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Abstract

Introduction: The passive stiffness of skeletal muscle can drastically affect muscle function in
vivo, such as the case for fibrotic tissue or patients with cerebral palsy. The two constituents of
skeletal muscle that dominate passive stiffness are the intracellular protein titin and the
collagenous extracellular matrix (ECM). However, efforts to correlate stiffness and
measurements of specific muscle constituents have been mixed, and thus the complete
mechanisms for changes to muscle stiffness remain unknown. We hypothesize that biaxial
stretch can provide an improved approach to evaluating passive muscle stiffness. Methods: We
performed planar biaxial materials testing of passively stretched skeletal muscle and identified
three previously published datasets of uniaxial materials testing. We developed and employed a
constitutive model of passive skeletal muscle that includes aligned muscle fibers and dispersed
ECM collagen fibers with a bimodal von Mises distribution. Parametric modeling studies and fits
to experimental data (both biaxial and previously published) were completed. Results: Biaxial
data exhibited differences in time dependent behavior based on orientation (p<0.0001),
suggesting different mechanisms supporting load in the direction of muscle fibers (longitudinal)
and in the perpendicular (transverse) directions. Model parametric studies and fits to
experimental data exhibited the robustness of the model (<20% error) and how differences in
tissue stiffness may not be observed in uniaxial longitudinal stretch, but are apparent in biaxial
stretch. Conclusions: This work presents novel materials testing data of passively stretched
skeletal muscle and use of constitutive modeling and finite element analysis to explore the
interaction between stiffness, constituent variability, and applied deformation in passive skeletal
muscle. The results highlight the importance of biaxial stretch in evaluating muscle stiffness and
in further considering the role of ECM collagen in modulating passive muscle stiffness.
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1. Introduction

The human body is comprised of roughly 40% skeletal muscle — the tissue that drives
locomotion, enables fine movements, and provides the capability to breathe in humans and
animals alike. This is due to the innate ability of skeletal muscle to generate contractile force and
thus drive movement of our musculoskeletal system. While skeletal muscle is a highly adaptable
and regenerative tissue (Lieber, 2010; Lieber et al., 2017), neuromuscular conditions such as
cerebral palsy, sarcopenia, and damage from acute injury can severely limit the ability of skeletal
muscle to function properly (Lieber, 2010). Reductions in contractile capabilities can greatly
impair muscle, however more recent work has highlighted the effects of passive muscle stiffness

on form and function (Lieber and Fridén, 2019).

Dramatic increases in passive muscle stiffness, for example, can be detrimental for patients with
cerebral palsy in comparison to healthy persons (Chapman et al., 2016; Lieber and Fridén, 2019).
It follows then that understanding what mechanism(s) and/or constituent(s) in skeletal muscle
dictate stiffness is necessary to treat these conditions and prevent extreme impairment. The two
constituents that are recognized as the major contributors to the tensile stiffness of passive
skeletal muscle are 1) muscle fibers (cells), and 2) the collagenous extracellular matrix (ECM)
that provides the hierarchical organization of skeletal muscle (Huijing, 1999; Gillies and Lieber,
2011; Brynnel et al., 2018; Meyer and Lieber, 2018). Passive muscle stiffness has a nonlinear
and anisotropic nature that has been shown to vary between species and different muscles
(Mohammadkhah et al., 2016). It should be noted here that throughout the manuscript we use the
term “stiffness” to represent the intricate nonlinear, anisotropic, and variable tensile material
properties of passive skeletal muscle, and not the structural property k often used in Hooke’s
Law that characterizes the structural stiffness of a physical object with specific dimensions and

material properties.

Uniaxial tensile testing of longitudinal (along-fiber) muscle samples are the most common
approach for evaluating tensile stiffness (Calvo et al., 2010; Sato et al., 2014; Lieber and Fridén,
2019). Other efforts to characterize the anisotropy of passive muscle have employed uniaxial
stretch in both the longitudinal and transverse (cross-fiber) directions (Morrow et al., 2010;
Takaza et al., 2012; Mohammadkhabh et al., 2016; Wheatley et al., 2016b). However, during

contraction and passive stretch, force is transmitted laterally both within skeletal muscle and
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between muscles (Huijing, 1999; Ramaswamy et al., 2011; Maas, 2019; Csapo et al., 2020),
suggesting that muscle tissue is subject to a multi-axial stress state in vivo. This is further
supported by the structure of the ECM, which consists of collagen fibrils that are dispersed
around the transverse plane (Purslow, 1989; Purslow and Trotter, 1994; Gillies and Lieber,
2011). These observations raise the question as to whether uniaxial stretch is thus the most
appropriate in vitro experimental technique to evaluate the stiffness of passively stretched

muscle, or if multi-axial materials testing may provide certain benefits.

We propose the use of a biaxial tensile deformation as a method to elucidate the passive stiffness
of skeletal muscle and have developed and employed both experimental and computational
efforts to this end. This method tensions both the longitudinal (along-fiber) and transverse (cross-
fiber) orientations simultaneously, which may enact mechanisms that are not observable with
uniaxial stretch. Finally, we have previously shown the importance of stress relaxation in
modeling passive muscle stiffness (Wheatley et al., 2016a, 2016b), thus time dependence may
also provide further insight into muscle stiffness and load sharing between muscle fibers and the

ECM.

We also propose the use of computational modeling — in particular finite element analysis — to
study the passive response of skeletal muscle under both uniaxial and biaxial stretch. We aim to
use a continuum-level constitutive model that accounts for stiffness of muscle fibers and the
ECM and can capture the variability of stress-stretch behavior that has been observed
experimentally (Mohammadkhah et al., 2016). Finite element analysis (FEA) provides a
scalable, robust computational tool to simulate skeletal muscle behavior (Jenkyn et al., 2002;
Oomens et al., 2003; Blemker et al., 2005; Bol and Reese, 2008). Previous studies include
models of muscle at the tissue level (Takaza et al., 2013; Wheatley et al., 2017b), whole muscle
level (Blemker et al., 2005; Bol, 2010; Wheatley et al., 2018), with idealized geometries (Jenkyn
et al., 2002; Lemos et al., 2008; Chi et al., 2010), and may incorporate the observed anisotropic
(Van Loocke et al., 2006; Bol et al., 2014; Pietsch et al., 2014; Mohammadkhah et al., 2016;
Wheatley et al., 2016b), hyperelastic (Meyer and Lieber, 2011; Gras et al., 2012; Simms et al.,
2012; Wheatley et al., 2016a), and time dependent (Van Loocke et al., 2008; Gras et al., 2013;
Wheatley et al., 2016¢, 2016a) characteristics of passive skeletal muscle. Thus, FEA is well-
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suited as a method to explore the tissue-level mechanics of muscle tissue across experimental

data sets and loading conditions.

Comprehensively, we aim to explore if experimental and computational efforts to characterize
passive muscle stiffness may be enhanced by biaxial stretch by 1) performing planar biaxial
materials testing on passive skeletal muscle, 2) developing and employing a robust continuum-
level constitutive model of muscle that captures uniaxial and biaxial stress-stretch behavior, and
3) using such a model to explore the similarities and differences between uniaxially and biaxially

stretched muscle.

2. Methods
2.1 Experimental Planar Biaxial Testing

Porcine hind limbs were acquired from a local abattoir on the day of sacrifice for testing. Tissue
was cooled and stored at 0° C prior to testing. No live animal handling was performed by any
participants in this study. A total of four animals, seven muscles, and n=16 total samples were
used for testing. The biceps femoris muscle was harvested using standard dissection scalpels.
Muscles were sliced along the orientation of fibers with a custom tool that provides 10 mm
spacing between the dissection top and a high-profile histology blade (Labus and Puttlitz, 2016).
Each ~10 mm thick sample was then cut into a cruciform shape with a custom cruciform press,
aligning the muscle fibers with one cruciform arm (Figure 1). Sample thickness was measured
with a caliper mounted on a test stand that was zeroed to the stand platform. Thickness values
were recorded in five locations on each sample — in the center of the sample and towards each
cruciform arm — and averaged. Mean sample thickness was 8.90 mm with a standard error of

0.29 mm across the five measurements.

All materials testing was performed on a planar biaxial material testing system with 50 Ib (~220
N) load cells. Samples were gripped with 25 mm pyramid grips with an initial spacing of 30 mm
between grips. Samples were subject to ten equibiaxial preconditioning cycles of 10% grip-to-
grip strain (3 mm) and back to zero at 0.5 Hz prior to testing (Van Ee et al., 2000). A 0.02 N
equibiaxial pre-load was then applied immediately prior to testing. The testing protocol included

an equibiaxial ramp of 20% nominal (grip-to-grip) strain (6 mm) at 10%/sec followed by a hold
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until 400 seconds to allow for tissue stress relaxation. Samples were then subject to equibiaxial
constant rate stretch at 0.1%/sec nominal (grip-to-grip) strain (0.03 mm/sec) until failure. Failure
was manually identified post-hoc in stress-time curves where significant (>~10%) decreases in

stress were observed.

Digital image correlation software (Correlated Solutions, Inc.) was used to track strain during the
constant rate ramp pull in a ~10x10 mm region of interest (ROI) in the center of the sample. A
solid in a reference configuration X that undergoes a deformation under an external load is
placed into a deformed configuration x, which is described by the deformation gradient F
(Equation 1). For a 2D problem such as a single camera digital image correlation system, F is a
2x2 matrix of the deformations relative to orthogonal axes (Equation 1). From F, 2D muscle
region of interest stretch A (Equation 2) can be calculated for the longitudinal and transverse
orientations (Szczesny et al., 2012). Nominal (grip-to-grip) stretch was measured directly from

grip displacement. Nominal stress S was determined by dividing load cell force by the product of
sample arm length (30 mm) and mean sample thickness. A linearized modulus E = i—j was

calculated from the initial and final points of the constant ramp pull data. For comparative
purposes between orientations, we used nominal stress and implemented a finite element model
to determine ROI Cauchy (true) stress and material properties. All stress-stretch data were
averaged either over time (for stress-relaxation data) or over stretch (for constant ramp pull data)

for model fitting.

_0x _ Fiq Flz]
F=%=1|Fr, Fy (1)
_ [0x1]
M= ox,l @

2.2. Constitutive Modeling

For a three-dimensional solid subject to an external load, the governing linear momentum
balance (Newton’s second law) can be written as Equation 3 and the governing angular
momentum balance can be written as Equation 4, where & is the Cauchy (true) stress, p is the

density of the solid, b is the body force vector, and a is the acceleration vector. Assuming
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equilibrium with negligble body force, Equation 3 reduces to V- ¢ = 0. For full derivations and

further reading, the reader is directed towards Holzapfel’s Nonlinear Solid Mechanics

(Holzapfel, 2000).
V-o+pb=pa 3)
Oji = Oij (4)

The mechanical properties of musculoskeletal soft tissues such as skeletal muscle are often
modeled with a strain energy density function, including any specified intricacies such as
nonlinearity, anisotropy, and nearly incompressibility. To characterize the variable nature of
passive muscle anisotropy and nonlinearity (Mohammadkhah et al., 2016), we have employed a
continuum model Wy, that includes contributions of an isotropic ground matrix Wis,, muscle
fibers Wepers, the collagenous extracellular matrix Wgepy, and a volumetric response W,
(Equation 5). As muscle exhibits nearly-incompressible behavior (Van Loocke et al., 2006;
Takaza et al., 2012), this formulation features a decoupled deviatoric response ¥ = Wg, +

Whibers + Prem and a dilatational response W,;. Here deformation is characterized by the

volume ratio J, the deviatoric right Cauchy-Green deformation tensor € = J %F TF, the first
deviatoric invariant of C denoted by I, and the deviatoric pseudo-invariant I, = m - C - m that
measures the square of muscle fiber stretch whose direction is defined by the unit vector m
(Holzapfel, 2000). The Cauchy (true) stress o can then be defined as a function of the
constitutive model (Equation 6, where dev(—) is the deviatoric operator, p is hydrostatic
pressure and I is the identity matrix) (Holzapfel, 2000; Maas et al., 2012). While further detail is
provided below regarding specific constitutive relations, the general model employed here is an
uncoupled, fiber-reinforced material with two families of fibers — aligned muscle fibers and
bimodal, continually distributed ECM collagen fibers (Figure 2) (Yousefi et al., 2018; Bleiler et
al., 2019). This formulation attributes muscle fibers and the ECM as the main load-bearing

constituents in passively stretched muscle (Smith et al., 2019).
thot(E;]) = quso(I_l) + lTJfibers (1_4) + lTJECM(E) + lpvol(]) (5)

o= dev(2]‘1f'gf'T)+pl (6)
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The isotropic ground matrix model was modeled with an uncoupled neo-Hookean strain energy
density formulation, and the volumetric term with a logarithmic function (Equations 7 and 8,
where c; is a shear-like modulus and k is a bulk-like modulus). Due to the highly anisotropic,
non-symmetric, and nearly-incompressible nature of skeletal muscle (Van Loocke et al., 2006;
Takaza et al., 2012; Mohammadkhabh et al., 2016), c¢; was selected as a low (but non-zero)
constant value for this study and k was selected to ensure near-incompressibility, as provided in

Table 1.
lT’iso(I_l) = Cl(l_l -3) (7)
W0 () =2 (In))? (8)

The muscle fiber contribution term was defined as a power law to model nonlinear stress-stretch
behavior of passive muscle when stretched in the direction of muscle fibers (Equation 9, where &
is a modulus-like parameter and S is the power parameter) (Takaza et al., 2012; Wheatley et al.,
2016b). The extracellular matrix (ECM) strain energy density function defines the behavior of a
continually dispersed, 3D bimodal von Mises distribution of tension-only fibers (Ateshian et al.,
2009). The formulation presented here is modified from an ellipsoidal bivariate von Mises
distribution to describe the anisotropic and inhomogeneous collagen fiber distribution in articular
cartilage (Zimmerman and Ateshian, 2019). Due to the continually dispersed nature of the fibers,
the strain energy density function is an integration over a unit sphere of volume V of the product
of the distribution R(n) (where n is the orientation of the ECM collagen fibers) and the fiber
constitutive law ¥, (Equation 10). The distribution R(mn) is further broken into two functions
using spherical angle functions P(8) (where 6 is the azimuth angle) and Q(¢) (where ¢ is the
declination angle) (Equation 11). If one assumes that the ECM fibers have no directional
preference in the transverse plane (perpendicular to muscle fibers), then P(8) decomposes to the
circle equation (Equation 12). The remaining dispersion term, Q (¢) describes the ECM collagen
fiber dispersion in the along-fiber plane (Figure 2) with a bimodal von Mises function that
includes the primary ECM collagen fiber orientation angle y (the angle of offset from muscle
fibers to ECM collagen fibers) and a dispersion term d that characterizes the degree of alignment
of ECM collagen fibers (Equation 13). This equation also includes an integration term q(d, y)
that enforces [ R(n) dV = 1. By varying the ECM orientation angle y and the dispersion term d,



208
209
210
211
212

213

214

215

216

217

218

219
220
221
222
223
224
225
226

227

228

229

230
231
232

the relative density of ECM collagen fibers can be continuously defined throughout the solid.
Finally, a neo-Hookean type fiber constitutive law was used for the ECM collagen fibers
(Equation 14), with a modulus u that is a function of the square of the collagen fiber stretch I,,
(FEBio User Manual 2.8, 2018). These formulations also assume that fibers (both muscle fibers

and ECM collagen fibers) can only sustain tension, not compression (Weiss et al., 1996).

Privers () = 5 (1 = DF ©)

Ppem(C) = [ R()P, (L) dV (10)
[Rm)av = 1= [P(6) Q(p) dV (11)

P(8) = [(cos? 8 + sin? )]~ /2 (12)

Qp) = q(;y) {exp[2dcos®(¢ +y)] + exp[2dcos®(p — ¥)]} (13)
P (fy) = = (I, — 1)? (14)

A quasi-linear Prony series viscoelastic formulation was used to model stress-relaxation of
passively stretched skeletal muscle (Wheatley et al., 2016a). Briefly, the deviatoric stress @ can
be defined as a function of a convolution integral (Equation 15, where G (t) is the relaxation
function, t is time, and { is an integration variable). A Prony series relaxation function (Equation
16) enables the use of viscoelastic coefficients g; and associated time constants t; that
characterize the amount and rate of relaxation, respectively. For this study, we fixed 7; terms as
spaced parameters to ensure a broad range of relaxation rates (Table 1) and varied g; terms

(Vaidya and Wheatley, 2019).
_ t do
at)=/_G6t-9 2 % (15)

t
G@O) =1+ 3L, giexp (- 1) (16)
2.3 Finite Element Modeling

All finite element modeling results presented here were conducted using the open source finite
element package FEBio (Maas et al., 2012). A custom plugin was written to apply the bivariate

von Mises distribution of the ECM collagen fibers R(n). To model biaxial stretch, a symmetric,
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eighth cruciform finite element model consisting of 2,184 linear hexahedral elements was
developed (Figure 1C). This model was chosen to represent a cruciform 30mm x 30mm in width
and height and a thickness of 8.9 mm. In addition to symmetric boundary conditions (Figure 1C),
the face of each cruciform arm was fixed to a rigid body and subject to displacements to mimic
the experimental protocol (Figure 1D). Reaction force divided by initial arm cross sectional area
was calculated as nominal stress and total model length was divided by initial model length to
determine nominal stretch. By using the solid mixture capabilities in FEBio, separate viscoelastic
parameters were assigned to the stress contributions from the muscle fibers and extracellular

matrix.

Constitutive parameters were optimized to experimental data by fitting model nominal stress to
experimental nominal stress. Model ROI stretch was calculated based on the position of model
ROI surface nodes similar to experimental stretch (Equations 1-2), then used as a validation to
experimental DIC stretch (Figure 3A-B). Parameter optimization was completed in two steps —
first the viscoelastic Prony series parameters were fit to normalized stress-relaxation data for
both the longitudinal and transverse directions, then hyperelastic parameters were fit to the full
set of longitudinal and transverse stress data. This approach has the advantage of reducing the
overall number of parameters needed to be optimized at any given step in the process by first
determining stress relaxation behavior and then hyperelastic stiffness (Vaidya and Wheatley,
2019). All optimization was performed in MATLAB using constrained nonlinear optimization
(Isgnonlin) by varying model parameters and minimizing the sum of squared residuals between
model (™) and experimental () stresses as an objective function obj across all experimental
data points (total number npts) (Equation 17). Nominal stress was used for fitting of our
cruciform finite element model (Figure 3C) to planar biaxial experimental data as Cauchy (true)
stress cannot be estimated from experimental planar biaxial tests without a correction factor,

which is typically determined from finite element analysis.

obj = Y50 — a™;)? (17)

=1

For comparisons across previously published experimental studies of uniaxial stretch of passive
skeletal muscle, a simplified approach of a single linear hexahedral finite element model was
implemented (Figure 3D). Three previously published studies of materials testing of skeletal

muscle under uniaxial tension were identified (Table 2). These studies provide a range of data
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across species, muscles, and orientations for model comparison and fitting. The finite element
model was fit to the experimental studies by comparing literature Cauchy (true) stress to model
Cauchy stress as a function of directional stretch. Data from Wheatley et al., 2016b were zeroed
following an initial stress-relaxation phase for consistency with other data. Following all model
fitting, optimized parameters for each data set were used to simulate stress-stretch behavior
under uniaxial and equibiaxial stretch. Finally, a simple parameter study was conducted to
further highlight the differences in stress-stretch behavior between uniaxial and biaxial stretch.
Cauchy stress was used for fitting to previously published uniaxial data and for parametric
studies as it requires fewer assumptions to estimate than under biaxial conditions, Cauchy stress
is reported in the literature cited here, and the use of Cauchy stress allows for a simplified single
element finite element model. No stress conversions were calculated directly from a push
forward or pull back operation in this work, as all planar biaxial model fitting used nominal

stress only, and all uniaxial and parametric studies used Cauchy stress only.

To summarize, we fit the cruciform finite element model to planar biaxial data, then used the
optimized parameters to simulate uniaxial stretch. Conversely, we fit the simplified finite
element model to uniaxial data from three different previously published studies, then used the

optimized parameters to simulate biaxial stretch.
2.4 Statistics

Stress relaxation data were normalized to sample peak stress and fit to a power law model
(Equation 18, where o;, is normalized stress, t is relaxation time, and a and b are power law
coefficients) to characterize the rate of relaxation between orientations. The power law b
coefficients (rate of relaxation), stress at three time points — peak stress, end of relaxation, and
end of ramp pull, and linearized modulus from the pull phase were compared between
orientations using a paired t-test. A linear regression was performed to investigate the potential
effect of post-mortem time on modulus for both directions. For all statistical tests, significance

was set at p<0.05.
o, = at? (18)

Model fits to experimental data were evaluated with an average percent error for each

experimental data point, normalized root mean square error (NRMSE, where 1 is a perfect fit and
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-oo is the worst possible fit), and root mean square error (RMSE, in kPa) (Vaidya and Wheatley,
2019).

3. Results
3.1 Experimental Planar Biaxial Data

Biaxial data showed that longitudinal direction nominal stress was greater and decreased at a
faster rate during stress relaxation than transverse direction stress. This was supported by both
visual analysis of normalized relaxation (Figure 4A) and statistical analysis (Figure 4B).
Specifically, the paired t-tests suggest that the power law b coefficient was greater in the
longitudinal orientation (p < 0.0001). Stress was greater at the peak (p =0.021), end of relaxation
phase (p = 0.037), and end of constant rate pull phase (p = 0.0063), and the linearized modulus
was greater in the longitudinal direction versus the transverse direction (p = 0.028). The power
law fits provided excellent agreement to experimental data visually (Figure 4A) and with mean r-
squared values of 0.985 and 0.974 for longitudinal and transverse data, respectively. Linear
regression results showed that modulus was not correlated with post-mortem time (p>0.6,

R2<0.02 for both directions).
3.2 Model Fitting

The use of constrained nonlinear optimization produced a strong fit of the biaxial finite element
model to experimental data, both for the stress relaxation phase as well as the constant ramp pull
phase. This is shown both visually (Figure 5 A, B, D) and through statistical analysis
(NRMSE>0.9, Table 3). Measured experimental stretch in the sample region of interest (ROI)
from digital image correlation and predicted model ROI stretch are provided for model
validation (Figure 5 C, D). The model showed strong agreement to transverse stretch data, and

overpredicted longitudinal stretch somewhat.

The single element uniaxial model exhibited strong fitting capabilities across all uniaxial stretch
data sets as observed visually (Figure 6) and by evaluating the statistical differences between
model outputs and experimental data (NRMSE>0.85, Table 3). Specifically, the model was able

to match a wide range of anisotropy and nonlinearity between data sets, including directions of
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greatest stiffness of the transverse direction (Wheatley et al., 2016b. and Takaza et al., 2012.)
and 45° (Mohammadkhah et al., 2016.).

Optimized hyperelastic parameter values (Table 4) demonstrate the variability of passive muscle
material properties. For the constitutive model used here, there was a particularly wide range of
muscle fiber stiffness é (4-110 kPa), ECM modulus u (28-1,700 kPa), and ECM orientation
angles ¥ (32-90°). It should be noted here that the Mohammadkhah et al., 2016 chicken data best
fit produced a negligible muscle fiber modulus, hence the reported value of 0 kPa. Finally, to
ensure a unique set of parameters for each optimal fit, the ECM fiber dispersion parameter d was
fixed for some of the optimizations, as shown in Table 4. Optimized viscoelastic parameter
values (Table 5) further highlight the differences in viscoelastic behavior between orientations,
as muscle fiber g; terms were larger than those applied to the extracellular matrix term. This

shows greater relaxation for the muscle fiber term in comparison to the extracellular matrix term.
3.4 Modeling Biaxial and Uniaxial Stretch

Simulating both uniaxial stretch and biaxial stretch with each optimized parameter set showed
different effects of biaxial stretch on model response (Figure 7 and Table 6). Specifically, stress-
stretch curves from Wheatley et al., 2016b. parameters were largely unaffected by biaxial versus
uniaxial stretch, while biaxial stretch greatly increased stiffness for the Mohammadkhah et al.,
2016. parameter set. A parametric study of uniaxial and biaxial stretch for two different
parameter sets — one with Aligned fibers and one with Dispersed fibers — shows the models
exhibit nearly identical stiffness behavior under uniaxial stretch (Figure 8A) but distinctly
different behavior under biaxial stretch (up to 119% difference, Figure 8B). This was observed
for both the longitudinal and transverse directions, highlighting the role of the dispersed ECM
fibers and assumptions of anisotropy in altering model behavior. Parameter values used (Table 7)

fall within those optimized to experimental data (Table 4).

4. Discussion

4.1 Planar Biaxial Testing
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We have presented here, to the best of our knowledge, the first set of experimental data of
passive skeletal muscle subject to planar biaxial stretch. From these data, we determined that the
porcine hind limb tissue tested exhibited the following characteristics: 1) faster relaxation for
longitudinal samples (Figure 4A, B) and 2) greater stiffness for the longitudinal direction (Figure
4B). For the viscoelastic response, we previously measured greater relaxation rate with greater
longitudinal stiffness of muscle tissue (Wheatley et al., 2016b), which agrees with the results
seen here. The differences in relaxation rate between orientations suggest two mechanisms that
support load in passively stretched skeletal muscle. This observation is supported by ongoing
efforts that have shown that passive muscle stiffness in mammals is dictated by both the
collagenous extracellular matrix (ECM) (Meyer and Lieber, 2011, 2018) and muscle fibers
themselves (Brynnel et al., 2018). Here we suggest that both constituents may contribute to
longitudinal stiffness, and that measuring the anisotropic viscoelastic response may further

elucidate load sharing between constituents.

It is known that muscle exhibits stress relaxation at both the muscle fiber level (Meyer et al.,
2011; Rehorn et al., 2014) and the whole muscle or tissue level (Best et al., 1994; Gras et al.,
2013; Wheatley et al., 2016a). Meyer and Lieber (Meyer et al., 2011) measured ~95% stress
relaxation when stretching muscle fibers at 2,000%/sec and ~80% stress relaxation at 20%/sec,
which exceeds stress relaxation observed in highly collagenous tissues such as tendon (Atkinson
et al., 1999). Based on these findings and the observation of less relaxation in the transverse
direction from our data, the ECM may exhibit less stress-relaxation than muscle fibers. This
requires further experimental efforts to confirm or deny, however. To the best of our knowledge,
there have been no studies that have compared viscoelastic behavior between single fiber and
tissue level samples or have tried to measure the viscoelastic properties of the ECM directly or
indirectly. Such a study would help contextualize tissue-level measurements of longitudinal and
transverse viscoelastic behavior in regards to the contribution of muscle fibers and the ECM to

tissue stiffness.

In comparison to previously published data, most studies of passively stretched muscle have
observed a greater stiffness in the transverse direction in comparison to the longitudinal
direction, albeit to varying degrees (Takaza et al., 2012; Mohammadkhah et al., 2016; Wheatley

et al., 2016b). One previous study observed greater stiffness in the longitudinal direction
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(Morrow et al., 2010). These comprehensively suggest that anisotropy may be variable in
skeletal muscle and may depend on a range of physiological factors. Exploring the link between
anisotropy and in vivo function was outside the scope of this work but would be appropriate for
future studies. We have previously hypothesized that a greater longitudinal stiffness was the
result of rigor mortis (Wheatley et al., 2016b), however in this work all testing in this study was
completed within seven hours to reduce this risk (Van Ee et al., 2000; Van Loocke et al., 2006)
and tissue stiffness was not correlated with post-mortem testing time (p>0.1, R?<0.2). It is thus
unlikely that our data are driven by rigor mortis alone. Use of a relaxing agent (Meyer and
Lieber, 2018) could be used to further prevent the effects of post-mortem stiffening. Nonetheless,
the data presented here should not be viewed as a comprehensive set of muscle material
properties, but as a validation of an experimental and computational technique to investigate

muscle stiffness.
4.2 Constitutive Modeling of Experimental Data

Fitting results show the capability of our constitutive model to accurately simulate the range of
experimentally observed anisotropic and nonlinear stress-stretch behavior. This is shown both
visually (Figures 5 and 6) and through statistical evaluation (Table 3). We also used the
experimental biaxial region of interest (ROI) stretch data for model validation (Figure 5). These
results comprehensively suggest that our model is well-suited for studying the tissue-level
mechanics of passively stretched skeletal muscle. To encourage a unique solution for each data
set, the ECM fiber dispersion parameter d was fixed based on a qualitative comparison to muscle
ECM fiber dispersion (Purslow and Trotter, 1994). Additionally, dataset characteristics such as
viscoelasticity (biaxial data), data at 45° (Mohammadkhah and Takaza), and nonlinear

longitudinal data (Wheatley) enforced a unique solution for each optimization.

The constitutive model used in this study includes a nonlinear muscle fiber term W eps (I4)
which is a function of I,, the square of muscle fiber stretch. We chose to employ a power law
function for this term as it models the nonlinear stress-stretch response of muscle in the
longitudinal orientation (Mohammadkhah et al., 2016; Wheatley et al., 2016a) with only two
parameters. The optimized values for the modulus-like parameter ¢ (0-108 kPa) and for the
power coefficient § (2.35-3.78) are reasonable, although ¢ = 0 for the Mohammadkhah data is

questionable. However, Mohammadkhah et al., 2016 data was obtained from chicken pectoralis
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muscle tissue, which as they note has a higher collagen content (Nishimura, 2010). This may
partially explain why our model optimization approach identified a negligible muscle fiber
modulus for this data set if collagen is dominating the stress-stretch response. Our remaining
muscle fiber modulus-like values of 4.2-108 kPa compare reasonably to experimental

observations of ~40 kPa in mice (Meyer and Lieber, 2018).

Our model of muscle ECM Wgcp (€) describes the collagen fibers with a neo-Hookean
hyperelastic model (with a shear modulus p) and a bimodal von Mises distribution (with angle y
and dispersion d). Our use of a single modulus term is a simplification of a highly complex
combination of ECM collagen amount, type, crosslinking, and crimp. While these each have
been studied in regards to tissue stiffness through either experimentation (Smith and Barton,
2014; Chapman et al., 2015; Mohammadkhabh et al., 2018; Lieber and Fridén, 2019; Smith et al.,
2019) or modeling (Gindre et al., 2013; Bleiler et al., 2019; Spyrou et al., 2019; Valentin and
Simms, 2020), developing a unique set of parameters from healthy tissue-level data that
incorporates each of these was outside of the scope of this work. This also does not address the
different layers of ECM structure such as perimysium and endomysium. We instead chose to use
the approach of minimizing the number of model parameters while ensuring a strong fit to

experimental data.

Purslow and Trotter (Purslow and Trotter, 1994) measured muscle ECM collagen fiber
orientations under a range of physiological conditions and found that the primary fiber alignment
angle was dependent on stretch, but ranged from ~20-80°. Qualitatively, recent mammalian
ECM scanning electron microscopy by Sleboda et al (Sleboda et al., 2020) found that
multilayered, collagen-rich ECM was common between a range of species but that
microstructure was less consistent. These studies suggest that ECM fiber angle and dispersion
may vary with a range of mechanical, anatomical, and physiological factors such as animal size
and muscle fiber type distributions. The optimized ECM fiber angles we determined (32-90°)

thus seem reasonable.

In considering specific modeling studies relevant to this work, Yucesoy et al. modeled the
muscle fibers and extracellular matrix as distinct but linked constituents (Yucesoy et al., 2002).
Gindre et al developed a microstructural model of a muscle fiber wrapped with a single family of

dispersed ECM fibers to explore titin and ECM contributions (Gindre et al., 2013). Yousefi et al
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showed how a similar model of the extracellular matrix as the only load bearing mechanism with
two perfectly reinforcing fiber directions can describe the observed anisotropy in passively
stretched bovine, porcine, and chicken muscle (Yousefi et al., 2018). Bleiler et al designed and
formulated a passive constitutive model with dispersed collagen fibers surrounding muscle fibers
that could be integrated into a finite element simulation (Bleiler et al., 2019). Teklemariam et al
used a similar micromechanical approach with distinct muscle fiber and ECM domains
(Teklemariam et al., 2019). Spryou et al developed a multiscale model that employed
homogenization from a microstructurally derived model to a continuum-level response (Spyrou

etal., 2019).

While each of these studies present advantages for modeling the passive response of skeletal
muscle, we have chosen to use a similar approach to Yousefi et al with the extension of the
model to include ECM collagen dispersion and muscle fiber stiffness. After applying
assumptions for the low-stiffness isotropic ground matrix (Wheatley et al., 2017a) and near-
incompressibility (Takaza et al., 2012), this model required five parameters to describe the
hyperelastic response — two for the muscle fibers (stiffness and nonlinearity) and three for the
ECM (stiftness, direction, and dispersion). The advantage of this approach is a relatively low
number of parameters while still enabling model robustness. The use of a Prony series
viscoelastic model may increase the overall number of parameters of the model, but as we have
shown in this and previous works (Vaidya and Wheatley, 2019), those parameters can be
optimized with a two-step fitting procedure. Based on stress-stretch data alone, it would be
unclear how load is shared between the ECM and muscle fibers. However, the stress-relaxation
data shows distinct time dependent differences between longitudinal and transverse stress
relaxation rate (Figure 4). This suggests load may be supported by both muscle fibers and ECM,

and perhaps more so the muscle fibers in the longitudinal direction.

It should be noted that the model chosen here enables a wide range of stress-stretch behavior and
is generally informed by muscle physiology, but is not derived from microstructure and does not
account for effects of interaction between the extracellular matrix and muscle fibers. The
parameters (such as ECM fiber angle and dispersion) may be generally related to tissue
microstructure, but are not direct analogues. One must be careful not to conclude concrete

microstructural findings based on the fitting results presented here.
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4.3 Modeling Uniaxial Versus Biaxial Stretch

Expanding our modeling from fitting to simulations of uniaxial versus biaxial stretch showed
variability between data sets (Figure 7 and Table 7). Generally speaking, materials exhibit
greater stiffness when stretched biaxially versus uniaxially. However, for highly anisotropic
materials with multiple families of fibers, the effect may not be as dramatic as expected, as
shown in the uniaxial versus biaxial comparisons of the Wheatley et al., 2016b parameter set
(Figure 7B, Table 6). In this case, the model ECM fibers are aligned perpendicular to muscle
fibers and have low dispersion and during biaxial stretch each set of fibers are recruited
independently. Conversely, the Mohammadkhah et al., 2016 parameter set increased in excess of
100% in both the longitudinal and transverse directions (Figure 7C, Table 6). Here the ECM
fibers are oriented between directions and highly dispersed, which recruits these fibers during
both longitudinal and transverse stretch. Thus, the biaxial deformation will stretch the ECM

fibers to a greater amount.

The potential physiological relevance of a case where biaxial stretch and uniaxial stretch exhibit
similar stress-stretch behavior can be seen in Figure 8 and Table 7. Here we have identified two
sets of parameters that fall within the previously optimized values that have nearly
indistinguishable uniaxial stress-stretch behavior in both the longitudinal and transverse
orientations (Figure 8 A). When subject to biaxial stretch however, Dispersed shows drastic
changes in stiffness while Aligned is largely unaffected (113% difference in the longitudinal
direction between models). This presents a simplified case where two muscles that may seem to
have the same mechanical properties when stretched uniaxially would in fact have quite different
mechanics when subject to a more complex deformation. In effect, these differences are
“hidden” by uniaxial stretch. This could partially explain that differences in longitudinal stiffness
between cerebral palsy and healthy muscle cannot be explained by collagen content, quantity,

and cross-linking alone (Chapman et al., 2015; Lieber and Fridén, 2019; Smith et al., 2019).

Smith et al (Smith et al., 2019) discuss these collagen content-passive stiffness correlations and a
relatively minor contribution of collagen crosslinking that this observation “... suggests the
intriguingly possibility that higher-order structures may determine tissue stiffness to a greater
extent than molecular components”. We suggest that ECM collagen fiber orientation and

dispersion may be these “higher-order structures” and show with our model how differences in
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tissue stiffness could be hidden by uniaxial stretch (Figure 8A). As noted above, the technique
employed here is a continuum-level hyperelastic constitutive model. We do not imply that this
model is a direct prediction of tissue microstructure, only that our model has shown robust and

accurate stress-stretch behavior and that similar mechanisms may be present.

Another consideration for uniaxial versus biaxial stretch is the observation of transverse load
transmission in contracting muscle as well as laterally between individual muscles (Huijing,
1999; Yucesoy et al., 2008). If load generated longitudinally by muscle fibers is transmitted
transversally through the ECM, then muscle tissue must be subject to a multi-axial stress state in
vivo. Our parametric study suggests that biaxial stretch could enact a stiffening effect to
longitudinal stress-stretch response in comparison to uniaxial only (Figure 8A and B). For tissues
that exhibit higher load sharing of the ECM, this effect could be exaggerated, and biaxial stretch
would in effect increase the perceived tissue stiffness, and thus perhaps increase the efficiency of
load transfer in vivo during contraction. However, further experimental research is needed to
confirm if this is the case for biaxially stretched skeletal muscle. Nonetheless, we have
highlighted the importance of a biaxial deformation in passively stretched skeletal muscle, and
hope that this consideration can drive future work to better understand load transmission iz vitro

and in vivo.
4.4 Limitations and Future Directions

This work is not without limitations. Firstly, the geometry selection of a simplified, idealized
cruciform or single element cuboid is clearly not a representation of the geometric/structural
complexities of whole, in vivo skeletal muscle. However, the experimental data used in this study
are generated from tissue samples isolated from whole muscle, and thus do not represent a full in
vivo environment either. This isolation is necessary to accurately determine tensile material
properties. While a more detailed set of geometric finite element models could be developed to
match average specimen geometry from each uniaxial experiment, this may not necessarily yield
improvements in fit or different study conclusions. The advantage of our geometric approach is
in computational efficiency and simplicity — as the optimization protocol that fit the model to
experimental stress-stretch curves does not require significant computation time and is highly

stable. Nonetheless, as experimental and finite element models of in vivo muscle deformation



526
527

528
529
530
531
532
533
534
535

536
537
538
539
540
541
542
543
544
545

546

547

548
549

550
551
552
553
554

have shown complex strains (Blemker and Delp, 2005; Bol et al., 2015), use and validation of

this model in such cases would be a significant benefit to the field.

While our constitutive model exhibits robustness in simulating tensile stress-stretch behavior
(Figure 6), it does not model microstructural and physiological characteristics such as collagen
crosslinking, multiple collagen types, or muscle fiber-ECM interactions. Including such
components would likely yield increased robustness and physiological accuracy of such a model.
However, our model has exhibited efficacy in simulating a wide range of passive muscle stretch.
We have shown that this model can inform future studies of ECM structure — such as collagen
fiber orientation and dispersion — while fitting tissue-level data and maintaining experimental

observations such as near-incompressibility.

It should be noted that model validation across uniaxial and biaxial stretch would strengthen
future applications of this model. Additionally, experiments such as biaxial materials testing
coupled with decellularization or muscle fiber isolation would provide necessary insight into the
extent to which this model or future improved models can accurately characterize load sharing
between muscle fibers and the ECM. This would greatly strengthen this work, and provide strong
efficacy for application of this model to in vivo conditions of muscle impairment such as cerebral
palsy. We have also not explored the model response under compression or during active
contraction as those are outside the scope of this work. Thus, this model should be viewed not as
a comprehensive model of passive skeletal muscle, but as an effective tool in better

understanding passive muscle stiffness.

5. Conclusions

Based on the results and discussion of this work, we have made the following observations,

recommendations, and conclusions:

1) We performed biaxial stress-relaxation testing on passive skeletal muscle and suggest
that this approach can be used to effectively characterize passive muscle mechanics

2) Our model of a dispersed extracellular matrix contribution and aligned muscle fibers was
able to exhibit broad variability in simulating and fitting tensile stiffness, nonlinearity,

and anisotropy of passive skeletal muscle
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3) This model, in conjunction with experimental data, exhibited the role of biaxial stretch in
measuring passive muscle stiffness and suggesting future work to explore inconsistent
correlations between muscle extracellular matrix collagen measurements and passive

stiffhess

Future validation, development, and employment of modeling and biaxial experimentation would
elucidate the role of the extracellular matrix in in vivo muscle function, and help explain how
detrimental changes to muscle stiffness — such as those observed in cerebral palsy — may be

explained by extracellular matrix structure.
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10. Figure Captions

Figure 1. Planar biaxial materials testing overview, with A) cruciform geometry, B)
representative planar biaxial sample, where the white arrow denotes the longitudinal direction
and the white dashed square denotes approximate DIC region of interest (ROI), and C)

experimental stress-relaxation loading protocol schematic (note that axes are not to scale).

Figure 2. Schematic of passive muscle model for extracellular matrix and muscle fibers. A
representative 2D square of muscle tissue shows the longitudinal or muscle fiber direction (red)
and two families of collagen fiber dispersion (green) offset from the muscle fiber direction by an

angle y.

Figure 3. A) Representative color contour plot of longitudinal (horizontal) stretch from digital
image correlation. B) Deformed symmetric cruciform finite element model with model ROI
(black dashed line) symmetric boundary conditions (note that Z-symm is on the bottom, hidden
face), and color contour plot of longitudinal stretch. C) Deformed symmetric cruciform finite
element model, showing initial cross-sectional area and reaction force at the model boundary
(grip locations) used to determine model nominal stress. D) Undeformed and deformed single

element finite element model. Model Cauchy stress was directly output from the single element.

Figure 4. A) Normalized stress relaxation data (shown as dashed mean curves and standard error
bars) and a power law fit to the mean data (shown as solid curves). Note that power law fits and
experimental data are visually overlapping and thus nearly indistinguishable. B) Bar graphs for

mean power law b coefficient, stress data, and linearized modulus with standard error bars.

Figure 5. Experimental and model data of passive muscle subject to planar biaxial stretch. A)
Nominal stress relaxation step data (open circles with standard error bars) and model fits (solid
curves), with the first ten seconds of these data for clarity shown at right, B) longitudinal

constant rate nominal stress-stretch curves for all experimental samples (thin curves) and model
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(thick curve), C) longitudinal constant rate ROI stretch-nominal stretch curves, D) transverse
constant rate nominal stress-stretch curves, and E) transverse constant rate ROI stretch-nominal

stretch curves.

Figure 6. Modeling fits to uniaxial tensile experimental data from the previously published works
of A) Wheatley et al., 2016b., B) Takaza et al., 2012., and C) Mohammadkhah et al., 2016.

Experimental data are shown as open circles and model data are solid curves.

Figure 7. Stress-stretch curves for simulated uniaxial stretch (dashed) and biaxial stretch (solid)
for optimized parameters from A) biaxial data presented in this study, B) Wheatley et al., 2016b.,
and C) Mohammadkhah et al., 2016. The increase in stress-stretch curve stiffness with biaxial
stretch versus uniaxial stretch is denoted with arrows. Note that some models predict a negligible

increase in stiffness (Wheatley) and others a major increase in stiffness (Mohammadkhah).

Figure 8. Parametric study stress-stretch curves for A) uniaxial stretch and B) biaxial stretch.
Note that for both models (Aligned — solid curves and Dispersed — dashed curves) they exhibit
nearly identical uniaxial behavior for both longitudinal (back curves) and transverse (blue
curves), but distinctly different behavior when subject to biaxial stretch, with percentage

differences between Aligned and Dispersed shown at 4 = 1.3.
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11. Tables

Table 1. All model material parameters and units, with fixed values provided and omitted values

for parameters that were varied in this study.

Model Component Parameters
Isotropic Matrix Wi, ¢, = 0.1 [kPa]
Muscle Fibers Pipers ¢ [kPa] B [-]
Muscle ECM Wgeym u [kPa] y [deg] d[-]
Volumetric Response W, ) x = 10,000 [kPa]
Viscoelasticity i [-] 7; = 0.05,1, 20,400 [sec]

Table 2. Summary of data of passively stretched skeletal muscle used in this study.

Study Species and Muscle Direction Tested
Biaxial Data — This Study Porcine biceps femoris | Longitudinal and Transverse Biaxial
Wheatley et al., 2016b. Lapine tibialis anterior Longitudinal and Transverse
Mohammadkhabh et al., 2016 Chicken pectoralis Longitudinal, Transverse, and 45°
Takaza et al., 2012 Porcine longissimus dorsi | Longitudinal, Transverse, and 45°

Table 3. Statistical fitting results between model and experimental stress-stretch data. Data are
given in mean percent error between model and experiment, normalized root mean square error
(NRMSE), and root mean square error (RMSE) for all data. Biaxial data fits are provided for the

overall data set as well as the stress relaxation phase only and the constant rate pull phase only.

Data Mean Error [%] NRMSE [-] RMSE [kPa]
Biaxial Data 0.960 0.959 1.35e-4
Biax Stress Relax 0.553 0.971 9.22e-5
Biax Pull 2.09 0.910 391e-4
Wheatley 17.9 0.932 4.67
Takaza 10.7 0.852 4.73
Mohammadkhah 12.0 0.907 1.70




846  Table 4. Optimized parameter values from fits to various experimental data sets. Note that *

847  denotes a fixed value of d = 4 due to lack of 45° experimental data.

Data $[kPa] | B[] p[kPa] vy [deg] d ][]
Biaxial Data 420 | 235 | 28.0 51.1 4*
Wheatley 5.66 | 2.79 223 90 4*
Takaza 347 | 3.78 | 1,680 64.3 3.83
Mohammadkhah 0 - 1,400 53.2 8.32

848

849  Table 5. Optimized viscoelastic parameters g; and associated time constants 7; from fits to

850  planar biaxial experimental data.

e ) grM I 7; [sec]

12.9,2.20, 0.832,0.979 | 1.54, 0.634, 0.235,0.263 | 0.05, 1, 20, 400
851

852  Table 6. Differences in Cauchy stress at A = 1.3 between uniaxial and biaxial stretch conditions

853 for all optimized parameter sets. Data are reported at a percent increase and absolute increase in

854 kPa.
Output Biaxial Data | Wheatley | Takaza | Mohammadkhah
Longitudinal |- 18.5% 322% | 922% 135%
kPa 3.69 3.42 89.8 135
Transverse |- 100% 2.47% | 24.8% 105%
kPa 4.45 1.68 86.8 166
855
856 Table 7. Parameter values for the models shown in Figure 8.

Model $[kPa] B[] plkPa] y [deg] d [-]
Aligned 130 | 2.25 275 90 8
Dispersed 0 - 475 60 3

857

858
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