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ABSTRACT
Chimeric antigen receptor T-cell therapy has demonstrated innovative therapeutic effectiveness in
fighting cancers; however, it is extremely expensive, due to the intrinsic patient-to-patient variability
in cell manufacturing. We propose in this work a novel calibration-free statistical framework to effect-
ively deduce critical quality attributes under the patient-to-patient variability. Specifically, we model
this variability via a patient-specific calibration parameter, and use readings from multiple biosensors
to construct a patient-invariance statistic, thereby alleviating the effect of the calibration parameter. A
carefully formulated optimization problem and an algorithmic framework are presented to find the
best patient-invariance statistic and the model parameters. Using the patient-invariance statistic, we
can deduce the critical quality attribute of interest, free from the calibration parameter. We demon-
strate improvements of the proposed calibration-free method in different simulation experiments. In
the cell manufacturing case study, our method not only effectively deduces viable cell concentration
for monitoring, but also reveals insights for the cell manufacturing process.
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1. Introduction

Cell therapy is one of the most promising treatment approaches
to have emerged over the last decades, demonstrating great
potential in treating cancers, including leukemia and lymphoma
(Kim and de Vellis, 2009; Yin, 2017). Among those therapies,
Chimeric Antigen Receptor (CAR) T-cell therapy (Bonifant
et al., 2016; June et al., 2018), involving the reprogramming of a
patient’s T cells to effectively target and attack tumor cells, has
shown innovative therapeutic effects in clinical trials, leading to
a recent approval (i.e., the treatment of CD19þ hematological
malignancies, see Prasad (2018)) by the FDA as a new cancer
treatment modality. As illustrated in Figure 1, a typical CAR
T-cell therapy involves four steps: deriving cells from a patient,
genetically modifying the cells, culturing the cells, and re-admin-
istering back to the patient. With increasingly mature gene
modification technology, more and more researchers focus on
the culturing step (i.e., the red box in Figure 1), where the goal is
to substantially increase the cell amount from a small batch to
one dose for delivery to the patient. However, a key challenge is
the intrinsic patient-to-patient variability in the starting material,
i.e., cells derived from different patients vary in their viabilities,
acceptance rates of genetic modification, and reactions to culture
media (Hinrichs and Restifo, 2013). These variabilities introduce
difficulties in cell culturing scale-up (i.e., cell manufacturing),
and therefore, the current CAR T-cell therapy is hindered by
low scalability, labor-intensive processes, and extremely high
cost (Harrison et al., 2019). To achieve high quality and accept-
able vein-to-vein cost, we present in this work a statistical frame-
work for online monitoring in cell manufacturing, which can

alleviate the negative effect of the intrinsic patient-to-patient
variability.

There are two reasons why a new statistical method is
needed for monitoring critical quality attributes (exampled by
the cell concentration) in cell manufacturing. First, a direct
measurement method for cell concentrations is not suitable in
cell manufacturing (Slouka et al., 2016). Such a method typic-
ally requires experienced technicians to collect culture media,
take microscopic images, and perform computation via an
image-based software (e.g., ImageJ, see Collins (2007)).
Therefore, it is labor-intensive, time-consuming, and may
introduce contamination to the culture media. Furthermore,
the direct measurement method is oftentimes destructive – the
collected cells are killed in order to take microscopic images.
Second, although there are non-destructive sensors available,
these sensors need to be calibrated, due to the unknown
parameters in the sensing relationship (Pan et al., 2019).
For example, impedance sensors (adopted in this work, see
Figure 2), which measure the dielectric relaxation of a cell sus-
pension, can be used to effectively estimate cell concentrations
after the calibration of unknown electrical attributes, e.g.,
permittivity (Gheorghiu and Asami, 1998) and resistivity
(Goh and Ram, 2010). However, due to the patient-to-patient
variability, those electrical attributes not only are unknown but
also vary among different patients, leading to difficulties in
deducing cell concentrations from sensor readings.

We introduce in this work a calibration-free statistical
method for online monitoring in cell manufacturing.
Specifically, the intrinsic patient-to-patient variability is
modeled by a patient-specific calibration parameter. We
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propose to use multiple sensor readings to construct a
patient-invariance statistic, where a transformation is
adopted to isolate and alleviate the effect of the calibration
parameter. The constructed invariance statistic is then used
to model the critical quality attribute of interest. In the
training stage, we use the historical data to estimate a trans-
formation and model parameters via a carefully formulated
optimization problem, rather than estimate the calibration
parameter as in the standard calibration problem (Kennedy
and O’Hagan, 2001; Tuo and Wu, 2015). In the monitoring
stage, we use the online sensor readings to deduce the
underlying critical quality attribute through the patient-
invariance statistic, free from the calibration parameter. We
demonstrate improvements of the proposed calibration-free
method in both simulation experiments and a real-world
case study of monitoring viable cell concentrations in cell
manufacturing. The proposed approach provides an effective
way to monitor cell manufacturing, and therefore, reduces
the cost for the promising CAR T-cell therapy in treat-
ing cancers.

The remaining part of this article is organized as follows. In
Section 2, we formulate the biosensing problem in cell manu-
facturing, with an emphasis on its challenging aspects. In
Section 3, we present the proposed calibration-free method. A
detailed simulation study and a real-world cell manufacturing
case study are conducted in Sections 4 and 5, respectively. We
conclude this work with future directions in Section 6.

2. Biosensing in cell manufacturing

We first describe the biosensing problem of deducing the
Viable Cell Concentration (VCC) in cell manufacturing. We
then discuss the key challenge – the patient-to-patient vari-
ability, and related works.

2.1. Impedance-based biosensing

As discussed in Section 1, the goal is to monitor VCC in
cell manufacturing, thereby reducing the cost of the CAR

Figure 1. An illustration of the four steps in a typical CAR T-cell therapy. This work focuses on the cell culturing (or cell manufacturing) step, i.e., step 3.

Figure 2. An illustration of the adopted impedance-based biosensors in the cell manufacturing application: (a) shows a photo of the biosensor design and (b)
shows the biosensing setup.
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T-cell therapy. One state-of-the-art approach is to use bio-
sensors to measure impedance signals, as indicators for the
VCC of interest (Gheorghiu and Asami, 1998; Pan et al.,
2019). As illustrated in Figure 2, we adopt impedance-based
biosensors with a Facing-Electrode (FE) design (Miura and
Uno, 2019): Our FE biosensor consists of a pair of parallel-
plate electrodes and silicone at four corners to maintain a
gap between them; it is soaked in media to monitor floating
cells in between the electrodes.

With the adopted biosensors, we need a biosensing
method to deduce VCCs from impedance readings. From
physical knowledge, we know that the impedance reading
between the two electrodes reflects the cell amount, due to
the capacitive property of viable cell membranes (Schwan,
1957). The sensing relationship is denoted by

y ¼ f ðx, h, gÞ, (1)

where y is the impedance reading, x is the underlying VCC
of interest, h denotes the sensor geometry, e.g., the gap
width, and g models the underlying electrical attributes, e.g.,
permittivity and resistivity. Here, the relationship f ð�Þ is
unknown, due to the dynamic interaction between cells and
biosensors, and extremely challenging to simulate via com-
puter codes considering the micro size of cells. In the pro-
posed calibration-free method, we first learn the sensing
relationship f ð�Þ from the historical data of different patients
(i.e., the “training” stage), and then conduct online inference
of the VCC using the impedance readings for new patients
(i.e., the “monitoring” stage).

2.2. Patient-to-patient variability

The key challenge in biosensing is that the electrical attrib-
utes g are unknown in both training and monitoring and
different for each patient (also see an illustrating gravity
application in Section 4.1). Note that it is impractical to
compute g for a patient from first principle since it repre-
sents the intrinsic properties from genetic material of the
patient. One popular way is to model g as a calibration
parameter, and estimate it from the training dataset

fyj, xj, hgJj¼1: Existing approaches include Bayesian imple-

mentation (Kennedy and O’Hagan, 2001), maximal likeli-
hood estimation (Joseph and Melkote, 2009), and an
interpretative l2 optimization (Tuo and Wu, 2015).
However, such methods are proposed specifically for data
fusion of computer experiments and physical experiments,
where g is available in the former and a constant in the lat-
ter. Whereas in biosensing, there is no effective computer
simulator, and electrical attributes g vary among physical
experimental runs for different patients. In the literature,
this challenge is also related to the functional calibration
problem (Plumlee et al., 2016; Brown and Atamturktur,
2018; Ezzat et al., 2018), where the calibration parameter
g ¼ gðxÞ is modeled as a function of the input variables. In
the biosensing application, however, the calibration param-
eter g varies among different patients, yet is a constant over
different input VCCs for each patient.

The biosensing problem is also related to the inverse
problem in the literature (Aster et al., 2018), where one
would estimate both x and g via an optimization problem.
However, such a method typically assumes that the sensing
relationship f ð�Þ is known or can be easily learned with a
complete data fyj , xj, h, gjgnj¼1, whereas, the calibration par-

ameter g is unknown even in the training stage in biosens-
ing. Furthermore, one may regard g as an additional model
parameter in the unknown relationship f ð�Þ, and adopt a
standard supervised learning scheme (Bishop, 2006) for find-
ing both f ð�Þ and g; this implicitly assumes that g is a con-
stant for different patients, which is not true in biosensing.
Table 1 summarizes the related methods discussed; with
extensive efforts in literature search, we have not found a
standard method, which can be directly adopted for the bio-
sensing problem in cell manufacturing.

3. Calibration-free biosensing method

We present the proposed calibration-free method in four
parts. First, we discuss the sensing relationship for multiple
sensors. We then introduce an invariance statistic to allevi-
ate patient-to-patient variability. In the online monitoring
stage, we use the invariance statistic to deduce VCCs. In the
training stage, we propose a carefully constructed optimiza-
tion problem and an algorithmic framework to estimate the
underlying sensing model.

3.1. Sensing relationship with multiple sensors

The key idea of the calibration-free method is to use mul-
tiple sensors to address the unknown and patient-specific
calibration parameter. For the ith sensor, we let hi be its
geometry parameter. Consider first the sensing relationship
for a given patient (or experiment). Denote yi½t� as the scalar
impedance reading (more details in Section 5) from the ith
sensor at experimental time t. Following (1), we model
yi½t� ¼ f ðx½t�, hi, gÞ via the sensing relationship f ð�Þ : R3 7!R:
Here, x½t� is the VCC at experimental time t, and g is the
calibration parameter. It is important to note that measure-
ments from different sensors fy1½t�, y2½t�, :::g can be modeled
by the same calibration parameter g, featuring the underly-
ing values for electrical attributes of the specific patient’s
cells. This patient-specific property is the key to “canceling
out” the calibration parameter using multiple sensor read-
ings (see Section 3.2).

We then introduce an additional superscript j for
different patients:

Table 1. A comparison of the application scenarios of the proposed calibration-
free method and other standard methods in the literature.

Methods fð�Þ Online g� Historical gj

Inverse problem (Aster et al., 2018) Known Unknown N.A.
Supervised learning (Bishop, 2006) Unknown Same Same
Calibration (Kennedy and

O’Hagan, 2001)
Unknown Unknown Known

Calibration-free (proposed) Unknown Unknown Unknown

IISE TRANSACTIONS 3



yji t½ � ¼ f ðxj t½ �, hi, gjÞ, i ¼ 1, 2, :::, I, t ¼ 1, :::T, and, j ¼ 1, :::, J:

(2)

Equation (2) further lays out our biosensing settings with
multiple sensors:

1. We assume the homogeneity of VCC, i.e., at given time t
and a given patient j, the VCC xj½t� is the same for differ-
ent senors hi at different locations (see Figure 2(b)). This
is because, in suspension cell manufacturing, the culture
media is constantly stirred to ensure the homogeneity of
nutrition, and thereby VCC (Haycock, 2011).

2. We use the same set of sensors with known parameters
fhigIi¼1 for all J patients and at different experimental
time t. Those parameters are known from the fabrica-
tion process or can be easily measured from the sensors.
Note that the proposed method is also effective for dif-
ferent sets of sensors, as long as those sensor parameters
are known – the same sensor assumption is only for
fabrication convenience and notation simplicity.

3. Also for different sensors hi, the calibration parameter gj

is the same among different values of the measurement
time t. This is because gj models the intrinsic property of
the jth patient’s cells, which typically does not change
during cell manufacturing. After we clearly layout the
above settings, we can then construct the patient-invari-
ance statistic and deduce the underlying VCC.

3.2. Invariance statistic

For notation simplicity, we drop the experimental time ½t� and
write hi in the subscript in this subsection. Furthermore, we
rewrite (2) by decomposing f ð�Þ into two parts:

yji ¼ fhiðxj, gjÞ ¼ liðxjÞ þ diðxj, gjÞ: (3)

Here, for a given sensor hi, lið�Þ : R 7!R models the part of
effect of VCC x on impedance reading y, without being
hampered by the patient-specific calibration parameter g;
and dið�Þ : R2 7!R is the remaining effect of both x and g
on y. Intuitively speaking, lið�Þ can be viewed as the mean
process of f ð�Þ by plugging in some population average of

fgjgJj¼1, ignoring the patient-to-patient variability; it can

also be interpreted as the physical understanding of the
sensing relationship. In practice, the mean relationship lið�Þ
is oftentimes known, at least to a certain degree, prior to
experimentation according to the domain-specific knowledge
(e.g., the known set of basis functions, see Section 5). On
the other hand, dið�Þ is the variability term, i.e., how
patient-to-patient variability affects the impedance reading.
Such a term leads to different readings, even when the VCC
x is the same. Note that in one of the considered baseline
methods (see Sections 4 and 5), we ignore dið�Þ, i.e., assum-
ing the calibration parameter is a constant; this will lead to
noticeable errors when estimating x. This variability term
dið�Þ is typically unknown. Such a decomposition of a mean
trend and a variability term is widely assumed in different
modeling methods (see, e.g., Guillas et al. (2020) and Chen,
Mak, Joseph and Zhang (2020)).

Assume for now diðx, gÞ ¼ diðgÞ, which suggests that the
mean relationship lið�Þ extracts all the dependency of x on y
(further discussion in Section 3.4). In other words, fiðx, gÞ is
assumed to be separable for each sensor hi:

yji ¼ liðxjÞ þ diðgjÞ: (4)

Now, we construct a statistic F that is invariant to the
calibration parameter g. To gain intuition, consider the fol-
lowing illustrating example with known diðgÞ ¼ hig for i¼ 1,
2 (see the illustration application in Section 4.1). If we take
a log-transformation to the variability term log diðgjÞ ¼
log hi þ log gj, the effect of the calibration parameter gj is
further separated from hi. Therefore, by subtracting the (log-
transformed) variability at different sensors, one can obtain
an invariance statistic F ¼ log d1ðgjÞ � log d2ðgjÞ ¼ log h1þ
log gj � ð log h2 þ log gjÞ ¼ log ðh1Þ � log ðh2Þ: Note that we
incorporate the patient-specific property of the calibration
parameter when constructing the invariance statistic.

Following the above intuition yet with the unknown vari-
ability term dið�Þ, we construct the following statistic, via a
linear combination of the transformed dið�Þ :

FðgjÞ ¼
XI
i¼1

ciF diðgjÞ
� �

¼
XI
i¼1

ciF yji � liðxjÞ
h i

, (5)

for patient j with gj. Here, c1, :::, cI are pre-defined combin-
ation coefficients, and

P
i ci ¼ 0: With a properly selected

transformation F½�� : R 7!R, (5) gives the target invariance
statistic F ¼ FðgjÞ: Note that here we adapt a general trans-
formation F½��, instead of the specific log-transformation in
the above example. The transformation F½�� would be
selected so that the dependency of the invariance statistic F
to gj is minimal; a detail estimation method for F½�� will be
discussed in Section 3.4.

It is important to note that we reconstruct the sensing
model from (2) to (5) via the proposed invariance statistic.
This is again due to the key challenge of patient-to-patient
variability. Consider first using (2) for VCC deduction (also
see the discussion in Section 2.2). Due to the unknown and
patient-specific calibration parameter gj, it is challenging to
either learn a sensing model from training data or deduce
VCCs for a new patient. However, the new model (5) contains
only the invariance statistic, and is free from the calibration
parameter. Thanks to the properly selected transformation
and the combination (see Section 3.4), the invariance statistic
would be approximately a constant for different patients.
Therefore, our new model (5) allows an effective estimation of
the sensing relationship (only the mean part needed) similar
to the standard calibration problem with a constant calibration
parameter (Tuo and Wu, 2015), and then a calibration-free
deduction of the VCC of interest.

3.3. Online calibration-free deduction

We present next the method for deducing the VCC of inter-
est x�, in the online monitoring stage for a new patient
denoted by �: At any time t, the sensor reading is denoted

as Dmonitor ¼ fy�i , higIi¼1 along with the unknown calibration

4 CHEN ET AL.



parameter g�: Assume for now that the mean sensing rela-
tionship lið�Þ and the transformation F½�� are known (see
Section 3.4 for the estimation). We adopt the new sensing
model (5) with the invariance statistic

Fðg�Þ ¼
XI
i¼1

ciF y�i � liðx�Þ
� �

, (6)

where x� is the target VCC. Note that the computed Fðg�Þ
in online monitoring is also invariant to the calibration par-
ameter g�: Therefore, the VCC of interest x� can be deduced
by minimizing the squared difference between the computed
value and the underlying value �F (see Section 3.4 for the
estimation):

x̂� ¼ argmin
x�

XI
i¼1

ciF y�i � liðx�Þ
� �� �F

 !2

: (7)

In the cell manufacturing application, we are interested in
deducing a VCC curve x̂�½t� over the whole manufacturing
period t ¼ 1, :::,T: To this end, we perform optimization (7)
for T times corresponding to each experimental time t. Note
that here we have not incorporated the time-dependency (or
smoothness) of the deduced function x̂�½t� in online deduc-
tion; one can use postprocessing methods or directly model
x�½t� via a parametric form in the optimization (7). Readers are
referred to functional data analysis literature (Ramsay, 2004;
Wang et al., 2016) for more discussion.

3.4. Parameter estimation

We estimate the unknown transformation F½��, and the

physical relationship lið�Þ using the training data Dtrain ¼
fyji½t�, xj½t�, higTt¼1 J

j¼1 at hand. In our implementation, the

transformation F½�� is paramterized by the Box–Cox trans-
formation (Box and Cox, 1964; Sakia, 1992)

F k z½ � ¼
log ðzÞ if k ¼ 0
zk � 1ð Þ

k
if k 6¼ 0

:

8<
: (8)

Note that the log-transformation in the above example is a
special case in the Box–Cox transformation. Here, the
Box–Cox transformation contains an unknown parameter k.
A two-parameter Box–Cox or Yeo–Johnson transformation
(Yeo and Johnson, 2000) can also be used if the data are not
restricted to be non-negative. Furthermore, in this article,
we will focus on the parametric transformation (8), but our
proposed methods are general and can be applied to non-
parametric cases.

As for the physical relationship lið�Þ, we adopt the fol-
lowing basis decomposition:

li, bðxÞ ¼ lbðx, hiÞ ¼
XK
k¼1

bk/kðx, hiÞ: (9)

Here, /kð�Þ; k ¼ 1, 2, :::,K are the pre-defined basis functions

and b ¼ ½b1, :::, bK �T denotes the vector of corresponding

coefficients. Such a set of basis f/kð�ÞgKk¼1 is selected by the

physical knowledge of the cell manufacturing system or the
observation from data.

Meanwhile, to account for the separable assumption
diðx, gÞ � diðgÞ in Section 3.2, we introduce slack variables

D ¼ fDj
igIi¼1 J

j¼1 to account for the “goodness” of the assump-

tion (more discussion below). Furthermore, the underlying
value for the best invariance statistic �F is also unknown and
need to be estimated from data (see Section 3.3).

We propose to estimate the unknown parameters
fk,b, �F ,Dg via the following optimization problem with two
penalization terms:

min
k,b, �F ,D

laðk,b, �F ,DÞ ¼ min
k, b, �F ,D

X
t, j

�
XI
i¼1

ciF k yji t½ � � lbðxj t½ �, hiÞ
h i

� �F

" #2

þ a1
X
i, j, t

jyji t½ � � lbðxj t½ �, hiÞj1 � Dj
i

h i2
þ a2jbj1:

(10)

Here, a1 and a2 are two penalization coefficients, and j � j1
denotes the vector l1 norm.

The main objective term (i.e., the first term) in (10) is
for achieving the best patient-invariance property of the
constructed statistic F. Specifically, we minimize the
Mean-Squared Error (MSE) of its underlying truth �F and
the computed value from data. This is equivalent to mod-
eling the patient-invariance statistic Fj for each patient as
independent and identically distributed (i.i.d.) random
draws from a normal distribution Nð�F , r2Þ with mean �F
and variance r2: Moreover, the first penalization term in
(10) is for the separable assumption diðx, gÞ � diðgÞ: Here,
we minimize the corresponding MSE of the set

fdiðxj½t�, gjÞgTt¼1 to the underlying truth Dj
i, for each sensor

i and patient j. Similarly, this can also be viewed as mod-
eling dið�, gjÞ via i.i.d. normal random variables; the corre-
sponding penalization a1 can then be interpreted as the
ratio between the variances of the two normal distribu-
tions. Finally, the second penalization term a2jbj1 is for
basis selection, similar to the widely used LASSO method
in the literature (Tibshirani, 1996; Donoho, 2006). This is
because, in the cell manufacturing application, one would
only have an intuitive understanding of the sensing rela-
tionship; we will collect a set of basis functions from
experience and select the suitable ones via this
penalization.

From the duality of the optimization problem, (10) can
also be viewed as unpenalized log-likelihood combining
both normal random variables with a sparsity constraint
jjbjj1 � c (Boyd and Vandenberghe, 2004). The parameter
a1 sets the variance ratio between the two random varia-
bles, and a2 controls the desired sparsity level as param-
eter c. Since the objective is to obtain a high deduction
accuracy of the VCC of interest, a1 and a2 would be
tuned using cross-validation techniques (Friedman
et al., 2001).

IISE TRANSACTIONS 5



Algorithm 1. The BCD algorithm for parameter estimation (10)

1: 	 Set initial values k 0 and b 1K
2: 	 Set I� J�T�K tensor U with each element Uijtk 
/k ðxj½t�,hiÞ
3: repeat
4: Optimizing F and D:

5: 	 Set I�J�T tensor D with each element Dijt yji½t��P
k Uijtkbk

6: 	 Update �F  P
ijt ciF k½Dijt�=J=T

7: 	 Update Dj
i 
P

t jciF k½Dijtj1=T for i¼1, :::I and j¼1, :::J
8: Optimizing k:
9: 	 Set l0ðk,b, �F ,DÞ  laðk,b, �F ,DÞ with a1 ¼ a2 ¼ 0
10: 	 Update k argminklaðk,b, �F ,DÞ
11: Optimizing b:
12: 	 Update b argminblaðk,b, �F ,DÞ with the L-BFGS method
13: until k, �F ,D and b converge
14: 	 return k, �F ,D and b

Consider now estimating the parameters fk, b, �F ,Dg via
optimization (10) for fixed a1 > 0 and a2 > 0: We propose
to use the following Blockwise Coordinate Descent (BCD)
optimization algorithm, described below. First, assign initial
values for fk, b, �F ,Dg: Next, iterate the following three steps
until the convergence is achieved: (i) for fixed k and b,
update f�F ,Dg via the following estimates from first-order
conditions

�̂F ¼ 1
JT

X
i, j, t

ciF k yji t½ � � lbðxj t½ �, hiÞ
h i

,

D̂
j

i ¼
1
T

XT
t¼1
jyji t½ � � lbðxj t½ �, hiÞj1;

(11)

(ii) for fixed b and �F , update the transformation parameter
k ignoring the two penalization terms; and (iii) for fixed k,
�F and D, optimize for b via numerical line search methods,
e.g., L-BFGS algorithm (Liu and Nocedal, 1989). The full
optimization procedure is provided in Algorithm 1. Since
(10) is a non-convex optimization problem, the proposed
BCD algorithm only converges to a stationary solution
(Tseng, 2001). Because of this, we suggest performing mul-
tiple runs of Algorithm 1 with random initializations for
each run, then taking the converged estimates for the run
with smallest objective function. These runs should be per-
formed in parallel if possible, to take advantage of the paral-
lel computing capabilities in many computing systems.

It is important to note the difference between the training
stage in our calibration-free method and the calibration
stage in the standard calibration problem (Kennedy and
O’Hagan, 2001). In calibration methods, the calibration par-
ameter g, assumed to be a constant, is directly estimated
from the training set. This can be viewed as estimating a

population average of the historical fgjgJj¼1, which would

not be helpful in our cell manufacturing application. Due to
the patient-to-patient variability, the calibration parameter
g� corresponding to the new patient can be completely dif-
ferent from the historical average value. In contrast, our

calibration-free method adopts a patient-invariance statistic
F, constructed from multiple sensor readings, to alleviate
this patient-to-patient variability. In our training setup, we
learn the unknown mean relationship lið�Þ and the trans-
formation F½��, which provide the best patient-invariance
statistic F. We can then use the invariance statistic F to
effectively deduce VCCs via (7), free from the patient-spe-
cific calibration parameter g�:

4. Simulation study

A detailed simulation study is conducted in this section. We
first look into a toy application of deducing gravitational
acceleration coefficients, to show the applicability of the pro-
posed method. We then discuss more simulation experi-
ments with different sensing relationships.

4.1. A gravity application

Consider the following toy application, where the goal is to
deduce the gravitational acceleration coefficient x, for a dif-
ferent planet. As illustrated in Figure 3, we drop a ball and
measure the traveling distance y of the ball after a certain
period of time h. From physical knowledge, we have the
relationship

y ¼ f ðx, h, gÞ ¼ 1
2
xh2 þ gh: (12)

Here, y is the traveling distance measured by, e.g., taking a
photo, g is the initial velocity of the ball, and h is the time
period between dropping the ball and taking the photo.
Suppose the ball is dropped by an engineer, meaning that
the initial velocity g is non-zero and changes among differ-
ent drops. With the collected data fy, hg, typically, one can-
not deduce the gravitational acceleration x even with the
known relationship (12). This is because the initial velocity
g is also unknown. The key idea of the proposed calibration-
free method is to take multiple photos at different times

hi; i ¼ 1, :::, I: Therefore, more data fyi , higIi¼1 is collected
with the same initial velocity g. We can then use the pro-
posed invariance statistic and Algorithm 1 to “cancel out” g
and conduct inference on the gravitational acceleration x
of interest.

The setup for deducing the gravity coefficient is as fol-
lows. We set the number of photos I¼ 3, with parameters
(i.e., the time of taking photos) fhig3i¼1 ¼ f0:5, 1, 1:5g:

Figure 3. An illustration and notations of the toy application of deducing the
gravitational acceleration coefficient.
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A historical dataset fyji, xj; gjgJj¼1 of size J¼ 100 is generated

with calibration parameters (i.e., initial speed, unknown)
gj 
 Unif ð1, 3Þ, gravity coefficients xj 
 Nð9:8, 12Þ, and

each sensor reading (i.e., traveling distance) yji simulated by
(12) with an additional i.i.d. measurement error following
Nð0, 0:42Þ: To test the deduction accuracy, we let the under-
lying truth x� ¼ 9:8, g� 
 Unif ð1, 3Þ randomly generated,
and y� obtained by (12) with the same measurement error.

The proposed calibration-free method (via Algorithm 1)
is applied to find the best transformation F k̂ ½�� and then
deduce the gravitational acceleration x̂�: The linear combin-
ation coefficients are fcig3i¼1 ¼ f1, 1, � 2g, and the set of
candidate basis functions is U ¼ fx, h, hx, hx2, h2xg: The pro-
posed calibration-free method is repeated, with newly gener-
ated test data fy�, x� ¼ 9:8; g�g, for 20 times.

We consider the following two baseline methods (also see
Table 1). First, we implement the supervised learning setting
(Bishop, 2006), i.e., assuming the calibration parameter g ¼
gj ¼ g� is the same in both training stage and monitoring
stage. Such an assumption is not true in the considered cell
manufacturing application. Specifically, we use the historical

dataset fyji , xjg100j¼1 to estimate an �g and a relationship

gðx, hÞ :¼ f ðx, h; �gÞ, which would then be used to deduce
x̂�: Here, we use the same set of basis functions U for gð�Þ,
and a similar optimization scheme with LASSO-type penal-
ization (Tibshirani, 1996) for estimating the coefficients b:
This method is referred to as “SameCal”. The other baseline
method is the standard l2 calibration method suggested by
Tuo and Wu (2015). In order to adopt this method, we
need to assume that the calibration parameters fgjg100j¼1 in

the historical data are known, which is not true in reality.
Therefore, we refer to this method as “Oracle”. To estimate
the sensing relationship f ð�Þ, we adopt the set of basis func-
tions Uo ¼ fx, h, hx, hx2, h2x, gx, gh, gxhg and a similar opti-
mization scheme with LASSO-type penalization. Both
baseline methods are implemented to deduce the x� of inter-
est via minimizing the squared difference similar to (7),
using the same 20 simulated test data.

Figure 4(a) shows the boxplots of the estimated x̂� using the
proposed calibration-free method and the two baseline methods.
The red line indicates the ground-truth value x� ¼ 9:8: Among
the three methods, the Oracle baseline preforms the best, as
it queries additional information of the calibration parameter
in the training stage, which is again not feasible in reality. We
notice that the proposed calibration-free method performs

almost as good as Oracle. It can accurately deduce the true
value, with the mean over the 20 estimates 9.7 and a relatively
small variance, whereas for the SameCal baseline, the mean
for 20 estimates is 10.8 and a noticeable bigger variance
is observed.

We also conduct a pairwise comparison over the 20 test
repetitions. Figure 4(b) shows the boxplots of absolute error
ratios of the proposed method over the two baseline meth-
ods, with the red line indicating the ratio of 1.0. We notice
that the proposed method is only slightly worse than Oracle;
this is impressive since our method do not query the under-
lying calibration parameter in the training stage.
Furthermore, the proposed calibration-free method is
noticeably better in deducing the true x� compared with
SameCal. More specifically, our method outperforms
SameCal with smaller errors in 17 estimates over 20 test
runs in total. This is not surprising, as the calibration-free
method, utilizing the patient-invariance statistic, can address
the patient-specific calibration parameters g�:

4.2. More experiments

Here, we conduct more experiments on the proposed cali-
bration-free method. Specifically, we consider the following
four underlying sensing relationships fkðx, h, gÞ :

1. f1ðx, h, gÞ ¼ xhþ gh2;
2. f2ðx, h, gÞ ¼ 3xþ 2hxþ xhg;
3. f3ðx, h, gÞ ¼ hxþ x2 þ hg2 þ ffiffiffi

h
p

g2 þ ffiffiffi
x
p

g=4;
4. f4ðx, h, gÞ ¼ sin ðxÞ þ ðxþ gÞh þ x

hþg :

Note that function f1ð�Þ is quite similar to the sensing rela-
tionship (12) in the gravity application in Section 4.1. For
functions f2ð�Þ and f3ð�Þ, we notice the existence of inter-
action terms between x and g, which means that the separ-
able assumption diðx, gÞ ¼ diðgÞ in Section 3.2 does not
hold. However, f2ð�Þ and f3ð�Þ can still be approximately rep-
resented by the adopted set of basis functions U: For func-
tion f4ð�Þ, it is quite complex, and cannot be represented by
U: We test all four functions, using the proposed calibra-
tion-free method and the same two baseline methods –
SameCal and Oracle – introduced in Section 4.1. The
detailed test procedure is the same as that in Section 4.1.

Figure 5 shows the boxplots of the absolute error ratios
of the proposed method over the baseline SameCal method
(a) and the baseline Oracle method (b), under all four

Figure 4. Results of the gravity application: (a) shows the deduced gravitational acceleration by the three considered methods. The red line marks the underlying
truth x� ¼ 9:8: (b) shows the boxplots of absolute error ratios between the proposed method and baseline baseline methods. The red line marks the ratio of 1.0.
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underlying sensing functions fkðx, h, gÞ; k ¼ 1, :::, 4: We
notice the error ratios in Figure 5(a) are mostly smaller than
1.0, indicting that the proposed method can achieve smaller
errors compared with SameCal. This is because the assump-
tion of a constant calibration parameter in SameCal does
not hold in cell manufacturing application (and thereby in
this simulation study), whereas, our calibration-free method
can address the patient-specific calibration parameter via a
proper combination of multiple sensor readings. Moreover,
compared with Oracle, the proposed method is only slightly
worse. This shows the good performance of our calibration-
free method: Although we do not know the values of the
calibration parameter, we can deduce the underlying param-
eter of interest similar to the Oracle baseline, where its val-
ues are assumed accessible. Finally, we notice that for the
sensing relationship f4ð�Þ, although the proposed method
adopts an inappropriate basis decomposition U, it still out-
performs SameCal. This is again because the proposed cali-
bration-free method introduces the invariance statistic to
alleviate the effect of patient-to-patient variability, and there-
fore, shows improved performances in deducing the quantity
of interest.

5. Cell manufacturing case study

In this section, we apply the proposed calibration-free method
to the motivating case study of cell manufacturing. As discussed
in Sections 1 and 2, we are interested in deducing and monitor-
ing the VCC x½t� at different values of the experimental time t.
This is because the goal of cell manufacturing is to culture a
small batch of cells to a significant amount, for an effective re-
administering in the CAR T-cell therapy (see Figure 1).

5.1. Experimental setup

In our experiment, human leukemic T cells (Jurkat E6-1;
American Type Culture Collection, ATCCVR ) are cultured in
ATCC-formulated culture medium (RPMI-1640; GE
Healthcare) with 10% fetal bovine serum, 2mM L-glutamine,
10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 1mM sodium pyruvate, 4500mg/L glucose, and
1500mg/L sodium bicarbonate in a 75 cm2 Petri dish
(NuncTM EasYFlaskTM; ThermoFisher ScientificTM). The cells
are cultured in a humidified incubator controlled at 37

�
C and

5% CO2, and the culture media is pre-heated to avoid the

temperature effect on the impedance measurement
(Dlugolecki et al., 2010).

The impedance measurements are obtained by our
electric cell-substrate impedance sensing setup. Figure 6
illustrates the experimental setup for the impedance meas-
urement. Here, we use I¼ 4 sandwich shape 3D impedance
sensors, consisting of a pair of parallel-plate electrodes and
Polydimethylsiloxane (PDMS, Sylgard 184, Tow Corning) to
maintain a gap between two electrodes (see Figure 2(b)).
In our experimental setup, the geometry parameter h of the
sensors is the edge length of the electrode pads, and
fhig4i¼1 ¼ f8 mm, 10 mm, 12 mm, 14 mmg: Impedance
measurements are conducted by an LCR meter (E4980AL;
Keysight Technologies) with a sinusoidal signal of 22
mVrms under multiple frequencies ranging from 500Hz to
100 kHz. We let the impedance measurement y be the relax-
ation strength computed from the raw impedance readings
over frequencies, i.e., the difference between high-frequency
impedance and low-frequency impedance of the dielectric
relaxation process, for its high dependency on the VCC of
interest (Schwan, 1957). The measurement is taken every
15minutes for around 30–35 hours. This is because typically
after 35 hours, we have to change the culture media and
move the cells to a bigger cell culture flask, which would
inevitably interrupt the online monitoring. This results in an

online monitoring dataset Dmonitor ¼ fyji½t�, hgTt¼1 J
j¼1 with the

underlying VCCs to be deduced.
The ground-truth VCCs are obtained by an automated cell

counter (TC20TM; Bio-Rad Laboratories, Inc.), and the concen-
tration is maintained between 1� 105 and 1� 106 cells/mL.
Multiple repetitions are performed, with the averaged value
reported as the underlying VCC x. Note that the measurement
procedure is not only labor-intensive, but also may introduce
contamination to the culture media (see Section 1). We will
only measure VCC around six times per cell culture experiment,
which leads to a much smaller (s� T) yet full training data-

setDtrain ¼ fyji½t�, xj½t�, hgst¼1 J
j¼1:

We conduct the cell culturing for J¼ 5 experiments, each
with different starting materials, i.e., different calibration
parameters gj. We use the same I¼ 4 sensors fhig4i¼1 ¼
f8 mm, 10 mm, 12 mm, 14 mmg for the J¼ 5 experiments.
In experiment j, we measure and compute the relaxation

strength of impedance yji½t� for each sensor i, at different
time t (every 15minutes, T � 130 in total). Meanwhile, we

Figure 5. Boxplots of error ratios between the proposed method and the considered baselines, under different sensing relationships. The red line marks the ratio
of 1.0, indicating the baseline method achieves the same accuracy as the proposed method.
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measure the ground-truth VCC xj½t� with a much lower
resolution (s � 6 in total).

5.2. Cross validation of viable cell concentration

For the collected training dataset Dtrain, we first preform a cross-
validation test (Friedman et al., 2001) on the deduced VCCs.
More specifically, we apply the proposed calibration-free method
(via Algorithm 1) to learn the sensing relationship using four out
of five experiments, and then deduce VCC x̂j½t� for the remaining
experiment via (7). We let the linear combination coefficients
fcig4i¼1 ¼ f1, � 1, 1, � 1g and select the same set of basis func-
tions U as in Section 4.1. Furthermore, a log-transformation on
VCCs is performed prior to the analysis. We consider SameCal
(see Section 4) as the baseline method. Such a method introduces
an additional assumption that the calibration parameter is a con-
stant. Note that the Oracle baseline cannot be adopted here since
the actual values of the calibration parameter are always unknown,
which is the key motivation of the proposed calibration-free
method (also see Section 2.2 and Table 1).

Table 2 shows the absolute errors of the deduced log
VCCs when the ground-truth VCCs are measured in each
experiment. We observe that the proposed method outper-
forms the baseline SameCal method four experiments out of
five. Furthermore, the mean error of the five experiments by
the proposed method is 0.282, which is almost two times
smaller than that of 0.501 by SameCal. This is due to the
fact that the calibration parameter, which models the
patient-to-patient variability, is not a constant in cell manu-
facturing (Hinrichs and Restifo, 2013); the proposed calibra-
tion-free method properly addresses this variability via the
construction of the patient-invariance statistic.

5.3. Online deduction of viable cell concentration

We then perform VCC deduction on the online monitoring
set Dmonitor: Here, the sensing relationship is estimated using

all five experiments in the training set Dtrain: Figure 7 shows
the two deduced log VCC curves over the whole culture time
log x̂j½t�, via the proposed calibration-free method (in red
line) and the baseline SameCal method (in green dash line).
The ground-truth (log) VCC measurements in Dtrain are also
plotted in black dots. We see that the proposed method dedu-
ces a meaningful estimation of VCC. The deduced log x̂j½t�
increases approximately linearly over the culture time t, indi-
cating x̂j½t� grows exponentially in time; this matches the pre-
liminary understanding in the cell culture literature (Haycock,
2011). Furthermore, the deduced x̂j½t� approximately passes
through the ground-truth measurements. However, due to the
huge patient-to-patient variability, the baseline SameCal
method struggles in either passing through the ground-truth
experiments or providing reasonable estimates of VCC curves.
Our calibration-free method, adopting the patient-invariance
statistic, appears to alleviate such variability well.

The proposed calibration-free method can also provide
important biological insights for cell growth in cell manufac-
turing. From Figure 7(b), we notice a decrease in the VCC
curve at around hour 32. This may be due to the lack of nutri-
tion in the media since the culture media typically needs to be
changed after 30 hours. Furthermore, we observe from
Figure 7 that the VCC curves decrease slightly in the first
2 hours in cell manufacturing. This may be because of the lack
of viability of the cells at the beginning of the culture process –
though we have already thawed cells and held them at a con-
stant temperature for several minutes, it seems that a certain
portion of cells still do not gain full viability and quickly die.
As a result, we suggest standing the cell still longer for future
experiments. Last but not least, we notice a small VCC
decrease when conducting the ground-truth VCC measure-
ments. One reason for this behavior is that the measurement
itself is not in-line and needs to contact the culture media; it
may introduce contamination, and therefore, kill a small por-
tion of cells (Haycock, 2011). In contrast, the proposed cali-
bration-free biosensing method, together with impedance-
based biosensors, provides an in-line, non-destructive, and
non-contact way for VCC monitoring in cell manufacturing.

6. Conclusion

In this work, we propose a new calibration-free method for
monitoring VCC in cell manufacturing, which is a critical
component in the promising CAR T-cell therapy. The key

Figure 6. The cell manufacturing application: (a) an illustration and (b) the actual experimental setup with an emphasis on the impedance measurement part.

Table 2. Cross-validation errors of the deduced VCCs for the cell manufactur-
ing case study, using the proposed calibration-free method and the baseline
SameCal method.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Mean

Proposed 0.092 0.270 0.080 0.379 0.590 0.282
SameCal 0.500 0.174 0.328 0.742 0.760 0.501
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challenge here is the patient-to-patient variability in the initial
culturing material, leading to poor performances in deducing
VCCs via existing methods. We propose to use multiple
impedance-based biosensors with different geometries and an
associated calibration-free statistical framework for online
deduction of VCCs. Specifically, we model the patient-to-
patient variability via a patient-specific calibration parameter.
We then construct a patient-invariance statistic, which uses a
transformation and a linear combination of sensor readings to
alleviate the effect of the calibration parameter. In the training
stage, we learn the best transformation and the sensing rela-
tionship via a carefully formulated optimization problem. In
the online monitoring stage, VCCs can be deduced via the
invariance statistic, free from the patient-specific calibration
parameter. We then apply the proposed calibration-free
method in different simulation experiments and a real-world
case study of cell manufacturing, where the proposed method
demonstrates substantial improvements against the existing
methods. Therefore, we believe the proposed calibration-free
method can play an essential role in cell manufacturing and
reduce the cost of the promising CAR T-cell therapy.

Looking ahead, there are several interesting directions for
future exploration. To begin with, a more thorough analysis
of impedance-based sensors can be conducted, with a
detailed comparison of sensitivity using different experimen-
tal settings such as sensor geometries and electrode materi-
als. Moreover, we adopt in this work a parametric sensing
relationship and a heuristic approach for parameter estima-
tion. This is mainly due to the already improved perform-
ance compared with the baseline methods. A more flexible,
and non-parametric Gaussian process regression method
(Santner et al., 2013; Lin and Joseph, 2020) with a rigorous
likelihood-based parameter estimation scheme may lead to
further improvements in deducing VCCs, as well as other
critical quality attributes. Finally, micro cameras can also be
used in cell manufacturing. Therefore, we are also interested
in monitoring cell manufacturing based on cell morphology.
In this case, physics-informed deep learning frameworks in
the literature (Raissi et al., 2017; Chen,Xie, Wang, Zhang,
Vannan, Wang and Qian, 2020) appear to be suitable for
deducing critical quality attributes in cell manufacturing.
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