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Abstract. Reactions that populate the 15N system have implications for

nucleosynthesis through the 11B(α, n)14N and 14N(n, p)14C reactions and the
14N(n, p)14C reaction is also a key component in modeling atmospheric 14C production.

A convenient characteristic of this system is that the α-particle, proton, and neutron

separation energies are all within ≈1 MeV of one another. Further, it has been observed

that 11B+α, 14N+n and 14C+p induced reactions all populate many of the same

resonances near their reaction thresholds. This strongly facilitates the simultaneous

analysis of data for all three of these entrance partitions using a global R-matrix

analysis, which in turn provides a method of comparing the consistency among the

different experimental measurements. In this work, a new measurement has been

performed for the 11B(α, n)14N reaction, which gives a more accurate description of

the cross section, in particular over an important interference region. This new data is

combined with results from previous measurements, which populate a similar excitation

energy range in the 15N system, to produce a global fit that includes 11B(α, n)14N

reaction data for the first time.

Keywords : R-matrix, nuclear astrophysics, neutron transport

‡ Present address: Environment, Health & Safety Office, Massachusetts Institute of Technology

Cambridge, Massachusetts, 02139, USA
§ Present address: Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545,

USA
‖ Present address: National Superconducting Cyclotron Laboratory, Michigan State University, East

Lansing, MI 48824, USA
¶ Present address: Rutgers University, Piscataway, New Jersey 08854, USA



Nuclear Physics in Astrophysics IX (NPA-IX)

Journal of Physics: Conference Series 1668 (2020) 012011

IOP Publishing

doi:10.1088/1742-6596/1668/1/012011

2

Global R-matrix analysis of the 11B(α, n)14N reaction

1. Introduction: file preparation and submission

Reactions that populate the 15N system impact a variety of applications. This work

presents new measurements of the 11B(α, n)14N reaction at low energy. Yet the

scarcity of data for this reaction and the additional possibility of decay through proton

emission, naturally leads to an extension of the analysis to other reactions that populate

this system. In particular, 14N+n data has proved to be extremely useful in the

interpretation of the data.

For nucleosynthesis of light elements, the 11B(α, n)14N reaction may play a role in

the synthesis of the first massive stars. In this unique stellar environment, only the light

elements from the Big Bang are present, hence there is no carbon, nitrogen or oxygen to

more efficiently burn hydrogen. Therefore, other reactions on light nuclei, that normally

are less efficient than the CNO reactions, may rise to more dominant role in the burning

cycles [1].

The 14N(n, p)14C reaction is a key nuclear physics ingredient in understanding

neutron production for the main s-process (see e.g., Ref. [2]). The high cross section

of the 14N(n, p)14C reaction combined with the large amount of 14N present in the

main s-process environment, means that it can act as an efficient neutron poison. The

lowest energy resonance in the 14N(n, p)14C reaction is at Ec.m. = 458 keV (Jπ = 1/2−,
Γ ≈ 8 keV). For this reason, the cross section over the low energy region is made up of

contributions from the high energy tails of subthreshold states and the low energy tails

of broad higher energy resonances. At low energies (61 meV < En < 34.6 keV), the cross

section has been carefully mapped by Ref. [3] who found that it was dominated by the tail

contributions of subthreshold states that produce a low energy cross section that rapidly

increases towards lower energy. At the higher energy end of the data of Ref. [3], several

additional measurements have been made [2, 4, 5, 6] that sample only a few energies but

cover an energy range from ≈20 < En < ≈178 keV. The measurements over this range
are in reasonably good agreement, except for those of Ref. [4], which are about a factor

of two lower in cross section. There is then a gap in the experimental data between the

measurements of Ref. [2] and Ref. [7] (178 keV < En < 464 keV). Ref. [8] reportedly

made measurements over this region, but the data are not available in tabulated form

and can not be digitized from the figures reliably. As there are many broad resonances

at higher energies that can contribute significantly over this region, it makes the cross

section especially difficult to determine. This was recently demonstrated by Ref. [2] in

their comparison between their data and the JEFF-3.2 evaluation. It should be noted

that the JEFF-3.2 evaluation of 14N+n [9] is the same as that of ENDF/B-VI.3 [10] and

that the evaluation at low energy is based on the R-matrix analysis of Ref. [11] that has

not been re-evaluated as of ENDF/B-VIII.0 [12].

As indicated above by its presence in the various data evaluations, the 14N+n

reactions are of interest for simulating neutron transport through a variety of materials.

For example, the 14N(n, p)14C reaction is the main source of 14C in the earth’s

atmosphere. Neutrons for the reaction are either naturally produced from cosmic
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rays interacting with the atmosphere or were produced through above-ground nuclear

weapons testing that took place between 1945 to 1963. Using the 14N(n, p)14C cross

section and sampling of the increased levels of 14C in the atmosphere, information about

a nuclear explosion can be inferred (see, e.g., Ref. [13]).

There have been several studies of reactions that populate the 15N system over

the excitation energy range that corresponds to the present 11B(α,n)14N cross section

measurements (10.7 MeV < Ex < 12.9 MeV). This energy range has been of interest for

study because of the similar proton (Sp = 10.207 MeV), neutron (Sn = 10.833 MeV),

and α-particle (Sα = 10.991 MeV) separation energies in 15N [14] (see Fig. 1). For

the 11B(α, n)14N reaction, there have been only a few studies [15, 16, 17], where

that of Ref. [17] was the most comprehensive. Studies of the 11B(α, p)14C reaction

have been made by Refs. [17, 18, 19] and the 11B(α, α)11B reaction by Refs. [20, 21].

Studies of 14C+p reactions include measurements of 14C(p, p)14C [22, 23], 14C(p, n)14N

[15, 17, 24, 25, 26, 27], and 14C(p, γ)15N [23, 24, 28, 29]. Finally, studies of neutron

induced reactions on 14N include 14N(n, n)14N [30], 14N(n, p)14C [7, 8, 27, 31] (fast

neutrons), 14N(n, α)11B [7, 8, 31], and 14N(n, total) [32, 33, 34]. There have also been

several studies of the thermal 14N(n, p)14C cross section [2, 3, 4, 5, 6]. In addition, a

highly accurate and comprehensive measurement of the 14N(n, total) reaction has also

been made at Oak Ridge National Laboratory, but remains unpublished. Some of the

data from this measurement are considered in the analyses of Ref. [34] and Ref. [11].

We have performed new measurements of the 11B(α, n)14N reaction at low energies

at the Nuclear Science Laboratory (NSL) of the University of Notre Dame. In Sec. 2,

the setup and measurement are described. The calculation of the cross sections from the

observed yields is described in Sec. 3. A global R-matrix analysis that includes the new

data combined with complementary data from other reaction partitions is discussed in

Sec. 4. Closing remarks are given in Sec. 6.

2. Experimental methods

Measurements were made of the 11B(α, n)14N (Q = 0.15789(1) MeV) reaction at the

University of Notre Dame’s Nuclear Science Laboratory using the Sta. ANA 5-MV

accelerator. The reaction was studied at α-particle beam energies Eα ranging from

520 to 2000 keV with beam intensities on target between 0.03-μA and 18-μA. A 11B

enriched (99.9%) target with a thickness of 8.4(4) μg/cm2 was produced by electron

sputtering enriched 11B powder onto a clean tantalum backing 0.5 mm in thickness. The

detection system consisted of a 3He proportional counter, which contained twenty 3He

tubes encased in a polyethylene moderator. The detector has been described previously

in Refs. [35, 36].

The energy dependence of the efficiency was modeled using MCNP and the absolute

efficiency was obtained using the activation method and the 51V(p, n)51Cr reaction at

0.7 MeV [37, 38]. The resulting efficiency was found to be consistent with that found

by Ref. [35] to within 1% using a nearly identical setup. The small Q-value of the
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Figure 1. (Color Online) Level diagram of the 15N compound system.

11B(α, n)14N reaction and the range of α-beam energies that were investigated results

in neutrons that cover the range from 0.36 < En < 2.0 MeV, taking into account the

angular kinematic spread as well. The neutron detection efficiency of the 3He counter

varies from about 30% to 45% over this neutron energy range. The overall uncertainty

in the neutron efficiency is estimated to be ≈5%. In addition, only the ground state in
the 14N final nucleus is energetically accessible.
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3. Analysis

The sum of all events from the twenty 3He tubes were normalized by the beam charge

integration and efficiency Y assuming an infinitely thin target approximation

σ ≈ Y

NpNtε
(1)

where Np are the number of beam particles made incident on target (found to be

reproducible to 2%), Nt are the number of target atoms obtained by the target

thicknesses and ε is the 3He counter efficiency. In the present experiment the range

of neutron energies covered En = 0.36 MeV to 2.0 MeV. This is a function of both

the incident α-particle energy as well as the kinematic spread from the nearly 4π solid

angle subtended by the 3He counter. In this energy region, the efficiency dependency

on neutron energy for the 3He counter can be considered linear. Since the detection

efficiency decreases as a function of neutron energy, the neutrons emitted at 0◦ have
a smaller efficiency than those at 180◦. The central value of the cross section was

calculated using the average efficiency. This inherent uncertainty in the neutron energy

and thus detection efficiency is reflected in the uncertainties of the data.

The experimental data are shown in Fig. 2 compared to previous measurements by

Ref. [17]. Over most of the energy range, the present measurements and those of Ref. [17]

are in good agreement. However, there is an off-resonance region near Ec.m. ≈ 0.5 MeV

where the present data are significantly smaller than those of Ref. [17]. This region is

also just below the very strong narrow 7/2− state at Ec.m. = 444.4(4) keV (not shown in

the plot). This discrepancy could be the result of diffusion of some of the target material

into the backing used by Ref. [17]. This type of over estimation of cross sections just

above strong narrow resonances is a common issue (see, for example, Ref. [39]).

4. R-matrix analysis

The low energy cross section of the 11B(α, n)14N reaction has been analyzed using the

phenomenological R-matrix approach [40, 41] using the code AZURE2 [42, 43]. The

alternate parameterization of Ref. [44] has been used in order to work directly with

physical parameters and to eliminate the need for boundary conditions.

At the energies under consideration, both reactions have other open decay modes

in addition to α-particle and neutron emission. As such, to achieve a physical solution

using the phenomenological model, it is advantageous (if not necessary) to include other

reaction data that can constrain the decay branchings. For the 11B(α, n)14N reaction,

and other reactions that populate the 15N system, a multi-channel fit has been achieved.

The 11B(α,n)14N reaction populates states in the 15N system at an excitation energy

range (11.2 MeV < Ex < 12.6 MeV) that is also above the proton separation energy

(Sp = 10.20742(1) MeV). Therefore, there are three allowed particle decay modes: α-

particle (Sα = 10.99118(1) MeV), neutron (Sn = 10.833.30(1) MeV), and proton [14, 45].

At these energies, only decays to the ground states in the final nuclei are possible.
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Figure 2. (Color Online) Comparison of the 11B(α, n)14N data measured in the

present work to that of Ref. [17]. The measurements are in good agreement with the

exception of the region just above the lowest energy resonance near Ec.m. = 0.5 MeV.

The 15N system has been subjected to R-matrix analyses previously [11, 15, 34, 46].

However, the present analysis is the first to include low energy 11B(α, n)14N data. The

present analysis is also part of an ongoing effort to re-evaluate the 14N + n reactions [47].

For this analysis, data from the reactions 14C(p, p)14C [22, 23], 14C(p, n)14N [26],
14C(p, γ)15N [28], 14N(n, total) [32, 33], 14N(n, p)14C [2, 3, 4, 5, 6, 7, 8, 31], and
14N(n, α)10B [7, 8, 31, 48] are included. Fig. 3 shows a sampling of the data that

has been fit.

While some tension does exist between the different data sets, a fit was obtained

that indicates general consistency. Most of the tension arises due to off-sets in the energy

scaling of the data sets. These off-sets were generally obvious since the measurements

are made with relatively good energy resolution and the energy shifts were significant

compared with the widths of many of the resonances.

At low energies a good fit was obtained to data from the 14N(n, p)14C reaction.

There is a fairly large gap in the data (178 keV < En < 464 keV) as shown in Fig. 4.

New measurements should be performed over this region in order to better constrain

the R-matrix fit.
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Figure 3. (Color Online) Example excitation functions from the global R-matrix fit of

the 15N system for the present 11B(α, n)14N measurement (blue circles) and previous

measurements of the 11B(α, n)14N (Ref. [17], gray squares) 14C(p, n)14N (Ref. [26],

green diamonds)), 14N(n, p)14C (Ref. [7], gold upward triangles), 14C(p, p)14C

(Ref. [23], turquoise plus), and 14N(n, total) (ORNL (unpublished), gray circles)

reactions.
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Figure 4. (Color Online) View of the low energy region of the 14N(n, p)14C cross

section. The red solid line represents the R-matrix fit. The data of Ref. [2, 3, 4, 5, 6, 7]

are shown for comparison.

5. Discussion

There have been at least three previous comprehensive R-matrix analyses [11, 15, 34]

of the 15N system over the same energy range as the present data. The earliest analysis

by Ref. [15] focuses on polarization measurements of the 14C(p, n)14N and 11B(α, n)14N

reactions. Unfortunately the R-matrix code used in the present work is not capable of

calculating polarization observables so this data could not be utilized. The works of

Ref. [11] and Ref. [34] focus on the 14N+n reaction. All of these analyses were made

before the publication of Ref. [17] and so only include a limited amount of 11B+α data.

As a general remark, it was found that it was possible to reproduce the cross section

data for the 14N(n, p)14C and its inverse reaction with previously reported levels in 15N

with in the energy range of the data. A good fit to the low energy data was also achieved

as shown in Fig. 4. On the other hand, it was impossible to reproduce the observed

cross sections for the 11B(α, n)14N and 14N(n, total) reactions without the presence

of background states with large partial widths. For the 11B(α, n)14N reaction, this

seems physically reasonable since higher energy data, see for example Refs. [7, 16, 31],

observe very strong broad resonances at energies just above the region of the present

measurements. For the 14N(n, total) cross section, the saturation is less clear.

The 14N(n, total) cross section was found to be particularly difficult to reproduce

with only the resonances observed in the data region. In particular, the low energy
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region where the cross section is dominated by neutron scattering. The difficulty seems

to stem from the contribution of a strong subthreshold state(s) as discussed by Ref. [11].

As in that work, we do not obtain an “entirely satisfactory” reproduction of the low

energy cross section. In addition, the fit to the 14N(n, total) data is extremely sensitive

to the neutron channel radius and requires a value that is smaller than usual. Here

a radius of 4 fm was used, the same as that used by Ref. [34], but larger than the

value of 2.6 fm used by Ref. [11]. In principle, any value for the channel radius can

be used with appropriately compensating background levels. Usually a value close to

ach ≈ a0(A
1/3
1 + A

1/3
2 ) works well (where ach is the channel radius, a0 ≈ 1.4 fm, and A1

and A2 are the unit masses of the particle partition), but in this case a smaller value is

highly favored.

6. Summary

New measurements have been presented for low energy cross sections of the 11B(α, n)14N

reaction. The present measurements largely confirm the previous data of Ref. [17] but

improve on measurements over a low cross section region. A comprehensive R-matrix

analysis of the reaction data that populate the 15N system over a similar excitation

energy range as the present data has been performed. Work is in progress to expand

the present analysis to include additional data sets, especially angular distribution and

capture data. A study of the low energy cross section will continue at the new CASPAR

underground facility [49].
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