here, the operator ⇤ denotes convolution, which can be computed conveniently in the frequency domain. The
Green’s operator G used in this paper is independent of the reference material, which projects an arbitrary strain
field to its compatible part. The major idea of the Newton–Krylov method is to use an iterative linear solver to
solve the linearized form of Eq. (47), but instead of assembling the stiffness matrix, the convolution operation is
performed utilizing FFT. Compared with the traditional fixed-point scheme, accelerated scheme, and the augmented
Lagrangian scheme, the Newton–Krylov method generally exhibits better numerical efficiency. However, a major
trade-off is that the Newton–Krylov method fails to converge when the spatial domain contains jump conditions
such as a sharp contract of material properties. This issue can be alleviated numerically by replacing the sharp
material contract with regularized interfacial representation via implicit function and introducing a residual stiffness
for a completely damaged zone. Note that due to the periodic nature of the trigonometric basis functions and the
numerical efficiency of the FFT-based method, the FFT-based method is frequently used for homogenization and
concurrent multiscale modeling [66]. The numerical efficiency of the microscale simulation within the multiscale
modeling can be improved by reducing the number of basis functions in FFT-based method [67], or using discrete
harmonics based homogenization [68].

The temperature field is updated in a semi-implicit fashion using the FFT-based method [69]. The temperature
field can be directly updated semi-implicitly when the thermal conductivity  and specific heat Cv are homogeneous
and temperature independent, where the temperature increasing rate ✓̇ is approximated by first-order backward
difference and the heat source is approximated by first-order Adams–Bashforth approximation. By taking the strain
energy dissipation from the last converged step, the temperature field update at step (n + 1) can be performed in
the frequency domain as:

✓̂n+1 =
Cv ✓̂n + r̂✓ + F

⇥
� n : "̇ p

n � 3↵K ✓n I : "̇e
n
⇤

Cv + k · k�t
(48)

where k is the frequency vector, �t is the time step increment, and ·̂ denotes quantities in the frequency domain.
The continuum form of the high-order phase-field (29) defined in the periodic RVE can also be solved by the

FFT-based spectral method. The gradient operator and Laplacian operator can be conveniently computed in the
frequency domain, and the Gibbs effect can be alleviated utilizing the finite-difference based frequency vector.
Assuming that the anisotropic tensor A, the cleavage energy Gc, and length scale l0 are piecewise constant and
periodic, the continuous linear equation (29) can be discretized as:

✓
2H +

Gc

l0
+

Gcl0

2
F
�1k · kF +

Gcl3
0

16
A :: F

�1k ⌦ k ⌦ k ⌦ kF + �i p f

◆
dc = 2H + �i p f . (49)

The stiffness matrix is not Hermitian unless the anisotropic tensor A is homogeneous, therefore the generalized
minimal residual (GMRES) method is used to solve this equation. A modified driving force H based on Eq. (46)
instead of a typical monotonically increasing driving force (30) is used to allow diffusion-controlled crack healing.
Also, the initial defect region is enforced by the penalty method to avoid sharp material contrast, which leads to
deteriorated convergence behavior of the mechanical equation (47).

The diffusion equation (42) can be discretized by estimating the gradient operator in the frequency domain:
(h

1 + ↵sks�tdi � �̄F
�1(i k) · (i k)F � F

�1(i k) ·

⇣
F �̃(x)F�1(i k)F

⌘i
cn+1 = cn + ↵sks�tdi ceq

�(x) = �̄+ �̃(x) = di D0�t.
(50)

The stiffness matrix is Hermitian, so the conjugate gradient (CG) method is used to solve this equation. The
equilibrium concentration ceq depends on the pressure field and phase-field of last converged time step. The
diffusion equation is more involved to be solved by the FFT-based spectral method in two aspects. First, the material
parameters are continuously varying making it impossible to update the concentration field semi-implicitly. Although
the varying diffusivity can be split into a volume average part and a perturbation part [69], a fully implicit scheme
is adopted considering that the solution–diffusion–precipitation process requires a long time step [42]. Second,
the large diffusivity contrast between the interfacial region and the bulk region is highly heterogeneous and will
introduce numerical issues. This problem can be alleviated by selecting a proper diffusivity residual for the bulk
region.

The coupled thermo-chemo-mechanical-phase field equations are solved in a staggered iterative scheme. The
detailed algorithm is presented in Algorithm 1. For the mechanical problem, either average stress components or
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strain components are provided at the start of each time step, and the stress/strain components are mutually exclusive.
For example, the following average stress/strain could serve as the boundary condition for displacement-controlled
uniaxial tension:

�̄ =

2

4
⇤ 0 0
0 0 0
0 0 0

3

5 , "̄ =

2

4
"̄11 ⇤ ⇤

⇤ ⇤ ⇤

⇤ ⇤ ⇤

3

5 . (51)

Two Newton iterations are utilized to solve this problem. The outer iteration updates the average strain components
based on the strain boundary condition and the deviation between average stress and stress boundary condition.
The inner iteration solves the Lippmann–Schwinger equation with the most updated strain components. Then, the
thermal equation, the diffusion equation, and the phase-field equation are solved successively. The internal variables
and the equilibrium concentration ceq are updated at the end of each time step.
Algorithm 1: FFT-based thermal–mechanical phase field problem.

1 for n 1 to nstep do
2 if Strain boundary condition then �"̄ = �"̄BC ;
3 else �"̄ = C̄�1

n ��̄ BC ;
4 while true do
5 "n+1 = "n+1 + �"̄ ;
6 solve for �"̃: G ⇤ (Cn : �"̃) = �G ⇤ (Cn : �"̄) ;
7 update "n+1: "n+1 = "n+1 + �"̃ ;
8 while R > tol. do
9 �" = "n+1 � "n � ↵(✓n � ✓n�1)I ��"c

10 update � n+1: � n+1 = f (�", � n, dc, history) ;
11 solve for �"̃: G ⇤ (Cn+1 : �"̃) = �G ⇤ � n+1 ;
12 update "n+1: "n+1 = "n+1 + �"̃ ;
13 update residual: R = k�"̃k ;
14 end
15 �̄ = h� n+1i ;
16 if k�̄�� BCk

k�̄k
< tol. then break;

17 update C̄n+1 using equation;
18 update �"̄: �"̄ = �C̄�1

n+1 (�̄ � � BC) ;
19 end
20 Update temperature ✓ by solving Eq. (48) ;
21 Update phase field dc by solving equation Eq. (49) ;
22 Update chemical concentration c and chemical source rc by solving equation Eq. (50) ;
23 Update internal variables ⌧̃ from step n + 1 to step n ;
24 compute ceq from Eq. (40), H from Eq. (46), �"c from Eq. (5) ;
25 end

5. Examples

In this section, numerical examples are presented to demonstrate the capability of the proposed numerical
framework in capturing the coupled physical process in rock salt. In particular, the interplay among crystal plasticity,
strongly anisotropic cracking, solution–precipitation, and crack healing is, for the first time, replicated explicitly
in numerical simulations. We first calibrate the material model for crystal plasticity with data available from the
literature. Then we introduce physics-based material parameters for the phase-field fracture, thermal diffusion
and chemical transport. Then, a polycrystalline RVE creep simulation with constant stress boundary condition
is performed to illustrate the solution–precipitation creep within the interfacial region. A polycrystalline RVE
simulation with monotonically increasing loading is performed to capture the competition between intergranular and
intragranular fracture in polycrystalline rock salt. Finally, a cyclic loading numerical example is used to demonstrate
the capability of the proposed crack healing model in capturing the diffusion-controlled crack healing.
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Table 1
Material properties for crystal plasticity.

Parameters Description Value Unit Reference

E Elastic modulus 38.0 GPa Na and Sun [9]
⌫ Poisson’s ratio 0.25 – Na and Sun [9]
n Rate sensitivity exponent 15.0 – –
�̄ Rate normalization factor 1.0⇥ 10�10 s�1 –
⌧y Initial yield stress 0.5 MPa –
⌧v Saturation stress 10.0 MPa –
m Hardening exponent 1.0 – –
h0 Initial hardening rate 30.0 MPa –

Table 2
Material properties for strongly anisotropic phase field.

Parameters Description Value Unit Reference

Gc Cleavage energy 1.15 J m2 Na and Sun [9]
l0 Length scale 1.0 ⇥10�5 m Na and Sun [9]
�i p f Initial phase field penalty 1000.0 – –
↵ap f Anisotropy factor 1.2 – –
r0 Crack tip radius 0.5–5 µm Koelemeijer et al. [6]
�ap f Anisotropy factor 1000.0 – –

Table 3
Material properties for thermal problem.

Parameters Description Value Unit Reference

↵ Thermal expansion coefficient 11.0⇥ 10�6 K�1 Na and Sun [9]
cv Specific heat 2.0⇥ 106 J m�3 K�1 Na and Sun [9]
 Thermal conductivity 2.0 W m�1 K�1 Na and Sun [9]

5.1. Simulation setup and material model calibrations

Rock salt single crystal exhibits a face-centered-cubic (FCC) structure. Along with the typical {111}h11̄0i slip
systems, two other slip systems are also observed including {110}h11̄0i and {100}h11̄0i. The {110}h11̄0i slip system
has the lowest critical resolved stress at room temperature [70], while the other two slip systems have 6 times
larger critical resolved shear stress than {110}h11̄0i [20,21]. Note that the {110}h11̄0i slip system provides only
two independent variants, while five independent variants are required to accommodate an arbitrary plastic strain.
In this paper, only the {110}h11̄0i slip system is considered to be consistent with our previous work [9].

The single crystal uniaxial compression experiments from Carter and Heard [70] are used to calibrate the crystal
plasticity parameters. The elastic constants of single crystal rock salt are from Carter and Norton [71]. Although
rock salt has a cubic symmetry crystal structure, its elastic anisotropy factor is almost one, so isotropic elastic
constants are used. Since the Voce model Eqs. (33)–(35) are independent of temperature, only room temperature
stress–strain curves are used with three different strain rates. A single crystal RVE is loaded in the [001] direction
with uniaxial compression boundary conditions. The calibrated material parameters for crystal plasticity are shown
in Table 1. The comparison between the experiment and the simulation is shown in Fig. 5.

The material parameters for the phase-field fracture model are shown in Table 2. The cleavage energy Gc is taken
from our previous paper [9], and other parameters are adjusted such that the strongly anisotropic cleavage behaviors
observed experimentally are satisfied. Typical crack tip radius and crack opening angle are taken from Koelemeijer
et al. [6]. The preferential cleavage plane is {100}.

The thermal parameters [9] and the diffusional parameters [18] are shown in Tables 3 and 4, respectively. The
crack healing coefficient ↵h is manually adjusted to qualitatively meet the experimental crack healing rate [5],
although the experiment is designed for opening crack adsorbed with thin brine film which makes quantitative
comparison impossible. Simplifications are adopted such that the interfacial region has the same thermal conductivity
and thermal expansion as the grain bulk region. Also, it is assumed that the thickness of the brine film is much
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Fig. 5. Confined compression stress–strain response with different strain rates at room temperature [70].

Table 4
Material properties for diffusion.

Parameters Description Value Unit Reference

D0 Diffusion coefficient 2.2⇥ 10�3 m2 s�1 Alkattan et al. [18]
ks solution–precipitation coefficient 5.0⇥ 10�1 m s�1 Alkattan et al. [18]
�sl Solid–liquid interfacial energy 0.129 J m�2 Houben et al. [5]
⌦v Molecular volume of solid NaCl 2.7⇥ 10�5 m3 mol�1 Koelemeijer et al. [6]
R Ideal gas constant 8.314 J mol�1 K�1 Koelemeijer et al. [6]
↵s Grain boundary thickness coefficient 1000.0 m�1 –
↵h Crack healing coefficient 10.0 – –
ceq

0 Equilibrium concentration 5416.0 mol m�3 Alkattan et al. [18]

larger than several hundred nanometers such that the diffusion coefficient D0 and solubility ceq of the macroscale
brine are representative.

5.2. Long-term creeping due to solution–precipitation

In this numerical example, a series of creep simulations are performed to illustrate the solution–precipitation
creep observed in polycrystalline rock salt [15]. The numerical set-up is shown in Fig. 6(a). A four-grain RVE is
constructed with 1 mm edge length. The initial orientations of the grains are denoted in Fig. 6(a), with [001] axis
perpendicular to the xy plane. Constant average stress rate is enforced during the loading period until the destinate
stress is reached, and then constant stress boundary condition is enforced during the creep deformation period.

Grain boundary layer with 0.05 mm thickness is introduced between each pair of grains, and initial grain
boundary indicator dGB is assigned to the grain boundary region. Crystal plasticity constitutive relation is assigned
to the grain boundary region, and the initial orientation inherits from the neighboring grains. In the current model,
grain boundary thickness is also a key material parameter. The grain boundary thickness in numerical simulation
should be chosen as a compromise between the real grain boundary, where solution–diffusion–precipitation occurs,
and the computational cost. The solution–precipitation creep rate increases as the grain boundary thickness increases.
A constant grain boundary thickness should be used for different RVEs to reveal size effect instead of using an
arbitrary fraction of the RVE edge length.

The triple junctions of the grain boundary region also require proper treatment regarding the grain boundary
normal and the solution–precipitation strain mode. Here, the solution–precipitation creep deformation "̇ equals to
zero at the triple junctions, but the initial phase field is enforced as 1 for compensation. Otherwise, the triple
junctions become rigid inclusions as creep deformation increases.

In this paper, only solution–precipitation creep is considered instead of the competition between dislocation creep
and solution–precipitation creep, since the hardening variable ⌧̃ is monotonically increasing in the Voce type crystal
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Fig. 6. Analysis of creep loading effect on solution–precipitation creep rate: (a) The numerical set-up for the creep simulation; (b) Creep
rate evolution for each creep loading condition.

plasticity model Eqs. (33)–(35). The dislocation creep can be incorporated by introducing a dislocation annihilation
mechanism to allow decreasing hardening variables.

Fig. 6(b) shows the creep rate evolution during the creep loading under different stress level. Three constant
stress levels are tested: 0.1 MPa, 0.5 MPa, 1.0 MPa. During the constant stress-rate loading period, a monotonically
increasing strain rate is observed which represents the transition from the elastic region to the plastic region. In the
constant stress period, the strain rate gradually decreases due to the monotonically increasing hardening variable.
Then, the creep strain rate reaches a constant value which depends on the stress level. It is also observed that the
strain rate constant n = 1, which is consistent with the solution–precipitation creep experiment [15].

Fig. 7 shows the evolution of grain boundary brine concentration (a–c), longitudinal strain (d–f), and transverse
strain (g–i) for the � = 1.0 MPa case. It is observed that as time increases, the grain boundary brine concentration
almost remains constant. A concentration gradient exists along the grain boundary, where the high concentration
region corresponds to the grain boundary region with higher grain boundary normal compression. Concentration flux
normal to the grain boundary is almost negligible, although slight concentration increasing is observed at the grain
bulk adjacent to the grain boundary. On the other hand, creep deformation is observed in the grain boundary region as
time increases. A compressive grain-boundary-normal strain "xx is observed in the vertical grain boundary since the
grain boundary pressure p is much higher than the horizontal grain boundary where tensile grain-boundary-normal
strain "yy is observed. It is also observed that the compressive strain "xx in the vertical grain boundary region
approximately equals the tensile strain "yy in the horizontal grain boundary region, indicating that the solution–
precipitation model is mass conservative assuming that density is constant. Note that the strain values at the triple
junctions have large perturbations, since four grains with different orientations interact with each other. The stiffness
of the triple junction is reduced by imposing unit initial phase field dc in this region.

5.3. Anisotropic cracking

The third example is designed to illustrate the anisotropic crack initiation and propagation in polycrystalline rock
salt and the competition among intergranular and intragranular fracture, and plastic deformation.

A 2D polycrystalline RVE with 40 grains is generated by Neper [72], and the RVE is equally divided into
399 ⇥ 399 grid points, as shown in Fig. 8(a). The RVE edge length is 1 mm, and the average grain size is 0.2 mm.
Random initial orientations are assigned to each grain with the [001] axis perpendicular to the xy plane, such that the
cleavage planes are also perpendicular to the xy plane. The fracture energy Gc of the material point within the bulk
region is 1.15 J m2, and the preferential fracture plane is {001}. Reduced fracture energy (1.0 J m2) is assigned to the
grain boundary region, and the grain boundary is assumed to be isotropic in crack propagation. Small strain crystal
plasticity model is applied to both the grain interior region and the grain boundary region. The grain boundary layer
thickness approximately equals to 0.014L , where L represents the RVE edge length. The deformation process is
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Fig. 7. Brine concentration and strain distribution at different creep stages for the � = 1 MPa simulation in Fig. 6: (a–c) Evolution of
grain boundary brine concentration [unit: mol m�3]; (d–f) Evolution of strain in the loading direction "xx ; (g–i) Evolution of strain in the
transverse direction "yy .

assumed to be isothermal at room temperature, which is reasonable considering that the specimen size is relatively
small.

Pure shear average strain is enforced as the boundary condition, with a constant average strain rate �̇ =

1.0⇥ 10�4 s�1:

" =


� 0.0

0.0 ��

�
. (52)

Fig. 8(b) shows the homogenized stress–strain response in the axial direction. It is observed that the fracture process
of polycrystal rock salt is more ductile compared with corresponding single crystal results [9]. One major reason
is that the grain boundary region and intergranular anisotropy prevent the crack from propagating through the
specimen, as shown in Fig. 9(a–c). It is observed that as external loading increases, both intragranular crack and
intergranular crack initiate and gradually form a network within the specimen.

The Von-Mises stress distributions at different loading stages are shown in Fig. 9(d–f). As expected, stress
concentration is observed at the crack tip and the grain boundary regions. The Gibbs effect is also observed mainly
for two reasons: (1) regular frequency vector is used instead for solving the mechanical problem of the finite
difference based frequency vector; (2) large material stiffness contrast exists within the interfacial region.
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Fig. 8. Analysis of crack initiation and propagation in polycrystalline rock salt: (a) Initial configuration of polycrystal RVE and grain
boundary. The RVE edge length L is 1 mm, and the grain boundary thickness is l = 0.014L , the initial orientation is random with [001]
axis perpendicular to the xy plane. (b) Homogenized stress–strain curve.

Fig. 9. Phase field and Von Mises stress distribution within the polycrystal specimen at different load stages: (a–c) Phase field; (d–f) Von
Mises stress ([unit: MPa]).

5.4. Chemical-diffusion-controlled crack healing

In the last example, diffusion-controlled crack healing is simulated through a prescribed loading–unloading–
reloading strain path. A two-dimensional single-crystal RVE is divided into 3992 grid points, and the edge length
of the specimen is 1 mm by 1 mm. A circular flaw with 0.1 mm radius is introduced in the center of the specimen
for crack initiation. The initial Euler angle is (0�, 0�, 0�) in Bunge notation, such that the [100] axis is parallel to the
loading direction. The loading–unloading–reloading strain path is shown in Fig. 10(a). A uniaxial tension boundary
condition is conducted with a constant strain rate.
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Fig. 10. Strain path and stress–strain curve of the crack healing simulation. (a) Strain path of the loading–unloading–reloading process. (b)
Uniaxial stress–strain curve during the loading–unloading–reloading process. The RVE holds for a while with no external loading between
the unloading process and the reloading process to provide enough time for crack healing.

Fig. 11. Phase field evolution during the loading–unloading–reloading process. (a) Initial phase-field representing the initial circular flaw with
0.1 mm radius; (b) Fracture phase-field distribution after the loading and unloading process; (c) Crack healing after the stress-free holding
process; (d) Crack propagation continues to penetrate the specimen after the reloading process.

In this section, the linear elastic constitutive relation is used instead of crystal plasticity for several reasons.
First, creeping deformation during the healing process due to the residual stress can be avoided, such that the crack
healing simulation could be more comparable to the experiment [5]. Also, the focus of this section is to demonstrate
the effectiveness of the precipitation, diffusion, and crack healing model, and to determine whether crack healing
in rock salt is diffusion-controlled or precipitation controlled. Note that the usage of elastic constitutive relation is
solely for illustration convenience without losing generality.

The homogenized stress–strain response of the loading–unloading–reloading process is shown in Fig. 10(b).
Reduced stress due to crack propagation is observed after the external loading reaches a critical point, and unloading
boundary condition is initiated before the crack propagates through the specimen. This is possible for the staggered
coupling scheme, where crack initiation and propagation are delayed compared with the corresponding monolithic
coupling scheme. After the unloading process, the specimen is held at stress-free status for 300 s which is long
enough for diffusion induced crack healing. Stiffness recovery is observed during the reloading process.

The evolution of the phase field during the loading–unloading–reloading process is shown in Fig. 11. The initial
circular flaw with 0.1 mm radius is prescribed by the initial phase field, as shown in Fig. 11(a), to provide crack
initiation spot. The fracture phase-field distributions after the loading process, the stress-free holding process, and
the reloading process are shown in Fig. 11(b), (c), and (d), respectively. The crack does not penetrate through the
specimen after the unloading process, as shown in Fig. 11(b). Crack healing is observed after the stress-free holding
process as shown in Fig. 11(c), which explains the stiffness recovery observed in the homogenized stress–strain
response in Fig. 10(b). During the reloading process, the crack continues to propagate along the original path when
the external loading reaches a critical point.

The chemical concentration distributions corresponding to the time step described in Fig. 11(a–d) are shown
in Fig. 12(a–d), respectively. The initial chemical concentration (Fig. 11(a)) is homogeneous and equals to the
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Fig. 12. Chemical concentration distribution during the loading–unloading–reloading process. (a) Homogeneous initial chemical concentration
equals to the equilibrium concentration ceq at stress free status; (b) Chemical concentration after the loading and unloading process
corresponding to Fig. 11(b); (c) Chemical concentration distribution after the stress-free holding process corresponding to Fig. 11(c); (d)
Chemical concentration after the reloading process corresponding to Fig. 11(d).

equilibrium chemical concentration at stress-free states. After the loading and unloading process, the chemical
concentration remains unchanged, since the time is very short and both solution–precipitation and diffusion are time
dependent. After holding the sample at stress-free states for 300 s which is long enough for solution–precipitation
and diffusion to occur, the precipitation is observed within the crack tip region and the initial flaw region, as shown
in Fig. 12(c). This precipitation causes the crack healing observed in Fig. 11(c) and the stiffness recovery observed
in Fig. 10(b).

6. Conclusions

A mathematical framework is proposed to simulate the long-term creep, fracture and healing coupling process
in rock salt under a variety of thermal, mechanical and chemical conditions. An FFT-based method is employed
to solve the coupled equations in a staggered scheme. By leveraging the numerical efficiency and globally C

1

continuous basis function, the strongly anisotropic crack growth and healing are simulated. Our numerical examples
demonstrate that the proposed model is capable of replicating the multi-physical behaviors observed in rock salt,
including solution–precipitation creep, strongly anisotropic cracking, and diffusion–controlled crack healing with
stiffness restoration.
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