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Approximate Gram-Matrix Interpolation

for Wideband Massive MU-MIMO Systems
Charles Jeon, Zequn Li, and Christoph Studer

Abstract—Linear and non-linear data-detection and precoding
algorithms for wideband massive multi-user (MU) multiple-
input multiple-output (MIMO) wireless systems that rely on
orthogonal frequency-division multiplexing (OFDM) or single-
carrier frequency-division multiple access (SC-FDMA) often
require computation of the Gram matrix for each active sub-
carrier. Computing the Gram matrix for each active subcarrier,
however, results in excessively high computational complexity.
In this paper, we propose novel, approximate algorithms that
significantly reduce the complexity of Gram-matrix computation
by simultaneously exploiting channel hardening and correlation
across subcarriers. We show analytically that a small fraction
of Gram-matrix computations in combination with approximate
interpolation schemes are sufficient to achieve near-optimal error-
rate performance at low computational complexity in massive
MU-MIMO systems. We furthermore demonstrate that our
approximate interpolation algorithms are more robust against
channel-estimation errors than exact Gram-matrix interpolation
algorithms that require high computational complexity.

Index Terms—Equalization, Gram matrix, interpolation, mas-
sive MU-MIMO, orthogonal frequency-division multiplexing
(OFDM), precoding, single-carrier frequency-division multiple
access (SC-FDMA).

I. INTRODUCTION

M
ASSIVE multi-user (MU) multiple-input multiple-output

(MIMO) is a key technology component in fifth-

generation (5G) wireless systems [1], [2]. The idea of massive

MU-MIMO is to equip the base-station (BS) with hundreds

of antenna elements while serving tens of user equipments

(UEs) in the same time-frequency resource by means of spatial

multiplexing. Such large antenna arrays enable fine-grained

beamforming in the uplink (UEs transmit to the BS) and in

the downlink (BS transmits to the UEs), which offers superior

spectral efficiency compared to traditional, small-scale MIMO

technology that use only a few antennas at the BS.

In the uplink, linear data-detection algorithms that rely on

linear minimum-mean square error (MMSE) equalization or
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zero-forcing (ZF) are known to achieve near-optimal error-

rate performance in realistic massive MU-MIMO systems

with a finite number of transmit antennas [1], [3], [4]. Non-

linear data-detection algorithms [5]–[7] have recently been

shown to outperform linear methods in systems where the

number of UEs is comparable to the number of BS antennas.

Most of these linear and non-linear data-detection algorithms

entail high computational complexity, often dominated by the

computation of the Gram matrix G = HHH [8], [9]. Here,

H ∈ C
B×U is the (uplink) channel matrix, B is the number

of BS antennas, and U is the number of (single-antenna)

users. The computational complexity is orders-of-magnitude

higher in wideband systems that use orthogonal frequency-

division multiplexing (OFDM) or single-carrier frequency-

division multiple access (SC-FDMA), in which a Gram matrix

must be computed for each active subcarrier (i.e., subcarriers

used for pilots or data transmission) [8]. For example, Gram

matrix computation requires more than 2× higher complexity

than data detection for a 128 BS antenna 16 UE antenna

MU-MIMO system [9, Tbl. 4.2]. In the massive MU-MIMO

downlink, precoding is necessary to focus the transmit energy

towards the UEs and to mitigate multi-user interference [1].

In wideband systems, the complexity of linear precoding

algorithms is—analogously to the uplink—typically dominated

by Gram matrix computation on the active subcarriers.

While some data-detection and precoding algorithms have

been proposed that avoid the computation of the Gram

matrix altogether (see, e.g., [10]–[12]), these methods do

not allow the re-use of intermediate results in time-division

duplexing (TDD) systems. Specifically, the Gram matrix and its

inverse cannot be re-used in the uplink (for equalization) and

downlink (for precoding), which would significantly lower the

computational complexity. Hence, such algorithms inevitably

perform redundant computations during data-detection and

precoding, which leads to inefficient transceiver designs.

A. Interpolation-Based Matrix Computations

In practical wideband communication systems, e.g., building

upon IEEE 802.11n [13] and 3GPP-LTE [14], the channel’s

delay spread is often substantially smaller than the number

of active subcarriers. Hence, the channel coefficients are

correlated across subcarriers. This property can be exploited

to reduce the computational complexity of commonly-used

matrix computations required in multi-antenna systems. More

specifically, the papers [15]–[18] avoid a brute-force approach

in traditional, small-scale, and point-to-point MIMO-OFDM

systems by using exact interpolation-based algorithms for
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matrix inversion and QR factorization. While a few hardware

designs [19], [20] have demonstrated the efficacy of such

exact interpolation methods in small-scale MIMO systems,

their complexity does not scale well to wideband massive MU-

MIMO systems with hundreds of BS antennas, tens of users,

and thousands of subcarriers. In fact, 3GPP specifications on

New Radio (NR) access technology shows that the number of

active subcarriers is 3300 or 6600 in Release 15 [21], [22].

In addition, the impact of imperfect channel-state information

(CSI) and antenna correlation on such exact, interpolation-

based matrix computation algorithms is routinely ignored, but

significantly affects their performance in practical scenarios

(see Section VI for a detailed discussion).

B. Contributions

Inspired by exact, interpolation-based matrix computation

algorithms put forward in [15]–[18] for small-scale wideband

MIMO systems, we propose novel algorithms for approximate

Gram matrix computation in massive MU-MIMO systems. We

start by establishing the minimum number of Gram matrix

base-points that are required for exact interpolation. We then

show that channel-hardening in massive MU-MIMO provides

a new opportunity for approximate interpolation schemes

that achieve near-exact error-rate performance, even with

strong undersampling in the frequency domain. We provide

analytical results that characterize the approximation errors of

the proposed interpolation methods depending on the channel’s

delay spread and the antenna configuration. Furthermore, we

derive exact mean-squared error (MSE) expressions of our

approximate interpolation algorithms for imperfect CSI and

BS-side antenna correlation. We also characterize the trade-offs

between computational complexity and error-rate performance

in realistic massive MU-MIMO-OFDM systems, and we

demonstrate the robustness of our approximate interpolation

methods under realistic channel conditions with imperfect CSI

and BS-antenna correlation.

C. Relevant Prior Art

Data detection and precoding for small-scale, single- and

multi-carrier MIMO systems is a well-studied topic; see e.g.

[4], [23]–[26] and the references therein. Data detection and

precoding algorithms for massive MIMO systems have been

proposed in, e.g., [5], [6], [8], [27]–[29], which leverage the fact

that the Gram matrix is diagonally dominant [30]. However, all

of these results (i) do not exploit specific properties of massive

MU-MIMO systems and (ii) ignore the fact that time-division

duplexing (TDD)-based systems must perform data-detection

and precoding, and hence, can potentially re-use intermediate

results (such as the Gram matrix) to reduce complexity. In

contrast, our methods exploit the specifics of massive MU-

MIMO, namely channel hardening, and enable a re-use of the

computations carried out in the uplink for downlink precoding.

The report [31] proposed an approximate interpolation-

based ZF-based equalizer for a wideband massive MU-MIMO

testbed. Therein, the authors interpolate the inverse of the

Gram matrix. While simulation results in [31] show that the

proposed method works well in practice, no theoretical results

have been provided. In contrast, we use approximate methods

to interpolate the Gram matrix, and we provide analytical

expressions that provide a solid foundation of approximate

interpolation methods in massive MU-MIMO systems.

D. Notation

Lowercase and uppercase boldface letters stand column

vectors and matrices, respectively. The transpose, Hermitian,

and pseudo-inverse of the matrix A are denoted by AT , AH ,

and A†, respectively. We use [A]m,n to represent the mth row

and nth column entry of the matrix A. Sets are designated by

uppercase calligraphic letters, and |A| denotes the cardinality of

the set A. The complex conjugate of a ∈ C is a∗. The indicator

function is defined as I(a), where I(a) = 1 if a is true and 0
otherwise. A complex Gaussian distribution with mean vector µ

and covariance matrix Σ is denoted by CN (µ,Σ).

E. Paper Outline

The rest of the paper is organized as follows. Section II

introduces the necessary prerequisites. Section III proposes our

exact and approximate interpolation-based Gram matrix compu-

tation algorithms. Section IV and Section V provide an analysis

of the approximation error and complexity for the proposed

approximate interpolation methods, respectively. Section VI

shows numerical results. We conclude in Section VII.

II. PREREQUISITES

We start by summarizing the considered wideband massive

MU-MIMO system and channel model. We then outline

computationally-efficient ways for linear data detection and

precoding that make use of the Gram matrix.

A. System Model

Without loss of generality, we focus on the uplink1 of a

wideband massive MU-MIMO system with B base-station

antennas, U single-antenna UEs (with U ≪ B), and W
subcarriers. For each active subcarrier ω ∈ Ω with Ω containing

the indices of the active (data and pilot) subcarriers, we model

the received frequency-domain (FD) signal as follows:

yω = Hωsω + nω. (1)

Here, Hω ∈ C
B×U is the FD channel matrix, sω ∈ C

U is the

transmit vector, and nω ∈ C
B models additive noise. The FD

input-output relation in (1) is able to model both OFDM and

SC-FDMA systems. For OFDM systems, the entries of the

transmit vector sω are taken from a discrete constellation set O
(e.g., 16-QAM); in SC-FDMA systems, the constellation points

are assigned in the time-domain and the resulting vectors are

transformed into the FD to obtain the transmit vectors sω . See,

e.g., [8], for details on SC-FDMA transmission.

1By assuming channel reciprocity [1], our results directly apply to the
downlink in which HT is the downlink channel matrix. Once all of the Gram
matrices have been computed, they can be re-used in the downlink for linear
(e.g., zero-forcing or Wiener filter) precoding. See Section II-C for the details.
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B. Wideband Channel Model

In wideband MIMO multicarrier systems, the FD channel

matrices Hω , ω = 0, . . . ,W−1, are directly related to the time-

domain (TD) matrices Ĥℓ ∈ C
B×U , where ℓ = 0, . . . ,W − 1

are the channel “taps.” We first introduce the model used to

characterize antenna correlation at the BS side2 which occurs

in the TD. Specifically, we use the standard correlation model

from [4] and express the ℓth TD channel matrix as follows:

Ĥℓ = R1/2Ĥuncor
ℓ . (2)

Here, Ĥuncor
ℓ represents an uncorrelated TD channel matrix and

R ∈ C
B×B is a correlation matrix that contains ones on the

main diagonal and δ ∈ R on the off-diagonals. We allow δ to

be either real positive or negative as long as δ2 ≤ 1. We rewrite

the correlation matrix as R = (1− δ)IB + δ1B , where IB and

1B is the B×B identity and all-ones matrix, respectively. We

note that in the absence of receive-side correlation, i.e., δ = 0,

we have R = IB and Ĥℓ = Ĥuncor
ℓ .

In order to take into account the practically-relevant case

of imperfect CSI at the BS, we assume that the FD channel

matrices Hω, ω = 0, . . . ,W − 1, are obtained from the TD

matrices Ĥℓ ∈ C
B×U , ℓ = 0, . . . ,W − 1, via the discrete

Fourier transform [32] as follows:3

Hω =

L−1∑

ℓ=0

Ĥℓ exp

(
−j2πωℓ

W

)
+ σEω. (3)

Here, the matrix Eω ∈ C
B×U models the channel estimation

error on subcarrier ω and the parameter σ ∈ R
+ determines

the intensity of channel-estimation errors; σ = 0 corresponds

to the case for perfect CSI. We assume that the entries of the

matrix Eω are i.i.d. (across entries and subcarriers) circularly-

symmetric complex Gaussian with unit variance. Equation (3)

relies on the assumption that at most L ≤ W of the first channel

taps are non-zero (or dominant) and the remaining ones are

zero (or insignificant), i.e., Ĥℓ = 0B×U for ℓ = L, . . . ,W −1.

In practical OFDM and SC-FDMA systems, the maximum

number of non-zero channel taps should not exceed the cyclic

prefix length (assuming perfect synchronization). Hence, it

holds that L ≪ W for many practical scenarios and for most

standards, such as IEEE 802.11n [13] or 3GPP-LTE [14].4

C. Linear and Non-linear Data Detection and Precoding

In the massive MU-MIMO uplink, linear and non-linear data

detection methods were shown to achieve near-optimal error-

rate performance [1], [6]. For linear minimum mean-square

error (MMSE) equalization with complex transmit constella-

tions, one first computes the Gram matrix Gω = HH
ω Hω

2In massive MU-MIMO systems, the UEs signals are likely uncorrelated as
they are spatially well-separated over potentially large cells or UE scheduling
avoids correlated UEs; in contrast, the antennas at the BS are typically confined
to a small area, which increases the potential for receive-side correlation.

3One could improve the channel estimates Hω by exploiting the fact that
only the first L taps of Hω are active in the TD. An analysis of such channel
estimation algorithms is left for future work.

4We note that the cyclic prefix length is designed to be no smaller than
largest effective delay spread observed under typical operation conditions.
Thus, although the exact value of L may be unknown at the receiver, it can
be set to the cyclic prefix length.

and then, computes an estimate of the transmit vector as

ŝω = (Gω + IN0

Es

)−1HH
ω yω, where N0 and Es stand for

the noise variance and average energy per transmit symbol,

respectively. For non-linear data detectors, such as the one

in [6], one can operate directly on the Gram matrix Gω and

the matched filter HH
ω yω without any performance loss [33].

For such algorithms, a direct computation of the Gram

matrix Gω for every subcarrier results in excessively high

complexity. In fact, even by exploiting symmetries, 2BU2 real-

valued multiplications are required, which is more than 16, 000
multiplications per subcarrier for a system with 128 BS anten-

nas and 8 UEs. Furthermore, the hardware design for massive

MU-MIMO data detection in [8] confirms this observation and

shows that Gram-matrix computation dominates the overall

hardware complexity and power consumption by at least 2×.

In the downlink, ZF of Wiener filter precoding are most

commonly used [1]. For example, ZF precoding computes

xω = HH
ω G−1

ω sω, where xω is the B-dimensional transmit

signal and sω the data vector. If the Gram matrix Gω has

been precomputed for equalization in the uplink phase, then it

can be re-used for ZF precoding in the downlink to minimize

recurrent operations. Hence, to minimize the overall complexity

of equalization and precoding, efficient ways to compute the

Gram matrix Gω on all active subcarriers ω ∈ Ω are required.

III. INTERPOLATION-BASED GRAM MATRIX COMPUTATION

We now discuss exact and approximate interpolation-based

methods for low-complexity Gram matrix computation. Note

that exact Gram matrix interpolation assumes perfect CSI, i.e.,

we assume σ = 0. In Section IV, we will relax the perfect-

CSI assumption and analyze the performance of exact and

approximate interpolation methods with imperfect CSI.

As a result of (3), the Gram matrices in the FD are given by

Gω =

L−1∑

ℓ=0

L−1∑

ℓ′=0

ĤH
ℓ Ĥℓ′ exp

(
j2πω(ℓ− ℓ′)

W

)
(4)

for w = 0, 1, . . . ,W − 1. Given the FD channel matrices Hω

for all active subcarriers ω ∈ Ω, a straightforward “brute-force”

approach simply computes Gω = HH
ω Hω for each active

subcarrier ω ∈ Ω. In order to reduce the complexity of such a

brute-force approach, we next discuss exact and approximate

Gram-matrix interpolation methods that take advantage of

the facts that (i) the channel matrices (and hence, the Gram

matrices) are correlated across subcarriers if L < W and (ii)

massive MU-MIMO benefits from channel hardening [1], [2].

A. Exact Gram-Matrix Interpolation

The Gram matrix Gω in (4) is a Laurent polynomial matrix

in the variable xω = exp(j2πω/W ); we refer the reader

to [18] for more details on Laurent polynomial matrices. Hence,

we can establish the following result for exact Gram-matrix

interpolation; a short proof is given in Appendix A.

Lemma 1. The Gram matrices Gω in (4) for all subcarriers

ω = 0, . . . ,W are fully determined by 2L − 1 distinct and

non-zero Gram-matrix base-points.
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Consequently, one can interpolate all of the Gram matrices

exactly from only 2L− 1 distinct and non-zero Gram-matrix

base-points that have been computed explicitly. To perform

exact interpolation, we first define a set of base points P ⊂ Ω
that contains |P| ≥ 2L−1 distinct subcarrier indices. We denote

the kth base-point index as pk, where k = 0, . . . , |P| − 1, and

the set of all base-point indices as P = {p0, . . . , p|P|−1}. For

each subcarrier index in the base-point set P , we then explicitly

compute |P| ≥ 2L− 1 Gram matrices Gω = HH
ω Hω , ω ∈ P ,

and perform entry-wise interpolation for the gram matrices

Gω on all remaining active subcarriers ω ∈ Ω\P .

The exact interpolation procedure for each entry is as follows.

For a fixed entry (m,n), we define the vector gP ∈ C
|P|, which

is constructed from the (m,n) entries [Gω]m,n taken from base-

points ω ∈ P , i.e., gP =
[
[Gp0

]m,n · · · [Gp|P|−1
]m,n

]T
. Then,

the vector gΩ\P ∈ C
|Ω|−|P| that contains the entry (m,n) for

all remaining Gram matrices Gω , ω ∈ Ω\P , is given by

gΩ\P = FΩ\P,L(F
†
P,LgP). (5)

Here, FP,L represents a |P| × (2L− 1) matrix where we take

the |P| rows indexed by P and the first L and last L − 1
columns from the W -point discrete Fourier transform (DFT)

matrix; the entries of the DFT matrix are defined as [F]m,n =
1√
W

exp
(
− j2π

W (m− 1)(n− 1)
)
. Similarly, FΩ\P,L represents

a (|Ω| − |P|)× (2L− 1) matrix where we take |Ω| − |P| rows

indexed by Ω\P and the first L and last L−1 columns from the

W -point DFT matrix. In words, the exact interpolation method

in (5) first computes the 2L− 1 TD Gram-matrix entries and

then, transforms these elements into the frequency domain via

the DFT. See [15]–[18] for additional details on other exact

interpolation methods developed for MIMO systems.

Although the method in (5) is able to exactly interpolate

the Gram matrix across all W subcarriers, it is in many

situations not practical due to the high complexity of computing

F
†
P,LgP . If, however, one can sample the base points uniformly

over all W subcarriers, the complexity of matrix inversion

can be reduced significantly. Unfortunately, this approach is

often infeasible in practice due to the presence of guard-band

constraints in OFDM-based or SC-FDMA-based standards [13],

[14]. Another issue of exact interpolation methods, such as

the ones in [15]–[18] and ours in (5), is that they generally

assume perfect CSI and no spatial correlation. As we will show

in Section VI-C, imperfect CSI results in poor interpolation

performance—this is due to the fact that the matrix FP,L

is typically ill-conditioned, especially when sampling Gram-

matrices close to the minimum number of 2L− 1 base points.

We next propose two approximate interpolation schemes that

not only require lower complexity than a brute-force approach

or exact interpolation in (5), but also approach the performance

of a brute-force approach in massive MU-MIMO systems and

are robust to channel-estimation errors.

B. Approximate Gram-Matrix Interpolation

We consider the following two approximate Gram-matrix

interpolation methods illustrated in Fig. 1.

0th Order Interpolation: We select a set of |P| distinct base-

points with P = {p0, . . . , p|P|−1} ⊂ Ω. We explicitly compute

300 310 320 330 340
8

8.5

9

9.5

10

subcarrier index ω

[G
ω
] 1
,1

exact Gram matrices

0th order interpolation

1st order interpolation

Fig. 1. Illustration of 0th and 1st order interpolation for the entry [Gω ]1,1
across subcarriers. We explicitly compute the Gram matrix for every fifth
subcarrier index ω and interpolate the remaining matrices. We assume a 128
BS antenna, 8 user massive MU-MIMO system with W = 2048 subcarriers,
a delay spread of L = 144, and perfect CSI without BS-antenna correlation.

Gp = HH
p Hp on these base points and perform 0th order (or

nearest-neighbor) interpolation for the remaining subcarriers

in the set Ω\P according to:

G̃ω = Gp, p = arg min
p̃∈P

|p̃− ω|, ∀ω ∈ Ω\P. (6)

In words, we set the interpolated Gram matrix G̃ω equal to

the nearest Gram matrix that has been computed explicitly for

one of the neighboring base points.

1st Order Interpolation: Analogously to the 0th order

interpolation method, we explicitly compute Gp = HH
p Hp

on a selected set of base-points p ∈ P . Then, for each target

subcarrier ω ∈ Ω\P we pick two nearest base-points pk and

pk+1, i.e., pk ≤ ω ≤ pk+1, and perform entry-wise linear

interpolation according to

G̃ω = λωGpk
+ (1− λω)Gpk+1

, ω ∈ Ω\P, (7)

where λω = (pk+1 − ω)/(pk+1 − pk) and pk < pk+1.

IV. ANALYSIS OF APPROXIMATION ERROR

We now analyze the approximation error associated with

the approximate interpolation schemes from Section III-B. We

use Gω to represent the Gram matrices that have been computed

exactly and G̃ω to represent the Gram matrices that are obtained

via approximate interpolation. Evidently, the exact interpolation

scheme in Section III-A entails no approximation error.

A. Mean-Square-Error of Approximate Interpolation

We study the mean-squared error (MSE) on each entry (m,n)
for the ω-th subcarrier, which we define as follows:

o-MSE
(m,n)
ω , E

[∣∣[G̃ω]m,n − [Gω]m,n

∣∣2
]
. (8)

Here, o represents the order of interpolation, i.e., we have

either o = 0 or o = 1. Our results make extensive use of the

scaled Fejér kernel [34] given by

fL(φ) = L−2 1− cos(Lφ)

1− cos(φ)
= L−2 sin

2(Lφ/2)

sin2(φ/2)
(9)
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and rely on the following key properties of this kernel; the

proof is given in Appendix B.

Lemma 2. The scaled Fejér kernel (9) is non-negative,

bounded from above by one, and monotonically decreasing

in φ for φ ∈ [0, 2π/L] with L > 1.

B. MSE of 0th Order Interpolation

The following result precisely characterizes the MSE of 0th

order interpolation for imperfect CSI as in (3) and BS-antenna

correlation as in (2); the proof is given in Appendix C.

Theorem 1. Let the entries of the TD matrices Ĥuncor
ℓ , ℓ =

1, . . . , L, be distributed CN (0, 1/(BL)) per complex entry.

Assume that the off-diagonal entries of the receive correlation

matrix are δ, the variance of the channel estimation error σ,

and p ∈ P is the closest base point to the target subcarrier ω.

Then, for any (m,n) entry of the Gram matrix Gω , the MSE

for the 0th order interpolation method in (6) is given by

0-MSEω = εCSI +
2

B
(1 + εcor)

(
1− fL

(
2π

W
(p− ω)

))
, (10)

where we use the definitions

εCSI = 2σ2(2 +Bσ2) and εcor = δ2(B − 1).

From this result, we see that, as the number of BS antennas B
increases, εCSI increases quadratically with respect to σ2. For

perfect CSI, i.e., σ = 0 so εCSI = 0, the MSE for 0th

order interpolation decreases with an increasing number of

BS antennas B as ∂
∂B 0-MSEω < 0, if δ2 < 1. Also, we note

in the case for non-zero correlation, i.e., δ 6= 0, the MSE for

0th order interpolation is amplified (compared to that with no

correlation) by a factor of 1 + δ2(B − 1). Furthermore, we

observe that the MSE is independent of the entry of the Gram

matrix (i.e., the MSE is identical for the diagonal as well as off-

diagonal entries); this is a consequence of the i.i.d. assumption

of the TD channel matrices Ĥuncor
ℓ .

To gain additional insight on 0th order interpolation in the

large BS-antenna limit, we have the following result.

Corollary 1. Assume the conditions in Theorem 1 are met,

and let σ2 → 0. Then, as B → ∞, the MSE of 0th order

interpolation is given by

lim
B→∞

0-MSEω = 2δ2
(
1− fL

(
2π

W
(p− ω)

))
.

Corollary 1 demonstrates that in the large-BS antenna limit,

the MSE of 0th order interpolation is zero across all subcarriers

if and only if the BS antennas are uncorrelated, i.e., δ = 0. For

δ 6= 0, the MSE depends on the distance between the nearest

base-point and the target subcarrier.

While the MSE expression in (10) is exact, it does not

provide much intuition. We define the following quantity that

enables us to further analyze the MSE in (10).

Definition 1. The maximum distance between any subcarrier ω
and the nearest base point is given by:

dmax = max
k∈P

⌊
pk+1 − pk

2

⌋
. (11)

With the maximum distance dmax for a given set of base

points P , Corollary 2 shows that the 0th order approximation

can be bounded from above using simple analytic expressions;

the proof is given in Appendix D.

Corollary 2. Let dmax be the maximum distance in (11)

and assume the conditions in Theorem 1 are met. Then, the

maximum MSE of 0th order interpolation over all active

subcarriers ω ∈ Ω is bounded by:

max
ω∈Ω

{0-MSEω}

≤





εCSI +
2

B
(1 + εcor), dmax ≥ W

L

εCSI +
2(1 + εcor)

B

(
1− fL

(
2π

W
dmax

))
, dmax <

W

L
.

Corollary 2 implies that regardless of small or large

maximum distance dmax, the MSE given by the 0th order

approximation always decreases with the number of BS

antennas B if δ = 0 and σ2 = 0 (see also Theorem 1). In

addition, if the distance between the interpolated subcarrier

index ω and its closest base point is sufficiently small, i.e.,

dmax < W/L, then we obtain a sharper upper bound on the

MSE than εCSI +
2
B (1 + εcor). In a scenario with a large delay

spread L, Corollary 2 reveals that one requires finer-spaced

base points for 0th order interpolation in order to keep the

approximation error strictly smaller than εCSI +
2
B (1 + εcor).

Since the maximum error is mainly determined by dmax, a good

strategy for selecting base points with 0th order approximation

is uniformly spacing them in the set of active subcarriers Ω.

C. MSE of 1st Order Interpolation

We now present the approximation error analysis of 1st order

interpolation. The following result characterizes the MSE of

1st order interpolation; the proof is given in Appendix E.

Theorem 2. Let the entries of the TD matrices Ĥuncor
ℓ , ℓ =

1, . . . , L, be distributed CN (0, 1/(BL)) per complex entry.

Assume that the off-diagonal of the receive correlation matrix

are δ, the variance of the channel estimation error σ across all

subcarriers ω = 0, . . . ,, and p ∈ P is the closest base point

to the target subcarrier ω. Then, for any (m,n)-th entry of

the Gram matrix Gω , the MSE for the 1st order interpolation

method in (6) is given by

1-MSEω = εCSI(1− λω(1− λω))

+
2

B
(1 + εcor)

(
1− λω(1− λω) + λω(1− λω)fL(θ)

− (1− λω)fL(λωθ)− λωfL((1− λω)θ)
)
, (12)

where θ = 2π
W (pk+1 − pk) and λω = (pk+1 −ω)/(pk+1 − pk).

Similarly to 0th order interpolation, we observe that the

MSE of 1st order interpolation is independent of the entry

(m,n) and impacted by CSI errors and receive correlation

(see Section IV-B for detailed discussion). The result shown

next in Corollary 3 reveals that if the spacing between the

two base-points pk and pk+1 defined as dk = pk+1 − pk
is sufficiently small, then the 1st order interpolation strictly
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outperforms 0th order interpolation, i.e., 1-MSEω < 0-MSEω

for all ω ∈ (pk, pk+1); the proof is given in Appendix F.

Corollary 3. Let dk denote the spacing between two base-

points pk and pk+1, and assume the conditions in Theorem 1

and Theorem 2 hold. If dk ≤ W/(3L), then

1-MSEω ≤ 0-MSEω, for all ω ∈ (pk, pk+1), (13)

which holds with equality if and only if L = 1 and εCSI = 0.

We note that the condition dk < W/(3L) is not sharp;

Appendix F outlines the details on how it can be sharpened.

Furthermore, given that dk is significantly larger than W/(3L),
we can construct situations for which 0th order interpolation

outperforms 1st order interpolation. Note that for L = 1, the

FD channel is flat (i.e., Gω is constant for all ω) and hence,

1st and 0th order interpolation have the same MSE.

In summary, we observe that for both approximate inter-

polation methods, the MSE can be lowered by increasing

the number of BS antennas B, assuming that the channel

estimation error εCSI decreases with B. In the large-antenna

limit B → ∞ with perfect CSI and no BS-antenna correlation,

the MSE vanishes, which is an immediate consequence

of channel hardening in massive MU-MIMO systems [1].

Furthermore, 1st order interpolation generally outperforms 0th

order interpolation for a sufficiently small minimum spacing

between adjacent base points, i.e., for dk ≤ W/(3L).

V. COMPLEXITY ANALYSIS

We next compare the computational complexity of the

four studied Gram-matrix computation algorithms: brute-force

computation, exact interpolation, 0th order interpolation, and 1st

order interpolation. We measure the computational complexity

by counting the number of real-valued multiplications.5

A. Brute-Force Computation

We start by deriving the total computational complexity

required by the brute-force (BF) method. We only com-

pute the upper triangular part of Gω (since the matrix is

Hermitian). Each off-diagonal entry requires B complex-

valued multiplications, which corresponds to 4B real-valued

multiplications; each diagonal entry requires only 2B real-

valued multiplications. Hence, the computational complexity

of computing Gω using the BF method is

CBF = |Ω|
(
4B

U(U − 1)

2
+ 2BU

)
= 2|Ω|BU2 (14)

for a total number of |Ω| active subcarriers.

B. Exact Interpolation

We now derive the computational complexity of exact

interpolation as discussed in Section III-A. Exact interpolation

requires a BF computation of the Gram matrix at each of the

5We assume that a complex-valued multiplication requires four real-valued
multiplications; computation of the squared magnitude of a complex number
is assumed to require two real-valued multiplications.

|P| base points. We will use the |P| precomputed base points

of Gω to interpolate the remaining |Ω| − |P| Gram matrices.

We will assume that the base points and the assumed channel

delay spread L are fixed a-priori so that FΩ\P,LF
†
P,L in (5) can

be precomputed and stored. We emphasize that this approach

does not include the computational complexity of computing

the interpolation matrix itself, which favors this interpolation

scheme from a complexity perspective. In fact, we only need

to multiply the precomputed interpolation matrix FΩ\P,LF
†
P,L

with the vector gP , which requires 4(|Ω|− |P|)|P| real-valued

multiplications. Hence, the total computational complexity of

exact interpolation is:

CExact =
|P|
|Ω|CBF + 4(|Ω| − |P|)|P|U(U + 1)

2

= 2|P|(|Ω| − |P|+B)U2 + 2|P|(|Ω| − |P|)U. (15)

We note that if the number of users U is large and the

number of base points is similar to the number of BS

antennas, i.e., |P| ≃ B, then the BF method in (14) and

exact interpolation (15) exhibit similar complexity. We also

observe that the complexity of exact interpolation (15) is lower

than that of the BF method (14) if |P| < (1+U)−1BU . Since

the use of |P| ≥ 2L− 1 distinct base points guarantees exact

interpolation (assuming perfect CSI), we observe that exact

interpolation has lower complexity than the BF method if L is

(approximately) smaller than B/2.

C. 0th Order Interpolation

The computational complexity of the 0th order interpolation

method is given by

C0th = 2|P|BU2, (16)

as we only need to compute the Gram matrices on all the base

points. We note that since typically |P| ≪ |Ω| the savings (in

terms of real-valued multiplications) are significant compared

to the BF approach and exact interpolation, but does so at the

cost of approximation errors (cf. Section VI-D).

D. 1st Order Interpolation

The computational complexity of the 1st order interpolation

is given by

C1st = C0th + 4(|Ω| − |P|)U(U + 1)

2
= 2|P|BU2 + 2(|Ω| − |P|)U(U + 1), (17)

where we assume that the interpolation weight λω was pre-

computed. We note that the linear interpolation stage for each

subcarrier ω ∈ Ω\P requires four real-valued multiplications.

By comparing (16) to (17), we observe that the complexity

of 1st order interpolation always exceeds the complexity of

the 0th order method, but the complexity is significantly lower

than that of the BF method as we generally have |P| ≪ |Ω|.

VI. NUMERICAL RESULTS

We now study the MSE, the error-rate performance, and

the computational complexity of the proposed Gram-matrix
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interpolation schemes. We consider a MU-MIMO-OFDM

system with 128 BS antennas and with 8 single-antenna users.

We assume a total of W = 2048 subcarriers, with |Ω| = 1200
active subcarriers, similar to that used in 3GPP LTE [14]. Unless

stated otherwise, we assume that the entries of the TD channel

matrices are i.i.d. circularly-symmetric complex Gaussian with

variance 1/(BL) and we consider 16-QAM transmission (with

Gray mapping). We use a linear MMSE equalizer for data

detection; see Section II-C. For situations with imperfect CSI,

we consider pilot-based maximum-likelihood (ML) channel

estimation with a single orthogonal pilot sequence of length U
with the same transmit power as the data symbols.

A. Complexity Comparison

We now assess the complexity of the various Gram-matrix

computation methods in comparison to the overall complexity

required for linear MMSE-based data detection, which includes

Gram-matrix and matched-filter computation as well as matrix

inversion for each active subcarrier. The results shown here

are for a 128 × 8 (the notation represents B × U ) massive

MU-OFDM-MIMO system with 1200 active subcarriers and a

delay spread of L = 144.

Fig. 2 compares the complexity of Gram matrix com-

putation for four different methods, brute-force, exact,

0th-, and 1st-order interpolation methods for |P| =
{0.25|Ω| , 0.5|Ω| , 0.75|Ω| , |Ω|}. The solid part of the bar plot

shows the complexity of Gram matrix computation; the fenced

part corresponds to the remaining complexity required for data

detection (including matched-filter computation and a matrix

inversion for each active subcarrier). The percentage values

indicate the relative complexity of Gram-matrix computation

compared to the total complexity required for data detection.

We assume an implicit Cholesky-based matrix inversion for

data detection [35]. As demonstrated in [26], Gram matrix

computation requires most of the complexity, as it scales

quadratically in the number of BS antennas.

We see that the exact interpolation method results in high

complexity in the considered system (see Section V-B for exact

details when exact interpolation achieves lower complexity than

a BF approach). We also see that the proposed 0th and 1st order

approximation methods both achieve significant complexity

reductions. For |P| = 0.25|Ω|, the proposed methods requires

less than half the complexity of a BF approach. As we will

show in Section VI-C, the proposed approximate interpolation

methods will exhibit similar error-rate performance as that the

BF approach (see Figs. 4 and 5), but do so at fraction of the

computational complexity.

B. MSE of Approximate Interpolation

Fig. 3 compares the MSE of 0th and 1st order interpolation

as proposed in Section III-B. Note that the BF method and

exact interpolation have an MSE of zero and hence, we exclude

these results. We select two base points at subcarriers 500 and

600 and one target point at subcarrier 512, and compare the

MSE for different numbers of BS antennas and under ideal and

non-ideal scenarios. In the ideal scenario, we assume perfect

CSI and no BS-antenna correlation, whereas in the non-ideal
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Fig. 2. We compare the complexity of various Gram matrix computation
methods in comparison to the complexity of data detection for a 128× 8 MU-
OFDM-MIMO system with |Ω| = 1200, L = 144, and four different sets of
base-points |P| = {0.25|Ω| , 0.5|Ω| , 0.75|Ω| , |Ω|}. The percentage values
shown in the above bar plots show the relative percentage of Gram-matrix
computation compared to the total complexity required for data detection.

scenario we assume channel-estimation at SNR = 25 dB across

all subcarriers with the signal-to-noise ratio (SNR) defined by

SNR = U/(Bσ2) and a BS-antenna correlation of δ = 0.1. In

order to assess the approximation error with respect to different

channel delay spreads, we set L ∈ {36, 72, 144}. The resulting

MSE is shown in Fig. 3. Note that the MSE for both 0th and

1st are independent of the entry (as predicted by Theorems 1

and 2); hence, we consider the average MSE across all entries.

We observe that the 1st order interpolation method achieves

a lower MSE than that given by 0th order interpolation, where

the performance gap increases with larger delay spreads L; this

caused by the fact that for small delay spreads L, the channel

is more smooth across subcarriers. For larger delay spreads L,

1st order interpolation captures the faster-changing behavior of

the Gram matrix, whereas the 0th order interpolation ignores

such changes. We also see that the MSE degrades in the non-

ideal scenario, even if we increase the number of BS antennas;

this behavior is reflected in our analytical results. Finally, we

see that the simulated MSE matches perfectly our theoretical

results in Theorems 1 and 2.

C. Error-rate Performance

We now compare the error-rate performance of the proposed

Gram-matrix computation schemes. We simulate the bit-error

rate (BER) for a MU-MIMO-OFDM system for a different

number of base-points |P| and for perfect as well as imperfect

CSI. We also investigate the impact of a more realistic channel

model. For all results, we simulate three different numbers

of base-points |P| = L/4, |P| = 2L− 1, and |P| = 4L, and

select equally-spaced base points. Figures 4(a) and 4(b) show

BER simulation results for an i.i.d. Rayleigh fading scenario

with perfect and imperfect CSI, respectively. Figure 4(c) shows

BER simulation results for the QuaDRiGa channel model6 with

6We simulate a square antenna array with a non-line-of-sight scenario with
a 2GHz carrier frequency, 20MHz bandwidth, and 200m distance between
BS antenna and the users. Our algorithms assume L = 144 but the true delay
spread is slightly smaller.
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Fig. 3. MSE of 0th and 1st order interpolation for an entry of G512

using two base points G500 and G600 for three different delay spreads
L ∈ {36, 72, 144} for the ideal and non-ideal scenario. The markers represent
simulation results whereas the lines represent our approximation-error analysis.
Evidently, our theory matches perfectly with the simulated values.

imperfect CSI [36]. We note that QuaDRiGa channel model

includes a path-loss model for each user.

Figure 4(a) shows that exact interpolation for |P| ≥ 2L− 1
base points provides identical results as the BF method (up to

machine precision) for a system with perfect CSI. For |P| =
L/4 base points, the proposed 0th and 1st order interpolation

exhibit an error floor; this performance loss can be mitigated

substantially by increasing the number of base points to |P| =
2L − 1. By setting |P| = 4L < 0.5|Ω|, the both the 0th

and 1st order interpolation methods exhibit virtually no BER

performance loss.

Figure 4(b) shows the situation for imperfect CSI (with

channel estimation). We observe that the performance of the

BF method and that of exact interpolation are no longer equal.

In fact, for |P| = 2L − 1 and |P| = 4L base points, exact

interpolation exhibits a significant error floor. The reason is

due to the fact that the interpolation matrix is ill-conditioned,

which results in significant noise enhancement. Although the

error floor is decreased for |P| = 4L, a floor remains at 10−3

BER. In contrast, the error floor of 0th order and 1st order

interpolation for |P| = 2L − 1 and |P| = 4L base points is

well-below 10−4 BER and hence, the proposed approximate

interpolation schemes are more resilient to scenarios with

imperfect CSI than exact interpolation.

Figure 4(c) shows the BER performance for the QuaDRiGa

channel model with imperfect CSI. We observe that all

considered interpolation methods achieve a lower error floor

than that given in Fig. 4(b) for |P| = L/4; this is due to the

fact that the effective delay spread for the considered channel

is smaller than L = 144 (which is assumed in the algorithms).

Once again, we observe a BER floor of exact interpolation

for all considered numbers of base points. In summary, the

proposed approximate interpolation methods are more robust

in practical scenarios than the exact interpolation method.

D. Performance/Complexity Trade-off

We now investigate the BER performance vs. computational

complexity trade-off for the proposed approximate interpolation

methods with imperfect CSI. We use the complexity CBF of the

BF method in (14) as our baseline, and we compare it to that

of the proposed 0th and 1st order interpolation methods in (16)

and (17), respectively. We vary the number of base points |P|
from L to D and simulate the minimum SNR required for the

linear MMSE equalizer to achieve 10−3 BER.

Figure 5 shows the trade-off results for 0th and 1st order

interpolation. For a fixed fraction of the complexity of CBF,

we observe that the 1st order interpolation method always

outperforms the 0th order interpolation method. Hence, Fig. 5

clearly reveals that the additional complexity required by

linear interpolation is beneficial when jointly considering

performance and complexity. In addition, we see that the 1st

order interpolation method approaches the SNR performance

of the BF method by 1 dB with only 45% of the complexity.

VII. CONCLUSIONS

We have studied the performance of exact and approximate

interpolation-based Gram matrix computation for wideband

massive MU-MIMO-OFDM systems. Instead of performing

a brute-force (BF) computation of the Gram matrix for all

subcarriers or using exact interpolation schemes, we have

proposed two simple, yet efficient approximate interpolation

methods. We have demonstrated that channel hardening in

massive MU-MIMO enables the proposed 0th and 1st order

interpolation schemes to perform close to that of an exact BF

computation at only a fraction of the computational complexity.

In addition, the proposed approximate interpolation methods

are more robust to channel-estimation errors and receive-side

antenna correlation than exact Gram-matrix interpolation.

There are many opportunities for future work. We expect

the use of higher-order approximate Gram-matrix interpolation

schemes to perform better at an increase in complexity. An

analysis of such methods is left for future work. Our results

also indicate that the broad range of existing exact interpolation

schemes for small-scale, point-to-point MIMO systems, e.g.,

matrix inversion and QR decomposition [15], [16] can be made

more robust and less complex in massive MU-MIMO systems

if combined with approximate, low-order interpolation schemes.

In fact, the recent result in [31] for approximate interpolation

of matrix inversion demonstrates this claim in a massive MU-

MIMO scenario via simulations—it s an open problem to

analyze the performance of such interpolation methods. In

addition, it would be practically relevant to develop theory for

more realistic correlation models, such as the one in [37].
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Fig. 4. Uncoded bit error-rate (BER) comparison in a 128 BS antenna, 8 (single-antenna) user, wideband massive MU-MIMO-OFDM system. The values next
to the legend entries correspond to the number of base points |P|. The proposed approximate interpolation schemes (0th and 1st order interpolation) outperform
exact interpolation for scenarios with imperfect CSI and approach the performance of the exact brute-force method for a small number of base points.
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APPENDIX A

PROOF OF LEMMA 1

Since all of the possible values in the exponent of (4), i.e.,

ℓ− ℓ′, are integers ranging from −(L− 1) to L− 1, the Gram

matrix Gω in (4) is a polynomial with degree no larger than

2L − 1. Consequently, the Gram matrices Gω in (4) for all

subcarriers ω = 0, . . . ,W are fully determined from 2L − 1
distinct and non-zero Gram-matrix base-points.

APPENDIX B

PROOF OF LEMMA 2

Evidently, (9) is non-negative, i.e., fL(φ) ≥ 0. To show that

fL(φ) ≤ 1, we use the fact that the Fejér kernel LfL(φ) =

L−1 1−cos(Lφ)
1−cos(φ) is upper bounded by L [34, Eq. 1.2.24]. Now, we

show that fL(φ) is monotonically decreasing in φ ∈ [0, 2π/L]
for L > 1. We start by defining an auxiliary function g(φ) =
sin(Lφ/2)/ sin(φ/2), so that fL(φ) = g2L(φ)/L

2. For L > 1,

φ ∈ (π/L, 2π/L], sin(Lφ/2) and sin(φ/2) are monotonically

decreasing and increasing respectively, and hence, g(φ) and

fL(φ), are monotonically decreasing. For φ ∈ [0, π/L], the

derivative of g(φ) with respect to φ is given by:

dg(φ)

dφ
=

(L cos(Lφ/2) sin(φ/2)− cos(φ/2) sin(Lφ/2))

2 sin2(φ/2)
,

and we have that

L cos(Lφ/2) sin(φ/2)

cos(φ/2) sin(Lφ/2)
=

L tan(φ/2)

tan(Lφ/2)
< 1.

Hence, g′(φ) < 0, and therefore, fL(φ) is monotonically

decreasing in φ ∈ [0, 2π/L].

APPENDIX C

PROOF OF THEOREM 1

Suppose we use Gpk
at base point pk to approximate Gw at

the target subcarrier index ω. Hence, the MSE in (8) is given

by the following expression:

0-MSE
(m,n)
ω = E

[∣∣[G̃ω]m,n − [Gω]m,n

∣∣2
]
. (18)

We will obtain an analytical expression for (18) with imperfect

CSI and the BS-antenna correlation model introduced in (3)

and (2), respectively. We start with expressing the channel

matrix Hω from (3) as

Hω
(a)
=

W−1∑

ℓ=0

(
ĤℓI(ℓ < L) +

σ√
W

Ẽℓ

)
exp

(
−j2πωℓ

W

)
,

(19)

where (a) follows from noting that the DFT is orthogonal (with

normalization constant) with each entries of Ẽℓ distributed

CN (0, 1). Hence, the TD channel matrix under imperfect CSI

is given as Ĥσ
ℓ = ĤℓI(ℓ < L) + σ√

W
Ẽℓ.

Now, use the correlation model introduced in (2). We note

that the B×B BS correlation matrix R = (1−δ)IB+δ1B can

be expressed by (αIB + β1B)
2 = R where α =

√
1− δ, and

β = 1
B (

√
1 + (B − 1)δ − α). Since the matrix (αIB + β1B)

is symmetric, we note that the Ĥℓ is expressed as Ĥℓ =
(αIB + β1B)Ĥ

uncor
ℓ so that

[Ĥℓ]m,n = α[Ĥuncor
ℓ ]m,n + β

B∑

b=1

[Ĥuncor
ℓ ]b,n (20)
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For our derivation of the MSE, we will utilize the following

auxiliary function:

Aℓℓ′ = exp

(
j
2πpk
W

(ℓ− ℓ′)

)
− exp

(
j
2πω

W
(ℓ− ℓ′)

)
. (21)

By substituting Aℓℓ′ into [G̃ω]m,n−[Gω]m,n in (18), we obtain

the following expression for the 0th order MSE:

0-MSE
(m,n)
ω = E

[∣∣∣∣
W−1∑

ℓ,ℓ′=0

B∑

b=1

[Ĥσ
ℓ ]

∗
b,m[Ĥσ

ℓ′ ]b,nAℓℓ′

∣∣∣∣
2]

=

W−1∑

ℓ1,ℓ2=0

W−1∑

ℓ3,ℓ4=0

B∑

b1,b2=1

(
A∗

ℓ1ℓ2Aℓ3ℓ4

E
[
[Ĥσ

ℓ1 ]b1,m[Ĥσ
ℓ2 ]

∗
b1,n[Ĥ

σ
ℓ3 ]

∗
b2,m[Ĥσ

ℓ4 ]b2,n
])

(a)
=

W−1∑

ℓ1,ℓ2=0
ℓ1 6=ℓ2

|Aℓ1ℓ2 |2

B∑

b1,b2=1

E
[
[Ĥσ

ℓ1 ]
∗
b2,m[Ĥσ

ℓ1 ]b1,m
]
E
[
[Ĥσ

ℓ2 ]
∗
b1,n[Ĥ

σ
ℓ2 ]b2,n

]
(22)

where (a) follows from Aℓ1ℓ2 = 0 if ℓ1 = ℓ2, and independence

and the zero-mean assumption on the TD channel for ℓ1 6= ℓ2,

which enforces ℓ1 = ℓ3 and ℓ2 = ℓ4 for (22). By inspection of

(22), we observe that 0-MSE
(m,n)
ω is independent of m and n

and thus, the MSE of the off-diagonal and diagonal entries are

equal. We simplify (22) for imperfect CSI and the BS-antenna

correlation model. We first note that

E
[
[Ĥσ

ℓ1 ]
∗
b2,m[Ĥσ

ℓ1 ]b1,m
]
=

σ2

W
I(b1 = b2)

+
1

BL
(α2

I(b1 = b2) + 2αβ + β2B)I(ℓ1 < L)

=
σ2

W
I(b1 = b2) +

1

BL
(α2

I(b1 = b2) + δ)I(ℓ1 < L),

where the last step is obtained by noting that 2αβ + β2B = δ.

Therefore, the inner sum is evaluated by

B∑

b1,b2=1

E
[
[Ĥσ

ℓ1 ]
∗
b2,m[Ĥσ

ℓ1 ]b1,m
]
E
[
[Ĥσ

ℓ2 ]
∗
b1,n[Ĥ

σ
ℓ2 ]b2,n

]

=
Bσ4

W 2
+

σ2

LW
(α2 + δ)(I(ℓ1 < L) + I(ℓ2 < L))

+
1

BL2
(α2(α2 + 2δ) +Bδ2)I(ℓ1 < L)I(ℓ2 < L). (23)

Now, we simplify (22) using the results from (23) with the

fact that α =
√
1− δ and

∑W−1
ℓ1=0 |Aℓ1ℓ2 |2 = 2W so that∑W−1

ℓ1,ℓ2=0 |Aℓ1ℓ2 |2 = 2W 2. Hence,

0-MSE
(m,n)
ω = 2Bσ4 + 4σ2 +

1 + δ2(B − 1)

BL2

L−1∑

ℓ1,ℓ2=0
ℓ1 6=ℓ2

|Aℓ1ℓ2 |2

= 2Bσ4 + 4σ2 +
2(1 + δ2(B − 1))

B

(
1−

L−1∑

ℓ=0

ℓ∑

∆ℓ=−ℓ

ejθ∆ℓ

L2

)

(a)
= 2σ2(2 +Bσ2) +

2

B
(1 + δ2(B − 1))(1− fL(θ)),

where (a) comes from the definition of Fejér kernel [34]. Note

that we defined the shorthand variable θ = 2π
W (pk − ω).

The proof can be generalized to per-UE large-scale fading by

expressing the channel matrix as Hω = HωD, where Hω was

defined in (19) and the diagonal matrix D contains the large-

scale fading coefficients for the UEs on the main diagonal. In

addition, the proof can be generalized to receive-side correlation

matrices R by rewriting Ĥℓ in (20) with Ĥℓ =
√
RĤuncor

ℓ . A

corresponding analysis is left for future work.

For the case of other correlation models, e.g., the one in [37],

one can first compute the Cholesky decomposition of R to

compute Ĥℓ and proceed with the analysis as in (20). We note

that the Cholesky decomposition of the exponential correlation

model proposed in [37] can be computed in closed form. We

leave the details for future work.

APPENDIX D

PROOF OF COROLLARY 2

Since fL(φ) is non-negative, it is obvious that

maxω∈Ω{0-MSEω} ≤ εCSI + 2(1 + εcor)/B for all ω ∈ Ω.

The equality is satisfied if (p − ω)/W = b/L for some

integer b > 0 so that fL
(
2π
W (p − ω)

)
= fL

(
b2π
L

)
= 0. We

note that this can only happen if dmax ≥ W/L, where dmax

is the maximum distance between any target subcarrier ω
point and its nearest base point; this is due to the fact that
2π
W (p− ω) ≤ 2π

W dmax < 2π
L .

Assume dmax < W/L. Then, by Lemma 2, the maximum

MSE of 0th order interpolation is given by:

max
ω∈Ω

{0-MSEω}

= εCSI +
2

B
(1 + εcor)

(
1− min

ω∈Ω\P
fL

(
2π

W
(pk − ω)

))

= εCSI +
2

B
(1 + εcor)

(
1− fL

(
2π

W
dmax

))
.

APPENDIX E

PROOF OF THEOREM 2

The proof is similar to that of Theorem 1 in Appendix C.

We start by defining the following auxiliary function

Qℓℓ′ =λω exp

(
j
2πpk
W

∆ℓ

)
+ (1− λω) exp

(
j
2πpk+1

W
∆ℓ

)

− exp

(
j
2πω

W
∆ℓ

)
,

where we introduced the variable ∆ℓ = ℓ − ℓ′. The result

is obtained by substituting Qℓℓ′ in place of Rℓℓ′ at (22) in

Appendix C. Note that
∑W−1

ℓ1=0 |Qℓ1ℓ2 |2 = 2(1−λω(1−λω))W

which shows that
∑W−1

ℓ1,ℓ2=0 |Qℓ1ℓ2 |2 = 2(1− λω(1− λω))W
2.

APPENDIX F

PROOF OF COROLLARY 3

Without loss of generality, we will assume that the target

subcarrier index ω is closer to pk+1 so that λω ∈ [0, 0.5]. We

will assume that pk < ω < pk+1 so that dk = pk+1 − pk >
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0. Using the results from Appendix C and Appendix E, the

difference of 1-MSEω and 0-MSEω is given by:

1-MSEω − 0-MSEω = −εCSIλω(1− λω))

+
1 + εcor

BL2

L−1∑

ℓ1,ℓ2=0

(|Qℓ1ℓ2 |2 − |Rℓ1ℓ2 |2).

Without loss of generality, we assume that ℓ1 − ℓ2 > 0 since

|Qℓ1ℓ2 |2 − |Rℓ1ℓ2 |2 is even and is 0 if ℓ1 = ℓ2. We simplify

the term |Qℓ1ℓ2 |2 − |Rℓ1ℓ2 |2 by denoting φ = θ(ℓ1 − ℓ2) > θ,

where θ = 2π
W dk and expand the expression |Qℓ1ℓ2 |2−|Rℓ1ℓ2 |2

as follows:

|Qℓ1ℓ2 |2 − |Rℓ1ℓ2 |2
(a)
= 2λω

(
(1− λω)(cos(φ)− 1)

− (cos((1− λω)φ)− cos(λωφ))
)

(b)
= 2λω sin(φ/2)(sin((1− 2λω)φ/2)− (1− λω) sin(φ/2)).

(24)

Here, (a) follows from the definition of Qℓ1ℓ2 and Rℓ1ℓ2 and (b)
is a results from simplifying the expression cos((1− λω)φ)−
cos(λωφ)) = −2 sin((1− 2λω)φ/2) sin(φ/2).

We first note that since εCSI = 2σ2(2 + Bσ2) ≥ 0 and

by (24), 1-MSEω = 0-MSEω if εCSI = 0, and L = 1 or

λω = 0. This behavior can be explained intuitively because

when εCSI = 0 and L = 1, then the channel is flat across all

subcarriers, and hence 1-MSEω = 0-MSEω

Hence, we now show that 1-MSEω < 0-MSEω for L > 1
and λω 6= 0 by showing that |Qℓ1ℓ2 |2 − |Rℓ1ℓ2 |2 < 0. First

note that ℓ1 − ℓ2 < L and if dk < W/(3L), then θ < φ <
Lθ = 2π

W Ldk < 2π
3 . Hence, sin(φ/2) > 0. Therefore, showing

that (24) is negative is equivalent to:

g(λω) =
sin((1− 2λω)φ/2)

1− λω
< sin(φ/2). (25)

We now prove (25) by noting that g(λω) = sin(φ/2) if λω = 0
and g′(λω) < 0 for all λω ∈ (0, 0.5] so g(λω) is monotonically

decreasing in (0, 0.5]. The proof is straightforward by:

g′(λω) =
−φ cos((1− 2λω)φ/2)

1− λω
+

sin((1− 2λω)φ/2)

(1− λω)2
,

(26)

and, hence, g′(λω) < 0 in (26) can be expressed as:

tan((1− 2λω)φ/2) < (1− λω)φ. (27)

To show (27), we introduce the shorthand notation γ =
1 − 2λω ∈ [0, 1). With the new notation γ, the proof is

straightforward by:

tan((1− 2λω)φ/2)
(a)

≤ γ tan(φ/2)
(b)

≤ γφ < (γ + λω)φ

= (1− λω)φ,

where (a) follows from the convexity of tan(x) in x ∈ [0, π/2)
and (b) follows from tan(φ/2) < φ for all φ ∈ (0, 2π/3].
Since g′(λω) < 0 for all λω ∈ (0, 0.5], g(λω) is monotonically

decreasing and thus, from (24), it follows that |Qℓ1ℓ2 |2 −
|Rℓ1ℓ2 |2 < 0 for L > 1.

We conclude by noting that a sharper upper bound on dk can

be obtained by directly computing the bounds for 1-MSEω −

0-MSEω , i.e.,

1-MSEω − 0-MSEω = −εCSIλω(1− λω)) +
2λω(1 + εcor)

B

×
(
fL(λωθ)− fL((1− λω)θ)− (1− λω)(1− fL(θ))

)
< 0,

for all λω ∈ (0, 0.5], but we leave an analysis of such refined

bounds for future work.
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