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Approximate Gram-Matrix Interpolation
for Wideband Massive MU-MIMO Systems
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Abstract—Linear and non-linear data-detection and precoding
algorithms for wideband massive multi-user (MU) multiple-
input multiple-output (MIMO) wireless systems that rely on
orthogonal frequency-division multiplexing (OFDM) or single-
carrier frequency-division multiple access (SC-FDMA) often
require computation of the Gram matrix for each active sub-
carrier. Computing the Gram matrix for each active subcarrier,
however, results in excessively high computational complexity.
In this paper, we propose novel, approximate algorithms that
significantly reduce the complexity of Gram-matrix computation
by simultaneously exploiting channel hardening and correlation
across subcarriers. We show analytically that a small fraction
of Gram-matrix computations in combination with approximate
interpolation schemes are sufficient to achieve near-optimal error-
rate performance at low computational complexity in massive
MU-MIMO systems. We furthermore demonstrate that our
approximate interpolation algorithms are more robust against
channel-estimation errors than exact Gram-matrix interpolation
algorithms that require high computational complexity.

Index Terms—Equalization, Gram matrix, interpolation, mas-
sive MU-MIMO, orthogonal frequency-division multiplexing
(OFDM), precoding, single-carrier frequency-division multiple
access (SC-FDMA).

I. INTRODUCTION

ASSIVE multi-user (MU) multiple-input multiple-output
M (MIMO) is a key technology component in fifth-
generation (5G) wireless systems [1], [2]. The idea of massive
MU-MIMO is to equip the base-station (BS) with hundreds
of antenna elements while serving tens of user equipments
(UEs) in the same time-frequency resource by means of spatial
multiplexing. Such large antenna arrays enable fine-grained
beamforming in the uplink (UEs transmit to the BS) and in
the downlink (BS transmits to the UEs), which offers superior
spectral efficiency compared to traditional, small-scale MIMO
technology that use only a few antennas at the BS.

In the uplink, linear data-detection algorithms that rely on
linear minimum-mean square error (MMSE) equalization or
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zero-forcing (ZF) are known to achieve near-optimal error-
rate performance in realistic massive MU-MIMO systems
with a finite number of transmit antennas [1], [3], [4]. Non-
linear data-detection algorithms [5]-[7] have recently been
shown to outperform linear methods in systems where the
number of UEs is comparable to the number of BS antennas.
Most of these linear and non-linear data-detection algorithms
entail high computational complexity, often dominated by the
computation of the Gram matrix G = H"H [8], [9]. Here,
H € CB*VU is the (uplink) channel matrix, B is the number
of BS antennas, and U is the number of (single-antenna)
users. The computational complexity is orders-of-magnitude
higher in wideband systems that use orthogonal frequency-
division multiplexing (OFDM) or single-carrier frequency-
division multiple access (SC-FDMA), in which a Gram matrix
must be computed for each active subcarrier (i.e., subcarriers
used for pilots or data transmission) [8]. For example, Gram
matrix computation requires more than 2x higher complexity
than data detection for a 128 BS antenna 16 UE antenna
MU-MIMO system [9, Tbl. 4.2]. In the massive MU-MIMO
downlink, precoding is necessary to focus the transmit energy
towards the UEs and to mitigate multi-user interference [1].
In wideband systems, the complexity of linear precoding
algorithms is—analogously to the uplink—typically dominated
by Gram matrix computation on the active subcarriers.
While some data-detection and precoding algorithms have
been proposed that avoid the computation of the Gram
matrix altogether (see, e.g., [10]-[12]), these methods do
not allow the re-use of intermediate results in time-division
duplexing (TDD) systems. Specifically, the Gram matrix and its
inverse cannot be re-used in the uplink (for equalization) and
downlink (for precoding), which would significantly lower the
computational complexity. Hence, such algorithms inevitably
perform redundant computations during data-detection and
precoding, which leads to inefficient transceiver designs.

A. Interpolation-Based Matrix Computations

In practical wideband communication systems, e.g., building
upon IEEE 802.11n [13] and 3GPP-LTE [14], the channel’s
delay spread is often substantially smaller than the number
of active subcarriers. Hence, the channel coefficients are
correlated across subcarriers. This property can be exploited
to reduce the computational complexity of commonly-used
matrix computations required in multi-antenna systems. More
specifically, the papers [15]-[18] avoid a brute-force approach
in traditional, small-scale, and point-to-point MIMO-OFDM
systems by using exact interpolation-based algorithms for



matrix inversion and QR factorization. While a few hardware
designs [19], [20] have demonstrated the efficacy of such
exact interpolation methods in small-scale MIMO systems,
their complexity does not scale well to wideband massive MU-
MIMO systems with hundreds of BS antennas, tens of users,
and thousands of subcarriers. In fact, 3GPP specifications on
New Radio (NR) access technology shows that the number of
active subcarriers is 3300 or 6600 in Release 15 [21], [22].
In addition, the impact of imperfect channel-state information
(CSI) and antenna correlation on such exact, interpolation-
based matrix computation algorithms is routinely ignored, but
significantly affects their performance in practical scenarios
(see Section VI for a detailed discussion).

B. Contributions

Inspired by exact, interpolation-based matrix computation
algorithms put forward in [15]-[18] for small-scale wideband
MIMO systems, we propose novel algorithms for approximate
Gram matrix computation in massive MU-MIMO systems. We
start by establishing the minimum number of Gram matrix
base-points that are required for exact interpolation. We then
show that channel-hardening in massive MU-MIMO provides
a new opportunity for approximate interpolation schemes
that achieve near-exact error-rate performance, even with
strong undersampling in the frequency domain. We provide
analytical results that characterize the approximation errors of
the proposed interpolation methods depending on the channel’s
delay spread and the antenna configuration. Furthermore, we
derive exact mean-squared error (MSE) expressions of our
approximate interpolation algorithms for imperfect CSI and
BS-side antenna correlation. We also characterize the trade-offs
between computational complexity and error-rate performance
in realistic massive MU-MIMO-OFDM systems, and we
demonstrate the robustness of our approximate interpolation
methods under realistic channel conditions with imperfect CSI
and BS-antenna correlation.

C. Relevant Prior Art

Data detection and precoding for small-scale, single- and
multi-carrier MIMO systems is a well-studied topic; see e.g.
[4], [23]-[26] and the references therein. Data detection and
precoding algorithms for massive MIMO systems have been
proposed in, e.g., [5], [6], [8], [27]-[29], which leverage the fact
that the Gram matrix is diagonally dominant [30]. However, all
of these results (i) do not exploit specific properties of massive
MU-MIMO systems and (ii) ignore the fact that time-division
duplexing (TDD)-based systems must perform data-detection
and precoding, and hence, can potentially re-use intermediate
results (such as the Gram matrix) to reduce complexity. In
contrast, our methods exploit the specifics of massive MU-
MIMO, namely channel hardening, and enable a re-use of the
computations carried out in the uplink for downlink precoding.

The report [31] proposed an approximate interpolation-
based ZF-based equalizer for a wideband massive MU-MIMO
testbed. Therein, the authors interpolate the inverse of the
Gram matrix. While simulation results in [31] show that the
proposed method works well in practice, no theoretical results
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have been provided. In contrast, we use approximate methods
to interpolate the Gram matrix, and we provide analytical
expressions that provide a solid foundation of approximate
interpolation methods in massive MU-MIMO systems.

D. Notation

Lowercase and uppercase boldface letters stand column
vectors and matrices, respectively. The transpose, Hermitian,
and pseudo-inverse of the matrix A are denoted by A7, A,
and AT, respectively. We use [A];,» to represent the mth row
and nth column entry of the matrix A. Sets are designated by
uppercase calligraphic letters, and |.A| denotes the cardinality of
the set .A. The complex conjugate of a € C is a*. The indicator
function is defined as I(a), where I(a) = 1 if a is true and 0
otherwise. A complex Gaussian distribution with mean vector
and covariance matrix X is denoted by CN (u, X).

E. Paper Outline

The rest of the paper is organized as follows. Section II
introduces the necessary prerequisites. Section III proposes our
exact and approximate interpolation-based Gram matrix compu-
tation algorithms. Section IV and Section V provide an analysis
of the approximation error and complexity for the proposed
approximate interpolation methods, respectively. Section VI
shows numerical results. We conclude in Section VII.

II. PREREQUISITES

We start by summarizing the considered wideband massive
MU-MIMO system and channel model. We then outline
computationally-efficient ways for linear data detection and
precoding that make use of the Gram matrix.

A. System Model

Without loss of generality, we focus on the uplink! of a
wideband massive MU-MIMO system with B base-station
antennas, U single-antenna UEs (with U < B), and W
subcarriers. For each active subcarrier w € 2 with 2 containing
the indices of the active (data and pilot) subcarriers, we model
the received frequency-domain (FD) signal as follows:

)

Here, H,, € CB*V is the FD channel matrix, s, € CY is the
transmit vector, and n,, € CZ models additive noise. The FD
input-output relation in (1) is able to model both OFDM and
SC-FDMA systems. For OFDM systems, the entries of the
transmit vector s, are taken from a discrete constellation set O
(e.g., 16-QAM); in SC-FDMA systems, the constellation points
are assigned in the time-domain and the resulting vectors are
transformed into the FD to obtain the transmit vectors s,,. See,
e.g., [8], for details on SC-FDMA transmission.

Yo = stw + n,.

By assuming channel reciprocity [1], our results directly apply to the
downlink in which HT is the downlink channel matrix. Once all of the Gram
matrices have been computed, they can be re-used in the downlink for linear
(e.g., zero-forcing or Wiener filter) precoding. See Section II-C for the details.
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B. Wideband Channel Model

In wideband MIMO multicarrier systems, the FD channel
matrices H,,, w =0, ..., W —1, are directly related to the time-
domain (TD) matrices H, € CB*Y where £ =0,..., W — 1
are the channel “taps.” We first introduce the model used to
characterize antenna correlation at the BS side?> which occurs
in the TD. Specifically, we use the standard correlation model
from [4] and express the /th TD channel matrix as follows:

I/‘\Ig _ Rl/ZI/_\Iléncor. )

Here, I/-\Iﬁncor represents an uncorrelated TD channel matrix and
R € CB*B s a correlation matrix that contains ones on the
main diagonal and § € R on the off-diagonals. We allow § to
be either real positive or negative as long as 62 < 1. We rewrite
the correlation matrix as R = (1 —0)I + 615, where I and
1p is the B x B identity and all-ones matrix, respectively. We
note that in the absenceA of recAeive-side correlation, i.e., 6 = 0,
we have R = Ip and H, = H}"".

In order to take into account the practically-relevant case
of imperfect CSI at the BS, we assume that the FD channel
matrices ij, w=20,...,W — 1, are obtained from the TD
matrices Hy € CBXV, ¢ = 0,..., W — 1, via the discrete
Fourier transform [32] as follows:?

ity i 2wl
HW_ZngXp(] ) + oE,,.
£=0

W 3)

Here, the matrix E, € CB*V models the channel estimation
error on subcarrier w and the parameter o € R* determines
the intensity of channel-estimation errors; 0 = 0 corresponds
to the case for perfect CSI. We assume that the entries of the
matrix E,, are i.i.d. (across entries and subcarriers) circularly-
symmetric complex Gaussian with unit variance. Equation (3)
relies on the assumption that at most L < W of the first channel
taps are non-zero (or dominant) and the remaining ones are
zero (or insignificant), i.e., Hy = Opxy for £ =L,... . W —1.
In practical OFDM and SC-FDMA systems, the maximum
number of non-zero channel taps should not exceed the cyclic
prefix length (assuming perfect synchronization). Hence, it
holds that L < W for many practical scenarios and for most
standards, such as IEEE 802.11n [13] or 3GPP-LTE [14].*

C. Linear and Non-linear Data Detection and Precoding

In the massive MU-MIMO uplink, linear and non-linear data
detection methods were shown to achieve near-optimal error-
rate performance [1], [6]. For linear minimum mean-square
error (MMSE) equalization with complex transmit constella-
tions, one first computes the Gram matrix G, = Hf H,

2In massive MU-MIMO systems, the UEs signals are likely uncorrelated as
they are spatially well-separated over potentially large cells or UE scheduling
avoids correlated UEs; in contrast, the antennas at the BS are typically confined
to a small area, which increases the potential for receive-side correlation.

30ne could improve the channel estimates H,, by exploiting the fact that
only the first L taps of Hy, are active in the TD. An analysis of such channel
estimation algorithms is left for future work.

4We note that the cyclic prefix length is designed to be no smaller than
largest effective delay spread observed under typical operation conditions.
Thus, although the exact value of L may be unknown at the receiver, it can
be set to the cyclic prefix length.

and then, computes an estimate of the transmit vector as
8 = (G, +I18)"'Hly,,, where Ny and E, stand for
the noise variance and average energy per transmit symbol,
respectively. For non-linear data detectors, such as the one
in [6], one can operate directly on the Gram matrix G, and
the matched filter Hf Y. without any performance loss [33].
For such algorithms, a direct computation of the Gram
matrix G, for every subcarrier results in excessively high
complexity. In fact, even by exploiting symmetries, 2BU? real-
valued multiplications are required, which is more than 16, 000
multiplications per subcarrier for a system with 128 BS anten-
nas and 8 UEs. Furthermore, the hardware design for massive
MU-MIMO data detection in [8] confirms this observation and
shows that Gram-matrix computation dominates the overall
hardware complexity and power consumption by at least 2x.
In the downlink, ZF of Wiener filter precoding are most
commonly used [1]. For example, ZF precoding computes
X, = Hf G, lg,,, where x,, is the B-dimensional transmit
signal and s,, the data vector. If the Gram matrix G, has
been precomputed for equalization in the uplink phase, then it
can be re-used for ZF precoding in the downlink to minimize
recurrent operations. Hence, to minimize the overall complexity
of equalization and precoding, efficient ways to compute the
Gram matrix G,, on all active subcarriers w € ) are required.

III. INTERPOLATION-BASED GRAM MATRIX COMPUTATION

We now discuss exact and approximate interpolation-based
methods for low-complexity Gram matrix computation. Note
that exact Gram matrix interpolation assumes perfect CSI, i.e.,
we assume o = 0. In Section IV, we will relax the perfect-
CSI assumption and analyze the performance of exact and
approximate interpolation methods with imperfect CSI.

As a result of (3), the Gram matrices in the FD are given by

L-1L-1 . ,

G, — A, ox (JZW(M>

42:2 WZ::O £ p W

for w=0,1,...,W — 1. Given the FD channel matrices H,,
for all active subcarriers w € ), a straightforward “brute-force”
approach simply computes G, = HZH,, for each active
subcarrier w € €2. In order to reduce the complexity of such a
brute-force approach, we next discuss exact and approximate
Gram-matrix interpolation methods that take advantage of
the facts that (i) the channel matrices (and hence, the Gram
matrices) are correlated across subcarriers if L < W and (ii)
massive MU-MIMO benefits from channel hardening [1], [2].

“4)

A. Exact Gram-Matrix Interpolation

The Gram matrix G, in (4) is a Laurent polynomial matrix
in the variable x,, = exp(j2rw/W); we refer the reader
to [18] for more details on Laurent polynomial matrices. Hence,
we can establish the following result for exact Gram-matrix
interpolation; a short proof is given in Appendix A.

Lemma 1. The Gram matrices G, in (4) for all subcarriers
w=0,...,W are fully determined by 2L — 1 distinct and
non-zero Gram-matrix base-points.



Consequently, one can interpolate all of the Gram matrices
exactly from only 2L — 1 distinct and non-zero Gram-matrix
base-points that have been computed explicitly. To perform
exact interpolation, we first define a set of base points P C ()
that contains |P| > 2L—1 distinct subcarrier indices. We denote
the kth base-point index as py, where kK =0, ...,|P| -1, and
the set of all base-point indices as P = {po, ... ,p‘p‘,l}. For
each subcarrier index in the base-point set P, we then explicitly
compute |P| > 2L — 1 Gram matrices G, = HZH,,, w € P,
and perform entry-wise interpolation for the gram matrices
G,, on all remaining active subcarriers w € Q\P.

The exact interpolation procedure for each entry is as follows.
For a fixed entry (m, n), we define the vector gp € CI”!, which
is constructed from the (m, n) entries (G}, » taken from base-
points w € P, ie., gp = [[Gpolmmn * [Gp|p|,1]m,n]T~ Then,
the vector go\p € CI%I=IPI that contains the entry (m,n) for
all remaining Gram matrices G,,, w € Q\P, is given by

®)

Here, Fp 1, represents a |P| x (2L — 1) matrix where we take
the |P| rows indexed by P and the first L and last L — 1
columns from the W-point discrete Fourier transform (DFT)
matrix; the entries of the DFT matrix are defined as [F],, ,, =
LW exp(—%(m —1)(n — 1)). Similarly, Fo\p 1, represents
a (|Q —|P]) x (2L — 1) matrix where we take || — |P| rows
indexed by Q\P and the first L and last L—1 columns from the
W -point DFT matrix. In words, the exact interpolation method
in (5) first computes the 2L — 1 TD Gram-matrix entries and
then, transforms these elements into the frequency domain via
the DFT. See [15]-[18] for additional details on other exact
interpolation methods developed for MIMO systems.

Although the method in (5) is able to exactly interpolate
the Gram matrix across all W subcarriers, it is in many
situations not practical due to the high complexity of computing
F;f, 1.&p. If, however, one can sample the base points uniformly
over all W subcarriers, the complexity of matrix inversion
can be reduced significantly. Unfortunately, this approach is
often infeasible in practice due to the presence of guard-band
constraints in OFDM-based or SC-FDMA-based standards [13],
[14]. Another issue of exact interpolation methods, such as
the ones in [15]-[18] and ours in (5), is that they generally
assume perfect CSI and no spatial correlation. As we will show
in Section VI-C, imperfect CSI results in poor interpolation
performance—this is due to the fact that the matrix Fp j,
is typically ill-conditioned, especially when sampling Gram-
matrices close to the minimum number of 2L — 1 base points.

We next propose two approximate interpolation schemes that
not only require lower complexity than a brute-force approach
or exact interpolation in (5), but also approach the performance
of a brute-force approach in massive MU-MIMO systems and
are robust to channel-estimation errors.

ga\p = FQ\P,L(F;:,LgP)-

B. Approximate Gram-Matrix Interpolation

We consider the following two approximate Gram-matrix
interpolation methods illustrated in Fig. 1.

Oth Order Interpolation: We select a set of |P| distinct base-
points with P = {po,...,pjp|—1} C Q. We explicitly compute
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Fig. 1. Tlustration of Oth and Ist order interpolation for the entry [Gu]1,1
across subcarriers. We explicitly compute the Gram matrix for every fifth
subcarrier index w and interpolate the remaining matrices. We assume a 128
BS antenna, 8 user massive MU-MIMO system with W = 2048 subcarriers,
a delay spread of L = 144, and perfect CSI without BS-antenna correlation.

G, = Hf H,, on these base points and perform Oth order (or
nearest-neighbor) interpolation for the remaining subcarriers
in the set Q\P according to:

G, =G,, Vw e NP, (6)

p = arg min | — wl,
PEP

In words, we set the interpolated Gram matrix (~-}L,J equal to

the nearest Gram matrix that has been computed explicitly for

one of the neighboring base points.

Ist Order Interpolation: Analogously to the Oth order
interpolation method, we explicitly compute G, = Hf H,
on a selected set of base-points p € P. Then, for each target
subcarrier w € Q\P we pick two nearest base-points pj and
Dk+1, 1.e., pp < w < pgr1, and perform entry-wise linear
interpolation according to

G = A\G,, + (1—-A,)G weMP, (1)

Pk+12

where A, = (pr41 — w)/(Pr+1 — pk) and pi < pry1.

IV. ANALYSIS OF APPROXIMATION ERROR

We now analyze the approximation error associated with
the approximate interpolation schemes from Section III-B. We
use G, to represent the Gram matrices that have been computed
exactly and G, to represent the Gram matrices that are obtained
via approximate interpolation. Evidently, the exact interpolation
scheme in Section III-A entails no approximation error.

A. Mean-Square-Error of Approximate Interpolation

We study the mean-squared error (MSE) on each entry (m, n)
for the w-th subcarrier, which we define as follows:

o-MSE(™™) 2 EU [Golmn — [Gw}m,nﬂ. (8)

Here, o represents the order of interpolation, i.e., we have
either o = 0 or o = 1. Our results make extensive use of the
scaled Fejér kernel [34] given by

cos(L¢)

1—
N —
Je9) =1L 1—cos(¢) L

_,sin?(L¢/2)

sin2(¢/2) ©)
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and rely on the following key properties of this kernel; the
proof is given in Appendix B.

Lemma 2. The scaled Fejér kernel (9) is non-negative,
bounded from above by one, and monotonically decreasing
in ¢ for ¢ € [0,2r/L] with L > 1.

B. MSE of Oth Order Interpolation

The following result precisely characterizes the MSE of Oth
order interpolation for imperfect CSI as in (3) and BS-antenna
correlation as in (2); the proof is given in Appendix C.

Theorem 1. Let the entries of the TD matrices ﬁ?““’r, l =
1,..., L, be distributed CN(0,1/(BL)) per complex entry.
Assume that the off-diagonal entries of the receive correlation
matrix are 9§, the variance of the channel estimation error o,
and p € P is the closest base point to the target subcarrier w.
Then, for any (m,n) entry of the Gram matrix G,,, the MSE
for the Oth order interpolation method in (6) is given by

2 2
OMSE, = ccn + 51+ 20 (1= 1320 1) ). 00)

where we use the definitions
ccsi = 20%(2+ Bo?) and e.or = 6%(B —1).

From this result, we see that, as the number of BS antennas B
increases, cs increases quadratically with respect to 0. For
perfect CSI, i.e., 0 = 0 so ecs1 = 0, the MSE for Oth
order interpolation decreases with an increasing number of
BS antennas B as %O-MSEW <0, if 62 < 1. Also, we note
in the case for non-zero correlation, i.e., § # 0, the MSE for
Oth order interpolation is amplified (compared to that with no
correlation) by a factor of 1+ §%(B — 1). Furthermore, we
observe that the MSE is independent of the entry of the Gram
matrix (i.e., the MSE is identical for the diagonal as well as off-
diagonal entries); this is a consequence of the 1.i.d. assumption
of the TD channel matrices H}"*".

To gain additional insight on Oth order interpolation in the
large BS-antenna limit, we have the following result.

Corollary 1. Assume the conditions in Theorem I are met,
and let 0> — 0. Then, as B — oo, the MSE of Oth order
interpolation is given by

. 9 27
BlgnoO 0-MSE,, =26 <1 - fr <W(p - w)))

Corollary 1 demonstrates that in the large-BS antenna limit,
the MSE of Oth order interpolation is zero across all subcarriers
if and only if the BS antennas are uncorrelated, i.e., = 0. For
0 # 0, the MSE depends on the distance between the nearest
base-point and the target subcarrier.

While the MSE expression in (10) is exact, it does not
provide much intuition. We define the following quantity that
enables us to further analyze the MSE in (10).

Definition 1. The maximum distance between any subcarrier w
and the nearest base point is given by:

Pk+1 — Dk
d =—max |—|.
M ep { 2 J

(1)

With the maximum distance d,, for a given set of base
points P, Corollary 2 shows that the Oth order approximation
can be bounded from above using simple analytic expressions;
the proof is given in Appendix D.

Corollary 2. Let dpn.x be the maximum distance in (11)
and assume the conditions in Theorem 1 are met. Then, the
maximum MSE of Oth order interpolation over all active
subcarriers w € ) is bounded by:

glémé{O—MSEw}

2
ecsr + E(l + 500;’)7 dmax 2
<

= 2(1 4 ecor 2w
ecsr + % (1 - fL (deax))7 dmax <

Corollary 2 implies that regardless of small or large
maximum distance d.x, the MSE given by the Oth order
approximation always decreases with the number of BS
antennas B if 6 = 0 and 02 = 0 (see also Theorem 1). In
addition, if the distance between the interpolated subcarrier
index w and its closest base point is sufficiently small, i.e.,
dmax < W/L, then we obtain a sharper upper bound on the
MSE than ecsp + %(1 + £cor)- In a scenario with a large delay
spread L, Corollary 2 reveals that one requires finer-spaced
base points for Oth order interpolation in order to keep the
approximation error strictly smaller than ecs; + %(1 + Ecor)-
Since the maximum error is mainly determined by dp,x, a good
strategy for selecting base points with Oth order approximation
is uniformly spacing them in the set of active subcarriers 2.

SESE

C. MSE of Ist Order Interpolation

We now present the approximation error analysis of 1st order
interpolation. The following result characterizes the MSE of
Ist order interpolation; the proof is given in Appendix E.

Theorem 2. Let the entries of the TD matrices ITIE"“”, l =
1,..., L, be distributed CN'(0,1/(BL)) per complex entry.
Assume that the off-diagonal of the receive correlation matrix
are 0, the variance of the channel estimation error o across all
subcarriers w =0, ..., and p € P is the closest base point
to the target subcarrier w. Then, for any (m,n)-th entry of
the Gram matrix G, the MSE for the Ist order interpolation
method in (6) is given by

1-MSE,, = ecsi(1 — Au(1 = Ay))
2 ) (1= Al = A) + Aull = A) T2 (6)
- (1 - )\w)fL()\wa) - >\wa((1 - )\w)a))y

where 6 = 22 (pry1 — i) and N = (Drg1 — )/ (Drt1 — Di)-

12)

Similarly to Oth order interpolation, we observe that the
MSE of 1st order interpolation is independent of the entry
(m,n) and impacted by CSI errors and receive correlation
(see Section I'V-B for detailed discussion). The result shown
next in Corollary 3 reveals that if the spacing between the
two base-points p; and piy1 defined as dp = pry1 — Pk
is sufficiently small, then the 1st order interpolation strictly



outperforms Oth order interpolation, i.e., 1-MSE,, < 0-MSE,,
for all w € (pk, pr+1); the proof is given in Appendix F.

Corollary 3. Let dj denote the spacing between two base-
points py and pyy1, and assume the conditions in Theorem 1
and Theorem 2 hold. If d,, < W/(3L), then

1-MSE,, < 0-MSE,,, for all w € (pk,Pr+1), (13)

which holds with equality if and only if L = 1 and ecs; = 0.

We note that the condition di, < W/(3L) is not sharp;
Appendix F outlines the details on how it can be sharpened.
Furthermore, given that dy, is significantly larger than W/(3L),
we can construct situations for which Oth order interpolation
outperforms 1st order interpolation. Note that for L = 1, the
FD channel is flat (i.e., G, is constant for all w) and hence,
Ist and Oth order interpolation have the same MSE.

In summary, we observe that for both approximate inter-
polation methods, the MSE can be lowered by increasing
the number of BS antennas B, assuming that the channel
estimation error ecsy decreases with B. In the large-antenna
limit B — oo with perfect CSI and no BS-antenna correlation,
the MSE vanishes, which is an immediate consequence
of channel hardening in massive MU-MIMO systems [1].
Furthermore, 1st order interpolation generally outperforms Oth
order interpolation for a sufficiently small minimum spacing
between adjacent base points, i.e., for di, < W/(3L).

V. COMPLEXITY ANALYSIS

We next compare the computational complexity of the
four studied Gram-matrix computation algorithms: brute-force
computation, exact interpolation, Oth order interpolation, and 1st
order interpolation. We measure the computational complexity
by counting the number of real-valued multiplications.’

A. Brute-Force Computation

We start by deriving the total computational complexity
required by the brute-force (BF) method. We only com-
pute the upper triangular part of G, (since the matrix is
Hermitian). Each off-diagonal entry requires B complex-
valued multiplications, which corresponds to 4B real-valued
multiplications; each diagonal entry requires only 2B real-
valued multiplications. Hence, the computational complexity
of computing G, using the BF method is

U -1

BF:|Q<4B 5 )+23U):2|QBU2 (14)

for a total number of (2| active subcarriers.

B. Exact Interpolation

We now derive the computational complexity of exact
interpolation as discussed in Section III-A. Exact interpolation
requires a BF computation of the Gram matrix at each of the

SWe assume that a complex-valued multiplication requires four real-valued
multiplications; computation of the squared magnitude of a complex number
is assumed to require two real-valued multiplications.
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|P| base points. We will use the |P| precomputed base points
of G,, to interpolate the remaining |2| — |P| Gram matrices.

We will assume that the base points and the assumed channel
delay spread L are fixed a-priori so that Fo\p, LF;,y 7, in (5) can
be precomputed and stored. We emphasize that this approach
does not include the computational complexity of computing
the interpolation matrix itself, which favors this interpolation
scheme from a complexity perspective. In fact, we only need
to multiply the precomputed interpolation matrix Fo\p, LF
with the vector gp, which requires 4(|Q2| — |P])|P| real- valued
multiplications. Hence, the total computational complexity of
exact interpolation is:

P U+1
Couas = ol ae + a(2 - PP 5
= 20P((j0] ~ [PI + BIU? + 2P0 - [P)U. (15)

We note that if the number of users U is large and the
number of base points is similar to the number of BS
antennas, i.e., |P| ~ B, then the BF method in (14) and
exact interpolation (15) exhibit similar complexity. We also
observe that the complexity of exact interpolation (15) is lower
than that of the BF method (14) if |P| < (14 U)~'BU. Since
the use of |P| > 2L — 1 distinct base points guarantees exact
interpolation (assuming perfect CSI), we observe that exact
interpolation has lower complexity than the BF method if L is
(approximately) smaller than B/2.

C. Oth Order Interpolation

The computational complexity of the Oth order interpolation
method is given by

Con = 2|P|BU?, (16)

as we only need to compute the Gram matrices on all the base
points. We note that since typically |P| < || the savings (in
terms of real-valued multiplications) are significant compared
to the BF approach and exact interpolation, but does so at the
cost of approximation errors (cf. Section VI-D).

D. Ist Order Interpolation
The computational complexity of the 1st order interpolation
is given by

U+1
Ciue = Con + (10 [P T

= 2|P|BU? +2(|Q| — |PHU(U + 1),

where we assume that the interpolation weight A\, was pre-
computed. We note that the linear interpolation stage for each
subcarrier w € Q\P requires four real-valued multiplications.
By comparing (16) to (17), we observe that the complexity
of 1st order interpolation always exceeds the complexity of
the Oth order method, but the complexity is significantly lower
than that of the BF method as we generally have |P| < |Q].

a7

VI

We now study the MSE, the error-rate performance, and
the computational complexity of the proposed Gram-matrix

NUMERICAL RESULTS
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interpolation schemes. We consider a MU-MIMO-OFDM
system with 128 BS antennas and with 8 single-antenna users.
We assume a total of W = 2048 subcarriers, with |2| = 1200
active subcarriers, similar to that used in 3GPP LTE [14]. Unless
stated otherwise, we assume that the entries of the TD channel
matrices are i.i.d. circularly-symmetric complex Gaussian with
variance 1/(BL) and we consider 16-QAM transmission (with
Gray mapping). We use a linear MMSE equalizer for data
detection; see Section II-C. For situations with imperfect CSI,
we consider pilot-based maximum-likelihood (ML) channel
estimation with a single orthogonal pilot sequence of length U
with the same transmit power as the data symbols.

A. Complexity Comparison

We now assess the complexity of the various Gram-matrix
computation methods in comparison to the overall complexity
required for linear MMSE-based data detection, which includes
Gram-matrix and matched-filter computation as well as matrix
inversion for each active subcarrier. The results shown here
are for a 128 x 8 (the notation represents B x U) massive
MU-OFDM-MIMO system with 1200 active subcarriers and a
delay spread of L = 144.

Fig. 2 compares the complexity of Gram matrix com-
putation for four different methods, brute-force, exact,
Oth-, and Ist-order interpolation methods for |P| =
{0.25|92],0.5]€2],0.75|Q2] , |2|}. The solid part of the bar plot
shows the complexity of Gram matrix computation; the fenced
part corresponds to the remaining complexity required for data
detection (including matched-filter computation and a matrix
inversion for each active subcarrier). The percentage values
indicate the relative complexity of Gram-matrix computation
compared to the total complexity required for data detection.
We assume an implicit Cholesky-based matrix inversion for
data detection [35]. As demonstrated in [26], Gram matrix
computation requires most of the complexity, as it scales
quadratically in the number of BS antennas.

We see that the exact interpolation method results in high
complexity in the considered system (see Section V-B for exact
details when exact interpolation achieves lower complexity than
a BF approach). We also see that the proposed Oth and 1st order
approximation methods both achieve significant complexity
reductions. For |P| = 0.25|Q|, the proposed methods requires
less than half the complexity of a BF approach. As we will
show in Section VI-C, the proposed approximate interpolation
methods will exhibit similar error-rate performance as that the
BF approach (see Figs. 4 and 5), but do so at fraction of the
computational complexity.

B. MSE of Approximate Interpolation

Fig. 3 compares the MSE of Oth and 1st order interpolation
as proposed in Section III-B. Note that the BF method and
exact interpolation have an MSE of zero and hence, we exclude
these results. We select two base points at subcarriers 500 and
600 and one target point at subcarrier 512, and compare the
MSE for different numbers of BS antennas and under ideal and
non-ideal scenarios. In the ideal scenario, we assume perfect
CSI and no BS-antenna correlation, whereas in the non-ideal

107
8 ‘ ‘
] = brute-force
92%,
I exact
ol mm Oth order
N | st order

T8%T8%78% 78%
73%72%

65%64%

49%47%

number of real-valued multiplications
=

0.25 0.5
fraction of || base-points

0.75 1

Fig. 2.  'We compare the complexity of various Gram matrix computation
methods in comparison to the complexity of data detection for a 128 x 8 MU-
OFDM-MIMO system with \Q| = 1200, L = 144, and four different sets of
base-points |P| = {0.25|2|,0.5|2|,0.75|€2|, |©2|}. The percentage values
shown in the above bar plots show the relative percentage of Gram-matrix
computation compared to the total complexity required for data detection.

scenario we assume channel-estimation at SNR = 25 dB across
all subcarriers with the signal-to-noise ratio (SNR) defined by
SNR = U/(Bo?) and a BS-antenna correlation of § = 0.1. In
order to assess the approximation error with respect to different
channel delay spreads, we set L € {36,72,144}. The resulting
MSE is shown in Fig. 3. Note that the MSE for both Oth and
Ist are independent of the entry (as predicted by Theorems 1
and 2); hence, we consider the average MSE across all entries.

We observe that the 1st order interpolation method achieves
a lower MSE than that given by Oth order interpolation, where
the performance gap increases with larger delay spreads L; this
caused by the fact that for small delay spreads L, the channel
is more smooth across subcarriers. For larger delay spreads L,
Ist order interpolation captures the faster-changing behavior of
the Gram matrix, whereas the Oth order interpolation ignores
such changes. We also see that the MSE degrades in the non-
ideal scenario, even if we increase the number of BS antennas;
this behavior is reflected in our analytical results. Finally, we
see that the simulated MSE matches perfectly our theoretical
results in Theorems 1 and 2.

C. Error-rate Performance

We now compare the error-rate performance of the proposed
Gram-matrix computation schemes. We simulate the bit-error
rate (BER) for a MU-MIMO-OFDM system for a different
number of base-points |P| and for perfect as well as imperfect
CSI. We also investigate the impact of a more realistic channel
model. For all results, we simulate three different numbers
of base-points |P| = L/4, |P| =2L — 1, and |P| = 4L, and
select equally-spaced base points. Figures 4(a) and 4(b) show
BER simulation results for an i.i.d. Rayleigh fading scenario
with perfect and imperfect CSI, respectively. Figure 4(c) shows
BER simulation results for the QuaDRiGa channel model® with

6We simulate a square antenna array with a non-line-of-sight scenario with
a 2 GHz carrier frequency, 20 MHz bandwidth, and 200 m distance between
BS antenna and the users. Our algorithms assume L = 144 but the true delay
spread is slightly smaller.
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Fig. 3.  MSE of Oth and 1st order interpolation for an entry of Gsi2
using two base points Goo and Geoo for three different delay spreads
L € {36, 72,144} for the ideal and non-ideal scenario. The markers represent

simulation results whereas the lines represent our approximation-error analysis.

Evidently, our theory matches perfectly with the simulated values.

imperfect CSI [36]. We note that QuaDRiGa channel model
includes a path-loss model for each user.

Figure 4(a) shows that exact interpolation for [P| > 2L — 1
base points provides identical results as the BF method (up to
machine precision) for a system with perfect CSI. For |[P| =
L /4 base points, the proposed Oth and st order interpolation
exhibit an error floor; this performance loss can be mitigated
substantially by increasing the number of base points to |P| =
2L — 1. By setting |P| = 4L < 0.5|Q], the both the Oth
and 1st order interpolation methods exhibit virtually no BER
performance loss.

Figure 4(b) shows the situation for imperfect CSI (with
channel estimation). We observe that the performance of the

BF method and that of exact interpolation are no longer equal.

In fact, for |P| = 2L — 1 and |P| = 4L base points, exact
interpolation exhibits a significant error floor. The reason is
due to the fact that the interpolation matrix is ill-conditioned,
which results in significant noise enhancement. Although the
error floor is decreased for |P| = 4L, a floor remains at 10~3
BER. In contrast, the error floor of Oth order and 1st order
interpolation for |P| = 2L — 1 and |P| = 4L base points is
well-below 10~* BER and hence, the proposed approximate
interpolation schemes are more resilient to scenarios with
imperfect CSI than exact interpolation.

Figure 4(c) shows the BER performance for the QuaDRiGa
channel model with imperfect CSI. We observe that all
considered interpolation methods achieve a lower error floor
than that given in Fig. 4(b) for |P| = L/4; this is due to the
fact that the effective delay spread for the considered channel
is smaller than L = 144 (which is assumed in the algorithms).
Once again, we observe a BER floor of exact interpolation
for all considered numbers of base points. In summary, the
proposed approximate interpolation methods are more robust
in practical scenarios than the exact interpolation method.
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D. Performance/Complexity Trade-off

We now investigate the BER performance vs. computational
complexity trade-off for the proposed approximate interpolation
methods with imperfect CSI. We use the complexity Cpp of the
BF method in (14) as our baseline, and we compare it to that
of the proposed Oth and 1st order interpolation methods in (16)
and (17), respectively. We vary the number of base points |P]
from L to D and simulate the minimum SNR required for the
linear MMSE equalizer to achieve 10~3 BER.

Figure 5 shows the trade-off results for Oth and 1st order
interpolation. For a fixed fraction of the complexity of Cgp,
we observe that the 1st order interpolation method always
outperforms the Oth order interpolation method. Hence, Fig. 5
clearly reveals that the additional complexity required by
linear interpolation is beneficial when jointly considering
performance and complexity. In addition, we see that the 1st
order interpolation method approaches the SNR performance
of the BF method by 1dB with only 45% of the complexity.

VII. CONCLUSIONS

We have studied the performance of exact and approximate
interpolation-based Gram matrix computation for wideband
massive MU-MIMO-OFDM systems. Instead of performing
a brute-force (BF) computation of the Gram matrix for all
subcarriers or using exact interpolation schemes, we have
proposed two simple, yet efficient approximate interpolation
methods. We have demonstrated that channel hardening in
massive MU-MIMO enables the proposed Oth and 1st order
interpolation schemes to perform close to that of an exact BF
computation at only a fraction of the computational complexity.
In addition, the proposed approximate interpolation methods
are more robust to channel-estimation errors and receive-side
antenna correlation than exact Gram-matrix interpolation.

There are many opportunities for future work. We expect
the use of higher-order approximate Gram-matrix interpolation
schemes to perform better at an increase in complexity. An
analysis of such methods is left for future work. Our results
also indicate that the broad range of existing exact interpolation
schemes for small-scale, point-to-point MIMO systems, e.g.,
matrix inversion and QR decomposition [15], [16] can be made
more robust and less complex in massive MU-MIMO systems
if combined with approximate, low-order interpolation schemes.
In fact, the recent result in [31] for approximate interpolation
of matrix inversion demonstrates this claim in a massive MU-
MIMO scenario via simulations—it s an open problem to
analyze the performance of such interpolation methods. In
addition, it would be practically relevant to develop theory for
more realistic correlation models, such as the one in [37].
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Fig. 4. Uncoded bit error-rate (BER) comparison in a 128 BS antenna, 8 (single-antenna) user, wideband massive MU-MIMO-OFDM system. The values next
to the legend entries correspond to the number of base points |P|. The proposed approximate interpolation schemes (Oth and 1st order interpolation) outperform
exact interpolation for scenarios with imperfect CSI and approach the performance of the exact brute-force method for a small number of base points.
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for Oth and Ist order interpolation in an ii.d. Rayleigh fading channel
with imperfect CSI. Both approximate interpolation methods approach the
performance of an exact brute-force approach at a fraction of the complexity.

APPENDIX A
PROOF OF LEMMA 1

Since all of the possible values in the exponent of (4), i.e.,
¢— ', are integers ranging from —(L — 1) to L — 1, the Gram
matrix G, in (4) is a polynomial with degree no larger than
2L — 1. Consequently, the Gram matrices G, in (4) for all
subcarriers w = 0, ..., W are fully determined from 2L — 1
distinct and non-zero Gram-matrix base-points.

APPENDIX B
PROOF OF LEMMA 2

Evidently, (9) is non-negative, i.e., f1.(¢) > 0. To show that
fr(@) <1, we use the fact that the Fejér kernel L f1,(¢) =
L=t %SE(L;;) is upper bounded by L [34, Eq. 1.2.24]. Now, we
show that f1,(¢) is monotonically decreasing in ¢ € [0,27/L]
for L > 1. We start by defining an auxiliary function g(¢) =
sin(L¢/2)/sin(¢/2), so that f(¢) = g2 (¢)/L>. For L > 1,
¢ € (r/L,2n /L], sin(Lp/2) and sin(¢/2) are monotonically
decreasing and increasing respectively, and hence, ¢g(¢) and

fr(#), are monotonically decreasing. For ¢ € [0, /L], the
derivative of ¢g(¢) with respect to ¢ is given by:
dg(¢) _ (Lcos(L¢/2)sin(¢/2) — cos(¢/2) sin(Le/2))
de 25sin’(¢/2) ’
and we have that
Lcos(L¢/2)sin(¢/2)  Ltan(¢/2)
cos(¢/2)sin(Lo/2)  tan(L¢/2)
Hence, ¢'(¢) < 0, and therefore, f7,(¢) is monotonically
decreasing in ¢ € [0,27/L].

APPENDIX C
PROOF OF THEOREM 1

Suppose we use G, at base point py to approximate G, at
the target subcarrier index w. Hence, the MSE in (8) is given
by the following expression:

0MSES™™ = E[[[Gulmn — [Gulmal’]  (18)

We will obtain an analytical expression for (18) with imperfect
CSI and the BS-antenna correlation model introduced in (3)
and (2), respectively. We start with expressing the channel
matrix H,, from (3) as

w-1 .
(a) N o = ]27rw€>
H, HJI( < L)+ ——E, )exp( — ,
gﬁ < oI ) T z) p( W

19)

where (a) follows from noting that the DFT is orthogonal (with
normalization constant) with each entries of Ee distributed
CN(0,1). Hence, the TD channel matrix under imperfect CSI
is given as HY = H/I(¢ < L) + \/LWEE.

Now, use the correlation model introduced in (2). We note
that the B x B BS correlation matrix R = (1—0)Ip+4d1p can
be expressed by (alp + 815)? = R where a = /1 — 6, and
B=%(y/1+ (B-1)§ — ). Since the matrix (alp + 51p)
is symmetric, we note that the I/‘\Ig is expressed as ﬁg =
(odp + B1p)H™ so that

B
[l = BP0 + 8 [HT,
b=1

(20)



For our derivation of the MSE, we will utilize the following
auxiliary function:

A = exp (j 27;5’“ (¢ — ﬂ’)) —exp (j%;”(f ~ f’)). 1)

By substituting A into [CN-}w]m,n— [Gulm,n in (18), we obtain
the following expression for the Oth order MSE:

wW-1 B 2
0-MSE(™™) — { Z Z oo A ]
£,/=0 b=1
w-1 W-1
SID SIS (Az:tm

£1,02=04£3,04=0b1,bo=1

E[] ml,mthl,n[Hz]zw[Hz]t,n])
W—-1

(a)
= Z |A4152 |2

£1,£2=0
£1#Lo
B ~ ~ ~ ~
Z EI:[Hgl]ZQ,m[Hgl]bhm:lE[[Hzg]zl,n[Hgg]bQJL] (22)
b1,b2=1

where (a) follows from Ay, ¢, = 0if 1 = {5, and independence
and the zero-mean assumption on the TD channel for ¢; # {5,
which enforces ¢; = /3 and /5 = ¢, for (22). By inspection of
(22), we observe that O-MSEEJm’”) is independent of m and n
and thus, the MSE of the off-diagonal and diagonal entries are
equal. We simplify (22) for imperfect CSI and the BS-antenna
correlation model. We first note that

~ " ~ 0.2
E[[Hgl]bg,m[HZ]bl,m] = 71[([71
1

rbr = b2)
+ ﬁ( ?1(by = by) +2aB + B2B)I(¢; < L)
2

= 7l =ba) + ﬁm I(by = by) + O)I(¢y < L),

where the last step is obtained by noting that 20,3 + 32B = 6.
Therefore, the inner sum is evaluated by

B
Z E[[HZ]Zg,m[HZ]bhm]E[[HZQ]Zl7n[Hg2]b27n]
b1,b2=1
Ba4 o?
W2 + m(a + (5)( (61 < L) +H(€2 < L))
1
+ @(a (@® +28) + B6*I(4y < L)I(¢y < L). (23)

Now, we simplify (22) using the results from (23) with the

fact that a = +/1-46 and Zz Y Ag |2 = 2W so that
Zel =0 |40, 0,|? = 2W?2. Hence,
2, 1+0°(B-1) “ )
O-MSE(™") = 280" +40° + 05— 3 |4,
£1,5=0
£y #Lo
28 4+4 2+2(1+52(B—1))(1 Lil £ ejaAé)
=2Bo" + 40 — L
2
B s ai—e T
a 2
@ 2022+ Bo®) + = (1+0%(B - 1)1 - f1(0)),
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where (a) comes from the definition of Fejér kernel [34]. Note
that we defined the shorthand variable § = 2% (p, — w).

The proof can be generalized to per-UE large-scale fading by
expressing the channel matrix as H, = H, D, where H,, was
defined in (19) and the diagonal matrix D contains the large-
scale fading coefficients for the UEs on the main diagonal. In
addition, the proof can be generalized to receive-side correlation
matrices R by rewriting H, in (20) with He = vVRH RH;™. A
corresponding analysis is left for future work.

For the case of other correlation models, e.g., the one in [37],
one can first compute the Cholesky decomposition of R to
compute H, and proceed with the analysis as in (20). We note
that the Cholesky decomposition of the exponential correlation
model proposed in [37] can be computed in closed form. We
leave the details for future work.

APPENDIX D
PROOF OF COROLLARY 2

Since fr(¢) is non-negative, it is obvious that
max,ecn{0-MSE,} < ecst + 2(1 + &cor)/B for all w € Q.
The equality is satisfied if (p — w)/W = b/L for some
integer b > 0 so that fL(2W”(p — w)) = fL (b%) = 0. We
note that this can only happen if dn.x > W/L, where dpax
is the maximum distance between any target subcarrier w
point and its nearest base point; this is due to the fact that

(p w) < 7Tdma,( < %’T

Assume dmax < W/L. Then, by Lemma 2, the maximum
MSE of Oth order interpolation is given by:

glgé({O—MSEw}

= ecs1 + %(1 + Ecor) <1 — min_fr, (2W7T(Pk - w)))

weQ\P
2
= €cs1 + E(l + Ecor) (1 - fL (deax>) .
APPENDIX E

PROOF OF THEOREM 2

The proof is similar to that of Theorem 1 in Appendix C.
We start by defining the following auxiliary function

21 27
Qo =\, €Xp (j Wl;k AZ) + (1= A,)exp <]§§HA€>

— exp <j2$dA€) ,

where we introduced the variable A¢ = ¢ — ¢'. The result
is obtained by substitutn‘}‘; Qe in place of Ry at (22) in
Appendix C. Note that Y°," U 1Qe |2 = 21— A (1=A))W
which shows that ZZ,ZQZO 1Qe,e,]? = 2(1 — A\(1 — A))W2.

APPENDIX F
PROOF OF COROLLARY 3

Without loss of generality, we will assume that the target
subcarrier index w is closer to px11 so that A\, € [0,0.5]. We
will assume that p < w < pgy1 so that d = pg+1 — pr >
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0. Using the results from Appendix C and Appendix E, the
difference of 1-MSE,, and 0-MSE,, is given by:

].-MSEUJ — O-MSEW = —Ecs[/\w(l — /\w))

L—1
LEeor S~ (1Qual? - [Res ).
BIL2 142 142
[1,@2:0

Without loss of generality, we assume that ¢; — 5 > 0 since
|Qe,0,]? — |Reye,|? is even and is 0 if 1 = f5. We simplify
the term |Qy,¢,|* — |Re,¢,|? by denoting ¢ = 0(¢1 — £) > 6,
where § = 2Z.d;, and expand the expression |Qg,¢,|? — | Re, ¢, |*
as follows:

1Qerel? = | Reves > 2 22, (1 = M) (cos(6) — 1)

= (cos((1 = Ao)9) — cos(Aw)))

Y o sin(g/2)(sin((1 — 2))6/2) — (1 — Au) sin(6/2)).

(24)

Here, (a) follows from the definition of Q¢, ¢, and Ry, ¢, and (b)
is a results from simplifying the expression cos((1 — \,)¢) —
cos(Ay@)) = —2sin((1 — 2A,)¢/2) sin(¢/2).

We first note that since ecs; = 20%(2 + Bo?) > 0 and
by (24), 1-MSE,, = 0-MSE,, if ect = 0, and L = 1 or
Aw = 0. This behavior can be explained intuitively because
when ecg1 = 0 and L = 1, then the channel is flat across all
subcarriers, and hence 1-MSE,, = 0-MSE,,

Hence, we now show that 1-MSE,, < 0-MSE,, for L > 1
and \, # 0 by showing that |Qe,r,|?> — |Re,e,|*> < 0. First
note that ¢1 — ¢ < L and if dj, < W/(3L), then § < ¢ <
Lo = ZW’TLdk < %” Hence, sin(¢/2) > 0. Therefore, showing
that (24) is negative is equivalent to:

gr) = TUOZ2ID) 1),
We now prove (25) by noting that g(A,,) = sin(¢/2) if A, =0
and ¢g’(\,) < 0 forall A, € (0,0.5] so g(\,,) is monotonically
decreasing in (0, 0.5]. The proof is straightforward by:

(25)

/ —¢cos((1 —2A,)¢/2) | sin((1 —2),)9/2)
g ()\w) = 11—, + (1 - )\w)Z ,
(26)
and, hence, ¢’(\,) < 0 in (26) can be expressed as:
tan((l - 2)\w)¢/2) < (1 - )\w)¢ (27)

To show (27), we introduce the shorthand notation v =
1 -2\, € [0,1). With the new notation ~y, the proof is
straightforward by:

(a) (b)
tan((1 = 2A,)9/2) < ytan(4/2) < v¢ < (v + Aw)o
= (1 - )‘w)qba
where (a) follows from the convexity of tan(x) in z € [0, 7/2)
and (b) follows from tan(¢/2) < ¢ for all ¢ € (0,27/3].
Since ¢’(A\o) < 0 for all A, € (0,0.5], g(X,) is monotonically
decreasing and thus, from (24), it follows that |Q,¢,|? —
|R4152|2 <0 for L >1.
We conclude by noting that a sharper upper bound on dj, can
be obtained by directly computing the bounds for 1-MSE,, —

0-MSE,, i.e.,

22, (1 + ecor)
B

% (FLOu8) = fL((1 = A)0) = (1= X)L = f1(0))) <0,

for all A, € (0,0.5], but we leave an analysis of such refined
bounds for future work.

].—MSEUJ — O-MSEW = 7€CSI>\UJ(1 - Aw)) +
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