Model and learning-based computational 3D phase
microscopy with intensity diffraction tomography
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Abstract—Intensity Diffraction Tomography (IDT) is a new
computational microscopy technique providing quantitative, vol-
umetric, large field-of-view (FOV) phase imaging of biological
samples. This approach uses computationally efficient inverse
scattering models to recover 3D phase volumes of weakly scat-
tering objects from intensity measurements taken under diverse
illumination at a single focal plane. IDT is easily implemented in
a standard microscope equipped with an LED array source and
requires no exogenous contrast agents, making the technology
widely accessible for biological research.

Here, we discuss model and learning-based approaches for
complex 3D object recovery with IDT. We present two model-
based computational illumination strategies, multiplexed IDT
(mIDT) [1] and annular IDT (aIDT) [2], that achieve high-
throughput quantitative 3D object phase recovery at hardware-
limited 4Hz and 10Hz volume rates, respectively. We illustrate
these techniques on living epithelial buccal cells and Caenorhab-
ditis elegans worms. For strong scattering object recovery with
IDT, we present an uncertainty quantification framework for
assessing the reliability of deep learning-based phase recovery
methods [3]. This framework provides per-pixel evaluation of a
neural network predictions confidence level, allowing for efficient
and reliable complex object recovery. This uncertainty learning
framework is widely applicable for reliable deep learning-based
biomedical imaging techniques and shows significant potential
for IDT.

Index Terms—Tomography, High Volume-Rate Imaging,
Physics-Based Learning, Uncertainty Learning, Computational
Imaging

I. INTRODUCTION

Three-dimensional (3D) quantitative phase imaging (QPI)
modalities have gained significant interest in biology for
recovering volumetric morphological information of unlabeled
samples [4]-[10]. These methods invert the scattered field
measured from an illuminated sample for 3D recovery [4]

This work was partially supported by National Science Foundation (NSF)
(1813848, 1846784) and National Institutes of Health (NIH) (R21GM128020).
Alex Matlock acknowledges the National Science Foundation Graduate Re-
search Fellowship (DGE-1840990).

978-9-0827-9705-3

2" Yujia Xue
Electrical And Computer Engineering
Boston University
Boston, MA, USA
yujiaxue @bu.edu

5™ Waleed Tahir
Electrical And Computer Engineering

Boston University

Boston, MA, USA

waleedt@bu.edu

760

3 Yunzhe Li
Electrical And Computer Engineering
Boston University
Boston, MA, USA
Emmal@bu.edu

6™ Lei Tian
Electrical And Computer Engineering
Boston University
Boston, MA, USA
leitian@bu.edu

and have shown utility in numerous fields including immuno-
oncology [11] and cytopathology [12]. Existing 3D QPI
modalities are often interferometric [6], [13], [14] requiring
specialized optical setups that can limit their widespread adop-
tion for biological research applications. Recently, intensity-
based QPI methods have gained momentum from using simple
optical setups [7], [8], [15] with various phase encoding
strategies [7], [8], [15]-[20] for object phase recovery. In
particular, intensity diffraction tomography (IDT) [8] provides
volumetric object recovery using intensity-only measurements
and can be implemented in a standard optical microscope
equipped with an LED array. The original IDT implemen-
tation acquires hundreds of illumination patterns from a
rectangular LED array and uses computationally efficient,
linear inverse scattering models for recovering high-quality
volumetric phase information [8]. Unfortunately, this initial
IDT approach suffers from long acquisition time and weakly
scattering object limitations that prevent the evaluation of
living complex biological specimens. Here, we provide model-
based computational illumination strategies for high volume-
rate IDT and discuss learning-based methods for reliably and
efficiently recovering quantitative volumetric information of
complex, multiply-scattered objects.

IDT, like Differential Phase Contrast (DPC) and Fourier
Ptychography (FP) [21]-[26], encodes the object’s phase into
intensity using oblique illumination [7], [8], [18], [22]. These
diverse illumination methods provide synthetic aperture-based
resolution enhancement [8], [21], [22] and have shown suc-
cessful high-speed phase recovery using sparse [21], [27] and
multiplexed illumination [23], [24], [27]. 3D object recovery
with these existing techniques is also possible with sample
scanning [15] and more complex models and reconstruction
algorithms [7], [10], [28]-[30]. Providing high-speed volumet-
ric recovery of complex, multiple-scattering objects is still a
significant challenge for such diverse illumination strategies,
however, due to the large datasets and increased computa-
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tional complexity required of these approaches. Alternatively,
IDT provides an easily implementable 3D recovery approach
with model-based computational illumination strategies that
enhance the modality’s throughput without increased com-
plexity or loss in quality. With the use of learning-based
phase recovery, IDT shows significant promise for providing
efficient, reliable evaluation of complex 3D objects.

Deep learning (DL) has rapidly expanded as a computa-
tionally efficient tool for phase recovery [31]. DL utilizes
end-to-end neural network architectures to learn the inverse
scattering model or incorporate physics-based approximants
or constraints to improve the network’s predictions [31]-
[35]. While these methods are computationally efficient once
trained, the “’black box” nature of DL reduces the reliability
of these predictions for biological research. Here, we discuss
an uncertainty learning framework, applied to the FP modal-
ity [3], that quantifies a neural network’s per-pixel uncer-
tainty regarding its output phase prediction. This framework
is generalizable to different network architectures and shows
significant promise for providing reliable 3D object recovery
with IDT.

This work discusses model and learning-based tech-
niques enhancing IDT’s complex object recovery. We present
two computational illumination strategies, multiplexed IDT
(mIDT) and annular IDT (aIDT), that use software-only and
hardware-only illumination modifications to provide high-
quality volumetric reconstructions of dynamic biological sam-
ples at hardware-limited 4Hz and 10Hz rates, respectively. We
briefly describe these approaches and show their utility on live
epithelial buccal cells and C. elegans worms. Furthermore, we
discuss an uncertainty learning framework providing reliability
assessments of neural network-based phase recovery. We show
these approaches can enhance the capabilities of the IDT
technique and expand the technology to evaluating thick,
multiply-scattering dynamic biological samples.

II. TECHNIQUE OVERVIEW

We provide a brief IDT model overview highlighting its
key parameters for the model-based illumination techniques
in Section III. The full model is discussed elsewhere [8].

The IDT physical model assumes the obJect of interest,
defined by a scattering potential O(r) = OAe( ) with
wavenumber ko, permittivity contrast Ae(r) = €up;(T) — €0
with the surrounding homogeneous imaging medium ¢y, and
spatial position r, generates weak scattering from an incident
field following the first Born approximation [36]. The total
field uso¢ (1) from an incident plane wave u; (r|v;) with lateral
spatial frequency v; interacting with such an object has the
form

Utot (P|V3) = uo(r|vs) +/ uo(rYO(rG(r — rdr' (1)

\4
where G(r) is the free-space Green’s function and V is
the object volume. This approximation assumes the scattered
fields generated throughout the object’s volume are mutually
independent and linearly related to the object’s features. Under
these assumptions, the object can be discretized into axial
slices (Fig. 1(a)) each providing unique phase information at

the image plane. Given the proper model, these object slices
can be recovered from diverse illumination measurements at
a single focal plane.

IDT provides a linear physical forward model relating the
measured intensity spectra to the underlying object. This
spectra contains four terms (Fig. 1(a)): 1) The self-interfered
incident field background signal /3, 2) the incident and scat-
tered field cross-interference with its complex conjugate (IQ,
13) and 3) the self-interfered scattered field (14) I, and 13
preserve the linearity between the measured intensity and the
object’s permittivity contrast and are used for IDT’s linear
model. Assuming I; can be removed computationally through
a background subtraction and I, is negligible under weakly
scattering conditions, the IDT model becomes I(v|v;) =~
H. A€o + Hip A€y, for an object with complex permittivity
contrast Ae(r) = A€,e(T) + jA€m (7). The model’s transfer
functions (TFs), simplified from [8], have the form

—j® (v vi)qAz N I 2T vi)aAz

_\€
H.(v,qv;) x jsPv ) ——+——— - P ) ———— %,
(v, alw) o 3 {POT) o)
(2a)
7]<I> T ,vi)gAz jo(vt v)gnz
NG

Hin (v, q|v;) {P B + P(v )777(V+) },
(2b)

where P(v) is the system’s pupil function, v+ = v + v; is

the lateral spatial frequency shifted by the illumination angle,
n(v) = /(1/A)? — |v|? is the axial spatial frequency, ¢ is the
reconstructed axial slice index,and ®(v*, v;) = n(v*)—n(v;)
denotes the shifted axial spatial frequency term.

These terms highlight three critical features of IDT. First,
the translated pupil P(v £ v;) under oblique illumination
enhances the reconstructed object’s bandwidth up to the in-
coherent limit. Second, the TFs’ slice-dependent exponen-
tial functions enable volumetric recovery by predicting the
propagation phase from each axial slice. Finally, the real TF
recovering the object’s phase information exhibits asymmetric
behavior aligning with observations seen in differential phase
contrast [21]. In overlap regions between fg and I. 3, this asym-
metry removes the object’s phase information and reduces the
image’s information content. Maintaining high resolution with
minimal phase TF overlap is critical for high-throughput IDT
discussed below.

With TFs for all axial slices and illuminations(Fig. 1(b)),
the object volume is recovered slice-wise using Tikhonov
regularization [37]. IDT’s volumetric, quantitative recovery
can be seen in the diatom algae reconstruction in Fig. 1(c).
These reconstructions preserve high-resolution features over
the full volume and highlight the high-quality 3D QPI IDT
provides in a simple optical setup with linear inverse scattering
models.

III. IDT HIGH VOLUME RATE METHODS

Conventional IDT provides high-quality 3D QPI recovery
with low temporal resolution [8]. This first approach required
multi-second acquisition times and hundreds of illuminations
for a single measurement, which limited the technique to
evaluating static objects. Here, we discuss both multiplexed
IDT (mIDT) and annular IDT (aIDT) as high-throughput

761

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 13,2021 at 16:24:58 UTC from IEEE Xplore. Restrictions apply.



f(a) System  Discretized Sample
! €

P

L) o U;(v) * U;(v)"

Objective L) < I;(v)

L) « U;(v) * [PU;(M)]"

[,(v) x PGYU; @) * [P Us(W)]"

P(v)

14

[}
Utot
—

Fig. 1. (a) The IDT system schematic (Left) with the axial discretization process (Top middle), example intensity image under oblique illumination (Bottom
middle), and intensity spectra breakdown (Right). (b) The IDT forward model and visualizations of the 3D real and imaginary TFs from a single oblique
illumination. A 4D TF stack for all axial positions and illumination angles are required for reconstructing the object. (¢) Example volumetric reconstructions

of a diatom biological sample’s real and imaginary permittivity contrast.

solutions enabling 3D QPI on dynamic biological samples that
hold greater interest for the biological research community.

A. Multiplexed IDT

mIDT provides a software-only solution for achieving
high-throughput IDT by optimally combining illuminations
based on IDT’s physical model. This approach is ideal for
combining high-throughput IDT in multimodal computational
imaging [38] and Fourier Ptychography [22] setups using
generic LED arrays. The mIDT framework assumes mutually
incoherent LED illumination and implements three model-
based design constraints: 1) low-angle illumination removal,
2) Source position geometric constraints, and 3) poisson disk
random sampling [39]. The first constraint removes low-
angle illuminations (NA<0.3) that capture only low-resolution
object information and lose phase features from the large
overlap of I, and I5. To prevent symmetric illumination from
removing the object’s phase information with overlapped TFs,
the mIDT framework also restricts the available illuminations
for a given image to one Fourier space quadrant (Fig. 2(a)).
Finally, we randomly select LEDs within a given quadrant
using poisson disk sampling [39] to maximize the recovered
object bandwidth in each image. This method implements
minimum geometric distances between randomly selected
illuminations [39] to prevent TF overlap and enhance the
recovered object bandwidth. With these constraints, we per-
form a randomized search procedure using a custom, non-
differentiable metric that maximizes the mIDT system TF’s
singular value distribution (SVD) (Fig. 2(b)) [1]. Maximizing
this metric maintains the bandwidth of conventional IDT
using the reduced image quantity of mIDT. This dataset
reduction, coupled with a camera exposure time reduction
from the greater light throughput achieved with multiplexed
illumination, enables high-throughput IDT.

Example reconstructions of live epithelial buccal cells are
shown in Fig. 2(c) and [1]. The quantitative refractive index

values of native bacteria and other particles are easily recov-
ered in time (Fig. 2(c), Outsets) without motion artifacts. As
discussed in [1], the mIDT approach is limited to 4Hz volume
rates with the current setup’s slow illumination hardware and
exhibits object-dependent structural artifacts in the reconstruc-
tion due to the multiplexed illumination. These limitations
spurred the investigation of hardware-based speed solutions
discussed below.

B. Annular IDT

Annular IDT (aIDT) provides a hardware-based solution
for high volume-rate IDT. The best IDT reconstruction from
analyzing the IDT TFs results from using oblique illumination
angles matching the objective NA, as these angles provide the
greatest achievable resolution with the least phase TF overlap
between I, and Is. Such illuminations capture significant
object information and can be easily achieved through the use
of a ring-geometry LED array as the illumination hardware
(Fig. 2(d)). In addition, this circular illumination hardware
better samples the object’s Fourier space [40] requiring only
8 intensity images for recovering the object’s bandwidth [2].
These improvements enable high volume-rate IDT without the
need for multiplexed illumination.

Example results for aIDT volumetric reconstructions are
shown in Fig. 2(e). aIDT achieves hardware-limited 10Hz
acquisition rates and recovers high-quality C. elegans worm
reconstructions without motion artifacts. This reconstruction
clearly recovers tissue structures including muscle walls and
intestines (Fig. 2(e), brackets), lipid droplets and circular
structures (white arrows), the vulva (square), and native bac-
teria (diamond) outside the worm. The videos in [2] further
highlight the lack of motion artifacts and exhibit no structure-
dependent artifacts like mIDT. This aIDT approach provides
an easily implementable, high volume-rate QPI system that
can be easily adopted for biological research applications.
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Fig. 2. (a) mIDT system with conventional and multiplexed illumination schemes, (b) example IDT and mIDT system TF SVDs, (c) mIDT time-encoded
reconstruction of epithelial buccal cells. The maximum intensity projection highlights a particle’s 3D movement captured with mIDT. A native bacteria’s
refractive index is also shown to be recovered with mIDT volumetrically at two time points. (d) The aIDT imaging setup, and (e) example C. elegans worm
reconstructions at different depths and times capturing tissue structures including: Intestines and muscle wall (brackets), lipid droplets and high-resolution
circular structures (arrows), the vulva (box), and native bacteria (diamond). Images in (a)-(c) reprinted from [1], (d)-(e) reprinted from [2].

IV. IDT LEARNING TECHNIQUES

Beyond high volume-rate imaging, IDT’s next significant
barrier is its single-scattering physical model. Such models
underestimate the object’s physical properties when evaluat-
ing the complex, multiple-scattering objects more commonly
found in biology [2]. While multiple-scattering inverse models
exist for complex object recovery and could be investigated
for IDT [9], [29], their increased complexity sacrifice IDT’s
computationally simple implementation. Alternatively, phase
recovery with deep learning methods maintain computational
simplicity for complex object recovery at the cost of a ”black-
box” architecture with unknown reliability. To provide both
computationally efficient reconstructions with reliable results,
we consider a recently developed uncertainty learning frame-
work [3] in FP as a potential approach for enhancing IDT’s
multiple-scattering object recovery. We discuss this method
briefly below and direct the reader to [3] for greater detail.

Uncertainty learning determines the per-pixel uncertainty
of a neural network by considering the network weights
as probability distributions with a Bayesian neural network
(BNN) [3]. The predictive distribution of phase values y the
network can provide can then be evaluated based on the
test input «*, model weights w, and training data (X,Y")
distributions

plylz*, X, Y) = / plylz*, w)p(w| X, Y)dw.  (3)

The distributions in Eq. (3) correspond to the data and
model uncertainties and describe 1) the possible predictions
given the learned weights and 2) the possible model weights
learned from the training dataset. Quantifying these distri-
butions evaluates the trained network’s overall quality and
determines whether imperfections exist in the dataset [3].
These distributions are evaluated in a per-pixel uncertainty
map jointly obtained with the network’s prediction (Fig. 3(a))
and correlate highly with the prediction’s error with respect to
the ground truth. By using this uncertainty map as a surrogate
for the true prediction error, this uncertainty learning method

enhances a network prediction’s reliability by determining
whether the prediction’s features are trustworthy. For QPI,
implementing uncertainty learning for recovering complex,
multiple-scattering objects can provide reliable phase recovery
in a computationally efficient approach without suffering from
the limitations of model-based reconstruction techniques.

Predicted phase and uncertainty maps of an ethanol-fixed
HeLa cell sample show this reliability analysis in Fig. 3(b).
These predictions, obtained from a U-Net architecture trained
to recover 2D phase maps from illumination-multiplexed in-
tensity images, show high correlations between the uncer-
tainty maps provided using our approach and the prediction’s
absolute error when compared with conventional FP recon-
struction techniques. This correlation shows the uncertainty
maps provide a surrogate to the absolute error when ground
truth data is unavailable, and the low overall phase error
indicates the network’s phase prediction can provide reliable
QPI measurements without the computational complexity of
the FP and other iterative reconstruction methods. With future
applications to IDT, this uncertainty learning approach shows
significant promise for providing reliable complex object re-
covery.

V. DISCUSSION AND CONCLUSION

We presented three approaches enhancing the intensity
diffraction tomography modality. Using model-based compu-
tational illumination design schemes, we showed hardware-
limited 4Hz and 10Hz volume-rates drastically improving
IDT’s throughput for dynamic sample imaging. We discussed
a recently developed uncertainty learning framework that pro-
vides reliability estimates of a neural network’s prediction in
QPI applications. We showed experimentally that this frame-
work provides per-pixel uncertainty estimates of the network’s
prediction that can be used as a surrogate to the prediction’s
error compared to the ground truth. These developments in
IDT and learning-based QPI show there is significant potential
in providing volumetric QPI measurements of live, native
complex biological samples.
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Fig. 3. (a) The phase prediction and uncertainty map pipeline using a modified

U-Net for the BNN [3]. (b) Fourier Ptychography-recovered ground truth  [22]

phase, BNN-predicted phase, BNN uncertainty map, and absolute error on

ethanol-fixed HeLa cells. The BNN prediction’s low error shows high-quality

phase prediction, and the uncertainty map’s correlation with the error shows  [23]

its utility as a surrogate error metric. Images reprinted from [3].
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