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Abstract—We propose sparsity-adaptive beamspace channel
estimation algorithms that improve accuracy for 1-bit data
converters in all-digital millimeter-wave (mmWave) massive
multiple-input multiple-output (MIMO) basestations. Our al-
gorithms include a tuning stage based on Stein’s unbiased
risk estimate (SURE) that automatically selects optimal de-
noising parameters depending on the instantaneous channel
conditions. Simulation results with line-of-sight (LoS) and non-
LoS mmWave massive MIMO channel models show that our
algorithms improve channel estimation accuracy with 1-bit
measurements in a computationally-efficient manner.

I. INTRODUCTION

Millimeter-wave (mmWave) and massive multi-user (MU)

multiple-input multiple-output (MIMO) will be core technolo-

gies for future wireless systems [1], [2]. The combination

of these technologies enables simultaneous communication

to multiple user equipments (UEs) at unprecedentedly high

data rates. These advantages come at the cost of significantly

increased power consumption, implementation complexity, and

system costs. A viable solution to address these challenges

is the use of low-resolution data converters combined with

sophisticated but efficient baseband processing algorithms in

all-digital basestations (BS) architectures [3]–[7].

A. Channel Estimation with Low-Resolution Data Converters

Coarse quantization of the received baseband samples,

due to the use of low-resolution analog-to-digital converters

(ADCs) at the BS, together with the high path loss at

mmWave or terahertz (THz) frequencies [8], [9], renders the

acquisition of accurate channel estimates a challenging task.

Fortunately, wave propagation at mmWave or THz frequencies

is directional [10] and channels typically consist only of a few

dominant propagation paths [2], [11]. Both of these properties

cause the channel vectors to be sparse in the beamspace

domain, which can be exploited to perform denoising that

improves reliability of data transmission [12]–[16].

Practical sparsity-exploiting channel denoising methods

for mmWave massive MU-MIMO systems must exhibit

low computational complexity due to the large number of

BS antenna elements and the potentially large number of

UEs that commmunicate simultaneously. A low-complexity
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mmWave channel denoising algorithm called BEACHES

(short for beamspace channel estimation) has been proposed

recently in [16]. This method has orders-of-magnitude lower

complexity than state-of-the-art denoising methods, such as

atomic norm minimization (ANM) [17] and Newtonized

orthogonal matching pursuit (NOMP) [18]. However, all

of these existing denoising methods perform poorly when

denoising channel vectors that were acquired through low-

resolution data converters. Channel estimation with 1-bit ADCs

has been analyzed in [4], [5], [19]–[21]. Beamspace sparsity

of mmWave channels has been exploited to denoise channel

vectors from 1-bit measurements in [6], [22], [23]. However,

all of these denoising methods exhibit high complexity, ignore

beamspace sparsity, and/or require a number of parameters that

must be adapted to the instantaneous propagation conditions,

such as the number of dominant propagation paths.

B. Contributions

We propose low-complexity channel estimation algorithms

for mmWave massive MU-MIMO systems that operate with

1-bit data converters. By using a Bussgang-like decomposi-

tion [24] of the 1-bit measurement process, our methods adapt

the optimal denoising parameters to the channel’s instantaneous

sparsity via Stein’s unbiased risk estimate (SURE). We propose

two methods that build upon BEACHES put forward in [16]

and a novel method, referred to as Sparsity-Adaptive oNe-bit

Denoiser (SAND), which automatically tunes two algorithm

parameters to minimize the channel estimation mean-square

error (MSE). To demonstrate the efficacy of our channel

estimation algorithms, we perform MSE and bit error rate

(BER) simulations with line-of-sight (LoS) and non-LoS

mmWave channels in a massive MU-MIMO system.

C. Notation

Lowercase and uppercase boldface letters denote column

vectors and matrices, respectively. The kth entry of the vector a

is ak; the real and imaginary parts are [a]R = R{a} and

[a]I = I{a}, respectively. For a matrix A, its transpose and

Hermitian transpose are AT and AH, respectively. A complex

Gaussian vector a with mean m and covariance K is written

as a ∼ CN (m,K). Expectation is denoted by E[·].
II. 1-BIT QUANTIZED SYSTEM MODEL

We consider a mmWave massive MU-MIMO uplink system

in which U single-antenna UEs transmit data to a B-antenna

BS equipped with a uniform linear array (ULA). We assume



that each of the B radio-frequency (RF) chains at the BS

contains a pair of 1-bit ADCs that separately quantize the

in-phase and quadrature signals. A widely-used, yet simplistic

channel vector model for such systems is as follows [25]:

h =
∑L

ℓ=1κℓa(Ωℓ), a(Ω)=[ej0Ω, ej1Ω, . . . , ej(B−1)Ω]T. (1)

Here, L stands for the number of propagation paths arriving at

the BS, κℓ ∈ C is the channel gain of the ℓth path, a(Ωℓ) ∈
C

B contains the relative phases between BS antennas, and

Ωℓ ∈ [0, 2π) is determined by the ℓth path’s incident angle.

We emphasize that our simulation results in Section V will

use more realistic mmWave channel models.

We consider orthogonal training-based channel estimation,

where only one UE transmits a pilot at a time—a generalization

to other training schemes is part of ongoing work. To model

1-bit ADCs, we define Q(z) = sign(R{z}) + j sign(I{z}),
which is applied element-wise to vectors. The 1-bit quantized

channel vector for a given UE can be modeled as follows [5]:

r =Q(̺h+ n), (2)

where n ∼ CN (0, N0IB) models thermal noise. Without loss

of generality, we assume ̺ = 1 for the rest of the paper.

All of the above vectors are in the antenna domain, where

each entry is associated with one of the B BS antennas. By

taking the discrete Fourier transform (DFT) across the antenna

array, we can transform these vectors into the beamspace

domain, where each entry corresponds to an incident angle.

From (1) we see that h is a superposition of L complex

sinusoids. Consequently, the beamspace domain representation

ĥ = Fh, where F is the B ×B unitary DFT matrix, will be

sparse assuming that L ≪ B. In what follows, all beamspace

domain quantities are designated with a ĥat.

Fig. 1 shows examples for LoS and non-LoS channel vectors

in the beamspace domain without and with 1-bit quantization.

Clearly, the unquantized beamspace vectors ĥ exhibit sparsity;

the 1-bit quantized beamspace vectors, which are obtained from

r̂ = Fr, also exhibit sparsity but, in addition, are distorted by

quantization artifacts. We also observe that the quantization

artifacts differ significantly between the LoS and non-LoS

channels, which exhibit different levels of sparsity. In what

follows, we develop algorithms that exploit beamspace sparsity

to denoise 1-bit quantized channel vectors while adapting the

denoising parameters to the instantaneous channel sparsity.

III. BEACHES-BASED 1-BIT DENOISING

Before we discuss denoising methods for 1-bit measure-

ments, we briefly review the BEACHES algorithm in [16],

which was developed for systems with high-resolution data

converters. Assume that we observe a noisy measurement of

the channel vector h in the beamspace domain as

ŷ = ĥ+ ê, (3)

where ê ∼ CN (0, E0I) models channel estimation errors.

BEACHES denoises ŷ by applying the soft-thresholding

function ĥ′ = η(ŷ, τ) defined as

[η(ŷ, τ)]b =
ŷb

|ŷb| max{|ŷb| − τ, 0}, b = 1, . . . , B, (4)
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Fig. 1. Beamspace representation of an unquantized and a 1-bit quantized
channel vector for a line-of-sight (LoS) and non-LoS scenario. The channel
vectors are generated with the QuaDRiGa mmMAGIC UMi model [26] at
60GHz for a 256 uniform-linear array (ULA) with λ/2 antenna spacing.
The average energy has been normalized to 1 and no noise is present.

where we define ŷb/|ŷb| = 0 for ŷb = 0 and the parameter τ
is the denoising threshold. For an optimally-chosen denoising

threshold τ⋆, the soft-thresholding function suppresses noise

(which is typically weak) while leaving the sparse components

that pertain to the channel vector mostly intact. We define τ⋆

as the denoising threshold that minimizes the MSE

MSE = 1
B
E[‖ĥ′ − ĥ‖2], (5)

which determines the optimally-denoised channel vector

ĥ⋆ = η(ŷ, τ⋆) in the beamspace domain. However, the MSE

expression depends on the unknown vector ĥ. BEACHES

circumvents this issue by using Stein’s unbiased risk estimator

(SURE) [27], which is an unbiased estimate of the MSE in (5)

that does not depend on ĥ. BEACHES requires (i) the channel

estimation error ê to be i.i.d. Gaussian and (ii) knowledge of

the channel estimation variance E0 to optimally denoise the

channel vector at a complexity that scales only with B log(B).

A. The 1-BEACHES Algorithm

We now present 1-BEACHES, which denoises the received

1-bit channel measurements using BEACHES. For this method,

we model the 1-bit received vector r in (2) as

r = Q(h+ n) = h+ q, (6)

where the vector q depends on h and n, and models

quantization errors and noise. By transforming r into the

beamspace domain, we have

r̂ = Fr = ĥ+ q̂. (7)

Even though the vector q is not Gaussian distributed, the

beamspace version q̂ = Fq is well-approximated by a

Gaussian random vector as each entry is a sum of all entries

of q with different phases. To denoise the system in (7) with

BEACHES, we need knowledge of the variance Q0 of the

entries in q̂. By assuming that ĥ = Fh is circularly-symmetric,

which is reasonable as h is a sum of complex sinusoids as

modeled in (1), we obtain

Q0 = 1
B
E[‖q̂‖2] = 1

B
E[‖r‖2 + ‖h‖2 − 2R{hHr}]. (8)

In order to obtain a closed-form expression of Q0 with

a minimal number of parameters, we further assume1 that

1This assumption is accurate if the number of propagation paths L in (1) is
large. As shown in Section V, this assumption is simplistic for LoS channels.



h ∼ CN (0, EhIB), which leads to Q0 = 2 + Eh −
4Eh/

√

π(Eh +N0), where Eh = 1
B
E[‖h‖2] and E[hHr]

in (8) is computed in Appendix A. Under these assumptions,

the beamspace representation (7) has the same form as (3),

where ŷ = r̂ and we model ê = q̂ ∼ CN (0, Q0IB), which

allows us to (i) apply BEACHES to find the optimal denoising

threshold τ⋆ given r̂ and the variance Q0, and (ii) compute

ĥ⋆ = η(r̂, τ⋆). We call this procedure 1-BEACHES.

B. The α-BEACHES Algorithm

In the model (6), the error q will be large if the power of ĥ

differs from the power of r̂. We now derive α-BEACHES

which addresses this aspect. To this end, we use a Bussgang-

like decomposition [24] that models the 1-bit ADCs as

r = Q(h+ n) = αh+ d, (9)

where α is a scalar that minimizes the distortion variance

E[‖d‖2] and also ensures E[dHh] = 0. By assuming that the

vector h is circularly symmetric, we have

α =arg min
α′∈C

E[‖r− α′h‖2] = E[hH
r]

E[‖h‖2] . (10)

To obtain a closed-form expression for α, we assume h ∼
CN (0, EhI) as in 1-BEACHES and use the derivation of

E[hHr] in Appendix A, which yields α = 2/
√

π(Eh +N0).
In (9), the distortion d is not Gaussian. By transforming

into beamspace domain and dividing the result by α, we get

1
α
r̂ = 1

α
Fr = ĥ+ 1

α
d̂, (11)

in which the distortion d̂/α is well-approximated by a

Gaussian, as each entry is a scaled and phase-shifted sum

of all of the entries of d. The distortion variance D0/α
2 is

1
B

1
α2E[‖d̂‖2] = 1

B
1
α2E[‖r‖2− α2‖h‖2]= 2

α2 − Eh. (12)

The model (11), enables us to apply BEACHES to r̂/α in

order to determine the denoising threshold τ⋆ given r̂/α and

D0/α
2. Finally, α-BEACHES computes ĥ⋆ = η( r̂

α
, τ⋆).

IV. SAND: SPARSITY-ADAPTIVE ONE-BIT DENOISER

As a generalized variant of α-BEACHES, we next develop

a sparsity-adaptive method that simultaneously learns a prefac-

tor γ and a denoising threshold τ in order to minimize the MSE.

By defining our two-parameter estimator2 as ĥ′ = γη(r̂, τ),
we aim to find the parameters γ⋆ and τ⋆ that minimize the

MSE in (5). Since the MSE depends on the unknown vector ĥ,

we select the optimal parameters γ⋆ and τ⋆ that minimize

SURE, which (i) is an unbiased estimator of the MSE so that

E[SURE] = MSE and limB→∞ SURE = MSE (see [16] for

the details) and (ii) does not depend on ĥ. For any weakly

differentiable estimator µ(r̂), using the decomposition (11)

and assuming that d̂ is i.i.d. Gaussian, SURE is given by

SURE = 1
B
‖µ(r̂)‖2 + 2−D0

α2 − 1
B

2
α
R{r̂Hµ(r̂)}

+ 1
B

∑B
b=1

D0

α

(

∂[µ(r̂b)]R
∂[r̂b]R

+ ∂[µ(r̂b)]I
∂[r̂b]I

)

. (13)

2This estimator is equivalent to ĥ
′ = η(γ′

r̂, τ ′) for γ = γ′ and τ = τ
′

γ
.

Algorithm 1 SAND: Sparsity-Adaptive oNe-bit Denoiser

1: input r, α and D0

2: r̂ = FFT(r), SUREmin = ∞ , τ = 0
3: r̂s = sort{|r̂|, ‘ascend’}, r̂sB+1 = r̂sB+2 = ∞
4: a =

∑B
k=1 (r̂

s
k)

2, b =
∑B

k=1 r̂
s
k, c =

∑B
k=1 (r̂

s
k)

−1

5: for k = 0, . . . , B + 1 do

6: γ = 2(a−τb)−D0(2(B−k)−τc)
2α(a−2τb+τ2(B−k))

7: SURE = 1
B
γ2

(

a− 2τb+ τ2(B − k)
)

+ 2−D0

α2 −
1
B

γ
α
(2 (a− τb)−D0 (2(B − k)− τc))

8: if SURE < SUREmin and τ <
√

2D0 log(B) then

9: SUREmin = SURE, τ⋆ = τ , γ⋆ = γ
10: end if

11: τ= r̂sk+1, a=a−(r̂sk+1)
2, b=b−r̂sk+1, c=c−(r̂sk+1)

−1

12: end for

13: ĥ⋆
k = γ⋆ r̂k

|r̂k| max {|r̂k| − τ⋆, 0}, k = 1, . . . , B

14: return h⋆ = IFFT(ĥ⋆)

Refer to Appendix B for the proof. Since SURE is an unbiased

estimator of the MSE, we use SURE in (13) with µ(r̂) =
γη(r̂, τ), in order to find the optimal parameters γ⋆ and τ⋆.

While a naïve approach could perform a two-dimensional

grid search over the tuple (γ, τ), we next show that we can

efficiently find γ⋆ and τ⋆ with O(B log(B)) complexity.

Let r̂s be a vector containing the absolute values of r̂ sorted

in ascending order. For a given τ , let k be the number of entries

in r̂s that are smaller than τ . For the denoiser µ(r̂) = γη(r̂, τ),
following the derivations in [16, App. B], SURE in (13) is

SURE = 1
B
γ2

∑B
b=k+1 (r̂

s
b − τ)2 + 2−D0

α2 (14)

− 1
B

γ
α

∑B
b=k+1

(

2r̂sb(r̂
s
b − τ)−D0

(

2− τ
r̂s
b

))

.

By defining the quantities a =
∑B

b=k+1(r̂
s
b)

2, b =
∑B

b=k+1 r̂
s
b

and c =
∑B

b=k+1(r̂
s
b)

−1, we can rewrite (14) as

SURE = 1
B
γ2

(

a− 2τb+ τ2(B − k)
)

+ 2−D0

α2

− 1
B

γ
α
(2 (a− τb)−D0 (2(B − k)− τc)). (15)

For a fixed τ , the optimal γ⋆ that minimizes (15) is given by

γ⋆ = 2(a−τb)−D0(2(B−k)−τc)
2α(a−2τb+τ2(B−k)) . (16)

The optimal threshold τ⋆ could take any value between 0
and r̂sB . However, as in the derivation of BEACHES [28], we

restrict the search to values in r̂s, as it significantly reduces the

complexity, without sacrificing performance. We also set an

upper limit for τ of
√

2D0 log(B), which ensures (with high

probability) that the threshold is lower than the largest noise

realization [27]. For each τ = r̂sk, k = 0, . . . , B (with r̂s0 = 0),

and for its associated γ⋆ given by (16), we evaluate SURE

in (15), and then pick γ⋆ and τ⋆ that result in the minimum

value of SURE. We call the resulting algorithm Sparsity-

Adaptive oNe-bit Denoiser (SAND), which is summarized in

Algorithm 1. Since the complexity of a fast Fourier transform

(FFT) and sorting scale with O(B log(B)), and the operations

in each iteration (lines 6 to 11) have complexity O(1), the

overall complexity of SAND scales with O(B log(B)).
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Fig. 2. Mean square error (MSE) of the considered channel denoising methods
for mmWave LoS and non-LoS channels. The proposed sparsity-adaptive
denoising methods significantly outperform naïve 1-bit ML channel estimation.

V. RESULTS

We now demonstrate the efficacy of 1-BEACHES, α-

BEACHES, and SAND. As reference methods, we consider

perfect channel state information (CSI), where h⋆ = h,

BEACHES [16], which denoises the infinite-resolution (un-

quantized) measurements y = h + n, and 1-bit maximum-

likelihood (ML) channel estimation, where h⋆ = r is the 1-bit

observation in (2). In addition, we compare the performance to

state-of-the-art denoising methods, including (i) Newtonized

orthogonal matching pursuit (NOMP) [18] with an equivalent

noise variance Q0 and a false alarm rate Pfa = 0.5 (using E0

results in poor performance; Pfa has been tuned to achieve low

MSE at low and high SNR) and (ii) the 1-bit Bussgang linear

MMSE estimator (BLMMSE) [5], [19], which corresponds to

h⋆ = Eh√
π(Eh+N0)

r for the used orthogonal pilots.

A. Simulation Setup

We simulate a mmWave massive MIMO system with

B = 256 BS antennas and U = 16 single-antenna UEs.

We generate LoS and non-LoS channel matrices using the

QuaDRiGa mmMAGIC UMi model [26] at a carrier frequency

of 60GHz for a BS with λ/2-spaced antennas arranged in a

ULA. The UEs are placed randomly in a 120◦ circular sector

around the BS between a distance of 10m and 110m, and the

UEs are separated by at least 4◦. We model UE-side power

control to ensure that the highest receive power is at most

6 dB higher than that of the weakest UE.

B. Mean-Square Error (MSE) Performance

Fig. 2 shows the channel estimation MSE of the proposed 1-

bit denoising algorithms and the considered baseline methods.

We observe that the three proposed methods, 1-BEACHES,

α-BEACHES, and SAND significantly outperform 1-bit ML

channel estimation. Furthermore, we see that α-BEACHES

and SAND have a slight advantage over 1-BEACHES in LoS

scenarios. Surprisingly, SAND has a slightly higher MSE than

α-BEACHES, which we attribute to the fact that SAND has

to learn two parameters, whereas α-BEACHES only learns

the optimal denoising threshold. For that reason, SAND is

more sensitive to the assumptions made in footnote 1. NOMP

and BLMMSE also outperform 1-bit ML, but their MSE is

higher than that of our algorithms, especially at high SNR.

C. Bit Error Rate (BER) Performance

To assess the impact of the proposed 1-bit denoising

algorithms on the uncoded BER performance during the

data detection phase, we use the 1-bit Bussgang linear

MMSE equalizer proposed in [29], which operates on the

1-bit quantized received data using the channel estimates

provided by our denoising methods and the considered baseline

algorithms. We consider QPSK and 16-QAM transmission.

Fig. 3 shows that the proposed sparsity-adaptive denoising

algorithms significantly outperform naïve 1-bit ML channel

estimation. We furthermore see that for QPSK, all three

methods, 1-BEACHES, α-BEACHES, and SAND, perform

equally well under both LoS and non-LoS scenarios. For

16-QAM, where it is important to get an accurate estimate

of the channel gain, α-BEACHES and SAND outperform

1-BEACHES and NOMP, which directly operate with the

received 1-bit measurements. Hence, correcting the scale of

the received data is critical for higher-order constellation sets.

While BLMMSE adjusts for the scale, it is unable to exploit

sparsity which results in rather poor BER performance. For

non-LoS channels, NOMP performs inferior to the proposed

methods. In addition, NOMP requires high complexity [28].

Since the propagation conditions (such as the number of

propagation paths L) are typically unknown in practice, SAND

and α-BEACHES are the preferred denoising methods.

VI. CONCLUSIONS

We have presented three sparsity-adaptive channel vector

denoising algorithms for 1-bit mmWave massive MIMO

systems. Two of our algorithms denoise 1-bit measurements

of the channel estimates using BEACHES [16] in order to au-

tomatically adapt the denoising parameter to the instantaneous

channel realization. While 1-BEACHES applies BEACHES to

the 1-bit measurements using the effective noise variance

(which also includes the quantization noise variance), α-

BEACHES uses a Bussgang-like scaling factor [24], which

results in superior performance. We have also introduced

SAND (short for Sparsity-Adaptive oNe-bit Denoiser), a novel

denoising algorithm with O(B log(B)) complexity, which

jointly optimizes the thresholding parameter and the scaling

factor in a nonparametric fashion. Our simulations have shown

that α-BEACHES and SAND perform equally well under

the considered LoS and non-LoS mmWave channels and

outperform 1-BEACHES as well as other considered baseline

methods in the case of 16-QAM transmission.

APPENDIX A: DERIVATION OF
1
B
E
[

hHr
]

Since n ∼ CN (0, N0IB) and h is assumed circularly

symmetric, the imaginary part of E
[

hHr
]

is zero, and

1
B
E
[

hHr
]

= 1
B
E[[h]R[r]R] + 1

B
E[[h]I [r]I ]. (17)

By assuming h ∼ CN (0, EhIB),
1
B
E[[h]R[r]R] becomes

1
B

∑B
b=1 E

[

∫ −[nb]R
−∞

−[hb]R√
πEh

e
− ([hb]R)2

Eh d[hb]R

]

(18)

+ 1
B

∑B
b=1 E

[

∫ −∞
−[nb]R

[hb]R√
πEh

e
− ([hb]R)2

Eh d[hb]R

]

= Eh√
π(Eh+N0)

.
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Fig. 3. Uncoded bit error rate (BER) of 1-bit channel estimation and 1-bit data detection in mmWave LoS and non-LoS channels. We see that α-BEACHES
and SAND outperform 1-BEACHES and 1-bit ML for LoS and non-LoS channel conditions for 16-QAM transmission.

Following the same procedure for the imaginary part, we get

1
B
E
[

hHr
]

= 2Eh√
π(Eh+N0)

. (19)

APPENDIX B: DERIVATION OF SURE IN (13)

For deriving SURE as in (13), we follow the procedure in

[16, App. A], with the following modifications: Instead of

ŷ = ĥ+ ê, we use r̂ = αĥ+ d̂. In other words, where [16]

uses ŷ ∼ CN (ĥ, E0IB), we replace it by r̂ ∼ CN (αĥ, D0IB).
Instead of g(ŷ) = µ(ŷ)− ŷ, we use g(r̂) = µ(r̂)− r̂/α.
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