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Abstract 14 

Introduction: The passive stiffness of skeletal muscle can drastically affect muscle function in 15 

vivo, such as the case for fibrotic tissue or patients with cerebral palsy. The two constituents of 16 

skeletal muscle that dominate passive stiffness are the intracellular protein titin and the 17 

collagenous extracellular matrix (ECM). However, efforts to correlate stiffness and 18 

measurements of specific muscle constituents have been mixed, and thus the complete 19 

mechanisms for changes to muscle stiffness remain unknown. We hypothesize that biaxial 20 

stretch can provide an improved approach to evaluating passive muscle stiffness. Methods: We 21 

performed planar biaxial materials testing of passively stretched skeletal muscle and identified 22 

three previously published datasets of uniaxial materials testing. We developed and employed a 23 

constitutive model of passive skeletal muscle that includes aligned muscle fibers and dispersed 24 

ECM collagen fibers with a bimodal von Mises distribution. Parametric modeling studies and fits 25 

to experimental data (both biaxial and previously published) were completed.  Results: Biaxial 26 

data exhibited differences in time dependent behavior based on orientation (p<0.0001), 27 

suggesting different mechanisms supporting load in the direction of muscle fibers (longitudinal) 28 

and in the perpendicular (transverse) directions. Model parametric studies and fits to 29 

experimental data exhibited the robustness of the model (<20% error) and how differences in 30 

tissue stiffness may not be observed in uniaxial longitudinal stretch, but are apparent in biaxial 31 

stretch. Conclusions: This work presents novel materials testing data of passively stretched 32 

skeletal muscle and use of constitutive modeling and finite element analysis to explore the 33 

interaction between stiffness, constituent variability, and applied deformation in passive skeletal 34 

muscle. The results highlight the importance of biaxial stretch in evaluating muscle stiffness and 35 

in further considering the role of ECM collagen in modulating passive muscle stiffness.  36 



1. Introduction 37 

The human body is comprised of roughly 40% skeletal muscle – the tissue that drives 38 

locomotion, enables fine movements, and provides the capability to breathe in humans and 39 

animals alike. This is due to the innate ability of skeletal muscle to generate contractile force and 40 

thus drive movement of our musculoskeletal system. While skeletal muscle is a highly adaptable 41 

and regenerative tissue (Lieber, 2010; Lieber et al., 2017), neuromuscular conditions such as 42 

cerebral palsy, sarcopenia, and damage from acute injury can severely limit the ability of skeletal 43 

muscle to function properly (Lieber, 2010).  Reductions in contractile capabilities can greatly 44 

impair muscle, however more recent work has highlighted the effects of passive muscle stiffness 45 

on form and function (Lieber and Fridén, 2019). 46 

Dramatic increases in passive muscle stiffness, for example, can be detrimental for patients with 47 

cerebral palsy in comparison to healthy persons (Chapman et al., 2016; Lieber and Fridén, 2019). 48 

It follows then that understanding what mechanism(s) and/or constituent(s) in skeletal muscle 49 

dictate stiffness is necessary to treat these conditions and prevent extreme impairment. The two 50 

constituents that are recognized as the major contributors to the tensile stiffness of passive 51 

skeletal muscle are 1) muscle fibers (cells), and 2) the collagenous extracellular matrix (ECM) 52 

that provides the hierarchical organization of skeletal muscle (Huijing, 1999; Gillies and Lieber, 53 

2011; Brynnel et al., 2018; Meyer and Lieber, 2018). Passive muscle stiffness has a nonlinear 54 

and anisotropic nature that has been shown to vary between species and different muscles 55 

(Mohammadkhah et al., 2016). It should be noted here that throughout the manuscript we use the 56 

term “stiffness” to represent the intricate nonlinear, anisotropic, and variable tensile material 57 

properties of passive skeletal muscle, and not the structural property 𝑘 often used in Hooke’s 58 

Law that characterizes the structural stiffness of a physical object with specific dimensions and 59 

material properties. 60 

Uniaxial tensile testing of longitudinal (along-fiber) muscle samples are the most common 61 

approach for evaluating tensile stiffness (Calvo et al., 2010; Sato et al., 2014; Lieber and Fridén, 62 

2019). Other efforts to characterize the anisotropy of passive muscle have employed uniaxial 63 

stretch in both the longitudinal and transverse (cross-fiber) directions (Morrow et al., 2010; 64 

Takaza et al., 2012; Mohammadkhah et al., 2016; Wheatley et al., 2016b). However, during 65 

contraction and passive stretch, force is transmitted laterally both within skeletal muscle and 66 



between muscles (Huijing, 1999; Ramaswamy et al., 2011; Maas, 2019; Csapo et al., 2020), 67 

suggesting that muscle tissue is subject to a multi-axial stress state in vivo. This is further 68 

supported by the structure of the ECM, which consists of collagen fibrils that are dispersed 69 

around the transverse plane (Purslow, 1989; Purslow and Trotter, 1994; Gillies and Lieber, 70 

2011). These observations raise the question as to whether uniaxial stretch is thus the most 71 

appropriate in vitro experimental technique to evaluate the stiffness of passively stretched 72 

muscle, or if multi-axial materials testing may provide certain benefits. 73 

We propose the use of a biaxial tensile deformation as a method to elucidate the passive stiffness 74 

of skeletal muscle and have developed and employed both experimental and computational 75 

efforts to this end. This method tensions both the longitudinal (along-fiber) and transverse (cross-76 

fiber) orientations simultaneously, which may enact mechanisms that are not observable with 77 

uniaxial stretch. Finally, we have previously shown the importance of stress relaxation in 78 

modeling passive muscle stiffness (Wheatley et al., 2016a, 2016b), thus time dependence may 79 

also provide further insight into muscle stiffness and load sharing between muscle fibers and the 80 

ECM. 81 

We also propose the use of computational modeling – in particular finite element analysis – to 82 

study the passive response of skeletal muscle under both uniaxial and biaxial stretch. We aim to 83 

use a continuum-level constitutive model that accounts for stiffness of muscle fibers and the 84 

ECM and can capture the variability of stress-stretch behavior that has been observed 85 

experimentally (Mohammadkhah et al., 2016). Finite element analysis (FEA) provides a 86 

scalable, robust computational tool to simulate skeletal muscle behavior (Jenkyn et al., 2002; 87 

Oomens et al., 2003; Blemker et al., 2005; Böl and Reese, 2008). Previous studies include 88 

models of muscle at the tissue level (Takaza et al., 2013; Wheatley et al., 2017b), whole muscle 89 

level (Blemker et al., 2005; Böl, 2010; Wheatley et al., 2018), with idealized geometries (Jenkyn 90 

et al., 2002; Lemos et al., 2008; Chi et al., 2010), and may incorporate the observed anisotropic 91 

(Van Loocke et al., 2006; Böl et al., 2014; Pietsch et al., 2014; Mohammadkhah et al., 2016; 92 

Wheatley et al., 2016b), hyperelastic (Meyer and Lieber, 2011; Gras et al., 2012; Simms et al., 93 

2012; Wheatley et al., 2016a), and time dependent (Van Loocke et al., 2008; Gras et al., 2013; 94 

Wheatley et al., 2016c, 2016a) characteristics of passive skeletal muscle. Thus, FEA is well-95 



suited as a method to explore the tissue-level mechanics of muscle tissue across experimental 96 

data sets and loading conditions. 97 

Comprehensively, we aim to explore if experimental and computational efforts to characterize 98 

passive muscle stiffness may be enhanced by biaxial stretch by 1) performing planar biaxial 99 

materials testing on passive skeletal muscle, 2) developing and employing a robust continuum-100 

level constitutive model of muscle that captures uniaxial and biaxial stress-stretch behavior, and 101 

3) using such a model to explore the similarities and differences between uniaxially and biaxially 102 

stretched muscle. 103 

 104 

2. Methods 105 

2.1 Experimental Planar Biaxial Testing 106 

Porcine hind limbs were acquired from a local abattoir on the day of sacrifice for testing. Tissue 107 

was cooled and stored at 0° C prior to testing. No live animal handling was performed by any 108 

participants in this study. A total of four animals, seven muscles, and n=16 total samples were 109 

used for testing. The biceps femoris muscle was harvested using standard dissection scalpels. 110 

Muscles were sliced along the orientation of fibers with a custom tool that provides 10 mm 111 

spacing between the dissection top and a high-profile histology blade (Labus and Puttlitz, 2016). 112 

Each ~10 mm thick sample was then cut into a cruciform shape with a custom cruciform press, 113 

aligning the muscle fibers with one cruciform arm (Figure 1). Sample thickness was measured 114 

with a caliper mounted on a test stand that was zeroed to the stand platform. Thickness values 115 

were recorded in five locations on each sample – in the center of the sample and towards each 116 

cruciform arm – and averaged. Mean sample thickness was 8.90 mm with a standard error of 117 

0.29 mm across the five measurements. 118 

All materials testing was performed on a planar biaxial material testing system with 50 lb (~220 119 

N) load cells. Samples were gripped with 25 mm pyramid grips with an initial spacing of 30 mm 120 

between grips. Samples were subject to ten equibiaxial preconditioning cycles of 10% grip-to-121 

grip strain (3 mm) and back to zero at 0.5 Hz prior to testing (Van Ee et al., 2000). A 0.02 N 122 

equibiaxial pre-load was then applied immediately prior to testing. The testing protocol included 123 

an equibiaxial ramp of 20% nominal (grip-to-grip) strain (6 mm) at 10%/sec followed by a hold 124 



until 400 seconds to allow for tissue stress relaxation. Samples were then subject to equibiaxial 125 

constant rate stretch at 0.1%/sec nominal (grip-to-grip) strain (0.03 mm/sec) until failure. Failure 126 

was manually identified post-hoc in stress-time curves where significant (>~10%) decreases in 127 

stress were observed. 128 

Digital image correlation software (Correlated Solutions, Inc.) was used to track strain during the 129 

constant rate ramp pull in a ~10x10 mm region of interest (ROI) in the center of the sample. A 130 

solid in a reference configuration 𝑿 that undergoes a deformation under an external load is 131 

placed into a deformed configuration 𝒙, which is described by the deformation gradient 𝑭 132 

(Equation 1). For a 2D problem such as a single camera digital image correlation system, 𝑭 is a 133 

2x2 matrix of the deformations relative to orthogonal axes (Equation 1). From 𝑭, 2D muscle 134 

region of interest stretch 𝜆 (Equation 2) can be calculated for the longitudinal and transverse 135 

orientations (Szczesny et al., 2012). Nominal (grip-to-grip) stretch was measured directly from 136 

grip displacement. Nominal stress 𝑆 was determined by dividing load cell force by the product of 137 

sample arm length (30 mm) and mean sample thickness. A linearized modulus 𝐸 =
∆𝑆

∆𝜆
 was 138 

calculated from the initial and final points of the constant ramp pull data. For comparative 139 

purposes between orientations, we used nominal stress and implemented a finite element model 140 

to determine ROI Cauchy (true) stress and material properties. All stress-stretch data were 141 

averaged either over time (for stress-relaxation data) or over stretch (for constant ramp pull data) 142 

for model fitting. 143 

𝑭 =
𝜕𝒙

𝜕𝑿
= [

𝐹11 𝐹12

𝐹21 𝐹22
]              (1) 144 

𝜆1 =
|𝜕𝒙1|

|𝜕𝑿1|
      (2) 145 

 146 

2.2. Constitutive Modeling 147 

For a three-dimensional solid subject to an external load, the governing linear momentum 148 

balance (Newton’s second law) can be written as Equation 3 and the governing angular 149 

momentum balance can be written as Equation 4, where 𝝈 is the Cauchy (true) stress, 𝜌 is the 150 

density of the solid, 𝒃 is the body force vector, and 𝒂 is the acceleration vector. Assuming 151 



equilibrium with negligble body force, Equation 3 reduces to ∇ ∙ 𝝈 = 0. For full derivations and 152 

further reading, the reader is directed towards Holzapfel’s Nonlinear Solid Mechanics 153 

(Holzapfel, 2000). 154 

∇ ∙ 𝝈 + 𝜌𝒃 = 𝜌𝒂      (3) 155 

𝜎𝑗𝑖 = 𝜎𝑖𝑗           (4) 156 

The mechanical properties of musculoskeletal soft tissues such as skeletal muscle are often 157 

modeled with a strain energy density function, including any specified intricacies such as 158 

nonlinearity, anisotropy, and nearly incompressibility. To characterize the variable nature of 159 

passive muscle anisotropy and nonlinearity (Mohammadkhah et al., 2016), we have employed a 160 

continuum model Ψtot that includes contributions of an isotropic ground matrix Ψ̅iso, muscle 161 

fibers Ψ̅fibers, the collagenous extracellular matrix Ψ̅ECM, and a volumetric response Ψvol 162 

(Equation 5). As muscle exhibits nearly-incompressible behavior (Van Loocke et al., 2006; 163 

Takaza et al., 2012), this formulation features a decoupled deviatoric response Ψ̅ = Ψ̅iso +164 

Ψ̅fibers + Ψ̅ECM and a dilatational response Ψvol. Here deformation is characterized by the 165 

volume ratio 𝐽,  the deviatoric right Cauchy-Green deformation tensor 𝑪̅ = 𝐽−
2

3𝑭𝑻𝑭, the first 166 

deviatoric invariant of 𝑪̅ denoted by 𝐼1̅, and the deviatoric pseudo-invariant 𝐼4̅ = 𝒎 ∙ 𝑪̅ ∙ 𝒎 that 167 

measures the square of muscle fiber stretch whose direction is defined by the unit vector 𝒎 168 

(Holzapfel, 2000). The Cauchy (true) stress 𝝈 can then be defined as a function of the 169 

constitutive model (Equation 6, where dev(−) is the deviatoric operator, 𝑝 is hydrostatic 170 

pressure and 𝑰 is the identity matrix) (Holzapfel, 2000; Maas et al., 2012). While further detail is 171 

provided below regarding specific constitutive relations, the general model employed here is an 172 

uncoupled, fiber-reinforced material with two families of fibers – aligned muscle fibers and 173 

bimodal, continually distributed ECM collagen fibers (Figure 2) (Yousefi et al., 2018; Bleiler et 174 

al., 2019). This formulation attributes muscle fibers and the ECM as the main load-bearing 175 

constituents in passively stretched muscle (Smith et al., 2019). 176 

Ψtot(𝑪̅, 𝐽) = Ψ̅iso(𝐼1̅) + Ψ̅fibers(𝐼4̅) + Ψ̅ECM(𝑪̅) + Ψvol(𝐽)    (5) 177 

𝝈 = dev (2𝐽−1𝑭̅
𝜕Ψ̅

𝜕𝑪̅
𝑭̅𝑇) + 𝑝𝑰           (6) 178 



The isotropic ground matrix model was modeled with an uncoupled neo-Hookean strain energy 179 

density formulation, and the volumetric term with a logarithmic function (Equations 7 and 8, 180 

where 𝑐1 is a shear-like modulus and 𝑘 is a bulk-like modulus). Due to the highly anisotropic, 181 

non-symmetric, and nearly-incompressible nature of skeletal muscle (Van Loocke et al., 2006; 182 

Takaza et al., 2012; Mohammadkhah et al., 2016), 𝑐1 was selected as a low (but non-zero) 183 

constant value for this study and 𝑘 was selected to ensure near-incompressibility, as provided in 184 

Table 1. 185 

Ψ̅iso(𝐼1̅) = 𝑐1(𝐼1̅ − 3)            (7) 186 

Ψvol(𝐽) =
𝑘

2
(ln 𝐽)2           (8) 187 

The muscle fiber contribution term was defined as a power law to model nonlinear stress-stretch 188 

behavior of passive muscle when stretched in the direction of muscle fibers (Equation 9, where 𝜉 189 

is a modulus-like parameter and 𝛽 is the power parameter) (Takaza et al., 2012; Wheatley et al., 190 

2016b). The extracellular matrix (ECM) strain energy density function defines the behavior of a 191 

continually dispersed, 3D bimodal von Mises distribution of tension-only fibers (Ateshian et al., 192 

2009). The formulation presented here is modified from an ellipsoidal bivariate von Mises 193 

distribution to describe the anisotropic and inhomogeneous collagen fiber distribution in articular 194 

cartilage (Zimmerman and Ateshian, 2019). Due to the continually dispersed nature of the fibers, 195 

the strain energy density function is an integration over a unit sphere of volume 𝑉 of the product 196 

of the distribution 𝑅(𝒏) (where 𝒏 is the orientation of the ECM collagen fibers) and the fiber 197 

constitutive law Ψ̅𝑛 (Equation 10). The distribution 𝑅(𝒏) is further broken into two functions 198 

using spherical angle functions 𝑃(𝜃) (where 𝜃 is the azimuth angle) and 𝑄(𝜑) (where 𝜑 is the 199 

declination angle) (Equation 11). If one assumes that the ECM fibers have no directional 200 

preference in the transverse plane (perpendicular to muscle fibers), then 𝑃(𝜃) decomposes to the 201 

circle equation (Equation 12). The remaining dispersion term, 𝑄(𝜑) describes the ECM collagen 202 

fiber dispersion in the along-fiber plane (Figure 2) with a bimodal von Mises function that 203 

includes the primary ECM collagen fiber orientation angle 𝛾 (the angle of offset from muscle 204 

fibers to ECM collagen fibers) and a dispersion term 𝑑 that characterizes the degree of alignment 205 

of ECM collagen fibers (Equation 13). This equation also includes an integration term 𝑞(𝑑, 𝛾) 206 

that enforces ∫ 𝑅(𝒏) 𝑑𝑉 = 1. By varying the ECM orientation angle 𝛾 and the dispersion term 𝑑, 207 



the relative density of ECM collagen fibers can be continuously defined throughout the solid. 208 

Finally, a neo-Hookean type fiber constitutive law was used for the ECM collagen fibers 209 

(Equation 14), with a modulus 𝜇 that is a function of the square of the collagen fiber stretch 𝐼𝑛̅ 210 

(FEBio User Manual 2.8, 2018). These formulations also assume that fibers (both muscle fibers 211 

and ECM collagen fibers) can only sustain tension, not compression (Weiss et al., 1996). 212 

Ψ̅fibers(𝐼4̅) =
𝜉

𝛽
(𝐼4̅ − 1)𝛽              (9) 213 

Ψ̅ECM(𝑪) = ∫  𝑅(𝒏)Ψ̅𝑛(𝐼𝑛̅) 𝑑𝑉          (10) 214 

∫ 𝑅(𝒏) 𝑑𝑉 = 1 = ∫ 𝑃(𝜃) 𝑄(𝜑) 𝑑𝑉          (11) 215 

𝑃(𝜃) = [(cos2 𝜃 + sin2 𝜃)]−1/2      (12) 216 

𝑄(𝜑) =
1

𝑞(𝑑,𝛾)
{exp[2𝑑cos2(𝜑 + 𝛾)] + exp[2𝑑cos2(𝜑 − 𝛾)]}    (13) 217 

Ψ̅𝑛(𝐼𝑛̅) =
𝜇

4
(𝐼𝑛̅ − 1)2          (14) 218 

A quasi-linear Prony series viscoelastic formulation was used to model stress-relaxation of 219 

passively stretched skeletal muscle (Wheatley et al., 2016a). Briefly, the deviatoric stress 𝝈̅ can 220 

be defined as a function of a convolution integral (Equation 15, where 𝐺(𝑡) is the relaxation 221 

function, 𝑡 is time, and 𝜁 is an integration variable). A Prony series relaxation function (Equation 222 

16) enables the use of viscoelastic coefficients 𝑔𝑖 and associated time constants 𝜏𝑖 that 223 

characterize the amount and rate of relaxation, respectively. For this study, we fixed 𝜏𝑖 terms as 224 

spaced parameters to ensure a broad range of relaxation rates (Table 1) and varied 𝑔𝑖 terms 225 

(Vaidya and Wheatley, 2019). 226 

𝝈̅(𝑡) = ∫ 𝐺(𝑡 − 𝜁) 
𝑑𝝈̅

𝑑𝜁
𝑑𝜁

𝑡

−∞
        (15) 227 

𝐺(𝑡) = 1 + ∑ 𝑔𝑖
4
𝑖=1 exp (−

𝑡

𝜏𝑖
)        (16) 228 

2.3 Finite Element Modeling 229 

All finite element modeling results presented here were conducted using the open source finite 230 

element package FEBio (Maas et al., 2012). A custom plugin was written to apply the bivariate 231 

von Mises distribution of the ECM collagen fibers 𝑅(𝒏). To model biaxial stretch, a symmetric, 232 



eighth cruciform finite element model consisting of 2,184 linear hexahedral elements was 233 

developed (Figure 1C). This model was chosen to represent a cruciform 30mm x 30mm in width 234 

and height and a thickness of 8.9 mm. In addition to symmetric boundary conditions (Figure 1C), 235 

the face of each cruciform arm was fixed to a rigid body and subject to displacements to mimic 236 

the experimental protocol (Figure 1D). Reaction force divided by initial arm cross sectional area 237 

was calculated as nominal stress and total model length was divided by initial model length to 238 

determine nominal stretch. By using the solid mixture capabilities in FEBio, separate viscoelastic 239 

parameters were assigned to the stress contributions from the muscle fibers and extracellular 240 

matrix.  241 

Constitutive parameters were optimized to experimental data by fitting model nominal stress to 242 

experimental nominal stress. Model ROI stretch was calculated based on the position of model 243 

ROI surface nodes similar to experimental stretch (Equations 1-2), then used as a validation to 244 

experimental DIC stretch (Figure 3A-B). Parameter optimization was completed in two steps – 245 

first the viscoelastic Prony series parameters were fit to normalized stress-relaxation data for 246 

both the longitudinal and transverse directions, then hyperelastic parameters were fit to the full 247 

set of longitudinal and transverse stress data. This approach has the advantage of reducing the 248 

overall number of parameters needed to be optimized at any given step in the process by first 249 

determining stress relaxation behavior and then hyperelastic stiffness (Vaidya and Wheatley, 250 

2019). All optimization was performed in MATLAB using constrained nonlinear optimization 251 

(lsqnonlin) by varying model parameters and minimizing the sum of squared residuals between 252 

model (𝜎𝑚) and experimental (𝜎𝑒) stresses as an objective function 𝑜𝑏𝑗 across all experimental 253 

data points (total number 𝑛𝑝𝑡𝑠) (Equation 17). Nominal stress was used for fitting of our 254 

cruciform finite element model (Figure 3C) to planar biaxial experimental data as Cauchy (true) 255 

stress cannot be estimated from experimental planar biaxial tests without a correction factor, 256 

which is typically determined from finite element analysis. 257 

𝑜𝑏𝑗 = ∑ (𝜎𝑒
𝑖 − 𝜎𝑚

𝑖)
2𝑛𝑝𝑡𝑠

𝑖=1       (17) 258 

For comparisons across previously published experimental studies of uniaxial stretch of passive 259 

skeletal muscle, a simplified approach of a single linear hexahedral finite element model was 260 

implemented (Figure 3D). Three previously published studies of materials testing of skeletal 261 

muscle under uniaxial tension were identified (Table 2). These studies provide a range of data 262 



across species, muscles, and orientations for model comparison and fitting. The finite element 263 

model was fit to the experimental studies by comparing literature Cauchy (true) stress to model 264 

Cauchy stress as a function of directional stretch. Data from Wheatley et al., 2016b were zeroed 265 

following an initial stress-relaxation phase for consistency with other data. Following all model 266 

fitting, optimized parameters for each data set were used to simulate stress-stretch behavior 267 

under uniaxial and equibiaxial stretch. Finally, a simple parameter study was conducted to 268 

further highlight the differences in stress-stretch behavior between uniaxial and biaxial stretch. 269 

Cauchy stress was used for fitting to previously published uniaxial data and for parametric 270 

studies as it requires fewer assumptions to estimate than under biaxial conditions, Cauchy stress 271 

is reported in the literature cited here, and the use of Cauchy stress allows for a simplified single 272 

element finite element model. No stress conversions were calculated directly from a push 273 

forward or pull back operation in this work, as all planar biaxial model fitting used nominal 274 

stress only, and all uniaxial and parametric studies used Cauchy stress only. 275 

To summarize, we fit the cruciform finite element model to planar biaxial data, then used the 276 

optimized parameters to simulate uniaxial stretch. Conversely, we fit the simplified finite 277 

element model to uniaxial data from three different previously published studies, then used the 278 

optimized parameters to simulate biaxial stretch. 279 

2.4 Statistics 280 

Stress relaxation data were normalized to sample peak stress and fit to a power law model 281 

(Equation 18, where 𝜎𝑛 is normalized stress, 𝑡 is relaxation time, and 𝑎 and 𝑏 are power law 282 

coefficients) to characterize the rate of relaxation between orientations. The power law 𝑏 283 

coefficients (rate of relaxation), stress at three time points – peak stress, end of relaxation, and 284 

end of ramp pull, and linearized modulus from the pull phase were compared between 285 

orientations using a paired t-test. A linear regression was performed to investigate the potential 286 

effect of post-mortem time on modulus for both directions. For all statistical tests, significance 287 

was set at p<0.05. 288 

𝜎𝑛 = 𝑎𝑡𝑏               (18) 289 

Model fits to experimental data were evaluated with an average percent error for each 290 

experimental data point, normalized root mean square error (NRMSE, where 1 is a perfect fit and 291 



-∞ is the worst possible fit), and root mean square error (RMSE, in kPa) (Vaidya and Wheatley, 292 

2019). 293 

 294 

3. Results 295 

3.1 Experimental Planar Biaxial Data 296 

Biaxial data showed that longitudinal direction nominal stress was greater and decreased at a 297 

faster rate during stress relaxation than transverse direction stress. This was supported by both 298 

visual analysis of normalized relaxation (Figure 4A) and statistical analysis (Figure 4B). 299 

Specifically, the paired t-tests suggest that the power law b coefficient was greater in the 300 

longitudinal orientation (p < 0.0001). Stress was greater at the peak (p = 0.021), end of relaxation 301 

phase (p = 0.037), and end of constant rate pull phase (p = 0.0063), and the linearized modulus 302 

was greater in the longitudinal direction versus the transverse direction (p = 0.028). The power 303 

law fits provided excellent agreement to experimental data visually (Figure 4A) and with mean r-304 

squared values of 0.985 and 0.974 for longitudinal and transverse data, respectively. Linear 305 

regression results showed that modulus was not correlated with post-mortem time (p>0.6, 306 

R2<0.02 for both directions). 307 

3.2 Model Fitting 308 

The use of constrained nonlinear optimization produced a strong fit of the biaxial finite element 309 

model to experimental data, both for the stress relaxation phase as well as the constant ramp pull 310 

phase. This is shown both visually (Figure 5 A, B, D) and through statistical analysis 311 

(NRMSE>0.9, Table 3). Measured experimental stretch in the sample region of interest (ROI) 312 

from digital image correlation and predicted model ROI stretch are provided for model 313 

validation (Figure 5 C, D). The model showed strong agreement to transverse stretch data, and 314 

overpredicted longitudinal stretch somewhat. 315 

The single element uniaxial model exhibited strong fitting capabilities across all uniaxial stretch 316 

data sets as observed visually (Figure 6) and by evaluating the statistical differences between 317 

model outputs and experimental data (NRMSE>0.85, Table 3). Specifically, the model was able 318 

to match a wide range of anisotropy and nonlinearity between data sets, including directions of 319 



greatest stiffness of the transverse direction (Wheatley et al., 2016b. and Takaza et al., 2012.) 320 

and 45° (Mohammadkhah et al., 2016.). 321 

Optimized hyperelastic parameter values (Table 4) demonstrate the variability of passive muscle 322 

material properties. For the constitutive model used here, there was a particularly wide range of 323 

muscle fiber stiffness 𝜉 (4-110 kPa), ECM modulus 𝜇 (28-1,700 kPa), and ECM orientation 324 

angles 𝛾 (32-90°). It should be noted here that the Mohammadkhah et al., 2016 chicken data best 325 

fit produced a negligible muscle fiber modulus, hence the reported value of 0 kPa. Finally, to 326 

ensure a unique set of parameters for each optimal fit, the ECM fiber dispersion parameter 𝑑 was 327 

fixed for some of the optimizations, as shown in Table 4. Optimized viscoelastic parameter 328 

values (Table 5) further highlight the differences in viscoelastic behavior between orientations, 329 

as muscle fiber 𝑔𝑖 terms were larger than those applied to the extracellular matrix term. This 330 

shows greater relaxation for the muscle fiber term in comparison to the extracellular matrix term. 331 

3.4 Modeling Biaxial and Uniaxial Stretch 332 

Simulating both uniaxial stretch and biaxial stretch with each optimized parameter set showed 333 

different effects of biaxial stretch on model response (Figure 7 and Table 6). Specifically, stress-334 

stretch curves from Wheatley et al., 2016b. parameters were largely unaffected by biaxial versus 335 

uniaxial stretch, while biaxial stretch greatly increased stiffness for the Mohammadkhah et al., 336 

2016. parameter set. A parametric study of uniaxial and biaxial stretch for two different 337 

parameter sets – one with Aligned fibers and one with Dispersed fibers – shows the models 338 

exhibit nearly identical stiffness behavior under uniaxial stretch (Figure 8A) but distinctly 339 

different behavior under biaxial stretch (up to 119% difference, Figure 8B). This was observed 340 

for both the longitudinal and transverse directions, highlighting the role of the dispersed ECM 341 

fibers and assumptions of anisotropy in altering model behavior. Parameter values used (Table 7) 342 

fall within those optimized to experimental data (Table 4). 343 

 344 

4. Discussion 345 

4.1 Planar Biaxial Testing 346 



We have presented here, to the best of our knowledge, the first set of experimental data of 347 

passive skeletal muscle subject to planar biaxial stretch. From these data, we determined that the 348 

porcine hind limb tissue tested exhibited the following characteristics: 1) faster relaxation for 349 

longitudinal samples (Figure 4A, B) and 2) greater stiffness for the longitudinal direction (Figure 350 

4B). For the viscoelastic response, we previously measured greater relaxation rate with greater 351 

longitudinal stiffness of muscle tissue (Wheatley et al., 2016b), which agrees with the results 352 

seen here. The differences in relaxation rate between orientations suggest two mechanisms that 353 

support load in passively stretched skeletal muscle. This observation is supported by ongoing 354 

efforts that have shown that passive muscle stiffness in mammals is dictated by both the 355 

collagenous extracellular matrix (ECM) (Meyer and Lieber, 2011, 2018) and muscle fibers 356 

themselves (Brynnel et al., 2018). Here we suggest that both constituents may contribute to 357 

longitudinal stiffness, and that measuring the anisotropic viscoelastic response may further 358 

elucidate load sharing between constituents. 359 

It is known that muscle exhibits stress relaxation at both the muscle fiber level (Meyer et al., 360 

2011; Rehorn et al., 2014) and the whole muscle or tissue level (Best et al., 1994; Gras et al., 361 

2013; Wheatley et al., 2016a). Meyer and Lieber (Meyer et al., 2011) measured ~95% stress 362 

relaxation when stretching muscle fibers at 2,000%/sec and ~80% stress relaxation at 20%/sec, 363 

which exceeds stress relaxation observed in highly collagenous tissues such as tendon (Atkinson 364 

et al., 1999). Based on these findings and the observation of less relaxation in the transverse 365 

direction from our data, the ECM may exhibit less stress-relaxation than muscle fibers. This 366 

requires further experimental efforts to confirm or deny, however. To the best of our knowledge, 367 

there have been no studies that have compared viscoelastic behavior between single fiber and 368 

tissue level samples or have tried to measure the viscoelastic properties of the ECM directly or 369 

indirectly. Such a study would help contextualize tissue-level measurements of longitudinal and 370 

transverse viscoelastic behavior in regards to the contribution of muscle fibers and the ECM to 371 

tissue stiffness. 372 

In comparison to previously published data, most studies of passively stretched muscle have 373 

observed a greater stiffness in the transverse direction in comparison to the longitudinal 374 

direction, albeit to varying degrees (Takaza et al., 2012; Mohammadkhah et al., 2016; Wheatley 375 

et al., 2016b). One previous study observed greater stiffness in the longitudinal direction 376 



(Morrow et al., 2010). These comprehensively suggest that anisotropy may be variable in 377 

skeletal muscle and may depend on a range of physiological factors. Exploring the link between 378 

anisotropy and in vivo function was outside the scope of this work but would be appropriate for 379 

future studies. We have previously hypothesized that a greater longitudinal stiffness was the 380 

result of rigor mortis (Wheatley et al., 2016b), however in this work all testing in this study was 381 

completed within seven hours to reduce this risk (Van Ee et al., 2000; Van Loocke et al., 2006) 382 

and tissue stiffness was not correlated with post-mortem testing time (p>0.1, R2<0.2). It is thus 383 

unlikely that our data are driven by rigor mortis alone. Use of a relaxing agent (Meyer and 384 

Lieber, 2018) could be used to further prevent the effects of post-mortem stiffening. Nonetheless, 385 

the data presented here should not be viewed as a comprehensive set of muscle material 386 

properties, but as a validation of an experimental and computational technique to investigate 387 

muscle stiffness.  388 

4.2 Constitutive Modeling of Experimental Data 389 

Fitting results show the capability of our constitutive model to accurately simulate the range of 390 

experimentally observed anisotropic and nonlinear stress-stretch behavior. This is shown both 391 

visually (Figures 5 and 6) and through statistical evaluation (Table 3). We also used the 392 

experimental biaxial region of interest (ROI) stretch data for model validation (Figure 5). These 393 

results comprehensively suggest that our model is well-suited for studying the tissue-level 394 

mechanics of passively stretched skeletal muscle. To encourage a unique solution for each data 395 

set, the ECM fiber dispersion parameter 𝑑 was fixed based on a qualitative comparison to muscle 396 

ECM fiber dispersion (Purslow and Trotter, 1994). Additionally, dataset characteristics such as 397 

viscoelasticity (biaxial data), data at 45° (Mohammadkhah and Takaza), and nonlinear 398 

longitudinal data (Wheatley) enforced a unique solution for each optimization. 399 

The constitutive model used in this study includes a nonlinear muscle fiber term Ψ̅fibers(𝐼4̅) 400 

which is a function of 𝐼4̅, the square of muscle fiber stretch. We chose to employ a power law 401 

function for this term as it models the nonlinear stress-stretch response of muscle in the 402 

longitudinal orientation (Mohammadkhah et al., 2016; Wheatley et al., 2016a) with only two 403 

parameters. The optimized values for the modulus-like parameter 𝜉 (0-108 kPa) and for the 404 

power coefficient 𝛽 (2.35-3.78) are reasonable, although 𝜉 = 0 for the Mohammadkhah data is 405 

questionable. However, Mohammadkhah et al., 2016 data was obtained from chicken pectoralis 406 



muscle tissue, which as they note has a higher collagen content (Nishimura, 2010). This may 407 

partially explain why our model optimization approach identified a negligible muscle fiber 408 

modulus for this data set if collagen is dominating the stress-stretch response. Our remaining 409 

muscle fiber modulus-like values of 4.2-108 kPa compare reasonably to experimental 410 

observations of ~40 kPa in mice (Meyer and Lieber, 2018). 411 

Our model of muscle ECM Ψ̅ECM(𝑪̅) describes the collagen fibers with a neo-Hookean 412 

hyperelastic model (with a shear modulus 𝜇) and a bimodal von Mises distribution (with angle 𝛾 413 

and dispersion 𝑑). Our use of a single modulus term is a simplification of a highly complex 414 

combination of ECM collagen amount, type, crosslinking, and crimp. While these each have 415 

been studied in regards to tissue stiffness through either experimentation (Smith and Barton, 416 

2014; Chapman et al., 2015; Mohammadkhah et al., 2018; Lieber and Fridén, 2019; Smith et al., 417 

2019) or modeling (Gindre et al., 2013; Bleiler et al., 2019; Spyrou et al., 2019; Valentin and 418 

Simms, 2020), developing a unique set of parameters from healthy tissue-level data that 419 

incorporates each of these was outside of the scope of this work. This also does not address the 420 

different layers of ECM structure such as perimysium and endomysium. We instead chose to use 421 

the approach of minimizing the number of model parameters while ensuring a strong fit to 422 

experimental data.  423 

Purslow and Trotter (Purslow and Trotter, 1994) measured muscle ECM collagen fiber 424 

orientations under a range of physiological conditions and found that the primary fiber alignment 425 

angle was dependent on stretch, but ranged from ~20-80°. Qualitatively, recent mammalian 426 

ECM scanning electron microscopy by Sleboda et al (Sleboda et al., 2020) found that 427 

multilayered, collagen-rich ECM was common between a range of species but that 428 

microstructure was less consistent. These studies suggest that ECM fiber angle and dispersion 429 

may vary with a range of mechanical, anatomical, and physiological factors such as animal size 430 

and muscle fiber type distributions. The optimized ECM fiber angles we determined (32-90°) 431 

thus seem reasonable. 432 

In considering specific modeling studies relevant to this work, Yucesoy et al. modeled the 433 

muscle fibers and extracellular matrix as distinct but linked constituents (Yucesoy et al., 2002). 434 

Gindre et al developed a microstructural model of a muscle fiber wrapped with a single family of 435 

dispersed ECM fibers to explore titin and ECM contributions (Gindre et al., 2013). Yousefi et al 436 



showed how a similar model of the extracellular matrix as the only load bearing mechanism with 437 

two perfectly reinforcing fiber directions can describe the observed anisotropy in passively 438 

stretched bovine, porcine, and chicken muscle (Yousefi et al., 2018). Bleiler et al designed and 439 

formulated a passive constitutive model with dispersed collagen fibers surrounding muscle fibers 440 

that could be integrated into a finite element simulation (Bleiler et al., 2019). Teklemariam et al 441 

used a similar micromechanical approach with distinct muscle fiber and ECM domains 442 

(Teklemariam et al., 2019). Spryou et al developed a multiscale model that employed 443 

homogenization from a microstructurally derived model to a continuum-level response (Spyrou 444 

et al., 2019). 445 

While each of these studies present advantages for modeling the passive response of skeletal 446 

muscle, we have chosen to use a similar approach to Yousefi et al with the extension of the 447 

model to include ECM collagen dispersion and muscle fiber stiffness. After applying 448 

assumptions for the low-stiffness isotropic ground matrix (Wheatley et al., 2017a) and near-449 

incompressibility (Takaza et al., 2012), this model required five parameters to describe the 450 

hyperelastic response – two for the muscle fibers (stiffness and nonlinearity) and three for the 451 

ECM (stiffness, direction, and dispersion). The advantage of this approach is a relatively low 452 

number of parameters while still enabling model robustness. The use of a Prony series 453 

viscoelastic model may increase the overall number of parameters of the model, but as we have 454 

shown in this and previous works (Vaidya and Wheatley, 2019), those parameters can be 455 

optimized with a two-step fitting procedure. Based on stress-stretch data alone, it would be 456 

unclear how load is shared between the ECM and muscle fibers. However, the stress-relaxation 457 

data shows distinct time dependent differences between longitudinal and transverse stress 458 

relaxation rate (Figure 4). This suggests load may be supported by both muscle fibers and ECM, 459 

and perhaps more so the muscle fibers in the longitudinal direction. 460 

It should be noted that the model chosen here enables a wide range of stress-stretch behavior and 461 

is generally informed by muscle physiology, but is not derived from microstructure and does not 462 

account for effects of interaction between the extracellular matrix and muscle fibers. The 463 

parameters (such as ECM fiber angle and dispersion) may be generally related to tissue 464 

microstructure, but are not direct analogues. One must be careful not to conclude concrete 465 

microstructural findings based on the fitting results presented here.  466 



4.3 Modeling Uniaxial Versus Biaxial Stretch 467 

Expanding our modeling from fitting to simulations of uniaxial versus biaxial stretch showed 468 

variability between data sets (Figure 7 and Table 7). Generally speaking, materials exhibit 469 

greater stiffness when stretched biaxially versus uniaxially. However, for highly anisotropic 470 

materials with multiple families of fibers, the effect may not be as dramatic as expected, as 471 

shown in the uniaxial versus biaxial comparisons of the Wheatley et al., 2016b parameter set 472 

(Figure 7B, Table 6). In this case, the model ECM fibers are aligned perpendicular to muscle 473 

fibers and have low dispersion and during biaxial stretch each set of fibers are recruited 474 

independently. Conversely, the Mohammadkhah et al., 2016 parameter set increased in excess of 475 

100% in both the longitudinal and transverse directions (Figure 7C, Table 6). Here the ECM 476 

fibers are oriented between directions and highly dispersed, which recruits these fibers during 477 

both longitudinal and transverse stretch. Thus, the biaxial deformation will stretch the ECM 478 

fibers to a greater amount. 479 

The potential physiological relevance of a case where biaxial stretch and uniaxial stretch exhibit 480 

similar stress-stretch behavior can be seen in Figure 8 and Table 7. Here we have identified two 481 

sets of parameters that fall within the previously optimized values that have nearly 482 

indistinguishable uniaxial stress-stretch behavior in both the longitudinal and transverse 483 

orientations (Figure 8A). When subject to biaxial stretch however, Dispersed shows drastic 484 

changes in stiffness while Aligned is largely unaffected (113% difference in the longitudinal 485 

direction between models). This presents a simplified case where two muscles that may seem to 486 

have the same mechanical properties when stretched uniaxially would in fact have quite different 487 

mechanics when subject to a more complex deformation. In effect, these differences are 488 

“hidden” by uniaxial stretch. This could partially explain that differences in longitudinal stiffness 489 

between cerebral palsy and healthy muscle cannot be explained by collagen content, quantity, 490 

and cross-linking alone (Chapman et al., 2015; Lieber and Fridén, 2019; Smith et al., 2019). 491 

Smith et al (Smith et al., 2019) discuss these collagen content-passive stiffness correlations and a 492 

relatively minor contribution of collagen crosslinking that this observation “… suggests the 493 

intriguingly possibility that higher-order structures may determine tissue stiffness to a greater 494 

extent than molecular components”. We suggest that ECM collagen fiber orientation and 495 

dispersion may be these “higher-order structures” and show with our model how differences in 496 



tissue stiffness could be hidden by uniaxial stretch (Figure 8A). As noted above, the technique 497 

employed here is a continuum-level hyperelastic constitutive model. We do not imply that this 498 

model is a direct prediction of tissue microstructure, only that our model has shown robust and 499 

accurate stress-stretch behavior and that similar mechanisms may be present. 500 

Another consideration for uniaxial versus biaxial stretch is the observation of transverse load 501 

transmission in contracting muscle as well as laterally between individual muscles (Huijing, 502 

1999; Yucesoy et al., 2008). If load generated longitudinally by muscle fibers is transmitted 503 

transversally through the ECM, then muscle tissue must be subject to a multi-axial stress state in 504 

vivo. Our parametric study suggests that biaxial stretch could enact a stiffening effect to 505 

longitudinal stress-stretch response in comparison to uniaxial only (Figure 8A and B). For tissues 506 

that exhibit higher load sharing of the ECM, this effect could be exaggerated, and biaxial stretch 507 

would in effect increase the perceived tissue stiffness, and thus perhaps increase the efficiency of 508 

load transfer in vivo during contraction. However, further experimental research is needed to 509 

confirm if this is the case for biaxially stretched skeletal muscle. Nonetheless, we have 510 

highlighted the importance of a biaxial deformation in passively stretched skeletal muscle, and 511 

hope that this consideration can drive future work to better understand load transmission in vitro 512 

and in vivo. 513 

4.4 Limitations and Future Directions 514 

This work is not without limitations. Firstly, the geometry selection of a simplified, idealized 515 

cruciform or single element cuboid is clearly not a representation of the geometric/structural 516 

complexities of whole, in vivo skeletal muscle. However, the experimental data used in this study 517 

are generated from tissue samples isolated from whole muscle, and thus do not represent a full in 518 

vivo environment either. This isolation is necessary to accurately determine tensile material 519 

properties. While a more detailed set of geometric finite element models could be developed to 520 

match average specimen geometry from each uniaxial experiment, this may not necessarily yield 521 

improvements in fit or different study conclusions. The advantage of our geometric approach is 522 

in computational efficiency and simplicity – as the optimization protocol that fit the model to 523 

experimental stress-stretch curves does not require significant computation time and is highly 524 

stable. Nonetheless, as experimental and finite element models of in vivo muscle deformation 525 



have shown complex strains (Blemker and Delp, 2005; Böl et al., 2015), use and validation of 526 

this model in such cases would be a significant benefit to the field. 527 

While our constitutive model exhibits robustness in simulating tensile stress-stretch behavior 528 

(Figure 6), it does not model microstructural and physiological characteristics such as collagen 529 

crosslinking, multiple collagen types, or muscle fiber-ECM interactions. Including such 530 

components would likely yield increased robustness and physiological accuracy of such a model. 531 

However, our model has exhibited efficacy in simulating a wide range of passive muscle stretch. 532 

We have shown that this model can inform future studies of ECM structure – such as collagen 533 

fiber orientation and dispersion – while fitting tissue-level data and maintaining experimental 534 

observations such as near-incompressibility. 535 

It should be noted that model validation across uniaxial and biaxial stretch would strengthen 536 

future applications of this model. Additionally, experiments such as biaxial materials testing 537 

coupled with decellularization or muscle fiber isolation would provide necessary insight into the 538 

extent to which this model or future improved models can accurately characterize load sharing 539 

between muscle fibers and the ECM. This would greatly strengthen this work, and provide strong 540 

efficacy for application of this model to in vivo conditions of muscle impairment such as cerebral 541 

palsy. We have also not explored the model response under compression or during active 542 

contraction as those are outside the scope of this work.  Thus, this model should be viewed not as 543 

a comprehensive model of passive skeletal muscle, but as an effective tool in better 544 

understanding passive muscle stiffness. 545 

 546 

5. Conclusions 547 

Based on the results and discussion of this work, we have made the following observations, 548 

recommendations, and conclusions: 549 

1) We performed biaxial stress-relaxation testing on passive skeletal muscle and suggest 550 

that this approach can be used to effectively characterize passive muscle mechanics 551 

2) Our model of a dispersed extracellular matrix contribution and aligned muscle fibers was 552 

able to exhibit broad variability in simulating and fitting tensile stiffness, nonlinearity, 553 

and anisotropy of passive skeletal muscle 554 



3) This model, in conjunction with experimental data, exhibited the role of biaxial stretch in 555 

measuring passive muscle stiffness and suggesting future work to explore inconsistent 556 

correlations between muscle extracellular matrix collagen measurements and passive 557 

stiffness 558 

Future validation, development, and employment of modeling and biaxial experimentation would 559 

elucidate the role of the extracellular matrix in in vivo muscle function, and help explain how 560 

detrimental changes to muscle stiffness – such as those observed in cerebral palsy – may be 561 

explained by extracellular matrix structure. 562 
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10. Figure Captions 788 

Figure 1. Planar biaxial materials testing overview, with A) cruciform geometry, B) 789 

representative planar biaxial sample, where the white arrow denotes the longitudinal direction 790 

and the white dashed square denotes approximate DIC region of interest (ROI), and C) 791 

experimental stress-relaxation loading protocol schematic (note that axes are not to scale). 792 

 793 

Figure 2. Schematic of passive muscle model for extracellular matrix and muscle fibers. A 794 

representative 2D square of muscle tissue shows the longitudinal or muscle fiber direction (red) 795 

and two families of collagen fiber dispersion (green) offset from the muscle fiber direction by an 796 

angle 𝛾. 797 

 798 

Figure 3. A) Representative color contour plot of longitudinal (horizontal) stretch from digital 799 

image correlation. B) Deformed symmetric cruciform finite element model with model ROI 800 

(black dashed line) symmetric boundary conditions (note that Z-symm is on the bottom, hidden 801 

face), and color contour plot of longitudinal stretch. C) Deformed symmetric cruciform finite 802 

element model, showing initial cross-sectional area and reaction force at the model boundary 803 

(grip locations) used to determine model nominal stress. D) Undeformed and deformed single 804 

element finite element model. Model Cauchy stress was directly output from the single element. 805 

 806 

Figure 4. A) Normalized stress relaxation data (shown as dashed mean curves and standard error 807 

bars) and a power law fit to the mean data (shown as solid curves). Note that power law fits and 808 

experimental data are visually overlapping and thus nearly indistinguishable. B) Bar graphs for 809 

mean power law b coefficient, stress data, and linearized modulus with standard error bars. 810 

 811 

Figure 5. Experimental and model data of passive muscle subject to planar biaxial stretch. A) 812 

Nominal stress relaxation step data (open circles with standard error bars) and model fits (solid 813 

curves), with the first ten seconds of these data for clarity shown at right, B) longitudinal 814 

constant rate nominal stress-stretch curves for all experimental samples (thin curves) and model 815 



(thick curve), C) longitudinal constant rate ROI stretch-nominal stretch curves, D) transverse 816 

constant rate nominal stress-stretch curves, and E) transverse constant rate ROI stretch-nominal 817 

stretch curves. 818 

 819 

Figure 6. Modeling fits to uniaxial tensile experimental data from the previously published works 820 

of A) Wheatley et al., 2016b., B) Takaza et al., 2012., and C) Mohammadkhah et al., 2016. 821 

Experimental data are shown as open circles and model data are solid curves. 822 

 823 

Figure 7. Stress-stretch curves for simulated uniaxial stretch (dashed) and biaxial stretch (solid) 824 

for optimized parameters from A) biaxial data presented in this study, B) Wheatley et al., 2016b., 825 

and C) Mohammadkhah et al., 2016. The increase in stress-stretch curve stiffness with biaxial 826 

stretch versus uniaxial stretch is denoted with arrows. Note that some models predict a negligible 827 

increase in stiffness (Wheatley) and others a major increase in stiffness (Mohammadkhah). 828 

 829 

Figure 8. Parametric study stress-stretch curves for A) uniaxial stretch and B) biaxial stretch. 830 

Note that for both models (Aligned – solid curves and Dispersed – dashed curves) they exhibit 831 

nearly identical uniaxial behavior for both longitudinal (back curves) and transverse (blue 832 

curves), but distinctly different behavior when subject to biaxial stretch, with percentage 833 

differences between Aligned and Dispersed shown at 𝜆 = 1.3.  834 



11. Tables 835 

Table 1. All model material parameters and units, with fixed values provided and omitted values 836 

for parameters that were varied in this study. 837 

Model Component Parameters 

Isotropic Matrix 𝚿̅𝐢𝐬𝐨 𝑐1 = 0.1 [kPa] 

Muscle Fibers 𝚿̅𝐟𝐢𝐛𝐞𝐫𝐬 𝜉 [kPa] 𝛽 [-] 

Muscle ECM 𝚿̅𝐄𝐂𝐌 𝜇 [kPa] 𝛾 [deg] 𝑑 [-] 

Volumetric Response 𝚿𝐯𝐨𝐥 𝜅 = 10,000 [kPa] 

Viscoelasticity 𝑔𝑖 [-] 𝜏𝑖 = 0.05, 1, 20, 400 [sec] 

 838 

Table 2. Summary of data of passively stretched skeletal muscle used in this study. 839 

Study Species and Muscle Direction Tested 

Biaxial Data – This Study Porcine biceps femoris Longitudinal and Transverse Biaxial 

Wheatley et al., 2016b.  Lapine tibialis anterior Longitudinal and Transverse 

Mohammadkhah et al., 2016 Chicken pectoralis Longitudinal, Transverse, and 45° 

Takaza et al., 2012 Porcine longissimus dorsi Longitudinal, Transverse, and 45° 

 840 

Table 3. Statistical fitting results between model and experimental stress-stretch data. Data are 841 

given in mean percent error between model and experiment, normalized root mean square error 842 

(NRMSE), and root mean square error (RMSE) for all data. Biaxial data fits are provided for the 843 

overall data set as well as the stress relaxation phase only and the constant rate pull phase only. 844 

Data Mean Error [%] NRMSE [-] RMSE [kPa] 

Biaxial Data 0.960 0.959 1.35e-4 

Biax Stress Relax 0.553 0.971 9.22e-5 

Biax Pull 2.09 0.910 3.91e-4 

Wheatley 17.9 0.932 4.67 

Takaza 10.7 0.852 4.73 

Mohammadkhah 12.0 0.907 1.70 

 845 



Table 4. Optimized parameter values from fits to various experimental data sets. Note that * 846 

denotes a fixed value of 𝑑 = 4 due to lack of 45° experimental data. 847 

Data 𝝃 [kPa] 𝜷 [-] 𝝁 [kPa] 𝜸  [deg] 𝒅 [-] 

Biaxial Data 4.20 2.35 28.0 51.1 4* 

Wheatley 5.66 2.79 223 90 4* 

Takaza 34.7 3.78 1,680 64.3 3.83 

Mohammadkhah 0 - 1,400 53.2 8.32 

 848 

Table 5. Optimized viscoelastic parameters 𝑔𝑖 and associated time constants 𝜏𝑖 from fits to 849 

planar biaxial experimental data. 850 

𝒈𝒊
𝒇𝒊𝒃𝒆𝒓

 [-] 𝒈𝒊
𝑬𝑪𝑴 [-] 𝝉𝒊 [sec] 

12.9, 2.20, 0.832, 0.979 1.54, 0.634, 0.235, 0.263 0.05, 1, 20, 400 

 851 

Table 6. Differences in Cauchy stress at 𝜆 = 1.3 between uniaxial and biaxial stretch conditions 852 

for all optimized parameter sets. Data are reported at a percent increase and absolute increase in 853 

kPa. 854 

Output Biaxial Data Wheatley Takaza Mohammadkhah 

Longitudinal - 18.5% 32.2% 92.2% 135% 

kPa 3.69 3.42 89.8 135 

Transverse - 100% 2.47% 24.8% 105% 

kPa 4.45 1.68 86.8 166 

 855 

Table 7. Parameter values for the models shown in Figure 8. 856 

Model 𝝃 [kPa] 𝜷 [-] 𝝁 [kPa] 𝜸  [deg] 𝒅 [-] 

Aligned 130 2.25 275 90 8 

Dispersed 0 - 475 60 3 
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