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Abstract Variably serpentinized peridotites from the Zedang ophiolite in southern Tibet were
magnetically and petrologically examined to understand the serpentinization process and evaluate the
origin of magnetic anomalies in ultramafic-hosted tectonic settings. Magnetite occurs in the serpentine and
brucite veins and is identified as the dominant magnetic carrier by thermomagnetic and petrological
analyses. The magnetic susceptibility increases rapidly from <0.001 to ~0.02 SI for the <50% serpentinized
samples followed by nearly constant values of 0.02-0.03 SI above 50% serpentinization. This transition
corresponds with the formation of Fe-poor serpentine mesh (2-3 wt% FeO) and magnetite in the early stages
and the replacement of mesh center olivine by Fe-rich serpentine (4—5 wt% FeO) without magnetite in the
late stages. Brucite veins occur in the 50-70% serpentinized samples and indicate serpentinization
temperatures from ~250 to <100°C. The serpentinization may initiate at an oceanic spreading ridge center
under high temperatures (>250-300°C) to produce magnetite and subsequently continue at lower
temperatures (<200-250°C) in near-seafloor settings and limit the magnetite formation, possibly associated
with ophiolite emplacement. These serpentinized peridotites have higher magnetization intensities (average
2.26 Am™ ") than dolerite dykes and basaltic volcanics (mostly <1 A m™") in the area and should be the major
source of aeromagnetic highs in the south Tibetan ophiolite belt.

1. Introduction

The magnetic signature of mantle serpentinization has crucial importance in interpreting the origin of
high-amplitude magnetization anomalies at ultramafic-hosted hydrothermal settings (e.g., Blakely
etal., 2005; Fujii et al., 2016; Szitkar & Murton, 2018). However, different groups of serpentinized peridotites
from either oceanic lithosphere or ophiolite complexes on land often show large variations in the abundance
of magnetite (e.g., Bonnemains et al., 2016; Oufi et al., 2002). The factors that control the formation of mag-
netite are many and include the degree of serpentinization (Bach et al., 2006; Oufi et al., 2002; Toft
et al., 1990), iron partitioning and valance state in serpentine-brucite minerals (Evans et al., 2009; Klein
et al., 2014), and physiochemical conditions during serpentinization such as fluid/rock ratio, silica activity,
and temperature (Frost & Beard, 2007; Klein et al., 2009, 2014; McCollom et al., 2016).

The Yarlung-Zangbo ophiolite belt in southern Tibet extends over 2000 km from west to east (Figure 1a) and
marks the closure of the Neo-Tethys Ocean between India and Asia during Mesozoic-Cenozoic times (e.g.,
Aitchison et al., 2000; Hébert et al., 2012). Large-scale positive aeromagnetic anomalies have been detected
along this giant belt during geophysical surveys (Jiang et al., 2016; Wang et al., 2020; Yao et al., 2001), but
magnetic studies of serpentinized ultramafic rocks are limited to few of the ophiolite bodies (He et al., 2014;
Lietal.,, 2017). Here we present new data from rock magnetism, mineral chemistry, and petrographic micro-
structures of a suite of peridotite samples (from fresh to nearly complete serpentinization) collected from the
Zedang ophiolite in the eastern part of the Yarlung-Zangbo ophiolite belt. The conditions of serpentinization
and magnetite formation together with the magnetic sources at ophiolite complexes are synthesized and
discussed.
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Figure 1. (a) Major tectonic units of the Tibetan Plateau and the location of the Yarlung-Zangbo ophiolite belt (modified after Dai et al., 2011; DeCelles et al.,
2002). (b) Geological sketch map of the Zedang ophiolite and sampling locations (modified after McDermid et al., 2002; Xiong et al., 2017). (c) Regional
aeromagnetic anomalies at the Zedang area (modified after Jiang et al., 2013). The contour interval is 50 nT. Abbreviations: YZS, Yarlung-Zangbo suture; BNS,
Bangong-Nujiang suture; IS, Jinsha suture; AKMS, Anyimagen-Kunlun-Muztagh suture; NQO, North Qaidam orogen; NQS, North Qilian suture; ATF, Altyn
Tagh fault; GT, Gangdese thrust; RZT, Renbu-Zedang thrust.

2. Geological Setting

The Yarlung-Zangbo ophiolites in southern Tibet represent the lithospheric residues of the Neo-Tethys
Ocean. The Zedang ophiolite covers an area of ~50 km” in the eastern part of the belt (Figure 1b). The ophio-
lite is sandwiched between the Zedang arc complex in the north and Triassic flysch in the south. The peri-
dotite massif is composed of mainly harzburgite and lherzolite with minor dunite-chromitite veins. Dolerite
dykes intruded the peridotite body and yield zircon crystallization ages of ~130 Ma (Xiong et al., 2016), con-
sistent with the widespread mafic magmatism in the Yarlung-Zangbo ophiolite belt during early Cretaceous
times (Wu et al., 2014). The Zedang ophiolite generates strong aeromagnetic anomalies of 150-350 nT
(Figure 1c). The anomalies spread along the ophiolite body and extend to the west due to possibly some
unexposed ultramafic terrains (Jiang et al., 2013, 2016). Serpentinized peridotite with magnetite precipita-
tion has been proposed as the magnetic origin of the anomalies (He et al., 2014), but the magnetic and pet-
rological signatures of serpentinization and magnetite formation are not well understood.

3. Methods

3.1. Magnetic Measurements
The samples used for magnetic measurements are mainly variably serpentinized peridotites but also include

minor dolerite, chromitite, and volcanic rocks. Density (o) and magnetic susceptibility (K) were measured
using fresh cores (1-2 cm in diameter) with a Sartorius balance (BT423S, 0.001 g) with density
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Figure 2. Photomicrographs of variably serpentinized peridotites of the Zedang ophiolite. (a—) Plane-polarized light, (d-f) cross-polarized light, and (g-i)
backscattered electron image. The degree of serpentinization (S) < 10% (a, d, and g), ~50% (b, e, and h), and >90% (c, f, and i). Ol, olivine; Opx,
orthopyroxene; Cpx, clinopyroxene; Bas, bastite; Srp, serpentine; Brc, brucite; Mag, magnetite.

determination kit and an AGICO Kappabridge KLY-3s respectively at the China University of Geosciences
(CUG, Wuhan). Natural remanent magnetization (NRM) was measured using the same core specimens with
an AGICO JR-6A spinner magnetometer at the China Earthquake Administration (CEA, Beijing). Magnetic
hysteresis, temperature dependence of susceptibility, and low-temperature remanence were carried out at
the Institute for Rock Magnetism (IRM), University of Minnesota, USA. Magnetic hysteresis loops, backfield
remanence curves, and first-order reversal curves (FORCs) were measured at room temperature on small
core pieces using a Princeton VSM Model 3900 vibrating sample magnetometer (applied saturation field
was 1.0 T).

Powder samples (<250 pm), crushed in an agate mortar, were used for thermomagnetic analysis. Magnetic
susceptibility-temperature (K-T) experiments were conducted on a Kappabridge MFK1-FA from room tem-
perature to 700°C in flowing argon gas. Low-temperature remanence (LTSIRM) curves were obtained using
a Quantum Design MPMS-5S superconducting susceptometer between 20 and 300 K and follow the FC-ZFC-
LTSIRM-RTSIRM LTD measurement protocol from Bilardello and Jackson (2013).

3.2. Mineralogical Analyses

Mineral analyses were conducted on polished thin sections (~0.1 mm thick) at the State Key Laboratory of
Geological Processes and Mineral Resources (GPMR) and School of Earth Sciences, CUG Wuhan.
Backscattered electron (BSE) images were collected by a Zeiss Sigma 300 field emission scanning
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Figure 3. Chemistry and Raman spectra of serpentine minerals. (a) Atomic Si versus Fe + Mg. Analyses lie along the serpentine-brucite mixing line. (b) Si versus
Xmg- The Stage-1 and Stage-3 serpentines are more ferrous than Stage-2 serpentine (Srp). Brucite-rich mixtures (<50% Srp) show low Xy, values from 0.7

to 0.9. (c) Stage-1 serpentine is largely a mixture of antigorite and lizardite. (d) Stage-2 and Stage-3 serpentines are more like chrysotile. Typical peaks of antigorite
(Atg, 520 cm"l, 1,044 cm_l), lizardite (Liz, 1,096 cm—l), and chrysotile (Chy, 345 cm_l, 620 cm"l, 1,105 cm_l) refer to Rinaudo et al. (2003) and Groppo

et al. (2006).

electronic microscope equipped with Oxford Instruments energy dispersive spectrometers. Raman spectra of
serpentine minerals were obtained using a Thermo Scientific DXR dispersive microspectrometer with a
532 nm laser source. The chemical compositions of minerals were analyzed using a JEOL JXA-8230
electron probe microanalyzer (EPMA) with four wavelength dispersive spectrometers. The operating
conditions are 15 kV accelerating voltage, 20 nA probe current, and a beam diameter of 1-3 um. A total of
11 major elements were measured for each mineral and standard minerals from SPI (USA) were utilized
to determine the compositions (Wang et al., 2019). Dwell times were tens on element peaks and half that
on background locations adjacent to peaks. Raw X-ray intensities were corrected using a ZAF (atomic
number, absorption, and fluorescence) correction procedure (Armstrong, 1991).

4. Results
4.1. Petrography and Serpentine Mineralogy
The peridotite samples studied here are mainly harzburgites and Iherzolites with densities (o) from 3.316 to

2.593 g cm™> (Table 1), equivalent to 0-94% of the degree of serpentinization (S) estimated using a
magnetite-weight corrected empirical equation: S (%) = (3.3 — [(p — 5.2 x mt%)/(1 — mt%)])/0.785 x 100

LIET AL. 50f15
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Figure 4. Plot of induced magnetization (J;) versus natural remanent
magnetization (NRM). The >50% serpentinized samples show higher induced
magnetization than the <50% serpentinized samples. The Koenigsberger
ratio Q,, equals to NRM/KH, where H is 37 Am™" for the local geomagnetic
field in the Zedang area.

(Miller & Christensen, 1997; Oufi et al., 2002). The magnetite weight
percent (mt%) was estimated from the bulk saturation magnetization
(M,) and the known values for pure magnetite (92 Am? kg_l) as
mt% = M™"P/92 x 100% by assuming that magnetite
(~5.2 g cm™) is the only mineral contributing to saturation
magnetization.

The occurrence of fresh minerals (olivine + orthopyroxene + clino-
pyroxene + spinel) has been described in detail by Xiong et al. (2017).
The characteristics of serpentinization are similar for the two types of
peridotite. Olivine has been progressively replaced by serpentine
along cleavages and grain boundaries, forming typical mesh textures
(Figures 2a-2f). Pyroxene (mostly orthopyroxene) was partly altered
to bastite pseudomorphs with uniform extinction. Brucite veins are
recognized by a characteristic reddish to brown color in samples that
have experienced 50-70% serpentinization (Figure 2b). Magnetite
was observed in all the samples with two typical modes of occurrence
(Figures 2g-2i). Magnetites in the serpentine veins are fine-grained
and spread parallel to the veins. By contrast, magnetite grains in
the brucite veins arrange in grid-like shape and are perpendicular
to the vein boundaries.

The serpentine veins are divided into three stages. Stage-1 serpentine
(Srp1) directly contacts with olivine and does not contain any magne-

tite (Figure 2h). Srpl is separated from central brucite-magnetite veins by a narrow band of
serpentine-brucite intergrowths. Stage-2 serpentine (Srp2) contains magnetite grains or veins and shows
no signature of brucite (Figure 2i). Stage-3 serpentine (Srp3) replaced the mesh center olivine and is free
of magnetite (Figure 2i). Mineral chemistry results show that the serpentine minerals mainly follow the
serpentine-brucite mixing line (Figure 3a). The Stage-1 and Stage-3 serpentines contain somewhat more
FeO (3.92-5.12 wt%, X, ~ 0.94) than Stage-2 serpentine (FeO = 1.84-2.88 wt%, Xy ~ 0.97) (Table 2 and
Figure 3b), where Xy, = Mg/(Mg + Fe). The brucite (containing <10% Srp) and brucite-rich mixtures
(<50% Srp) show lower Xy, values from 0.74 to 0.87. Raman spectra analyses suggest that the Stage-1 ser-
pentine is likely a mixture of antigorite (typical peak at 1,045 cm™") and lizardite (1,093 cm™") while the
Stage-2 and Stage-3 serpentines are largely chrysotile (1,102 cm™", 620 cm™") (Figures 3c and 3d).

4.2. Magnetic Susceptibility and NRM Intensity

Magnetic susceptibility (K) and NRM intensity values are summarized in Table 1. The susceptibility increases
from <0.001 to ~0.02 SI for the S < 50% samples and ranges from 0.02 to 0.03 SI for the S > 50% samples. The
NRM intensity varies broadly from 0.05 to 12.4 Am ™" for all samples and lacks trend with increasing serpen-

tinization. Some slightly serpentinized samples (S < 10%) have remarkably high NRM of up to 2.31 Am

—1

The maximum susceptibility and NRM are from one ~50% serpentinized sample (10ZD-6-19), which contains
many brucite-magnetite veins (Figure 2). The Kdenigsberger ratio (Q, = NRM/KH, where H is 37 Am™ for
the local geomagnetic field) varies between 0.3 and 64.6. More than two thirds of the samples have Q, values
>1, suggesting that remanent magnetization prevails over induced magnetization in these rocks. The remain-
ing samples have Q,, values <1 and thus are dominated by induced magnetization (Figure 4).

4.3. Identification of Main Ferrimagnetic Phases

Thermomagnetic analyses and electron probe microanalyses have been utilized to determine the ferrimag-
netic phases. Pure magnetite (Curie temperature, T, ~ 585°C) is identified by the K-T curves for all the
selected samples with variable degrees of serpentinization (Figures 5a-5d). Magnetite (Verwey transition,
T, ~ 120 K) is also the major remanence carrier as shown by the FC and ZFC warming curves, and
low-temperature cycling of RTSIRM (Figures 5e-51). In addition, a weak T of 610-620°C on the K-T curves
and the hump-shaped RTSIRM cycling below room temperature indicate the presence of minor amounts of
oxidized magnetite (or maghemite) in the samples (Ozdemir & Dunlop, 2010). Moreover, moderately ser-
pentinized peridotites (S = 25-50%) show an additional ferrimagnetic phase with Curie temperatures of
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Figure 5. Thermomagnetic results for selected peridotite samples. (a-d) High-temperature magnetic susceptibility curves (0-700°C). The arrows indicate the
heating (red) and cooling (black) directions. The Curie temperature T (h) and T(c) were estimated from the peak of the first derivative of smoothed heating
and cooling curves. (e-1) Low-temperature magnetic measurements (0-300 K): (e-h) field cooled (FC, 2.5 T) and zero field cooled (ZFC) remanence warming

curves; (i-1

) cooling-warming curves of 2.5 T room temperature saturation isothermal remanent magnetization (RTSIRM). The transition at T = 110-130 K

corresponds to the Verwey transition temperature of magnetite.

400-500°C (Figures 5b and 5c). This phase is possibly Cr-magnetite, which occurs as alteration rims around
relic spinels (Figure S1 in supporting information). Similar occurrences have been found in the Dongbo
ophiolite in the eastern part of the Yarlung-Zangbo suture (Li et al., 2017) as well as other ophiolitic
serpentinites (e.g., Hodel et al., 2017).

Chemical composition analyses of the iron oxides (Table 2) are consistent with the thermomagnetic results.
Magnetite contains 0.97-1.0 mole fractions of Fe;0, endmember (Xg,304) With minor amounts of MgO and
Si0; (<1.5 wt%). The Cr-magnetite rims show varying compositions of FeO (76.4-80.3 wt%) and Cr,0;
(10.5-14.0 wt%). Particles that contain 0.74-0.79 Xge304 correspond to K-T curves exhibiting the lower
T, = 400-500°C phase (Figures 5b and 5c).
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Figure 6. Magnetic hysteresis loops (a—d) and FORC diagrams (e-h) for selected peridotite samples. Hysteresis parameters (Mj, saturation magnetization; My,
saturation remanence; B, coercivity) are calculated after paramagnetic slope correction over the interval of 0.7-1.0 T using the nonlinear approach-to-
saturation fitting method (Jackson & Solheid, 2010). Coercivity of remanence (B,.,) is determined from DC backfield remanence curve. Paramagnetic susceptibility
(Kpara) is from the high field (>0.7 mT) slope correction. FORCs (104 curves per sample) are processed using FORCinel 3.0 (Harrison & Feinberg, 2008) with drift
correction, first/last point replacement, lower branched subtraction (10 FORCs), and a smoothing factor of 5.

4.4. Magnetic Hysteresis and FORCs

All the peridotite samples display ferrimagnetic hysteresis loops regardless of the degree of serpentinization
(Figures 6a—6d). Magnetic hysteresis parameters after paramagnetic slope corrections are summarized in
Table 1. The paramagnetic susceptibility contribution (Kpq,,, mainly from silicates), from high field slope
calculation (>0.7 T), decreases from 56.5% to 0.4% with progressing serpentinization from S < 5% to >
90%, suggesting an increase of ferrimagnetic mineral abundance (essentially magnetite). As magnetite dom-
inates the ferrimagnetic phases (from K-T results), M, constitutes a proxy for the concentration of magnetite
(e.g., Bina & Henry, 1990; McCollom et al., 2016; Oufi et al., 2002). The Zedang samples show M, values ran-
ging from 14 to 1931 x 10~ Am? kg™’, indicating wt% magnetite from 0.02% to 2.1% (Table 1).

The M,y/M; and B.,/B. values vary from 0.09 to 0.2 and from 1.75 to 2.5, respectively (Table 1). While there is
ambiguity in interpreting M,/ M-B,./B. data (Heslop & Roberts, 2012; Roberts et al., 2019), the Zedang sam-
ples plot in the pseudo-single-domain (PSD) field (Figure S2 in the supporting information) and follow the
theoretical trends for mixtures of single-domain (SD, 0.03-0.1 pm) and multidomain (MD, >20 pm) magne-
tite (Day et al, 1977; Dunlop, 2002; Tauxe et al., 2002). This is confirmed by the FORC diagrams
(Figures 6e-6h) that show samples are dominated by PSD/MD particles. The coercivity peaks at 5-20 mT
and FORC contours extending along the horizontal axis are signatures of higher coercivity (possibly SD),
finer-grained magnetite particles, whereas the divergent outer contour lines with vertical distributions are
more typical of PSD to MD particles (Pike et al., 2001; Roberts et al., 2014). Additionally, the S < 50% samples
show FORC diagrams consistent with finer-sized SD/PSD particles (Figures 6e-6f) while the FORC
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Lines 1 and 2 are fitted trends for abyssal (Oufi et al., 2002) and ophiolite samples
(Toft et al., 1990), respectively. The data/fields of the Dongbo ophiolite (Li

et al., 2017), the Oman/Pindos ophiolites (Bonnemains et al., 2016), the MARK
ODP 153 samples (Klein et al., 2014; Oufi et al., 2002), the Mariana forearc
samples (Salisbury et al., 2002; Stokking et al., 1992), and mantle xenoliths (Ferré
et al.,, 2013; Li et al., 2015) are shown for comparison.
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AN AN T i e I PSD/MD particles (Figures 6g—6h). The FORC and hysteresis results
A& P 4 Zetung are also consistent with the low-temperature remanence curves
L% ¥ . - - (Figures 5e-5h) where samples with S > 50% have ZFC remanence
\\kMARK ) T ok greater than the FC remanence below the Verwey transition

-'\_ 1 +

Forearc

Ry,

(T < 120 K) and is an indicator for MD particles (Carter-Stiglitz
et al., 2006). The opposite behavior is observed for S < 50% character-
istic for finer sized SD particles.

5. Discussion

5.1. Density-Magnetic Susceptibility Relationship

As magnetite is the dominant magnetic carrier in serpentinized peri-
dotites, higher magnetic susceptibilities generally indicate a higher
content of magnetite. Therefore, the density-magnetic susceptibility
(D-K) relationship has been used to evaluate the formation of magne-

24

Density (g cm™)

tite during the serpentinization (Figure 7). Samples of the western
Cordillera ophiolites (Josephine, Burro & Red Mountains) form a lin-
ear D-K trend that starts at fresh mantle, but the susceptibility values
at low degrees of serpentinization were lower than predictions for
typical reactions that produce magnetite (Toft et al., 1990). In addi-
tion, a rapid increase of magnetic susceptibility at > ~60-70% serpen-
tinization was observed for abyssal peridotites (e.g., ODP 153 in the
Mid-Atlantic Ridge at Kane, MARK area) (Oufi et al., 2002) and the
Mirdita ophiolite (Albania) (Maffione et al., 2014), suggesting that
magnetite is mainly produced in the late stages of serpentinization.
However, for the Oman (mainly the Fizh block) and Pindos
(Greece) ophiolites (Bonnemains et al, 2016), as well as the
Mariana forearc (ODP 125 and ODP 195) (Klein et al., 2014), serpen-
tinized peridotites show very low magnetic susceptibility and magnetite content in almost the entire process
of serpentinization (Bonnemains et al., 2016; Klein et al., 2014).

An earlier study of the Dongbo ophiolite in the western Yarlung-Zangbo suture zone (Li etal., 2017) showed
that the S < 50% peridotites mainly have comparable magnetic susceptibilities to the Oman/Pindos and fore-
arc samples (Figure 7). For the Zedang peridotites, the S < 50% samples show susceptibilities from <0.001 to
~0.02 SI, which increase following the predicted trend for serpentinization that is coupled with magnetite
formation (Toft et al., 1990). The values are slightly higher than those of the Dongbo, Oman/Pindos ophio-
lites, and forearc peridotites, indicating a relatively higher content of magnetite in the Zedang samples.
However, for the S > 50% samples, the magnetic susceptibility becomes nearly constant at 0.02-0.03 SI
instead of increasing to higher values as found for many abyssal peridotites (Bach et al., 2006; Oufi
et al.,, 2002). The Zedang peridotites present a curvilinear, upward pathway of magnetic susceptibility with
progressive serpentinization (Figure 7), which differs from the other groups as mentioned above and sug-
gests a limit of magnetite formation after ~50% serpentinization.

5.2. The Conditions of Serpentinization and Magnetite Formation

The serpentinization process in natural systems is complex and characterized by multiple reaction paths and
stages depending on the conditions such as fluid/rock ratio, silica activity, and temperature. Bach et al. (2006)
proposed a two-step model of early hydration of olivine to form serpentine and Fe-rich brucite in a
rock-dominated closed system followed by Fe-rich brucite reacting with aqueous silica and formation of ser-
pentine and magnetite in a fluid-dominated open system. The Zedang peridotites contain fine-grained mag-
netite and Fe-poor serpentine mesh (2-3 wt% FeO) at low degrees of serpentinization (S < 50%) (Figure 2
and Table 2), suggesting that the magnetite formation stage began shortly after the magnetite-free hydration
occurred (Beard et al., 2009). This is consistent with the increasing trend of magnetic susceptibility, which
follows the trend for coupled serpentinization and magnetite formation (Figure 7). However, at higher
degrees of serpentinization (S > 50%), the olivine cores were replaced by Fe-rich serpentine (4-5 wt%
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et al., 2013). The data of Oman/Pindos ophiolites are from Bonnemains
et al. (2016) and Mayhew et al. (2018).

FeO) without magnetite formation (Figure 2), and this causes the
nearly horizontal portion of magnetic susceptibility versus density
trend in the Zedang ophiolite on the D-K plot (Figure 7).

In previous studies, serpentinized peridotites that contain abundant
magnetite (e.g., the Chenaillet ophiolite and MARK samples) were sup-
posed to be formed at higher temperatures (>200-300°C), whereas
magnetite-poor samples (e.g, the Oman/Pindos ophiolites) were
formed at lower temperatures (<200-220°C) (Bonnemains et al., 2016;
Klein et al,, 2014; Mayhew et al., 2018). The Oman/Pindos samples also
show more iron in serpentine than the MARK samples (Figure 8). The
iron content in serpentines in the Zedang peridotites is in between the
Oman ophiolite and MARK samples, which may represent an “in
between” scenario of intermediate-temperature serpentinization.
However, the brucite-serpentine and brucite-magnetite veins occur in
the S ~ 50-70% samples (Figure 2). According to the model by Klein
et al. (2013), the Fe content of brucite (Xy,) increases with the decrease
of serpentinization temperature. The brucite (>90% brc) in the Zedang
peridotite samples shows Xy, values from 0.74 to 0.87 and indicates ser-
pentinization temperatures from ~250 to <100°C (Figure 8). The pre-
sence of brucite veins above ~50% of serpentinization marks low silica
activity (Frost & Beard, 2007) but also indicates that the earlier serpen-
tinization (S < 50%) may take place at higher temperatures of >250-
300°C as brucite is almost never produced above 300°C (Marcaillou
etal., 2011; McCollom & Bach, 2009). In addition, the absence of brucite
in the S > 90% samples (Figure 2) is likely due to the fact that brucite
reacts with SiOs(,q) from the hydration of pyroxene or modified sea-
water and forms iron-rich serpentine (Alt & Shanks, 2003; Bach
et al., 2006; Huang et al., 2017).

Li et al. (2017) reported that the Dongbo peridotite samples (S < 50%) in the western part of the
Yarlung-Zangbo ophiolite belt mainly have weak magnetization compatible with the Oman/Pindos samples
(Bonnemains et al., 2016). By contrast, the Zedang ophiolite peridotites show magnetic and petrological
characteristics compatible with high-temperature serpentinization (>200-300°C) in the S < 50% stage and
low-temperature serpentinization (< ~200°C) in the S > 50% stage. These discrepant results could be
explained by complex serpentinization histories and different thermal regimes depending on the original
lithosphere architecture, as observed in other sample groups (e.g., Andreani et al., 2007; Bach et al., 2006;
Oufi et al., 2002). Geochemical studies suggest that the Zedang peridotites were formed in multiple periods
of modification and accretion in both spreading ridge and subduction forearc settings between the
Neo-Tethyan slab and the Lhasa Block from ~200 to 55 Ma (e.g., Xiong et al., 2016, 2017). In this case, the
Zedang samples may record serpentinization processes that started at a hot oceanic spreading ridge center,
when the mantle was tectonically exposed to seawater, and subsequently progressed in near-seafloor settings
with significant cooling of the lithosphere, possibly associated with ophiolite emplacement. However, the
serpentinization history of the Yarlung-Zangbo ophiolites along the entire suture zone need further studies
to understand these processes completely.

5.3. Magnetic Source in the Yarlung-Zangbo Ophiolites

To evaluate the source of aeromagnetic anomalies in the Yarlung-Zangbo ophiolites, the induced magneti-
zation and NRM of several typical rocks that are exposed in the Zedang ophiolite are directly added together
to get a total magnetization intensity (M,,;)- The value is a theoretical maximum due to the uncertainty of
NRM directions, but this simplification facilitates a straightforward comparison of magnetization intensities
between different sample groups (Table 3). Dolerites show the lowest total magnetization (0.01-0.1 Am™")
with an average of ~0.03 Am™', whereas basaltic volcanic rocks have a wider range (0.02-2 Am™') and
higher average value of ~0.25 Am™". Serpentinized peridotites show comparable M, values to chromitites
(0.1-10 Am™), and both have larger average values of 2-3 Am™? (Figure 9a). In addition, about half of the
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Figure 9. (a) Magnetization intensity of the Zedang ophiolite samples. The total magnetization equals to the sum of induced magnetization and natural remanent
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same in Figure 7, and the data references are listed in Table 3.
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S < 50% and all the S > 50% peridotite samples of the Zedang ophiolite have intensities of 1-13.5 Am™" and
partly overlap with the strongly magnetic MARK samples (4-45 Am™). The remaining S < 50% samples are
weakly magnetic with lower M, values (<1 Am™), similar to the Dongbo ophiolite (Li et al., 2017) and
forearc samples (Figure 9b). Overall, most of the serpentinized peridotites are highly magnetized and
should be a significant source of the aeromagnetic anomalies in the Zedang ophiolite and throughout the
entire Yarlung-Zangbo suture zone (Jiang et al., 2016; Wang et al., 2020).

6. Conclusions

The magnetic and petrological properties of variably serpentinized peridotites from the Zedang ophiolite in
southern Tibet were investigated and suggest that magnetite formation was prevented above ~50% serpenti-
nization. The samples show a rapid increase of magnetic susceptibility before 50% serpentinization followed
by nearly constant values above 50% serpentinization, which is consistent with the formation of Fe-poor ser-
pentine mesh with magnetite in the early stages and Fe-rich serpentine cores without magnetite in the late
stages. Brucite veins in the 50-70% serpentinized samples indicate serpentinization temperatures from ~250
to <100°C. The Zedang ophiolite may record serpentinization processes that started above 250°C at a hot
oceanic spreading ridge axis and subsequently continued below 200°C in off-axis settings, possibly associated
with ophiolite emplacement. The serpentinized peridotites show higher magnetization intensities than
dolerite dykes and most basaltic volcanic rocks in the area and should mainly contribute to the aeromagnetic
anomalies along the Yarlung-Zangbo suture in southern Tibet.

Data Availability Statement

The magnetic data and mineral composition data presented in this paper can be accessed online (https://
zenodo.org/record/3930567).
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