
remote sensing  

Article

Detecting and Mapping Slag Heaps at Ancient
Copper Production Sites in Oman

Alexander J. Sivitskis 1, Joseph W. Lehner 2 , Michael J. Harrower 3,* , Ioana A. Dumitru 3,
Paige E. Paulsen 3, Smiti Nathan 4 , Daniel R. Viete 5, Suleiman Al-Jabri 6, Barbara Helwing 2 ,
Frances Wiig 7 , Daniel Moraetis 8 and Bernhard Pracejus 9

1 Department of Science Education, Samtse College of Education, Royal University of Bhutan, Samtse,
Samtse Dzonkhag 22001, Bhutan; alex.sce@rub.edu.bt

2 Department of Archaeology, The University of Sydney, Sydney, NSW 2006, Australia;
joseph.lehner@sydney.edu.au (J.W.L.); barbara.helwing@sydney.edu.au (B.H.)

3 Department of Near Eastern Studies, Johns Hopkins University, Baltimore, MD 21218, USA;
idumitr1@jhu.edu (I.A.D.); ppaulse2@jhu.edu (P.E.P.)

4 Life Design Lab, Johns Hopkins University, Baltimore, MD 21218, USA; smiti.nathan@jhu.edu
5 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;

viete@jhu.edu
6 Ministry of Heritage and Culture, Bat 511, Oman; sulaimam_j@mhc.gov.om
7 School of Civil and Environmental Engineering, The University of New South Wales, UNSW SYDNEY,

Kingsford, NSW 2052, Australia; f.wiig@student.unsw.edu.au
8 Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah 27272,

UAE; dmoraitis@sharjah.ac.ae
9 Department of Earth Sciences, College of Science, Sultan Qaboos University, Al-Khod, Muscat 123, Oman;

pracejus@squ.edu.om
* Correspondence: mharrower@jhu.edu; Tel.: 1-410-516-7500

Received: 8 October 2019; Accepted: 11 December 2019; Published: 14 December 2019
����������
�������

Abstract: This study presents a new approach for detection and mapping of ancient slag heaps using
16-band multispectral satellite imagery. Understanding the distribution of slag (a byproduct of metal
production) is of great importance for understanding how metallurgy shaped long-term economic
and political change across the ancient Near East. This study presents results of slag mapping in
Oman using WorldView-3 (WV3) satellite imagery. A semi-automated target detection routine using a
mixed tuned matched filtering (MTMF) algorithm with scene-derived spectral signatures was applied
to 16-band WV3 imagery. Associated field mapping at two copper production sites indicates that
WorldView-3 satellite data can differentiate slag and background materials with a relatively high
(>90%) overall accuracy. Although this method shows promise for future initiatives to discover and
map slag deposits, difficulties in dark object spectral differentiation and underestimation of total
slag coverage substantially limit its use. Resulting lower estimations of combined user’s (61%) and
producer’s (45%) accuracies contextualize these limitations for slag specific classification. Accordingly,
we describe potential approaches to address these challenges in future studies. As sites of ancient
metallurgy in Oman are often located in areas of modern exploration and mining, detection and
mapping of ancient slag heaps via satellite imagery can be helpful for discovery and monitoring of
vulnerable cultural heritage sites.
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1. Introduction

Researchers previously achieved mixed success using satellite imagery to map archaeological
slag. Pryce and Abrams published efforts to extract spectral signatures of ancient copper mining
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sites in Thailand from ASTER imagery [1]. Band combinations across multispectral wavelengths
(VNIR–SWIR) were examined and spectral indices were used in attempts to distinguish unique spectral
features indicative of archaeological targets. Pryce and Abrams reported that low spatial resolution,
pervasive vegetation cover, and the small size of archaeological sites prevented identification of a
spectral signature characteristic of ancient metallurgical material. However, they also suggested
that similar investigations in less vegetated contexts might be more successful in identifying distinct
spectral signatures for metallurgical production.

Concordantly, Savage et al. [2–5] used hyperspectral imagery to map archeometallurgical
production in the far more arid copper mining district of Wadi Faynan in Jordan. They used a
combination of principal components analysis, similarity matrices, and spectral mixture analysis with
NASA’s EO-1 Hyperion imagery. Savage et al. observed that slag mounds exhibited different spectral
profiles corresponding to different parent end-member spectra. The project also used the imagery
to identify spectrally similar groundcover as candidate areas for future field investigation. Despite
these promising results, the authors reported that limitations of Hyperion imagery, including low
spatial resolution, a weak signal-to-noise ratio, and limited coverage in the Short-Wave Infrared (SWIR)
wavelengths, hindered detection, and mapping of slag heaps.

To overcome previously documented obstacles, we investigated high spatial resolution
WorldView-3 (WV3) imagery for detecting and mapping archaeological slag heaps. WV3 measures
visible near infrared (VNIR) and shortwave infrared (SWIR) in a combined total of 16 available spectral
bands [6]. With the ability to collect imagery off nadir, the spatial resolution of WV3 ranges from
1.24 to 1.38 m at 20◦ off nadir in VNIR bands and 3.7 m to 4.10 m at 20◦ off nadir in SWIR bands.
SWIR data is resampled to 7.5 m for public distribution, however higher resolution SWIR has more
recently become available. While lower in overall spectral resolution than EO-1 Hyperion, WV3’s
key spectral band placement and much higher spatial resolution appears particularly well suited to
address the limitations of previous remote sensing efforts to map archaeological slag. Accordingly,
we hypothesized that employing scene-based target detection routines with WV3 would be helpful for
detecting and mapping slag in the arid environments of Oman.

2. Materials and Methods

2.1. Study Area

Wadi Raki is a drainage in Al-Dhahirah Governorate of Oman near the modern town of Yanqul
(Figure 1). Situated along the western side of the Al-Hajar Mountains, Wadi Raki originates in rugged
terrain and runs southwest across a broad gravel plain before entering Yanqul. Early surveys of
Wadi Raki in the late 1970s [7,8] followed by archaeological excavations in 1995 and 1996 identified
extensive evidence of early Iron Age (ca. 1200–800 BCE) and early Islamic copper production (ca. CE
700–950) [9] (pp. 142–144) [10] (pp. 108–115). Copper production sites within the Wadi Raki drainage
are distributed in three large clusters of ancient activity referred to as Raki 1, Raki 2, and Tawi Raki
(Figure 1). These initial archaeological investigations provide an estimated total of nearly 200,000 tons
of slag [11] (pp. 116–117), making Wadi Raki one of the largest primary metal production sites in
Southeast Arabia.

The location of metal production in the Raki area is closely related to the region’s complex geologic
history and the associated availability of copper. During the Late Cretaceous (ca. 95 Ma) an ophiolitic
package of local geology formed through a sequence of fast oceanic spreading and supra-subduction
zone volcanism within the Tethys Ocean, an ancient seaway that separated elements of Laurasia and
Gondwana following the breakup of Pangea [12–15]. Geochronological, petrological, and structural
evidence point towards this volcanism and creation of oceanic crust occurring within a geologically
short period of a few million years or less [12–16].

In the middle–upper Cretaceous, tectonic cycling brought about the closure of the Tethys. Instead
of being subducted beneath the continental margin, as is typical for oceanic lithosphere, a package of



Remote Sens. 2019, 11, 3014 3 of 24

this relatively young and hot oceanic lithosphere was thrust up and onto the stable Arabian Craton in
a process known as obduction [17]. The oceanic rocks that form this obducted package are collectively
known as the Semail Ophiolite Complex (SOC). The SOC has been described as one of the best exposed
and most complete ophiolitic assemblages in the world [13–15,17].
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Figure 1. The location of the Raki Archaeological Area within the Al-Hajar mountain range of southeast
Arabia. WorldView-3 imagery courtesy of the DigitalGlobe Foundation.

The geology at the Raki archaeological sites represents the uppermost levels of this SOC
sequence (Figure 2). Volcanic rocks range in composition from primarily basalt to basaltic andesite,
and formed in direct contact or in close proximity to sea water near the paleo-ocean floor [14,18,19];
observable structures within this volcanic sequence, including pillowed surfaces and brecciated flows,
are demonstrative of this formation environment [20,21]. Throughout the SOC, upper volcanic rocks
have been classified into three to five separate units representing different stages of volcanic eruption
across oceanic spreading center and supra-subduction zone environments [13,18,22]. Importantly,
these submarine volcanic environments present conditions favorable for hydrothermal alteration and
local emplacement of base metals. The renowned copper resources of Oman are a product of this
hydrothermal overprinting process [17,23].

Within the volcanostratigraphic sequence of the SOC, at least 150 individual Volcanogenic Massive
Sulfide (VMS) deposits have been identified [24]. A typical iron-rich cap (gossan) represents the
oxidized upper portion of the copper-rich sulfide orebody below, making VMS deposits often distinctly
visible on the landscape surface. Gossans are usually the first indicators for an underlying copper
deposit and such manifestations were particularly important for resource exploration in ancient mining
communities that lacked modern exploration techniques. VMS have served as the primary sources for
copper in Oman, and have been exploited in both historic as well as modern times [17]. At least three
VMS bodies are present at the Raki area: one at Raki 1, one at Tawi Raki, and one located approximately
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4 km to the west near the town of Sayeh. The deposits at Raki 1 and Tawi Raki share evidence of
extraction and exploration during both ancient and modern times.
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2.2. Archaeological Context

Archaeological research in Southeast Arabia demonstrates a long history of copper production [25,
26], with the earliest evidence for production dating to the late 4th millennium BCE [27].
Archeometallurgical surveys focused on the distribution of copper ore sources and copper production
in Southeast Arabia, and Oman in particular, first began in the 1970s [28–30]. Beginning in 1977 and
over the course of four field seasons, the Deutsches Bergbau Museum conducted an extensive program
of surveys, excavations and laboratory analyses that outlined the development of metallurgy in the
region [11,31–36], provided empirical evidence for long-distance trade of copper from ancient Oman
to Mesopotamia and beyond [37], and began to identify the social, economic, and environmental
implications of ancient copper production [38]. In conjunction with geological surveys in the region,
this work identified over 50 major copper deposits and more than 100 minor deposits, which often
displayed accumulations of early Islamic production, occasionally Iron Age and less frequently Bronze
Age production [39] (p. 270).

Some of the earliest descriptions of the Wadi Raki copper source and associated archaeological sites,
in particular slag heaps, come from the USGS 1973–1974 mineral deposit survey in northern Oman [40]
and by Centre National de la Recherche Scientifique (CNRS) archaeologists [7]. Focused surveys and
excavations in Wadi Raki led by Gerd Weisgerber in 1995–1996 demonstrated that there were three
large clusters of slag heaps with evidence for both Early Iron Age and Early Islamic exploitation [9,10].
This work focused efforts on Raki 2, where an Early Iron Age settlement is associated with slag heaps
with depths of 5–6 m. Five radiocarbon ages date the occupation to ca. 1200–800 cal. BCE. Evidence
from their excavations demonstrated that copper production intensified in scale at the beginning of the
Iron Age in Oman, leaving a significant impact on the surrounding landscape.

Less is known about the two other concentrations of slag heaps, Raki 1 and Tawi Raki, however
recent investigations by our team confirm the predominance of early Islamic exploitation (ca. CE
700–950). The distribution of slag at these sites is markedly different from Raki 2 (See Figure 1).
Raki 1 and Tawi Raki are larger in scale with well-delineated boundaries of slag heaps associated
with separated roasting and smelting furnaces. These sites are also located in direct association with
the gossan cap of the underlaying copper sulfide body (see Figure 2) and exhibit less evidence of
settlement activity. Separated by a period of ca. 1900 years, the early Islamic period of exploitation
marks another dramatic increase in copper production, a pattern which is replicated at major copper
sources across Oman [38,41].

Encroachment of modern development poses substantial risk to the archaeological sites of the
Raki area. Modern mining operations as well as residential occupations and small-scale agriculture
are in close proximity to slag heaps at Raki 1, Raki 2, and Tawi Raki. Furthermore, bulldozing of slag
heaps to clear ground for geologic coring has been observed, and appears to be ongoing, in a number
of areas. Any alteration to the structure and distribution of these slag features can seriously impact
the preservation of their archaeological record. As such, culture heritage managers are in need of
reliable and accurate depictions of these archaeological landscapes. In order to best document the
current distribution of slag at these sites, our team employed a combined remote sensing and field
survey approach.

2.3. Methodology

Archaeological field surveys of the Wadi Raki area were completed by the Archaeological Water
Histories of Oman (ArWHO) Project during in January 2019. While the distribution of archaeological
slag heaps at the site at Raki 2 were relatively well defined, the areas of Raki 1 and Tawi Raki were less
understood. We employed a combined approach of field survey aided by concurrent remote sensing to
locate and document the presence of slag heaps in these less understood areas. Prior to field mapping,
satellite imagery was used to help identify key target areas around each archaeological site. Detection
results were loaded onto an iPad and taken into the field to help guide and plan survey efforts. Field
survey (as described in Section 2.3.3) guided by the remotely sensed detection products confirmed and



Remote Sens. 2019, 11, 3014 6 of 24

mapped slag heaps that were detected within the imagery and also documented other slag features
that were not detected via remote sensing. Over the course of the field survey, we developed a
characterization protocol for the slag features observed on the ground based on their spatial extent,
homogeneity, and relative density of slag cover. To analyze our detection products, a final accuracy
assessment was completed with reference to the characterized field derived GNSS data for observed
slag heap coverage. The following sections detail this process.

2.3.1. Imagery and Data Processing

Worldview-3 standard 2A imagery of the ArWHO Al-Dhahirah study area was obtained
free-of-charge from the DigitalGlobe Foundation. This included three swaths of imagery, including
SWIR bands, covering approximately 3925 km2. The imagery was collected on 17 October, 2017 with a
mean off nadir view angle of 21◦.

Worldview-3 imagery was processed and analyzed using Environment for Visualizing Images
(ENVI) v5.3 software. Steps requiring spectral layer stacking were executed using Earth Resources Data
Analysis System (ERDAS) Imagine v2018 software, which was selected for operability and performance.

Multispectral tiles and the corresponding SWIR swath were processed separately, and then stacked
and mosaiced to create a full coverage raster for the study area. Conversion from delivered Digital
Number (DN) values to at sensor radiance was completed using the ENVI radiance conversion tool
and radiometric scaling factors stored within the imagery metadata. The ENVI Fast Line-of-sight
Atmospheric Analysis of Hypercubes (FLAASH) atmospheric correction package was used to
compensate for atmospheric inference [42]. Though atmospheric correction is not specifically required
for the scene-based target detection routine used in this study (see Section 2.3.2), we chose to include
this standard correction process in order to improve future replicability of the methods with the
potential to expand target detection across multiple scenes (likely gathered at different temporal
intervals). FLAASH uses the MODTRAN4 radiation based transfer code to model atmospheric and
aerosol interference [43]. The atmospheric model for FLAASH was set as tropical for these scenes and
a rural aerosol modal was selected to most accurately characterize the image acquisition conditions.
FLAASH corrected multispectral tiles were then stacked with the corrected and corresponding SWIR
bands, resulting in a datacube of 16 bands resampled to delivered VNIR band spatial resolution.
Imagery around each archaeological site was then spatially subset to an approximately 1 km2 bounding
box to limit the detection area and speed processing time.

2.3.2. Slag Detection

Minimum Noise Fraction Transformation was applied to the data to whiten noise and the full
16 band stack was transformed into MNF space [44]. Spectral signatures were derived from image
Regions of interest (ROIs) placed locally within well understood slag heap pixels at the site of Raki 2.
These pixels were selected due to extensive prior field work, well known and characterized slag heap
locations, and a general understanding of the slag heap local character. The average target spectra of
slag derived from these ROIs can be seen in Figure 3.
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A target detection routine was executed using a Mixed Tuned Match Filtering (MTMF) algorithm
following the processing steps of the Spectral Hourglass Workflow within ENVI v5.3. The MTMF
approach allows for the combination of both partial unmixing and subpixel abundance estimation [45].
We chose to investigate this approach due to its unique combination of “products that cannot be
simultaneously achieved using standard mixture modeling or spectral angle mapping algorithms” [45],
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and its given success as a target detection approach in both geological contexts [46–48] and WV3
applications [49].

Matched filtering is described as a partial unmixing routine that calculates an estimated value of
target abundance for each pixel [45,50]. The technique identifies pixels within a scene that display
the strongest spectral similarity to the target spectrum. With the input data projected into MNF
space, this process also works to suppress the general background spectra of the scene. The MTMF
algorithm therefore offered an approach for detection of spectrally similar slag pixels without requiring
knowledge or discrimination of all endmembers in the image scene. As the number of spectral end
members was likely small in comparison to WV3’s 16 bands, this partial unmixing approach could
help in discriminating slag from other dark targets. Additionally, matched filtering results offer an
approximation of material abundance within individual pixels. While not substantially investigated
in this paper, opportunities for sub-pixel abundance analysis could prove useful for future slag
mapping efforts. Finally, the mixture tuning phase of the algorithm provides the additional benefits
for identifying and rejecting false positives. As we anticipated false positive detection of similar dark
materials to be a likely issue, the MTMF approach appeared better suited for our task than other
traditional target detection models.

Excellent descriptions of the MTMF approach are offered by Goodarzi Mehr et al. 2013 [48] and
Mund et al. 2007 [45] citing the work of Boardman 1993 [51]. An abbreviated description and relevant
equations are presented for this paper. To complete this routine, the matched filter vector (MFV) is first
calculated via the following equation [48,51]:

MFV = (CMNF
−1
× tsMNF)/(tsMNF

T
× CMNF

−1
× tsMNF) (1)

where CMNF
−1 is the diagonal inverse of the MNF covariance matrix; tsMNF is the target spectrum

converted to MNF space (in this case slag signatures derived from the ROI at Raki 2). Once calculated,
the MNF data is projected onto the MFV, and the matched filter values are calculated as follows [48,51]:

MFI = MFV × DMNF (2)

where MFI is the resulting matched filter image and DMNF is the MNF data set.
As the matched filtering (MF) process is known to be limited in its ability to differentiate false

positive results [46], the mixture tuned (MT) variable can help to exclude erroneously detected pixels.
The mixture tuned approach calculates an infeasibility score for each pixel spectrum by measuring
the Euclidean distance of the pixel from the identified target mean spectrum based on the concept of
mixing feasibility [45,48]. Once complete, the MF and MT scores can be considered concurrently to
enhance the evaluation and screening of false positive detections [50]. Presented as noise sigma units,
the MT score is calculated via the following equation [48,51]:

MTi = (Σ (((DMNFi − dmi)/MTevali)2))1/2 (3)

where MTi is the mixture-tuned value for pixel i; DMNFi is the MNF spectrum for the pixel i; dmi is the
appropriate mean value for pixel i; and MTevali is the interpolated vector of eigenvalues for pixel i.

The output of the mixed tuned match filtering (MTMF) detection creates a composite image
with a matched filter (MF) score and infeasibility score for each pixel. The MF score indicates an
estimated relative degree of matching between the pixel values and the endmember spectrum, while the
infeasibility results indicate the relative feasibility of the MF score. ENVI allows the selection of
pixels that have high MF scores and low infeasibilities via an interactive 2D scatter plot. Threshold
variables inferred as positive detection were set at pixels that attained an MF score greater than 0.6 and
an infeasibility score less than 4. These threshold levels were identified by distinguishing spatially
coherent pixel clusters of target detection results overlain on true color imagery. While the 2D visualizer
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selection method can be somewhat subjective, the identified threshold scores resulted in a highly
selective MTMF feasibility ratio [50] (MF score/infeasibility score) of 0.15.

While the MT process helped to reduce false positive detections, visual interpretation of these
detection results still displayed some obvious false positive outputs. These were recognized as single
or small clusters of spatially segregated pixels occurring in locations such as steep slopes and variable
elevations that were unlikely to contain slag deposits (based on known field characteristics). As the
initial objective for remote sensing was to identify large and spatially consistent slag features, we
sought to implement an additional process to address these isolated false positive detections. To clean
MTMF results and remove these remaining false positive errors, a final filtering process was completed.

Raw MTMF detections were filtered through a two phase processes to produce final slag heap
detection polygons using ENVI sieve and clump functions (Figure 4). MTMF rasters were converted to
classification datasets in ENVI 5.3 and run through the classification wizard. First, a sieve function
using blob grouping was performed with a default pixel criterion of 3 to remove speckling noise
resulting from isolated pixels within the detection product. Next, a clump function with a default dilate
kernel and erode kernel criterion of 9 was used to remove small regions of false positive detection,
and clump together remaining pixel clusters. Final shapefile polygons were created from the filtered
MTMF data and exported in ArcMap. These final shapefiles polygons were georeferenced (slight
corrections of ~5 m) in ArcGIS Desktop 10.5.1 to compensate for geographic deviation inherent within
the commercially delivered WV3 product.
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Both the raw detection products and final detected shapefile boundaries were used to aid in field
mapping of the slag deposits. Through field evaluation, it was noted that some small pixel clusters
within the raw detection rasters that were removed during the filtering process correctly identified
areas of diffuse slag scatters. Critical review of these raw detection products allowed us to infer
whether some isolated pixels were likely false positive detections (e.g., in close proximity to observable
shadows) or where these pixels might in fact be correctly depicting slag cover. Consideration of these
filtered pixel clusters helped to direct field mapping on numerous occasions, and without their use it is
likely that some small slag scatters would have been missed by field survey. Differentiation between
slag heaps and slag scatters is further addressed in the following section.
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2.3.3. Field Survey

Field mapping was accomplished using Global Navigation Satellite System (GNSS) equipment
supplied by the Johns Hopkins University, Spatial Observation Laboratory for Archaeological Research
(SOLAR). We mapped slag heaps using a Trimble GeoXH 6000 GPS receiver (running TerraSync
version 5.86 Centimeter Edition software) connected to a backpack mounted Trimble Zephyr antenna.
This rover data was then differentially corrected (post-processed) using records from a Trimble R10
receiver running as a base station immediately adjacent to field survey locations.

Given the rugged nature of the terrain and the time-consuming nature of mapping slag over
large areas, we planned and guided our field survey using the satellite imagery detection products
described above. We would often begin field survey at the most accessible point of these sites and
then survey outwards in a loose transect pattern. While completing these loose transects, we would
either attempt to follow cardinal direction (either N–S or E–W) or, when the local topography was
prohibitory, we would follow the natural systems of topography and drainages.

Target detection products were loaded onto an iPad tablet running GIS Pro software carried
during field survey. Consistently throughout these surveys, our team would reference the target
detection products, noting which slag heaps we had surveyed and where other heaps might likely be
present. In this manner, we were able to validate slag heaps that were detected via the remotely sensed
imagery and also identify and document slag features that were not detected. Concurrently with the
mapping survey, our team also collected comprehensive elevation data using continuously recording
GNSS with the intention of producing a DEM to be used in future analysis. Collection of this elevation
data was accomplished following a stricter systematic spatial approach. This included tighter transects
spanning approximately 5 m meters walked across the entirety of the site and specific revisits to slag
coverage areas that were additionally mapped following a descending spiral pattern. Collection of
elevation in this manner ensured that all areas of the site had significant visual coverage. These two
survey methods, guided by the remote sensing products, allowed us to have high confidence for the
accurate survey of slag features at Raki 1 and Tawi Raki.

We mapped archaeological features following protocols determined by characteristics of the site
locations. Both polygon and point data were collected to document a wide range of features including
slag heaps and scatters, furnace and roaster installations, lithic scatters, settlement architecture,
and tombs. When zones of slag cover were surveyed, we attempted to map discrete boundaries
based on the presence/absence of slag, though often these judgements were based on gradational
boundaries. Through the course of the survey, an emergent understanding of slag distribution led to a
classification of slag collections under the following criteria: (a) slag heaps—extensive, contiguous,
voluminous, and multidimensional large piles (≥100 m2) of slag with intermixed metallurgical ceramic
(i.e., furnace lining) fragments and (b) slag scatters—surficial covers of slag that were substantially
smaller than slag heaps in both area and volume (Figure 5). In some instances (particularly at the site of
Tawi Raki) slag features demonstrated evidence of disturbance by fluvial events. All slag distributions
were mapped within their currently found positioning so as to best document the present extent of the
archaeological material.

Slag detection results were evaluated and ground-truthed via field reconnaissance and GNSS
mapping. In some select cases, reference to the detection products led to the discovery of slag that
may have been overlooked via traditional survey methods. Referencing these detections substantially
expanded the area under survey consideration, and often directed survey efforts to slag heaps and
scatters beyond previously interpreted site boundaries.

Generalized site boundaries were drawn for Raki 1 and Tawi Raki following the completion of
survey once all known and discovered slag features were mapped. These boundaries were discerned
from a conservative qualitative approach in order to best capture the nature of the site distribution and
inform future efforts of cultural heritage conservation. In general, the site boundaries were drawn
with a roughly 10 to 20 m buffer from the furthest mapped archaeological features. These boundaries
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attempted to take into account the assumed historical distribution of any material [7,10,40] and modern
disturbance of those original distributions (i.e., large open caste copper mine at the site of Raki 1).Remote Sens. 2019, 11, x FOR PEER REVIEW  11  of  24 
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2.3.4. Classification Accuracy

Appropriately describing the measured accuracy for these remote sensing products is a challenging
task due the reality of our evolving survey methods and emergent understanding of the archaeological
environment. While the initial goal of this remote sensing initiative was to detect slag features at
the archaeological sites, our field survey revealed that slag features can be classified in two main
depositional states: heaps and scatters. During survey, it became apparent that the target detection
results most often identified the relatively homogenous slag heaps (our intended target) but did
not usually identify ephemeral slag scatters. Due to this complexity, we opted to measure accuracy
of these detection results against the mapped large slag heaps and omitted slag scatters from our
accuracy classification.

Accuracy of assessment results was calculated using both presence/absence and site-specific
methods. Slag heap polygons derived from field survey of both Raki 1 and Tawi Raki were used as
the ground truthed reference data of the accuracy assessment. The assessment was limited to the
survey defined site boundaries, and detection results were clipped accordingly prior to assessment.
Presence-absence accuracy is reported as percent of GNSS mapped slag heaps that contain detected
pixels. This accuracy is reported for both the raw and filtered detection results. Site-specific accuracy
was assessed using a confusion matrix. 1000 random points were generated within the site area
boundaries and assessed to compare slag presence/absence in WV3 detection vs. GNSS field mapping
layers. Overall accuracy, kappa coefficients, errors of omission and commission, and user and producer
accuracies are reported for each detection. Final calculations of combined user and producer accuracy
for both detection areas are also reported to offer a comprehensive description of remote sensing
accuracy and provide context for potential future applications of this method.
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3. Results

Target detection at the sites of Raki 1 and Tawi Raki demonstrates that WV3 imagery can be
successfully used to map archaeological slag heaps. Overall detection accuracy of 93% (Raki 1) and
97% (Tawi Raki) describes the classifications as being accurate classifications of slag heaps and the
surrounding background land cover within these archaeological areas. A combined user accuracy
for slag classification of 61% indicates that these detections could be used to discover previously
undocumented slag heaps. However, a combined producer accuracy for slag classification of 45%
demonstrates that these detection products substantially underestimate total slag surface coverage.

These detection products were of great value during the field survey campaign where satellite
derived results helped direct and improve ground-based GNSS mapping efforts. High overall reported
accuracies for the remote sensing detection (>90%) demonstrates that this methodology can be
successfully employed to differentiate archeometallurgical sites from their background landscape
in arid environments. However, additional steps to improve user and producer accuracies are
recommended before applying this method to discover previously undocumented slag heaps in heaps
in new areas (see Discussion).

3.1. Slag Detection at Raki 1

The target detection results at Raki 1 demonstrate good visual correspondence and spatial
consistency with the field surveyed slag boundaries (Figure 6). A total of 19 slag heaps were mapped
via survey methods, with seven heaps measuring above 500 m2. WV3 detection produced substantial
detection polygons for each of these seven large slag heaps, and had smaller polygons in all but
four of the smaller slag heaps. Two of these smaller slag heaps contained single detected pixels in
the raw results, however these were removed in the filtering process. Detection results of the major
slag heaps often produced more conservative distribution boundaries than those mapped via survey
methods. Errors of commission, or false positive detections, further skew boundaries of detected slag.
Despite differences between the classifications, the WV3 detection offers a visual aid that gives a useful
representative picture of the major slag heap distribution at the site of Raki 1.

Presence-absence and site-specific accuracy results for the differentiation of slag heaps and
background landscape are presented in Table 1. Filtered WV3 results have pixels present in 79% of
the GNSS surveyed slag heaps, however this accuracy is increased to 89% within the raw unfiltered
detection. Random point classification reports and overall accuracy of 93% for the detection with a
Kappa coefficient of 0.46. While the detection results for slag have a relatively low score for producer’s
accuracy (44%), a user’s accuracy of 59% indicates that these results can be valuable reference for
field identification. A user’s accuracy rating of 95% and producer’s accuracy of 97% indicates that
the detection routine is very well suited at distinguishing background surfaces signatures from slag
signatures, and this high percentage is undoubtedly contributing to overall accuracy.

Beyond reported accuracy, these detection results proved to be a valuable asset to aid in the field
mapping and survey of Raki 1. WV3 generated slag boundaries were a useful spatial dataset to check
the extent and distribution of slag heaps during and after sessions of documenting archaeological
material boundaries with on-the-ground GNSS mapping.

In some instances, detection results helped to identify slag heaps that most likely would have
been overlooked by traditional field survey. For example, slag heap 981-030, located in the central
area of Raki 1, was initially not recorded via survey due to its proximity to modern mining operations.
However, when detected pixels were observed within this overlooked area, subsequent survey efforts
were planned. Ground-truthing of these detected pixels revealed a previously unmapped slag heap
that was significantly disturbed by bulldozing. Correctly identified slag presence within the raw
detection and final filtered results thus proved instructive for field survey. The combined products of
both raw and filtered detection results therefore were highly useful tools in the slag mapping workflow.
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Table 1. Accuracy assessment for Raki 1 classification: (a) presence/absence accuracy statistics; and (b)
confusion matrix and supporting statistics comparing WV3 MTMF slag detection results to field survey
data for Raki 1. Overall site-specific accuracy 93% and Kappa = 0.46.

Presence/Absence Accuracy (a)

Filtered Detection
Results 79% Unfiltered

Detection Results 84%

Site Specific Accuracy (b)

Field Reference Data
Slag Background

WV3 Detection
Results

Slag 37 26
Background 47 890

Class Name Commission (%) Omission (%) User’s Accuracy Producer’s Accuracy

Slag 41% 56% 59% 44%
Background 5% 3% 95% 97%
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3.2. Slag Detection at Tawi Raki

Target detection results at Tawi Raki demonstrate a very well matched and spatially consistent
agreement with the surveyed slag boundaries (Figure 7). Survey efforts mapped a total of 20 slag heaps
present at this site, with ten heaps measuring above 500 m2. WV3 detection produced substantial
detection polygons for each of these ten large slag heaps, and had smaller polygons in all but five of the
smaller slag heaps. One of these smaller slag heaps had two detected pixels present in the unfiltered
results, yet these were removed during the filtering process. Additionally, these results at Tawi Raki are
consistent with the results at Raki 1 in producing slag heap boundaries that are more conservative in
total extent than those mapped via survey methods. Importantly though, these target detection results
show a distribution of slag heaps in alignment with what was observed on the ground via survey.
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The target detection technique correctly mapped slag rich areas found towards the southern
portion of the site, notably in close proximity to a highly weathered gossan and VMS deposit (likely the
primary source of ancient ore extraction). The northern portion of the site is characterized by sporadic
and diffuse slag scatters, often interrupted and eroded by a large E-W wadi drainage. While the raw
target detection results did correctly identify some of these areas, only small polygons were produced
within these zones following the filter routine. These detections proved valuable for mapping of the
northern area, however due to the diffuse nature of these slag scatters they were not included in the
overall accuracy assessment.

Presence-absence and site-specific accuracy results describing differentiation of slag heaps from
the background landscape are presented in Table 2. Filtered WV3 results have pixels present in 75%
percent of the GNSS surveyed major slag heaps, however this percentage increases to 80% in the raw
unfiltered detection results. Random point site-specific accuracy assessment shows an overall accuracy
of 97% with a Kappa coefficient of 0.56. The detection results for slag have both an increased score for
producer’s accuracy (51%) and user’s accuracy (65%) as compared with Raki 1. These improved results
could be attributed to a variety of factors, but likely are influenced by a larger detection area with less
overall slag coverage that is characterized by a higher degree of massive homogeneous slag heaps.
A user’s and producer’s accuracy of 98% and 99% respectively indicate that the detection routine is
again very well suited at distinguishing background surfaces signatures from slag signatures, and this
high percentage is undoubtedly contributing to the overall accuracy.

Table 2. Accuracy assessment for Tawi Raki classification: (a) presence/absence accuracy statistics; and
(b) confusion matrix and supporting statistics comparing WV3 MTMF slag detection results to field
survey data for Tawi Raki. Overall site-specific accuracy 97% and Kappa = 0.56.

Presence/Absence Accuracy (a)

Filtered Detection
Results 75% Unfiltered

Detection Results 80%

Site Specific Accuracy (b)

Field Reference Data
Slag Background

WV3 Detection
Results

Slag 17 9
Background 16 958

Class Name Commission (%) Omission (%) User’s Accuracy Producer’s Accuracy

Slag 35% 49% 65% 51%
Background 2% 1% 98% 99%

Slag detection results at Tawi Raki again proved to be a valuable asset to aid in the field mapping
and survey. Instances of slag verification in WV3 helped to identify the large homogenous slag heaps
within the southern portion of the archaeological site. In particular, detected slag heaps along the wadi
edges in both the western and eastern portions of the site aided in the mapping and distribution of
these targets. Furthermore, two discrete polygons of detected pixels in the northern portion of the site
along the banks of the dominant east-west wadi system prompted field survey efforts into regions that
likely would not have seen as much attention via traditional field survey. While not included in the
overall accuracy assessment due to their diffuse nature, pixels classified as slag within this region led
field investigation efforts to a host of spatially dispersed and wadi eroded slag scatters that significantly
extended the boundary of the site beyond what was previously understood [7]. In the case of Tawi
Raki, both the accurate mapping of the large contiguous slag heaps as well as the limited detection of
the spatially diffuse slag scatters enabled a richer and more successful field survey campaign.
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4. Discussion

Results demonstrate that WV3 satellite detection can be used to aid in the mapping of slag heaps
in arid environments. While limitations currently exist in this routine due to false positive detection
and differences in boundary delineation, these remote sensing efforts provided both visual aids and
ground cover estimates that proved useful for slag heap documentation. The WorldView-3 data and
the MTMF algorithm significantly enhanced traditional field survey. Target detection results provided
both a general check on major slag heap distribution while also leading to the documentation of smaller
slag features that might have been otherwise overlooked.

From an archaeological survey perspective, the primary usefulness of these detection products
resided in their visual depiction of previously unmapped material culture. These detection results
identified a collection of large, spatially discrete areas of slag cover at both sites of interest. This
visual depiction was immensely valuable in the planning and execution of archaeological survey in
a previously unrecorded context. Furthermore, referencing these detection products occasionally
identified areas of slag that would have been otherwise overlooked visually, either in direct field
observation or within true color imagery interpretation. These products, therefore, played a critical
role with aiding and assisting field survey.

Accuracy assessment is useful to contextualize the practical success of this method for the
identification and detection of slag. However, the accuracy reporting methods of this study must be
critically scrutinized in order to understand their relevance as metrics. While the overall detection
accuracies are reported as high (>90%), these measurements are reflecting a large portion of the
random accuracy measurement points that are correctly classified background pixels. Though correctly
removing background pixels from survey consideration is a valuable contribution, the reported high
accuracy of this metric alone does not fully describe this method’s accuracy in relation to the positively
detecting slag.

Consideration of the combined user and producer accuracies offers an important clarification of
this method’s ability to detect and map slag heaps. A combined user’s accuracy of 61% indicates that
this method was moderately successful at detecting areas that our field survey also mapped as slag.
This moderate user’s accuracy suggests that if this remote sensing method was applied to a novel
context with limited information about slag cover, the target detection products could offer substantial
aid in a survey based archaeological documentation. However, a combined producer’s accuracy of
46% indicates that this method underestimates the total coverage of slag heaps that were measured via
survey. As described in the Results sections, target detection efforts often produced slag heap polygons
with significantly smaller boundaries than as mapped via field survey. Therefore, due to this persistent
coverage underestimation, the method (as it stands) should not be considered a precise delineation of
slag heap boundaries.

Both detection methodology and survey methodology could explain some variation in the low
reported producer’s accuracy. Within the detection process, the clumping phase of the filtering routine
used to remove areas of false positive detections also resulted in the smoothing of the boundaries for
the larger spatially coherent detection clusters. This process often resulted in final detected slag heap
polygons that were reduced in size from the initial raw detections. While benefiting from the removal of
extra false positive detection, this filtering also reduced the reported accuracy of the detection product.

During field survey, GNSS mapping of these slag heaps was conducted using a conservative
approach that attempted to capture an accurate a boundary for slag heaps in order to inform future
conservation efforts. As a result, field mapping of the boundaries was completed by mapping the
observed distribution of slag when walking around these features. However, the boundaries of
slag heaps were often observed as gradational rather than discrete contacts. While discretion was
used during field survey to measure these features as accurately as possible, variation due to human
judgment is unavoidable in GNSS mapping. Furthermore, while the survey boundaries were mapped
and corrected to centimeter accuracy, the WV3 product is limited by its 1.2 m spatial resolution and
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imperfect georeferencing (see Section 2.3.3). As a result, discrepancies between WV3 detected pixels
and mapped slag heap distributions are to a certain extent unavoidable.

Observed limitations in detection accuracy pose significant challenges for future applications of
this method in unexplored areas. While this remote sensing approach greatly enhanced survey at
previously known sites, observed limitations may prove challenging if this method were applied to
new contexts. Furthermore, limited reported accuracy for slag detection demonstrates that while this
method can generally detect slag heaps it is less capable of accurately mapping their entirety and precise
boundaries of slag cover. As it stands (like many remote sensing approaches), these methodologies
cannot currently act as a replacement for the high accuracy of field survey mapping, but rather act
as a supplement to it. However, future incorporation of additional steps to address these limitations
could improve accuracy. Finding methods to address these issues would be a foremost objective when
expanding this method to new contexts.

Errors arising in detection efforts are likely due to limitations of target spectral differentiation.
This issue partially stems from variable slag heap characteristics which were noticed and described in
the field (see Figure 4). The MTMF algorithm appears to be particularly successful at detecting large
homogenous slag heaps, such as the case at Tawi Raki. In contrast, our results demonstrate less success
in detecting diffuse and surficial slag scatters that were observed at both sites.

Figure 8 displays a visual comparison of averaged spectral signatures between example slag
features with these different characteristics. All slag spectra, regardless of feature designation, display
relatively similar characteristics across measured portions of the spectrum. Additionally, all slag spectra
are relatively dark (on average <20% reflectance) in comparison with other landcover in the WV3.
However, variation in specific wavelengths regions could help to describe their spectral separability.
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While the signatures display a similar pattern in the visible portion of the spectrum, differences
are present within VNIR and SWIR wavelengths. Between 1000 and 1200 nm, slag scatters exhibit
a rise in apparent reflectance and slag heaps display a drop in apparent reflectance. Furthermore,
slag scatters display a sharper peak at 1730 nm (corresponding to WV3 Band 12). Finally, and perhaps
most importantly both the slag detection ROI and the slag heap spectra share an absorption feature
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centered at 2260 nm (WV3 Band 15). This absorption appears to be absent or minimally present in
the slag scatter profile. While the slag scatter signature appears to more closely resemble the training
signature in apparent brightness, the MTMF function performed better when evaluating areas of dense
slag heaps. Slag feature homogeneity and relative pixel purity might help to explain this difference
in performance.

Slag heaps are a homogenous coverage of dark material, and thus represent a spectrally pure
endmember. Slag scatters, on the other hand, are low density surficial groupings of slag. Due to
their lower slag density, the underlying sediment surface is often visible in between slag cover when
viewed from above. Therefore, pixels covering these scatters likely represent a complex mixture of
archeometallurgical material and underlying substrate. This hypothesis is further supported when the
MTMF results are considered.

As described, matched filter values provide an estimate of subpixel abundance for a target
material [45]. Therefore, mean MF scores sampled over an ROI can give an approximation for fractional
coverage of the intended target. In this example, the ROI used to generate the Figure 8 slag heap
spectrum has a mean MF score of 0.75, whereas the ROI used to generate the slag scatter spectrum has
a mean MF score of 0.26. These scores indicate that slag scatter pixels have substantially less fractional
coverage of the measured target. Within the detection routine for this study, the training signature used
for MTMF detection was selected from spectrally pure slag heaps. Therefore, the MTMF algorithm
applied to the WV3 data appears to be correctly classifying slag features based upon their predominant
target coverage. Defining a separate training signature for slag scatters could likely improve detection
and differentiation of these characteristic slag features.

Future refinements of this slag detection methodology will need to consider a classification schema
to differentiate a diverse range of slag ground cover. Running the MTMF target detection routine with
a defined slag scatter signature might lead to better identification of the noted gradational slag heap
boundaries. Additionally, a more detailed spectral characterization of slag heaps and slag scatters
could be achieved via in situ field measurements using a handheld spectrometer. Compiling field
derived measurements into a spectral library could also be useful for future detection efforts, and our
team plans to investigate this course of action further. Beyond distinctions between of slag heaps and
slag scatters, however, detection of false positive targets proved to be the main limitation in this study.

False positive detections primarily involve dark surfaces incorrectly classified as slag heaps.
At Raki 1, false positive detections are present within both the raw and filtered WV3 results, and
contribute to the reduced producer accuracy for slag heap detection. These errors of commission occur
in two main circumstances: shadowed north facing slopes, and dark bedrock terrace ground cover.
False positive detection attributed to shadowed northerly aspects can be observed in the southern
portion of the detection area (see Figure 5), where high, freestanding ridges of mapped pillow basalt
flows cast shadows due to their illumination angle. Dark surface false positive detection occurred in
northern portions of the detection area. Here, satellite derived slag boundaries are reported to extend
beyond the in-field mapped boundaries. In field inspection of the area surrounding these slag heaps
yielded observations that the underlying bedrock is significantly darker in color (potential due to
compositional variation or weathered character).

At Tawi Raki, similar patterns in false positive detection can also be observed (see Figure 6). The
two primary cases of commission again occur in areas dominated by shadows and dark ground cover.
North facing slope shadows were detected in both the southern and northern portions of the site along
high standing pillow basalt ridges. In some instances, even illuminated portions of this pillow basalt
bedrock were also incorrectly identified as slag. Towards the southern portion of the site (beyond
the ridgeline shadows), a substantial amount of dark ground cover was also falsely detected. Field
inspection of this area revealed the dark ground cover to be outcrops of black-gray, thinly bedded
chert. These outcrops were strikingly similar to slag heaps in both visible color and spatial extent, and
could easily be mistaken for slag heaps even when observed at a distance in the field. Visual similarity
between this bedrock lithology and slag likely influenced its false positive detection, and reflectance
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properties of this material must be scrutinized for future improvements to detection. A final class of
false positives appeared to cluster around modern domestic development in the central portion of
the site boundary. These areas are relatively small in comparison to the correctly mapped large slag
heaps, and again appear to be associated either with dark ground cover (bedrock surface) or shadows
(from structures and agricultural date palms) within the domestic complex. Notably, an area in the
northwestern portion of the site, located within a mapped sheeted dyke bedrock unit, was also falsely
detected. These pixels (located on a well illuminated southwesterly aspect) were correctly removed
during the intervening filtering process, and likely eliminated due to their spatially diffuse distribution.

Many false positive detections could be explained through consideration of spectra that appear
dark in the WV3 scene. Figure 9 displays a collection of scene-derived spectra from falsely identified
dark surfaces. It should be noted all of these dark targets produce signatures that share common
shape, slope, and brightness with scene derived slag signatures. Generally, each of these targets have
signatures with low measured reflectance across the spectrum and are remarkably flat in shape. Each
signature shares a notable, though subtle, absorption feature around 900 nm (WV3 Band Near-IR1).
This feature could be an indication of iron present within each of the targets [52], which would be
in agreement with the dominant mafic characterization of the local geology [20]. Yet aside from
this absorption, the spectra are relatively featureless. Importantly, all of these measurements are
substantially darker than the typical spectral signatures of the variable background materials. The
overall dark and flat character of these signatures (along with slag) likely enables these targets to be
readily separable from the majority of the brighter landscape.
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Discriminating slag heaps from naturally occurring dark surface remains the primary shortcoming
of our current methodology. Similarities between the spectra are not ultimately surprising, as the slag
found at Raki is a direct byproduct of copper production using local ore. In the future, we plan to detect
slag over larger unexplored areas and these efforts will benefit from more effective means of addressing
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false positive detection due to dark areas and shadows. Following our mapping of the Raki area,
we conducted a brief opportunistic investigation in mountainous terrain north of archaeological sites.
Visual inspection of WV3 data revealed a large and spatially homogenous area characterized by dark
material on a low-lying wadi terrace approximately 2 km north of the Raki sites. Visual evidence of
bulldozer activity could be seen within the imagery, and this area appeared to share many similarities
to the slag heaps observed in the imagery of Raki. Hypothesizing this area could be another location of
ancient copper production, slag detection routines were opportunistically completed over a clipped
area. Detection results appeared to be promising with spatially contiguous polygons of this unknown
dark surface detected. However, upon ground truthing, the area proved to be a modern quarry
involving extraction of a particularly dark lithology. This false positive conflation of dark bedrock
with the slag target signature illustrates the challenges involved in differentiating slag. Resolution or
mitigation of this conflation will be important to implementation of slag detection across wider areas.

Conflation errors arising from similarity among dark surfaces is a well-documented concern
in remote sensing. Accordingly, multiple approaches have been proposed to compensate for these
limitations in spectral differentiation. On the topic of shadows, topographic modeling routines
have demonstrated considerable success in the identification of shadowed regions in rugged terrain.
These cast shadow delineation algorithms can use the known angle of incident radiation at image
acquisition with a digital elevation model (DEM) to delineate shaded areas within a given scene [53,54].
Although DEM accuracy, image georeferencing, and orthorectification are known complications of
this methodology [53], shadowed areas, informed by DEM analysis, can be masked or removed prior
to, or following, detection. Our future refinement of the WV3 slag detection will likely incorporate
this approach. Additionally, as some false positive detections at Tawi Raki were associated with
vegetation shadows along the drainage corridors, masking out these suspect areas prior to detection
could improve detection accuracy. A calculated normalized difference vegetation index (NDVI) image
could be used to identify and subsequently remove these vegetated areas before spectral analysis.

Discrimination of slag features from adequately illuminated dark colored lithologies will likely
prove a more difficult challenge. However, careful scrutiny of variations in target spectra may hold
the key to dark surface differentiation. Similar challenges in discriminating dark surfaces has been
encountered in urban remote sensing applications, where dark colored roofing materials of different
compositions often exhibit similar spectral qualities [55]. Typical approaches to this problem include
comparing values such as mean or standard deviation across the broad spectral shapes, as opposed to
unique narrow absorption features, in order to differentiate dark targets. Similar steps could be added
to the slag detection routine used in this study. Differences in broad spectral shape might have led to
better discrimination and filtering of the sheeted dyke complex (Figure 9d) spectra as opposed to other
common false positive identifications. Exploring similar values across the spectra of the other dark
surfaces of chert (Figure 9b) and pillow basalt (Figure 9c) might yield spectral information that could
be used for dark surface differentiation.

Furthermore, other detection algorithms may have better success at differentiating these dark
materials. The Spectral Angle Mapper (SAM) algorithm could be one promising method for future
detection. This technique determines the spectral similarity between an identified target spectrum
and image pixel by projecting both spectra into n-dimensional space where n is equal to the number
of bands within the image and then calculating the deviation in angle between the target and pixel
spectra [56]. As this method is relatively insensitive to illumination and albedo, it relies primarily
on similarity in spectral profile shape [57,58]. SAM, therefore, might perform better comparing and
discriminating between these dark targets. However, a strict SAM approach would lack the mixture
tune feasibility calculations and subpixel abundance estimations that are inherent within the MTMF
operation. Exploring and evaluating the performance of other target detection approaches is therefore
recommended for future study.

Taking into account the described method limitations and possible approaches to address these
challenges, we propose that the following workflow could be invoked if this method were to be
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applied in a new context: (1) if the local geologic context is unknown, use WV3 to identify the presence
VMS deposits (potentially via principle components analysis (PCA) or the Crosta technique [59]),
(2) identify appropriate target spectral signatures for both slag heaps and slag scatters (either from
field derived spectra, previous spectral libraries, or new scene-derived spectra), (3) apply masks
for topography-based shadow removal and NDVI-based vegetation removal, (4) run slag detection
methods with specific attention to dark object delineation, and (5) validate via field survey to confirm
and map slag coverage.

Despite the described limitations, the overall reported accuracy demonstrates that our detection
routine holds considerable promise as a tool for archaeological research and heritage management. The
ability to describe an archaeological landscape via the differentiation of archeometallurgical material
and surrounding background cover can provide a valuable perspective when documenting these
important sites of cultural heritage. Reported lower estimated user’s and producer’s accuracies,
however, demonstrate that these target detection products are limited in their ability to precisely
delineate all features. Modern mining operations in areas with archaeological remnants of past
extraction demonstrate how rare and valuable copper resources were in the past and are in the present.
Although ancient copper production involved small-scale, near-surface mining, modern practices
involve deeper and more spatially extensive exploitation of VMS structures. As a result, modern
mining operations tend to damage and sometimes destroy archaeological sites.

Threats to archaeological sites are currently ongoing in the Raki archaeological area. Modern
mining operations as well as residential occupations and small-scale agriculture are in close proximity
to slag heaps at Raki 1, Raki 2, and Tawi Raki. Bulldozing of slag heaps to clear ground for geologic
coring has been observed, and appears to be ongoing, in a number of areas. Any alterations to
the distribution of slag heaps destroys ancient landscapes that are of important worldwide cultural
heritage value. Structural modifications to slag heaps severely impair opportunities of volumetric
analysis and efforts to quantify the total amounts of raw material present. The threat of disturbance to
these archeometallurgical sites, therefore, is an immediate and pressing matter for cultural heritage
management in Oman.

As such, documenting any alteration to slag heaps is of great concern for their management.
Remote sensing could offer a promising tool to aid in this documentation. This target detection method
could aid managers through informing field survey efforts and potentially even documenting areas that
are less accessible. Furthermore, if target detection could be conducted on repeat imagery, automated
change detection processes comparing two slag detection rasters might prove a valuable approach to
document any spatial change within these features. While the observed limitations in total coverage
estimates and boundary delineation must be addressed, such products and processes could be of great
benefit for monitoring and management of these important ancient archeometallurgical landscapes.

5. Conclusions

Our research shows that 16-band WorldView-3 satellite imagery can be used with MTMF algorithm
procedures to detect and map slag heaps generated by ancient copper production. Detection results
show relatively high (>90%) overall accuracy which helps to describe the archaeological mining
landscape. These detection products proved valuable assets that helped in the planning and execution
of field survey, and often led to improvements over traditional methods. However, it is noted that
lower estimations of both user’s (61%) and producer’s (45%) accuracies demonstrate this method’s
limitation in accurately describing precise slag cover and distributions. These methods are useful
for monitoring ancient metallurgical sites threatened by modern disturbance and hold considerable
potential for detecting slag over larger areas to discover new archaeological sites.
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