


‖A‖F . The quantities ‖A‖1 and ‖A‖∞̃ stand for the ℓ1 and
ℓ∞̃-norm defined in [25, Sec. V] of the vectorized matrix A.

II. CELL-FREE MASSIVE MU-MIMO SYSTEM MODEL

We now introduce the cell-free massive MU-MIMO system
and summarize the channel model.

A. System Model

We focus on the uplink in a cell-free massive MU-MIMO
system with B distributed receive antennas and U single-
antenna UEs. We assume a block-fading scenario with a
coherence time of K = T + D time slots, where T time
slots are reserved for pilot-based training and D time slots
are reserved for payload data. The input-output relation of the
considered frequency-flat1 system is given by [26]

Y = HS+N, (1)

where Y ∈ C
B×K is the receive-signal matrix, H ∈ C

B×U is
the MIMO channel matrix, S ∈ C

U×K is the transmit-signal
matrix with entries chosen from the constellation set Q and
N ∈ C

B×K is the additive noise matrix, whose entries are
assumed to be i.i.d. circularly-symmetric complex Gaussian
with variance N0 per complex entry. To simplify notation, we
separate training from payload by rewriting (1) as follows:

[YT ,YD] = H [ST ,SD] +N. (2)

Here, the matrices ST ∈ C
U×T and SD ∈ C

U×D contain
training pilots and data symbols, respectively; the matrices
YT ∈ C

B×T and YD ∈ C
B×T contain the received pilot

and data symbols, respectively. Our goal is to jointly estimate
the channel matrix H and detect the entries in SD from the
received signals in Y and the known training-pilot matrix ST .

B. Cell-free Massive MU-MIMO System

To characterize cell-free massive MU-MIMO communica-
tion, we use the channel model put forward in [1]. For this
model, the MIMO system in (1) can be written as

Y =
√
ρuGΛS+N, (3)

where ρu denotes the normalized (uplink) signal-to-noise ratio
(SNR), G ∈ C

B×U is the cell-free channel matrix, Λ ∈U×U

is a diagonal power control matrix, and the entries of N are
normalized so that N0 = 1. Following the model in [1], the
entries of G are modeled as Gij =

√

βijθij where βij and θij
characterize large-scale and small-scale fading, respectively.
Since in a cell-free system, the UEs are close to only a few
receive antennas (assuming random placement of UEs and
distributed receive antennas in a given area), the matrix G is
sparse, i.e., most of its entries are close to zero—a property
which we will exploit. We assume UE-side power control and
define the diagonal matrix Λ = diag(λ1, . . . , λU ) as

λ2
i = min

{

‖gi‖22 , 10
P
10 minj=1,...,U ‖gj‖22

}

/‖gi‖22 , (4)

where P defines the maximum dynamic range between the
weakest and strongest UE receive power in decibels. In
summary, the channel matrix in (1) is H =

√
ρuGΛ.

1For frequency-selective channels, we can use orthogonal frequency-division
multiplexing (OFDM) to obtain an equivalent system model per subcarrier.

III. JOINT CHANNEL ESTIMATION AND DATA DETECTION

We now formulate the JED problem and then relax it to a
biconvex problem that we solve approximately using FBS [8].

A. The MAP-JED Problem

We first formulate the maximum a-posteriori (MAP) JED
problem. To this end, we assume (i) that the channel coef-
ficients in H follow a sparsity-inducing Laplace prior and
(ii) the entries in N are complex standard normal. For these
assumptions, we have the following MAP-JED problem
{

Ĥ, ŜD

}

= arg min
H∈C

B×U

SD∈QU×D

1
2‖Y −H[ST ,SD]‖2F + µ‖H‖1. (5)

Here, the parameter µ ∈ R+ controls the channel’s sparsity,
where large values promote sparser channel matrices. Note that
solving (5) optimally is challenging for two reasons: (i) The
entries of the data matrix SD are chosen from a discrete set Q;
(ii) the objective function contains the product of the channel
matrix H and data matrix SD—for a fixed data matrix SD,
however, the MAP-JED problem is convex in H.

B. Biconvex Relaxation

We now show how the MAP-JED problem can be relaxed
to a biconvex optimization problem [27], i.e., a problem that
is convex in H for a fixed SD and vice versa. We will show
in Section III-C how to solve this problem approximately.

We start by relaxing the discrete constellation Q to its
convex hull, which is defined as [17]

C =
{

∑|Q|
i=1 αisi | (αi ∈ R+, ∀i) ∧

∑|Q|
i=1 αi = 1)

}

, (6)

where si is the ith symbol in the constellation Q. Note that for
QPSK with {±1±j} the convex hull C is a tight square region
(box) around the four constellation points. This relaxation
results in the following biconvex optimization problem
{

Ĥ, ŜD

}

= arg min
H∈C

B×U

SD∈CU×D

1
2‖Y −H[ST ,SD]‖2F + µ‖H‖1. (7)

We note that a similar convexification strategy has been used
recently for conventional massive MIMO data detectors that
separate data detection from channel estimation [28]–[31].

To improve the performance of this convex relaxation, we
additionally use a technique from [27], which gently pushes
the relaxed constellation points towards the corners of the
convex hull. For QPSK, we are favoring solutions at the four
corner points {±1 ± j}. Concretely, we include a concave
regularizer −γ

2 ‖SD‖2F with parameter γ ∈ R+ to the objective
function of (7), which is small for larger values in the data
matrix SD. The resulting optimization problem is given by

{

Ĥ, ŜD

}

= arg min
H∈C

B×U

SD∈CU×D

1
2‖Y −H[ST ,SD]‖2F

+ µ‖H‖1 − γ
2 ‖SD‖2F . (8)

While the problem (8) remains nonconvex, it is biconvex in
H and SD as long as the parameter γ is sufficiently small
(see, e.g., [17] for a precise justification of this property). We
next show an FBS-based approach to solve the problem (8)
approximately and at low complexity.



C. JED via Forward-Backward Splitting

FBS is an efficient numerical method to iteratively solve
convex optimization problems of the following form:

x̂ = arg min
x

f(x) + g(x). (9)

Here, the function f is differentiable and convex, and g is
a more general (not necessarily smooth or bounded) convex
function. After initializing x(1), FBS solves the problem in (9)
for the iterations t = 1, 2, . . . until convergence, by computing

x(t+1) = proxg(x
(t) − τ (t)∇f(x(t)); τ (t)), (10)

where ∇f(x) is the gradient of f(x) and τ (t) is a per-
iteration step size; we use the adaptive step-size strategy from
FASTA [8]. The proximal operator for g(x) is defined as

proxg(z; τ) = arg min
x

τg(x) + 1
2‖x− z‖22 . (11)

While FBS exactly solves convex optimization problems, it
can be used to approximately solve nonconvex problems [8].
We use FBS to jointly solve for H and SD in (8). To this end,
we define the matrix Z = [HH S]H , where S = [ST ,SD]
and ST is known and kept constant during the iterations; the
matrices H and SD contain the optimization variables. We
start by defining the functions f and g in (9) as

f(Z) = f(H,SD) = 1
2‖Y −HS‖2F , (12)

g(Z) = g(H,SD) = µ‖H‖1 − γ
2 ‖SD‖2F + χC (SD) , (13)

where the indicator function

χC (SD) =

{

0 SD ∈ C
∞ SD /∈ C, (14)

replaces the constraint SD ∈ CU×D in (8). For these
definitions, the joint gradient of f in Z is given by

∇f(Z) =

[

∂f
∂H
∂f
∂SH

]

=

[

(HS−Y)SH

(HS−Y)HH

]

. (15)

The proximal operator for H is element-wise shrinkage [8]:

η(Hij ;µτ
(t)) =

Hij

|Hij |
max

{

|Hij | − µτ (t), 0
}

, (16)

where µ is the sparsity parameter, τ (t) is the step size, and
we define x/|x| = 0 for x = 0.

The proximal operator for SD is a bit more involved but
can be derived from (11) as follows:

proxg(SD; τ (t)) (17)

= arg min
X∈CU×D

−τ (t) γ2 ‖X‖2F + 1
2‖X− SD‖2F , (18)

where we moved the indicator function in g(Z) to the
constraint. By completing the square, (18) is given by

proxg(SD; τ (t)) = arg min
X∈CU×D

∥

∥

∥
X− 1

1−ρ
SD

∥

∥

∥

2

F
, (19)

where ρ = τ (t)λ ∈ [0, 1). As a consequence, we have

proxg(SD; τ (t)) = projC
(

1
1−ρ

SD; τ (t)
)

. (20)

The right-hand side proximal operator for the convex hull C
is applied independently to real and imaginary parts as

projC(ℜ{Sij}) = min{max{|ℜ{Sij}| ,−α}, α} (21)

projC(ℑ{Sij}) = min{max{|ℑ{Sij}| ,−α}, α}. (22)

Here, α defines the box C and depends on the transmit symbols.
For QPSK with Q = {±1± j}, we have α = 1. In summary,
the joint proximal operator is defined as follows:

proxg(Z; τ
(t)) =

[

η(H, µτ (t))

projC
(

1
1−ρ

SH
)

]

. (23)

Since the pilot sequences in the matrix ST are fixed and
known, we enforce ST at the end of every FBS iteration.

IV. RESULTS

We now demonstrate the efficacy of our JED algorithm. We
first detail the simulation setup and then show results.

A. Simulation Setup and Performance Metrics

We evaluate our algorithm with the cell-free channel model
detailed Section II-B. As in [1], we consider a square area of
1 km2 with B = 128 randomly positioned receive antennas
and U = 128 randomly positioned UEs. The maximum UE
transmission power is 100mW and we use per-UE power
control with P = 12 dB as in (4). The carrier frequency is
1.9GHz and the bandwidth 20MHz. Equiangular tight frames
were used for the pilot sequences in ST [32]. The receive and
UE antennas are at a height of 15m and 1.65m, respectively.
We use the three-slope path-loss model defined in [33]. The
small-scale fading and large-scale fading parameters between
the ith antenna and the jth UE are θij ∼ CN (0, 1) and

βij = PLij10
σshzij

10 where PLij is the path loss, σsh is 8 dB,
and zij ∼ N (0, 1) is shadow fading with variance σ2

sh.

B. Performance Metrics and Baseline Algorithms

Since we evaluate a nonconvex JED algorithm, a spectral
efficiency analysis is non-trivial. Furthermore, bit-error rate
(BER) vs. SNR plots cannot be generated since the UE’s
experience different SNR. Hence, we characterize the per-UE
cumulative density function (CDF) for the EVM, BER, and
channel estimation MSE. For the jth UE, we define the BER
as BERj =

εj
nq·D

, where εj is the total number of bit errors for
UE j over D time slots and q the number of bits per symbol.
We define the EVM over the D payload data slots as

EVMj =

√∑
D
k=1|[ŜD]jk−[SD]jk|2
∑

D
k=1|[ŜD]jk|2 , (24)

where [ŜD]jk and [SD]jk denote the estimated and transmitted
data symbols of the jth UE at time slot k, respectively.
We define the channel estimation MSE of the jth UE as

MSEj = 1
B
E

[

‖ĥj − hj‖22
]

, where ĥj and hj are the

estimated and true channel vectors, respectively. By treating
all these quantities as random variables, we use Monte-Carlo
simulations to characterize their CDF over multiple UE and
antenna placements, noise realizations, and data transmissions.
The fraction of Monte-Carlo trials for which the per-UE EVM
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Fig. 1. EVM (a), BER (b), and MSE (c) performance for a cell-free massive MU-MIMO system with B = 128 receive antennas, U = 128 UEs transmitting
QPSK, K = 128 time slots, and only T = 32 (25%) nonorthogonal training symbols. The proposed JED algorithm supports over 87% of the UEs with an
EVM of 17.5%; ℓ1-norm training-based L-MMSE data detection is unable to achieve satisfactory performance.
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Fig. 2. EVM (a), BER (b), and MSE (c) performance for a cell-free massive MU-MIMO system with B = 256 receive antennas, U = 128 UEs transmitting
16-QAM, K = 128 time slots, and T = 64 (50%) nonorthogonal training symbols. The proposed JED algorithm supports over 90% of the UEs with an EVM
of 12.5%; ℓ1-norm training-based L-MMSE data detection does not perform as well as JED.

was below x is defined as Pr[EVM < x]; the quantities
Pr[BER < x] and Pr[MSE < x] are defined analogously.

To characterize the performance of our JED algorithm, we
use the single-input multiple-output (SIMO) lower bound (also
known as matched filter bound), which perfectly cancels MU
interference in a genie-aided fashion [34]. We also compare
our algorithm to that of a conventional training-based linear
minimum mean-square error (L-MMSE) data detector. For this
algorithm, we use a regularized ℓ1-norm channel estimator
that exploits sparsity in cell-free massive MIMO systems:

Ĥ =arg min
H∈C

B×U

1
2‖YT −HST ‖2F + µ1‖H‖1, (25)

where we tune the sparsity parameter µ1 for each scenario.

C. EVM, BER, and MSE Performance Results

Figure 1 shows simulation results for a B = 128 antenna
system with U = 128 UEs transmitting pilots and QPSK
payload data over K = 128 time slots, where only T = 32
(25%) pilots are used; the pilots form an equiangular tight
frame. Figure 2 shows simulation results for a B = 256
antenna system with U = 128 UEs transmitting pilots and 16-
QAM payload data over K = 128 time slots, where T = 64
(50%) pilots are used. In Fig. 1(a) and Fig. 2(a), we see that
JED enables more than 85% and 80% of all UEs to meet
the EVM of R = 17.5% for QPSK and of R = 12.5% for
16-QAM, respectively, which is similar to the requirements
of BS purity in the 3GPP 5G NR technical specification [35,

Tbl. 6.5.2.2-1]. In Fig. 1(b) and Fig. 2(b), we see that JED
enables an 1% uncoded BER for 87% and 90% of the UEs
for QPSK and 16-QAM, respectively. In Fig. 1(c), we see that
JED provides more than 5 dB lower channel estimation MSE
than the ℓ1-norm based approach in (25); in Fig. 2(c), JED
provides more than 3 dB SNR lower MSE.

D. Pilot Overhead vs. EVM Trade-off

Figure 3 shows the trade-off between between the percentage
of UEs that achieve the target EVM R and the amount of used
pilots (as a fraction of orthogonal training). We show results
for the B = 128 system with QPSK and a target EVM of
R = 17.5% and for the B = 256 system with 16-QAM and a
target EVM of R = 12.5%; both systems use K = 128 time
slots. For 50% pilot overhead (T = 64), both scenarios are
able to meet the minimum EVM requirements for more than
80% of the UEs. Reducing the pilot overhead to 36% (T = 46),
JED is still able to meet the minimum EVM requirements for
more than 70% of the UEs. In stark contrast, conventional L-
MMSE data detection with ℓ1-norm-based channel estimation
is unable to meet the EVM requirements for most of the UEs.

V. CONCLUSIONS

We have proposed a novel joint channel estimation and
data detection (JED) algorithm for cell-free massive MU-
MIMO systems. Our method formulates JED as a biconvex
optimization problem which we solve approximately using
forward-backward splitting. By exploiting channel sparsity and



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pilot overhead [%]

U
E

s
[%

]
th

at
m

ee
t

E
V

M
re

qu
ir

em
en

t
R

JED, R = 12.5%

L-MMSE, R = 12.5%

JED, R = 17.5%

L-MMSE, R = 17.5%

Fig. 3. Trade-off between pilot overhead and fraction of UEs that meet the
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UEs with the minimal EVM requirements for only 20% pilots (compared to
orthogonal training); L-MMSE detection requires orthogonal training.

the boundedness of QAM, our algorithm enables more than
80% of the UEs to achieve the minimum EVM requirements
specified by 3GPP 5G NR while using 2× fewer pilots than
orthogonal training. Since baseband processing for cell-free
systems is likely to be performed in a centralized processor
with extensive computing resources, JED has potential to im-
prove spectral efficiency while minimizing the pilot overhead.
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