ON UNIQUENESS OF SOLUTIONS TO CONSERVATION LAWS
VERIFYING A SINGLE ENTROPY CONDITION
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ABSTRACT. For hyperbolic systems of conservation laws, uniqueness of solutions is still
largely open. We aim to expand the theory of uniqueness for systems of conservation
laws. One difficulty is that many systems have only one entropy. This contrasts with
scalar conservation laws, where many entropies exist. It took until 1994 to show that
one entropy is enough to ensure uniqueness of solutions for the scalar conservation laws
(see Panov [Mat. Zametki, 55(5):116-129, 159, 1994]). This single entropy result was
proven again by De Lellis, Otto and Westdickenberg about 10 years later [Quart. Appl.
Math., 62(4):687-700, 2004]. These two proofs both rely on the special connection between
Hamilton—Jacobi equations and scalar conservation laws in one space dimension. However,
this special connection does not extend to systems. In this paper, we prove the single
entropy result for scalar conservation laws without using Hamilton—Jacobi. Our proof
lays out new techniques that are promising for showing uniqueness of solutions in the
systems case.
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1. INTRODUCTION

The present paper is concerned with the scalar conservation law in one space dimension:
(1.0.1)

In the scalar conservation law (1.0.1), u(x,t) : R x [0, 00) — R is the unknown, u® € L>°(R)
is the given initial data, and A : R — R is the given flux function. In the present paper, we
are concerned with A € C?(R) strictly convex. A classical solution of (1.0.1) is a locally
Lipschitz function u : R x [0,00) — R which satisfies u; + (A(u)); = 0 almost everywhere
and verifies u(z, 0) = u®(z) for all z € R. We are also interested in weak solutions of (1.0.1).
A weak solution to (1.0.1) is a locally bounded measurable function u : R x [0,00) — R
which satisfies

(1.0.2) / / O + Dy dA(u)] dudt + / 6(z,0)u(z) dz = 0
0 —o0 —c0o

for every Lipschitz continuous test function ¢ : R x [0,00) — R, with compact support. In
particular, every weak solution satisfies (1.0.1) in the sense of distributions. Note that a
classical solution is also a weak solution.

A pair of functions 7,q : R — R are called an entropy and entropy fluz, respectively, for
the scalar conservation law (1.0.1) if

(1.0.3) q'(u) = 1'(u)A'(u).

We say a weak solution u of (1.0.1) is entropic for the entropy 7 if it satisfies the entropy
mequality

(1.0.4) Om(u) + 0q(u) <0

in a distributional sense, where ¢ is any corresponding entropy flux. Precisely,
(1.0.5) [ [ 0ont + osvaw ot + [ o 0pmu @) e 2 0
0 —oo -

for every nonnegative Lipschitz continuous test function ¢ : R x [0, 00) — R, with compact
support. Kruzhkov [18] proved existence and uniqueness for bounded weak solutions to
(1.0.1) which are entropic for the large family of entropies {nx}rer, where

(1.0.6) e (u) =|u— k.

For a bounded and measurable solution to (1.0.1), being entropic for each of the ny, is equiv-
alent to being entropic for every convex entropy [25, Proposition 2.3.4]. See Bolley, Brenier
and Loeper [5] for an extension of Kruzhkov’s theory, based on the Wasserstein distance.
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Oleinik discovered “condition F,” and proved existence and uniqueness for bounded weak
solutions to (1.0.1) which satisfy it [23]. A solution u to (1.0.1) satisfies condition E if

There exists a constant C' > 0 such that

(1.0.7) u(z + z,t) —u(x,t) < %z

for all ¢t > 0, almost every z > 0, and almost every x € R.

It is known that being entropic for each of the 7 is equivalent to Oleinik’s condition E
when the conservation law (1.0.1) has a uniformly convex flux function A [25, p. 66 and
p. 57]. When the solution to (1.0.1) is bounded and A is strictly convex, we can assume A
is uniformly convex.

For general system, using the L' theory , Bressan, Crasta, and Piccoli showed uniqueness
in the class of solutions with small total variation in [6]. It can be interesting to study
the uniqueness of the same solutions in a larger class. For example, for the 2 x 2 Euler
system, existence of solutions with large data is known. But uniqueness is still open for
such solutions.

The present paper concerns the uniqueness of solutions to scalar conservation laws in
one space dimension which are entropic for only one entropy. However we are careful in
our theory to develop techniques that we believe will extend to the systems case.

To attempt new progress on the theory of uniqueness, we take an entirely new approach.
We use the method of relative entropy combined with the recent idea of stability up to
a shift (first described by the second author in [29]). Our methods are fundamentally L?
theory.

The method of relative entropy allows for stability estimates to be made between a
smooth solution to a conservation law and a weak solution entropic for at least one convex
entropy. The method of relative entropy is powerful, applying to the cases of scalar,
systems, and multiple space dimensions.

The theory of stability up to a shift allows for discontinuities to be introduced into the
smooth solution that the method of relative entropy considers. In this way, the method of
relative entropy can be used to make comparisons between a weak solution and piecewise-
Lipschitz solutions. This is how the uniqueness result of the present paper is proven.

Given the system (1.0.1) and entropy and entropy flux n and g, respectively (or more
generally, any hyperbolic system of conservation laws in multiple space dimensions endowed
with any entropy), the method of relative entropy considers the quantity called the relative
entropy:

(1.0.8) n(alp) = n(a) —n(b) —n'(b)(a —b)

for all a,b € R.
We have also the associated relative entropy-fluz,

(1.0.9) q(a;b) = gq(a) — q(b) — 1/'(b)(A(a) — A(D))
for all a,b € R.
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Both n(alb) and g(a;b) are locally quadratic in @ — b. In particular, for all @ and b in a
fixed compact set, the strict convexity of n € C%(R) gives

(1.0.10) c*(a —b)? < nlalp) < **(a — b)?

for constants ¢*, ¢** > 0.

The method of relative entropy was invented by Dafermos [9, 8] and DiPerna [12] to
prove weak-strong estimates: given a weak solution u to (1.0.1), entropic for 7, and a
classical solution u, the method of relative entropy gives stability estimates on the growth
in time of ||u(-,¢) — u(-,t)||,, by considering the time derivative of [7(u|i)dz and using
the entropy inequality (1.0.4) (in particular, see Lemma 2.2). Due to (1.0.10), the quantity
n(u|u) gives estimates of L2-type, while being more amenable to study than the L? norm
itself, due to the entropy inequality (1.0.4). The relative entropy method is fundamentally
an L? theory.

The aforementioned recent insight of the second author has allowed for discontinuities
to exist in the otherwise smooth solution that the method of relative entropy considers.
The key is that shocks have a contraction property in L? up to shift, even for large pertur-
bations. For this, the discontinuities must not be allowed to move in time according to the
conservation law, but instead their movement must be dictated by a special time-dependent
function which shifts the solution. The first result in this program was by Leger [19] for the
scalar conservation law (1.0.1) for a strictly convex flux A € C%(R). We now introduce the
result of Leger. Let ur,ur € R satisfy up, > ug. Let o satisfy A(up)—A(ur) = o(ur —ug).
Define

uy, ifx<0
1.0.11 =
( ) ¢(x) {uR if £ > 0.

Let u be any Kruzhkov solution. In this context, Leger proved the existence of a Lipschitz
continuous function h : [0,00) — R such that

(1.0.12) [ul8) = &( = (t) = ot)|| oy < [[u(,0) = 6() 1o gy

for all ¢ > 0. Note that by shifting the position of the shock wave as a function of time,
all L? growth in time is killed. The shift function h depends on u. Leger gives control
on h: |h(t)] < Al|u(-,0) — qb(-)HLQ(R) V/t, for some constant A > 0. Leger only considered
Kruzhkov solutions, but his methods are in fact very general and can be applied whenever
a solution satisfies a strong trace property (see Definition 1.1 below) and is entropic for at
least one strictly convex entropy 1 € C2(R).

The second author and coworkers have been actively developing the theory of contraction
up to a shift function. Progress has been made on systems of conservation laws in one
space dimension by introducing the notion of a-contraction up to shift [15, 28, 30, 26, 20]
and scalar viscous conservation laws in both one space dimension [16] and multiple space
dimensions [17]. For a more general overview of the theory of shifts and the relative entropy
method in general, see [27, Section 3-5]. The theory of stability up to a shift has also been
used to study asymptotic limits when the limit is discontinuous. See [7] for the scalar
case, and [31] for the case of systems. There is a long history of using the relative entropy
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method to study the asymptotic limit. However, results on the asymptotic limit which do
not use shifts have only been able to consider the case when the limit function is Lipschitz
continuous (see [32, 1, 2, 3, 4, 13, 21, 22] and [29] for a survey).

Current work only allows for a single discontinuity to exist in the otherwise smooth
solution considered by the method of relative entropy. A natural progression is to try to
allow for arbitrarily many discontinuities in the smooth solution, so that we can use the
method of relative entropy to compare not just a smooth solution and a weak solution, but
ideally two weak solutions. In the present paper, we use the method of relative entropy
to compare a weak solution to a solution with arbitrarily many discontinuities. Thus, the
present paper expands the theory of stability up to a shift.

The present paper lays out a new engine for proving uniqueness of solutions. In summary,
the engine works by comparing two solutions using the method of relative entropy. One
solution u can be weak and entropic for just a single entropy. The second solution will have
more regularity, but by allowing many discontinuities can still be from a dense class. By
using the method of relative entropy to approximate the weak solution u with a sequence
of more regular solutions, we detect regularity in u. Hopefully, enough regularity in u will
ensure uniqueness.

The uniqueness result in this paper is for the scalar conservation laws. But, much of our
work should generalize to systems. The method of relative entropy works for systems, and
also multiple space dimensions. The theory of stability up to a shift has been developed
for systems. Many hyperbolic systems of conservation laws in one space dimension admit
only one non-trivial entropy [27, p. 238]. In the present paper, we use only one entropy.

For the scalar conservation laws, uniqueness of solutions entropic for a single entropy is
not new. The first proof was given by Panov in 1994 [24], for the system (1.0.1) with any
flux A € C?(R) strictly convex, any entropy n € C'(R) strictly convex, and v’ € L>(R). A
second proof was given approximately 10 years later by De Lellis, Otto and Westdickenberg
[11]. Their result is stronger than Panov’s result: their proof allows for various right-hand
sides in the entropy inequality, and can consider unbounded functions [11, p. 688].

However, both the proofs of Panov and De Lellis-Otto-Westdickenberg are fundamen-
tally limited to the scalar conservation laws. Both proofs exploit the special connection
between scalar conservation laws in one space dimension and Hamilton—Jacobi equations:
the space derivative of the solution to a Hamilton—Jacobi equation is formally a solution
to the associated scalar conservation law. It is well-known that the relation between scalar
conservation laws in one space dimension and Hamilton—-Jacobi equations breaks down in
the more general case of hyperbolic systems of conservation laws in one space dimension
(however, see [14] for a formal connection between a general Hamilton—Jacobi equation in
n space dimensions and a weakly hyperbolic system of conservation laws).

Before we can state precisely the uniqueness result proven in the present paper, let us

introduce the strong trace property (originally introduced in [20]):

Definition 1.1. Let u € L>®(R x [0,00)). Then wu verifies the strong trace property if for
any Lipschitz continuous function A : [0,00) — R, there exist uy,u_ € L*([0,00)) such
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that
(1.0.13)
T T
lim [ ess sup|u(h(t) +y,t) —uy(t)] dt = lim [ esssup ‘u(h(t) +y,t) — u,(t){ dt =0
n—r00 1 n—r00 1
0 y€(07ﬁ) 0 yE(—E,O)
for all T' > 0.

Note that any function u € L*(R x [0,00)) will satisfy the strong trace property if u
has a representative such that for any fixed h, the left and right limits
(1.0.14) lim wu(h(t) +y,t) and lim wu(h(t) + y,t)
y—0t y—0—
exist for almost every t. In particular, any function u € L>(R x [0, 00)) with a representa-
tive in BV}, will satisfy the strong trace property. But the strong trace property is weaker

than BVi,c.
The result we show in this paper is

Theorem 1.2 (Main theorem). Let u € L*(R x [0,00)) be a weak solution with initial
data u® € L®(R) to the scalar conservation law in one space dimension (1.0.1) with flur
A € C%(R) strictly convex. Assume u satisfies the entropy inequality (1.0.4) for at least one
strictly convex entropy n € C*(R). Further, assume u satisfies the strong trace property
(Definition 1.1).

Then u is the unique solution to (1.0.1) verifying (1.0.7) and with initial data u°.

We briefly outline the present paper and the proof of the main theorem, Theorem 1.2.
Let u be any bounded weak solution to (1.0.1) with initial data u® € L>°(R), entropic for a
strictly convex entropy € C?(R) and satisfying the strong trace property (Definition 1.1).
In the scalar case, the special structure we are trying to detect is (1.0.7). To prove u verifies
(1.0.7), we use shift functions very similar to the ones constructed by Leger [19] and in
[26] to give, at each fixed time T, a sequence of piecewise Lipschitz continuous functions
{tpc}es0 defined on a subset of the real line which converge in L? to u(-,T) as ¢ — 07.
The . will be constructed by gluing together at time T various classical solutions to
(1.0.1), each of which satisfy (1.0.7). Thus, the 1, will be shown to verify (1.0.7). By
classical measure theory, the 1), converge (up to a subsequence) to u(-,7T") pointwise almost
everywhere. Thus, v will have the same structure as the 1. and will satisfy (1.0.7) for time
T, where T is arbitrary. This will complete the proof of Theorem 1.2.

In Section 2, we give some preliminary results and facts which we will need. Then, in
Section 3 we give a construction of a shift function as suited to our needs in this paper,
based on the construction in [26]. With the shift construction out of the way, in Section 4
we state and prove the main proposition (Proposition 4.1) which gives the existence of
the 1. The proof of the main proposition is broken up into two lemmas (Lemma 4.2 and
Lemma 4.3). To conclude, in Section 5 we let ¢ — 07 (up to a subsequence) to explain
how the main proposition implies the main theorem (Theorem 1.2).
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2. PRELIMINARIES

Throughout this paper, we will assume that there is a constant B > 0 such that all of
the weak solutions w to (1.0.1) that we consider satisfy

(2.0.1) [0]] oo (R x[0,000) < B-

For a function u € L>®(R x [0, 00)) that verifies the strong trace property (Definition 1.1),
and a Lipschitz continuous function h : [0,00) — R, we use the notation u(h(t)%,1t)
to denote the values uy(t) at a time ¢ when u has a left and right trace according to
Definition 1.1, where u4 are as in the definition of strong trace. For time ¢ when u has a
strong trace, the values uy (t) are well-defined, and hence u(h(t)+,t) are also well-defined.

Most of the things in this preliminary section are well-known. But we include these
facts here and their proofs so as to make sure we are not using more than we think.
In Theorem 1.2 we do not assume that the solution w to the scalar conservation law is
Kruzhkov.

Lemma 2.1 (Properties of solutions with Lipschitz initial data). Let v) € L*(R) be
nondecreasing Lipschitz continuous functions for i = 1,2, verifying v{(z) > v8(z) for all
x € R. Let v; denote the unique solution to (1.0.1) satisfying (1.0.7) and with initial data
v?. Then the following holds:

(a) The v; are classical solutions to (1.0.1) on R x [0, 00).

(b) The v; are given by the method of characteristics. In other words, for each (x
R x [0,00), there exists x° € R such that vi(z,t) = v} (2°) and z = 20+t A’ (v}
(and similarly for v ).

(¢) The v; satisfy (1.0.7) with C = 1/inf A”.

(d) Fori=1,2 andt >0, vi(-,t) is a nondecreasing function in the x variable.

(6) HU?HLOO(]R) = |‘UiHL°°(R><[O,oo)) fOT’ L= 1’ 2.

(f) vi(z,t) > va(x,t) for all (x,t) € R x [0, 00).

t) €

(2%))

Proof. From [10, p. 176-7], we know that for each i there exists a classical solution v; to
(1.0.1) on R x [0, 00) with initial data v? which is given by the method of characteristics.
For a fixed ¢, we now check by direct method that v; satisfies (1.0.7). By uniqueness of
solutions satisfying (1.0.7), this will prove parts (a) and (b).
Fix t,z > 0 and z € R. Because v; is given by the method of characteristics, there exists
an 2° and z° such that

V; .’L’,t = UZ(‘] xO
(209 {x o)

and

Ui\ — 2,1) = Uz('] "
(2.0.3) {;1: :— z+: aztg + tA’((u§>(5:0))-
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We have
r—a
(2.0.4) ule ) = (Al)l( t ~0>
vil@ + 2, ) = (A)~! (””i””)

where the functional inverse (A’)~! exists because A is strictly convex.
Because the characteristics do not cross, we have

(2.0.5) 0<% —2%=24tA %) - AWEM)) < 2
Then from (2.0.5),
0

(2.0.6) 0<“T+Zt_x —x_tx <§.
Finally,
ian” |:(A/)—1 <3§' +z— 5;0) o (A/)—1<x — .TO):|
t t
(2.0.7)

0 ~0
S e I L e e IR
t t t

Lines (2.0.4), (2.0.6) and (2.0.7) imply v; satisfies (1.0.7). In particular, note that we
can take C' = 1/inf A” in (1.0.7).

This proves parts (a), (b), and (c).

Part (d) follows immediately from part (b). Similarly, part (e) follows immediately from
parts (a) and (b).

We now show how part (f) follows from part (b). We argue by contradiction. Assume
there exists (z,t) € R x [0, 00) such that vq(z,t) < ve(x,t).

Then we have just proven that v; and vy are given by the method of characteristics.
Thus there exists ¥ and z° such that

0 10,000
x=2x +tA(vi(x
(2.0.8) Y ,( é(~o))
=7 +tA(v3(27))
and
(2.0.9) vi(z,t) = v9(2°) < v3(2%) = va(x, 1).
Then from (2.0.8),
(2.0.10) 20 — 70 = (A (03 (z%)) — A'(9(29))).
Then the right-hand side of (2.0.10) is nonnegative, which means z° > 7°. Thus,
(2.0.11) 0)(2%) > 09(2°) > 3 (z°)

because v9(z) > vJ(x) for all x € R. However, this gives a contradiction with (2.0.9). This
proves part (f). O
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Lemma 2.2 (An extension of the entropy inequality). Let 4° € L®(R) be a Lipschitz

continuous and nondecreasing function. Let u be the unique solution to (1.0.1) with initial

data @° and which satisfies (1.0.7). Let u € L™(R x [0,00)) be a weak solution to (1.0.1)

with initial data u®. Assume that u is entropic for the strictly convex entropy n € C%(R).
Then

(2.0.12) om(ula) + Opq(u;u) <0

in the sense of distributions.
In other words, the following holds for all nonnegative, Lipschitz continuous test func-
tions ¢ on R x [0,00) with compact support:

(2.0.13) / [0cpn(u|u) + Oxiq(u; w)] dedt + / o(z,0)n(u’(z)|a’ (z)) dz > 0.

0 —o0
Remark. The inequality (2.0.12) extends the entropy inequality (1.0.4).

Proof. By part (a) of Lemma 2.1, u is a classical solution. Then, Lemma 2.2 follows
immediately from the following inequality:

oo

//at@? ul) + 0,ég(u; @) dudt + / 6(z, 0)(u (2)]@ () dz >

0 —

(2.0.14) e
/ / dOun" (w)[A(u) — A(u) — A'(a)(u — )] dedt.
0 —o0

Dafermos gives this inequality as one of the central steps in the proof of weak-strong
stability. See [10, p. 124, line (5.2.10)].

By part (d) of Lemma 2.1, @ is increasing in z. Furthermore, we have ", A” > 0. Thus
the right-hand side of (2.0.14) is controlled from below by zero. O

Lemma 2.3. Let [t*,t*) be a bounded interval. Let hi(t), ho(t) : [t*,t**) — R be Lipschitz
continuous functions, such that ho(t) — hi(t) > 0 for all t € [t*,t**).

Let @w° € L®(R) be a Lipschitz continuous and nondecreasing function. Let @ be the
unique solution to (1.0.1) with initial data @° and which satisfies (1.0.7). Let u € L>®(R x
[0,00)) be a weak solution to (1.0.1) with initial data u’. Assume u is entropic for the
strictly convex entropy n € C?(R). Furthermore, assume that u verifies the strong trace
property (Definition 1.1).
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Then for almost every a,b € [t*,t**) with a < b,

ha(b) ha(a)
[ e batevyde— [ aute,a)iate o) ds <
h1(b) hi(a)
(2.0.15) ’
/ {q<u<h1<t>+,t>; ik (8),6)) — a(ulha(t)— ) a(hat), )+

ha(8)n(u(ha(t)—, t)[a(ha(t),t)) — ha()n(uha )+, t)|a(h (1), 1)) | dt.
Ift* =0, then (2.0.15) holds for a =0 and almost every b € (t*,t*).

Proof. For 0 < € < min{b — a,t** — b}, define

ift<a
(t—a) ifa<t<a+e
ifa+e<t<b
—lt—(b+e) ifb<t<b+e
0 ifb+e<t.

= ool O

(2.0.16) Xe(t) =

Let 0 = inf,c(q p+q h2(t) — h1(t). Note 6 > 0. Then for 0 < e < %, define

¢

0 if & < hy(t)
La—n(t) ifhl)<z<h®)+e
(2.0.17) Ye(x,t) =<1 if hi(t)+e <z < ho(t) —e
—L(@—ho(t)) if ha(t) —e <z < ho(t)
0 if ha(t) < .

The e(x,t) and x(t) are from [19, p. 765].
Use ¥e(x,t)x(t) as a test function for (2.0.13). The result is

(2.0.18)
b hi(t)+e ha(t) ha(t) hi(t)+e
! / { q(u;w) de — / q(u;u) de + / ho(t)n(ul|a) do — / B (t)n(u)@) dx} dt
‘ a  ha(t) ha(t)—e ha(t)—e hi(t)
a+eha(t) bte ha(t)
+ % / n(u|a) dxdt — % / / n(u|u) dzdt + O(e) > 0.

s
=
-
—~
o~
~
(=
=
_
—~
o~
~
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Let € — 0% in (2.0.18). Use the dominated convergence theorem, the Lebesgue differ-
entiation theorem, and the fact that u verifies the strong trace property (Definition 1.1).
This gives (2.0.15) for almost every a,b € [t*,t**) with a < b.

When t* = 0, we want to show that (2.0.15) holds for a = ¢* = 0. This follows because
we include the boundary term corresponding to ¢t = 0 in (1.0.5), and hence the boundary
term corresponding to t = 0 appears also in (2.0.13).

We now show that when ¢* = 0, (2.0.15) holds for a = t* = 0.

Fora=t"=0and 0 < e < t** — b, define

1 if0<t<b
(2.0.19) X)) =S —Lt—(b+e) ifb<t<bte
0 ifb+e<t.

The x? is borrowed from [10, p. 124]. Test (2.0.13) with v (z,¢)x%(¢). This gives

b hl(t)+6 hg(t) ho (t) h1 (t)+€

1/[ / q(u; @) do — / q(u; @) da + ha(t)n(ul@) dz — / hl(t)n(ulﬂ)dﬂﬁ} di

a h1 (t) hQ(t)—e ho (t)—€ hl(t)
h2(0) ) bt-e ha(t)
+ / n(ul (z)]a’(z)) dz — - / n(u|a) dzdt + O(e) > 0.
h1(0) b h(t)

Finally, let € — 0T in (2.0.20). Once again, invoke the dominated convergence theorem,
the Lebesgue differentiation theorem, and use that u verifies the strong trace property
(Definition 1.1). We receive (2.0.15) for a = 0 and for almost every b € (t*,¢*). O

Lemma 2.4. Let u° € L>®(R) be a Lipschitz continuous and nondecreasing function. Let
@ be the unique solution to (1.0.1) with initial data u® and which satisfies (1.0.7). Let
u € L®(R x [0,00)) be a weak solution to (1.0.1) with initial data u®. Assume that u is
entropic for at least one strictly convex entropy n € C?(R). Assume also that u verifies the
strong trace property (Definition 1.1).

Then for all c,d € R verifying c < d, the approximate right- and left-hand limits

d
(2.0.21) ap lim [ n(u(z,t)|u(z,t))dz
t—toT
exist for all tg € (0,00) and verify
d d
(2.0.22) ap lim [ n(u(z,t)|u(z,t))dx >ap lim [ n(u(z,t)|a(z,t))de.
t—to™ t—toT

c &
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The approrimate right-hand limit also exists for to = 0 and verifies

d d
(2.0.23) /n(uo(m)mo(x)) dx > ap hm+ n(u(z,t)|u(z,t)) de.
t—0
Proof. For some constant C' > 0 to be chosen momentarily, define the function I" : [0, 00) —
R,
d
(2.0.24) T(t) == / n(u(z, )iz, 1) dz — Ct.

C

Apply (2.0.15) to the case when h;(t) = ¢ and ha(t) = d for all t. The integrand on the
right-hand side of (2.0.15) is bounded. Thus, there exists some constant C' > 0 such that
I'(t) > I'(s) for almost every ¢t and s verifying ¢ < s. This means that there exists a
function which agrees with I' almost everywhere and is non-increasing. This implies that
I" has approximate left and right limits. In particular, we conclude that the approximate
right- and left-hand limits (2.0.21) exist for all ¢y € (0,00) and verify (2.0.22). Note the
approximate right-hand limit also exists for ¢y = 0 and because (2.0.15) holds for the time
a = 0, the approximate right-hand limit verifies (2.0.23) at time zero.

O

3. CONSTRUCTION OF THE SHIFT
In this section, we present a proof of

Proposition 3.1 (Existence of the shift function). Let u € L®(R x [0,00)) be a weak
solution to (1.0.1), entropic for at least one strictly convex entropy n € C*(R). Assume
also that u verifies the strong trace property (Definition 1.1). Let @) € L>®(R) be Lipschitz
continuous and nondecreasing functions for i = 1,2, verifying u{(z) > u3(z) for all x € R.
Let 1; € L°°(R x [0,00)) be solutions to (1.0.1) verifying (1.0.7) and with initial data ),
fori=1,2. Let t* > 0 be some fized time, and let xy € R be some fized space coordinate.
Then for e > 0 there exists a Lipschitz continuous function he : [t*,00) — R such that

(3.0.1) he(t*) = xo, Liplhe] < sup ’A"
|z <lull o0
and
(3.0.2) q(uy32) — q(u—; ar) — he(n(uaz) —n(u_|a)) < e

for almost every t € [t*, 00), where ux = u(he(t)£,t) and u; = u;(he(t),t).

In [26], the authors build a general framework for the construction of the shift functions
necessary for L? stability in the general case of systems. They also apply their framework
to the scalar case, recovering the result of Leger [19].

We present here a construction of the shift function based on the work [26]. We modify
the construction slightly. In [26], the data @; are constant. In contrast, we assume the a;
are Lipschitz continuous solutions to (1.0.1). The presentation is also simplified due to our
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focus only on the scalar case. Lastly, in the general framework for systems in [26], there is
a “constraint” labeled with equation number 7 [26, p. 4]. Although this constraint is used
in [26] for the scalar case in particular, we find that the proof for scalar in [26] as-is does
not require it.

Lastly, the paper [26] considers only Kruzhkov’s solutions [26, p. 9] which are entropic
for the family of entropies {ju — k|}xer. We find that the proofs in [26] hold without
modification for solutions which are not necessarily of this type.

3.1. Lemmas necessary for the proof of Proposition 3.1. We need the following
structural lemmas.

Lemma 3.2 (Structural lemma on entropic shocks). Consider the equation (1.0.1), en-
dowed with a strictly convex entropy n € C%*(R), and an associated entropy flur q. Let
ur,ur,0 € R satisfy

(3.1.1) A(ug) — A(ur) = o(ur — ur).
Then
(3.1.2) q(ur) = q(ur) < o(n(ur) —nlur))

if and only if up > ur. Which is to say, the shock (ur,up,o) is entropic for the entropy
n if and only if ur, > ug.

Remark. For the scalar conservation law (1.0.1) with flux A strictly convex, we know that
the “physical” or “admissible” shock wave solutions will be the ones with left- and right-
hand states u; and upg, respectively, which satisfy ur > wgr. This is the Lax entropy
condition for the scalar case. It is immediate that shock solutions satisfying (1.0.7) verify
the Lax entropy condition. Lemma 3.2 says that shock solutions to the scalar conservation
law (1.0.1) endowed with the entropy 7, also verify the Lax entropy condition.

Proof. We only consider the case when ur, # ug.
Let

(3.1.3) A = qlug) — qluz) — o(n(ug) — nlur)) = / A () (u) — o0 (u) du.

We want to show A < 0 if and only if uy, > ug.
We can write

UR
(3.1.4) o= Alur) = Alur) = ! /A'(v) dv.
UR — U, UR — Uy,
ur,
Thus
(3.1.5)

UR

A= / o (1) <A’(u) _ zml—mfA,(”) dv> du

ur
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(3.1.6) — 777'(u) (uRiuL 7A’(u) ~ A) dv) du

(3.1.7) = URiuL 7777’(@&)(4@) ~ A(v)) dvdu

(318) = ( // — A'(v)) dvdu — ;// o (0)(A' (1) — A'(0) dvdu)
D

where D = I(up,ur) X I(ur,ur). We use I(a,b) to denote the interval with endpoints a
and b.
Finally,

1
1. A== YA A dvdu.
(3.19) 2uR_uL// DA () — A'(0) dod
Then, by strict convexity of A and 7, the quantity

(3.1.10) / / ) (A (u) — A'(v)) dvdu

is always positive. Thus, the sign of A is given by the sign of urp — uy. This completes the
proof. O

Lemma 3.3 (Structural lemma from [26]). Let ur,up,u—,us € R satisfy ur, > ur and
u_ > uy. Letn € C*(R) be a strictly convex entropy, with associated entropy fluz q. Define

(3.1.11) o(u_,uy) = A(“Jj - j_(“‘).
Then,

(3.1.12) (s um) — qlu—sur) — o(u—, us) (n(us Jug) — n(u_|ug)) < 0.
Moreover, if

(3.1.13) n(ulur) = n(ulur)

for some u € R, then

(3.1.14) q(u;ur) — q(u;ur) < O0.

Lemma 3.3 was proven in [26]. For completeness, we give the proof of this lemma in the
appendix (Section 6.1).

Lemma 3.4 (Structural lemma). Let n € C%(R) be a strictly convex entropy for (1.0.1).
Let q be the associated entropy flux. For € > 0, define the function Ve : {(u,ur,ur) €
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R3|’U,L > U,R} — R:

lg(u;ur)—q(usur)—e€l+

(3.1.15) Vi(u,up,ug) =4 ") —n(efur) if n(ulur) # nulur)
0 if n(ulur) = n(ulur),

where [ -]+ = max(0, -).
Then, V. verifies

(3.1.16) Ve (u, ur, ug)| <|A'(u)].
Proof. Let
Vg o | SRR n(ulun) # ofulu)
0 if n(ulur) = n(ulur).
In order to show (3.1.16), the idea is to show
(3.1.17) [V (w,up,up)| <|A'(u)]

and then use the basic inequality
\Ve(u,u,ur)| <|V(u,ur, ug)| .
The proof of (3.1.17) depends on controlling the quantity
(3.1.18) q(u;ur) — q(u;ur)
n(ulur) —n(ulur)
for the (u,ur,ur) values that make q(u;ugr) — q(u;ur) > 0.
We have three cases where we get control on the quantity (3.1.18): u > ur > ug,
ur > ur > u, and up < u < ur. We begin with some elementary facts which will be used

repeatedly.
Remark that

(3.1.19) Ipn(alb) =n"(b)(b—a)  and  Ipg(a;b) =n"(b)(A(b) — A(a)).
In particular, we can write for all a,b,c € R,
b

b
(3:120) g(@ib) = gfaie) = [ 7' (0)(A@) - A@)do = [of'(0)(w - a)

Aw) - A@)

v—a
C

We can now begin the casework to prove Lemma 3.4.

Case u > up, > up

We note that for all u,ur,ur € R such that v > uy, > ug,

UR UR
(3.1.21) n(ulug) — n(ulur) = /&m(u\v) dv = /n”(v)(v —u)dv >0
uy, uy,

by strict convexity of . We conclude
(3.1.22) n(ulur) — n(ulur) > 0.
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For all u,ur,ur € R such that v > ur, > ur and n(ujur) — n(ulur) # 0, we compute
up
A(v)—A
J () (0 = u) 2= do
q(u; ur) — q(usur) _
n(ulur) —n(ulur) n(ulur) —n(ulur)

By the mean value theorem and strict convexity of A, w < A'(u) for v € [ug,ur).
Thus, recalling also the strict convexity of n and (3.1.22), we continue from (3.1.23) to get

Aw) () (0 - u) do

(3.1.24) < e ) = A'(u).

(3.1.23)

In summary,

q(u;ur) — q(u;ur)
n(ulur) —n(ulur)

(3.1.25) < A'(u).
Case up, > up > u

Our method is analogous to the case u > uy, > ur above.
Remark that for all w,ur,ur € R such that uy > ugr > u,

(3.1.26) n(ulur) — n(ulur) = /8Un(u|v) dv = /n"(v)(v —u)dv <0

by strict convexity of . We conclude
(3.1.27) n(ulug) — n(ulur) < 0.
For all u,ur,ur € R such that uy, > ur > v and n(u|ug) — n(ulur) # 0, we calculate
UR
A(v)—A
[ ()0 ) A= o
alusun) — q(uiug) _ iy
n(ulur) — n(ulur) n(ulur) —n(ulur)

By the mean value theorem and strict convexity of A, w > A'(u) for v € [ug,ur).

Thus, recalling also the strict convexity of 7 and (3.1.27), we continue from (3.1.28) to get

A(w) [ ") (0 — u) do

(3129 > ) — ey )

(3.1.28)

To summarize,

q(u;ur) — q(u;ur) /
3.1.30 > A'(u).
(3.130) () —nufug)
Case up < u < uy,

This case is slightly different than the two cases above.
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For all u,ur,ur € R such that ug < u < ug and n(u|ur) — n(ulur) # 0,
(3.1.31)

UR
[ () (v — ) A=A g,
q(u;ur) — q(usur)

[n(ulur) —n(uluz)] — |i(ulur) = nuluz)]

u

Upr
[ ') - w) 2= do - [ (o) (0 - )22 g
(3.1.32) _ L u

|n(ulur) — n(ulur)]
By the mean value theorem and strict convexity of A, w > A'(u) for v € (u,ur],

and AW=AW g (u) for v € [ug,u). Thus, recalling also the strict convexity of 7,

A (u) f n"(v)(v—u)dv+ A'(u) ufRn”(v)(v —u)dv
(3133 < [nCalur) — n(uafun)
(3.1.34) = A'(u) sgu(n(ulur) — n(ulur)).
We receive,

Q(U, UR) - Q(U, uL) < A
|n(ulur) —n(ulur)]

We combine all the cases u > uyp, > ug, ur, > ur > u, and ug < u < ur, and in
particular (3.1.22), (3.1.25), (3.1.27), (3.1.30), and (3.1.35). We keep in mind that we only
consider (u,ur,ur) values that make q(u;ur) — q(u;ur) > 0.

In conclusion,

(3.1.35) (u) sgn(n(ulur) — n(ulur)).

\Ve(u,up, ur)| <|V(u,ur,ur)| <|A'(u)].
O

3.2. Proof of Proposition 3.1. This proof is based on the work [26, p. 7-8]. We modify
the proof to consider #; which are non-constant.
Define V; : {(u,ur,ugr) € R3|uy, > ug} — R:

[q(usur)—q(uur)—el+

(3.2.1) Vi(u,up,ug) = 4 10lur)—n(ufur) if n(ulur) # n(ulur)
0 if n(ulur) = n(ulur),

where [-]; = max(0, -).

The function V is continuous. For (u,ur,ur) such that n(u|ug) # n(ulur), Ve is clearly
continuous. By (3.1.14), V. = 0 on some neighborhood of {(u,ur,ur) € R3|n(ulur) =
n(ulur)}. Thus, V, is continuous.

Remark that by part (a) of Lemma 2.1, the u; are classical solutions, and by part (f) of
Lemma 2.1, @ (z,t) > ug(x,t) for all (z,t) € R x [0, 00).
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We construct a solution to

(3.2.2) {Z(t: )Ve:(z(:e(t%t), 1 (he(t), t), ta(he(t), 1))

in the Filippov sense. We use the following lemma:

Lemma 3.5. There exists a Lipschitz function h : [t*,00) — R such that

(3.2.3) he(t") = o,

(3.2.4) )he Lo SIVellzeo s
and

(3.2.5) ile(t) € I[‘/é(uf,al,122),‘/6(@64»,1]1,122)],

for almost every t > 0, where uyx = u(he(t)£,t), and u; = u;(he(t),t) for i = 1,2. Here,
I[a,b] denotes the closed interval with endpoints a and b.
Moreover, for almost every t > 0,

(3.2.6) Auwy) — Al = helus — ),
(3.2.7) q(us) — q(u=) < he(n(ug) —n(u-)),

which means that for almost every t > 0, either the shock (u_,u+,he) 18 an entropic
discontinuity for the entropy n or u_— = u4.

The proof of (3.2.3), (3.2.4) and (3.2.5) is nearly identical to the proof of Proposition 1
in [20]. For completeness, we provide a proof of (3.2.3), (3.2.4) and (3.2.5) in the appendix
(Section 6.2). The properties (3.2.6) and (3.2.7) in fact hold for any Lipschitz function
h :[0,00) — R. These properties are well-known in the BV case. When u only satisfies
the strong trace property (Definition 1.1), (3.2.6) and (3.2.7) are given in Lemma 6 in [20].
We do not include a proof of (3.2.6) and (3.2.7) here; a proof is given in the appendix in
[20].

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. For almost every t such that u_ = u,, we borrow notation from
[26] and write ut == u_ = uy, and then by Lemma 3.5 we have h, = V¢ (ux, 1, u2). This
gives,

(3.2.8) q(ut; o) — q(ur; 1) — he(n(usltin) — n(uslin)) < e.

For almost every ¢ such that u_ # u, Lemma 3.5 says he = o (u_, u), where o(u_, uy) =
(Afus) — A(u_))] (s —u_). Then,

(3:2.9) q(uy; i) — q(u—; @) — he(n(uyluz) = nu|i)) =
(3210)  qlus;un) — alu_sur) — o(u_yus) (9(us hum) — nu_|us)),
and then by (3.1.12), Lemma 3.2, and Lemma 3.5 again,

(3.2.11) <0.
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Thus, for almost every ¢ € [t*, 00)

(3.2.12) q(uy;tin) — q(u—; 1) — he(n(uy|ug) — n(u_|u)) <e.
Finally, by Lemma 3.4 and Lemma 3.5,
(3.2.13) Lip[hd < sup |4'].
|z|<llull oo

4. MAIN PROPOSITION
The proof of Theorem 1.2 will follow from

Proposition 4.1 (Main proposition). Let u € L (Rx[0,00)) be a weak solution to (1.0.1),
with initial data u®. Let n € C%(R) be a strictly convex entropy. Assume that u is entropic
for the entropy n and verifies the strong trace property (Definition 1.1).

Then for all R,T,e > 0, there exists a function v : [—-R, R] — R verifying:

(a)
/ n(u(z, T)|Y(x)) de < e.

|z|<R
(v)
bla+2) - bla) < 72

for x € [-R,R] and z > 0 with x + z € [-R, R| and where ¢ = 1/inf A”.
(c)

191 oo (- r,R)) < Ul oo (Rx[0,00)) -

We decompose the proof of Proposition 4.1 into two lemmas. We utilize functions of the
form

(4.0.1)
For v € L>®(R), there exists a finite set of x; with
—00 =<1 <T2< <IN <ITN41 =
such that v is nondecreasing and Lipschitz continuous on (z;, z;4+1)
fori=0,...,N, and
lim v(z) > lim v(x)

T—T; I e 2173
r<x; r>T;

\forlSiSN.

Lemma 4.2. Let R,T > 0. Let u € L*°(R x [0,00)) be a weak solution to (1.0.1) with
initial data u®. Assume u is entropic for at least one strictly convex entropy n € C%(R).
Assume that u verifies the strong trace property (Definition 1.1). Choose s > 0 to verify
‘q(a; b)‘ < sn(alb) for all a,b € [-B, B], where B is defined in (2.0.1).

Then for all N € NU {0}, we have:
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For any 1Y, ... ,’U?V_H € L>(R) Lipschitz continuous nondecreasing functions verifying
v)(z) = vY, (x) for all1 < i < N and x € R, and for any t* € [0,T] and real numbers
X0y .., TN+1 veTifying xo = —R+ (t* —T)s <z < - <xzy < R— (t* —T)s = xn41 the
following holds:

There exist N + 2 real numbers xor,...,TNy1,7 such that o7 = —R < x17 < --- <
T < R=2zNn41,7 and

N Ti+1,T N Ti41
(4.0.2) ap lim Z / n(u(z,t)|vig1(z,t))de < ap lim Z / n(u(z, t)|vit1(z, t)) dx
t—T+ “— tortrt
Ti,T 7]

where v; is the unique solution to (1.0.1) with initial data v{ and verifying (1.0.7).

Lemma 4.3 (Density of functions of form (4.0.1) in L?). Let M,e > 0. Then for all
f € L3([-M, M)), there is a function f.:R — R of the form (4.0.1) such that

(4.0.3) If = Jell 2= arnmp) <6
(4.0.4) [ fell ooy < N1l poo =z, 0a7) -
and all of the discontinuities of f. are contained in (—M, M).

4.1. Lemma 4.2 and Lemma 4.3 imply main proposition. As in Lemma 4.2, we
choose s > 0 such that ’q(a; b)‘ < sn(alb) for all a,b € [—B, B], where B is defined in
(2.0.1). We also choose ¢** > 0 such that

(4.1.1) n(alb) < c™*(a — b)?
for all a,b € [-B, B].
By Lemma 4.3, there exists a function v0 € L°(R) of the form (4.0.1) such that

€

(4.1.2) Huo —UO‘ <
L2([-R—sT,R+sT)) c**

and if there is at least one discontinuity in v°, the discontinuities are at points z; < xg <
-+ <z for some N € N, and where z; € (—R — sT,R+ sT) for all 1 <i < N.

If vY contains at least one discontinuity, define the functions U? "R—aRforl1 <i< N+1
as follows:

0~ J) if v <
U1 (.1‘) T 0 0 .
SUD,, <y<s max(v”(x1—),v"(y)) fx; <x
For 2 <i <N,
infycyes; , min(v®(zi—1+),09 1 (y) ifz <aig
v)(z) = { v9(x) ifo; 1 <ax<a

SUDy, <y<z max(v%(z;—), 1% (y)) if o, <z

And
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.0 (z) = infocycay min(v?(zy+), U?V(y)) ife<azyn
N v0(z) ifeny <.

If vY has no discontinuities, then N = 0 and we define v} := 2°.

By construction, the v? are Lipschitz continuous, nondecreasing in x, and verify v9(x) >
U?H(:U) forallz e Rand 1 <i < N. We also have

o

0
Uy

(4.1.3) ’

Lo (R)
for1<i< N +1.

Let v; denote the unique solution to (1.0.1) with initial data v{ and which satisfies
(1.0.7).

From Lemma 4.2, we have N + 2 real numbers xor, ..., xn41,7 such that zg7 = —R <
17 < <axyr < R=2xN117 and

N Ti4+1,T N Titl
4.1.4) ap lim w(x, t)|vir1(x,t)) der < ap lim w(x, t)|vir1(x, t)) de
(414) ap i 3 [ atute (o) de < pwiz_%/nu sz, 1)
— xT o

where zg := —R — sT and xnyy+1 = R+ sT.
We now control the right-hand side of (4.1.4). Recalling Lemma 2.4, we have
(4.1.5)

N Tif1 N Tl

o lim 3 [ @ e @0)do < > [ @t @) do
Then, from the definition of the v?,
R+sT
= [ @) ds
—R—sT
Using (4.1.1), (4.0.4), and that HuOHLm(R) <ull oo Rx[0,00))

R+sT

< / (u®(z) — v%(z))% dx
_R—sT
Then, from (4.1.2)
< €.

On the other hand, by the convexity of 7,

N THLT N TiHLT

(4.1.6) Z; m/ n(u(@, T)|vis1(2, 7)) dx < ap lim, ; x/ n(u(z, t)|vip1(z, 1)) de.

T i,T
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Combining (4.1.4), (4.1.5) and (4.1.6), we find

Tit1,T

N
(4.1.7) > / n(u(z, T)|vig1(z,T)) dz < e.
=0 T, T
We define ¢ : [- R, R] — R,
vi(z,T) if —-R<z<xi7
va(z,T) ifrir <z <zor

(4.1.8) b(a) =

ony1(z,T) fzyr <x <R.

By (4.1.7), v satisfies part (a) of Proposition 4.1.
We now show v satisfies part (b) of Proposition 4.1: this follows because each of the v;
satisfy (1.0.7). In particular,

z

NIQ

(4.1.9) vi(x +2,T) —vi(x,T) <

for all z > 0 and all x € R. From part (c) of Lemma 2.1, we can take C' = 1/inf A”
in (4.1.9). Further, by part (f) of Lemma 2.1, v;(z,T) > viyi1(x,T) for all z € R and
1 <4 < N. This gives part (b) of Proposition 4.1.
Part (c) of Proposition 4.1 follows from (4.0.4), (4.1.3), and part (e) of Lemma 2.1.
This completes the proof of Proposition 4.1.

4.2. Proof of Lemma 4.2. We prove this lemma by strong induction on N.

Base case

For N = 0, let v{ € L>°(R) be any Lipschitz continuous nondecreasing function. Let v;
be the unique solution to (1.0.1) with initial data v9 and verifying (1.0.7).



UNIQUENESS WITH A SINGLE ENTROPY CONDITION 23

Let ho(t) = —R+(t—T)s and hy(t) = R—(t—T)s. Then, from Lemma 2.3, Lemma 2.4,
and the dominated convergence theorem,

hl(t*)
ap hm / (z,t)|v1(x,t)) dx — ap thgl / n(u(z,t)|v(z,t)) dx
ho (T) ho(t*)

T
S/FW%@%WM%@@%WWM@ﬂWM%@@)

t*

(4.2.1) + ha(t)n(u(hy ()=, )|vi(ha (), 1) — ho(t)n(ulho(t)+, t)|v1(ho(t), 1)) | dt
T
/q t);v1(ho(t),t)) — sn(u(ho(t)+,t)|vi(ho(t), 1)) dt
T

+/—wmw%wwwmmm—wwm@ﬁmmmwmwt

t*

<0
by the definition of hg, ho and s.
We get,
R R—(t*—T)s
(4.2.2) ap lim /77( (x,t)|vi(x,t)) de < ap lim / n(u(z, t)|v(z,t)) dz.
t—T+ t—st*t
-R —R+(t*—T)s

Thus Lemma 4.2 holds for the base case N = 0.

Induction step

Suppose that K € NU {0} is given such that Lemma 4.2 holds for N =0,1,..., K.

We now prove that Lemma 4.2 holds for N = K + 1. Let v{,v,0... ,U%H € L*(R)
be any Lipschitz continuous nondecreasing functions, satisfying v)(z) > oY, () for all
1<i<K+1landz € R. For1 <i < K + 2, let v; be the unique solution to (1.0.1)
with initial data v) and verifying (1.0.7). Let t* € [0,T] and —R+ (t* = T)s <21 < -+ <
Tr4+1 < R— (t* —T)s be arbitrary.

Let € > 0. By Proposition 3.1 we can construct Lipschitz continuous functions A1, .. .
he,ic+1 on the interval [t*, T such that for 1 <i < K +1, h;(t*) = x; and

(4.2.3) q(ul 3 vis1) — q(u' 3 v;) — hei(n(uly [vis1) — 1

)

(uz—|vz)) < m

for almost every t € [t*, T, where v’ = u(he;(t)+,t) and v; = v;(hi(t), t) for | =i, + 1.
To simplify the exposition, denote

(4.2.4) heo(t) = —R + (t — T)s,
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(4.2.5) h€7K+2(t) =R - (t - T)S.

The Lipschitz constants of the h; are uniformly bounded in € by Proposition 3.1. Thus,
by Arzela—Ascoli there exists a sequence {ej }jeN such that ¢; — 0" and for each 0 < i <
K +2, he; ; converges uniformly on [t*,T] to a Lipschitz function h;.

Then, let t** be the first time that there exist two of the h; for 0 < i < K + 2 that are
equal to each other. If such a time does not exist, let t** :=T.

We now show:

Claim.
(4.2.6)
K+1 hi+1(t**) K+1 h’i+1(t*)
ap lim n(u(z, t)|vig1(z,t))de < ap lim n(u(x, t)|vit1(z,t)) de.
t—tret < t—t*t <
=0 hae) =0 hie)

Proof of Claim.

Due to the uniform convergence of the he,; as j — oo, for each 7 € [t*,t™), there
exists J; > 0 large enough such that he, ;1 1(t) — he; i(t) > 0 for all ¢ € [t*, 7], j > J; and
0<:i<K+1

Then, for almost every t and 7 verifying t* <t < 7 < t**, we have from Lemma 2.3 (for
Jj>Jr):

Kl th,¢+1(T) Kl th,iH(t)
e Dosss (@) de = Y- [ n(uteOfvisa (o) de
=0 he,i(r) =0 e ()
K+1 7
< / [Q(u(hq A ) vi1 (e i(r), 7)) — q(ulhe; iv1(r)—,7); vig1 (he; it (1), 7))
=0

+ hej,z'+1 (r)n(u(he; iv1(r)—=,7)|vig1(he; iv1(r), 7))
— he, i (r)n(ulhe; i(r)+,7)|vig1 (he, i(r), 7)) | dr

Then, we collect the terms corresponding to A, ; into one sum, and the terms corresponding
to h€j7i+1 into another sum,

K+1 7

= Z / [q(u(hﬁj,i(r)"i_: T); Ui+1(h€j7i (T)7 T)) - hejﬂ'(r)n(u(hej,i(r)"i_? T)‘Ui-‘rl(hq,i(r)? T)) dr
=0 %

K+1 7

# 3 [ |- atulte s ()= v i), )
=0 ¢

+ he, i1 (r)n(w(he, i ()=, ) |vig1 (he, i1 (), 7)) | dr
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Next, we peel off the i = 0 term from the first sum, and the i = K + 1 term from the
second sum,

T

= / [Q(u(hﬁj,o(r)+vr); U1 (h€j70(7‘),7“)) - h€j70(r)77(u(h€j70(r)—|—,r)|v1(h€j70(r),r))] dr

K+1 7

£y / [q<u<h€j,i<r>+,r>;m(he,i(r),r»hq,i<r>n<u<he,i<r>+,r)\m(h@,i(r),r))} dr
=1 +

K T
Y [ | = atuthe )= it (),
i=0 t

; hej,m<r>n<u<h5j,z-+1<r>—,r>|vz-+1<hej,i+1<r>,r>>] dr

-/ [ e, a2 (r)— ) v sa(he, sesa(r), )

T e, era (P, ge2(r)— ) orc (e, a2 (1), r))} dr

-
We then reindex the second sum S5 o J1--+]dr to start at i = 1, and combine it with the
t

first sum S K+

=

Y,

T

-/ [q<u<hej,o<r>+,r>;v1<hej7o<r>,r>> - hej,o<r>n<u<hej,o<r>+,r>rv1<hej,o<r>,r))] dr

K+1 7

+3 [ R R S B N R R A )

e )0y 7)1y ). ) = )= Pl )|
¥ / |~ a0l s2(0) = ). )
a2l )= ol () ) |

€

< m(T—t)(K—{-l) <€
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by (4.2.3), the definition of s, and noting that hej,o = s and h€j7K+2 = —s. Thus,
K he;it1(7)

> / n(u(z, 7)|vig1 (x, 7)) de <

i=0 heya(7)

he;it1(t)

n(u(z,t)|vip1(x, b)) de + ;.

(4.2.7)
K+1

™

Then, let j — oo in (4.2.7) and use the dominated convergence theorem to get

K1 Miv1(m) K1 ()
@28 Y [ o)<y [ el o)ds
=0 i) =0 hite)

for almost every t and 7 verifying t* <t < 7 < t**.
From (4.2.8), we get

(4.2.9) ap lim Z n(u(z, 7)|vig1(z, 7)) dx <
Toprr— 4
=0 (o)
Ker Mt
(4.2.10) ap lim, > n(u(zx, t)|vip (z, 1)) de
=0 it

where we have used

K hi+i(7)
(4.2.11) ap lim Z n(u(z, 7)|vit1(z, 7)) de =
T
hi(T)
Kq hi+r ()
(4.2.12) ap lim Z n(u(z, 7)|vit1(z, 7)) d
T
hi(t**)
and
(4.2.13)
K1 i (®) K1 ()
ap lim n(u(x, t)|vig1(z,t)) de = ap lim n(u(x, t)|vit1(z,t)) de.
t—t*t < t—t* T <
=0 h =0 ()

The approximate limits exist by Lemma 2.4. Then (4.2.9) and (2.0.22) give the claim
(4.2.6). [ ]
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If t** = T', then we have proven Lemma 4.2 holds for N = K +1: define z; 7 := h;(T') for
0<i< K+2. By (4.2.6), the zo 1,217, ..., K21 satisfy the conclusions of Lemma 4.2.
Otherwise, t** < T and we consider the 0 < ¢,j < K + 3 such that the following holds:

hi_l(t**) < h,(t**) < hj(t**)
fori<k< 7, hz(t**) = hk(t**)

where h_(t) == —oo and hx 3(t) == +oo for all t. Then, let {(in, jn) tneqi,...0y for L € Zy
be the set of ¢ and j pairs which satisfy (4.2.14) (label the i and j pairs such that i, < ;41
for all n). Note that each i has only one corresponding j. Thus, due to at least two of the
h;(t**) equalling each other (for ¢ ranging over 0,..., K +2), L < K + 2.

(4.2.14)

By the induction hypothesis with N = L — 2: there exist real numbers Zo7,...,Zr—1,7
verifying 2o = ~R<ZT17 <--- <%y 27 < R=12r 17 and
-9 Ti41,T
o0 Jim S [t Ol 0.0) de <
4.2.15 o
( L. ) I hil+2 (t**)
ap tiitrg+ Z / n(u(z,t)|vi,,(z, 1)) de.

lZOhil+1 (t**)
For each n € {1,..., L}, define
(4.2.16) xir = Tp_17 for all i, <i < jy,.

Then by construction xg 7, ..., Txy2 1 satisfy the conclusions of Lemma 4.2 with N =
K + 1. In particular, (4.0.2) follows from (4.2.6) and (4.2.15).
Thus, by the principle of strong induction we have proven Lemma 4.2 for all N € NU{0}.

4.3. Proof of Lemma 4.3. Step functions are dense in L?([—M, M]). Thus, there exists
a step function s € L?([~M, M]) such that || f — Sl p2arny < 5 and [l poo (_arng) <
[ f 1l oo (= az,017)- We can write s in the form

(4.3.1) s(z) = (gajH(x — xj)) + (:;aiH(x - rci))

for some ny,n_ € N, {a; }4, C (0,00), {a; }iZy C (—00,0), {z}H, C (=M, M) and

1

{z;};=, C (—M, M). H is the Heaviside step function

0 ifz<0
43.2 H(z) =
(4.3.2) (z) {1 if 2> 0.

Define

(4.3.3) sT(x) = i of H(x — xf),
i=1
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(4.3.4) s (z) = Z_: o H(x —z;).
i=1

We can then write s = s + 5.

Consider the standard mollifier m : R — R, where m is smooth and compactly supported,
m >0, and [ m(x)dz = 1.

Let 0 > 0. Define

(4.3.5) me(z) == (15m<:§>
Define
i [(Fema) )+ 5] e < -
(4.3.6) fs(z) == < (st xmg)(x) + s () if —M<zx<M

Jim (s ma)(y) + ()] ifr =D

Note that fs is of the form (4.0.1), [[ sl oo ) <1/ |l oo (= ps,047) When & <inf; ; Ers -,
and all of the discontinuities in f5 are in the interval (—M, M) because {x; }.—, C (—M, M).
From the Minkowski inequality,

1f = ol Loqnamy SIS = sllezqonrnagy T8 = fsll 2o

(43.7) < g —i—H(s+ * M) — 5+‘

L2([—-M,M]

.
Choose § even smaller such that ||(s™ * ms) — 5+HL2([ < §. This completes the

—M,M])
proof.

5. MAIN PROPOSITION IMPLIES MAIN THEOREM

Let u € L (R x [0,00)) be a weak solution to (1.0.1), with initial data u®. Let n € C%(R)
be a strictly convex entropy. Assume that u is entropic for the entropy 7 and verifies the
strong trace property (Definition 1.1).

We will show that u satisfies (1.0.7).

First, by strict convexity of 7 we can choose a constant ¢* > 0 such that
(5.0.1) c*(a — b)* < n(ald)

for all a,b € [-B, B], where B is defined in (2.0.1).
Let R,T > 0. From Proposition 4.1, for all € > 0, there exists ¢, : [-R, R] — R such
that

(5.0.2) / n(u(z, T)[Ye(z)) de < "

and
(5.0.3) Ye(T + 2) = Ye() <
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for z € [-R, R] and z > 0 with « + z € [~ R, R]. Here ¢ = 1/inf A”. We have also
(5.0.4) H@Z)eHLoo([—Rﬁ]) < ||“||L°°(Rx[0,oo)) :
(5.13'};)55‘;2267t”¢6HLDO([_R’RD < B. Likewise, we have Hu(-,T)HLOO(
(5.0.5) ¢ (Ye(w) — u(z, T))* < nlu(x, T)|tpe(x))

for almost every z € [—R, R].
Then from (5.0.2) and (5.0.5) we have

(5.0.6) [e() = u( D] ooy < &

Thus, there exists a sequence {¢;}%2, with ¢; — 07 such that

R) < B. Thus, from

(5.0.7) Ye; () = u(z,T) as j — oo for almost every x.
Additionally, from (5.0.3):
(5.0.8) Yoy (0 +2) = (2) < ==

for all j € N, z € [-R, R], and z > 0 with x 4+ z € [-R, R).
We let 7 — oo in (5.0.8) to get:

(5.0.9) u(x 4+ 2,T) —u(zx,T) < %z

for almost every = € [—R, R], and almost every z > 0 with z + z € [-R, R].
Because R,T > 0 are arbitrary, (5.0.9) implies that u satisfies (1.0.7). This concludes
the proof of Theorem 1.2.

6. APPENDIX

6.1. Proof of Lemma 3.3. Let up,ug,u_,uy € R. We then borrow the following nota-
tion from [26]: If F' is a function of u, then we define

(6.1.1) Fr:=F(ur), Fr=F(ur), [F|=Fr—Fr, Fy:=F(ug).

Proof of (3.1.12)

This proof is from [26, p. 9-10]. In [26], for the general systems case, the authors develop
a condition which they label with the equation number 7 [26, p. 4]. In particular, they
claim to use this condition to show (3.1.12) for the scalar case. In fact, the condition is not
necessary in the scalar case and their proof goes through unchanged without the condition.

Denote

(61.2) D= qlupiur) — a(u_sup) — o(u—,us)(n(us fug) — n(u—|ug)).

Further, let o denote o(u—,uy).
From Rankine-Hugoniot (as noted in [26, p. 5]),

(6.1.3)
D = [ (w)A(u) — q(u)] — o[ (Wu — 0] + ¢4 — - — a(ny —n-) — ['](A(u) — ou)+,
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where (A(u) — ou)+ denotes that
(6.1.4) A(uy) —ougp = A(u_) — ou—

because of the Rankine-Hugoniot relation (3.1.11).
From the fundamental theorem of calculus and integration by parts,

(6.1.5) D= /n"(u)(A(u) —ou)du — /n"(u) du(A(u) — ou)x
(6.1.6) - /n"(u)(A(u) —ou)du + /n'/(u) du(A(u) — ou)+.
We can then write

(6.1.7) D =¢e(I)B(I)+¢(J)B(J)

where I, J are disjoint intervals such that

(6.1.8) ITUJ = ((ug,u_) U (upr,ur)) \ ((ug,u_) N (ur,ur)).

We define the sign €(I) to be +1 if I C (u4,u—) and —1 otherwise. Finally,

(6.1.9) B(I) = /n"(u)(A(u) —ou)du — (A(u) — au)i/n”(u) du.
1 I
The function w — A(u) — ou is strictly convex and (6.1.4) holds. Thus, B(I) < 0 if
I C (ug,u_) and positive otherwise. Thus, for all intervals e(I)B(I) < 0. Thus D < 0.
Proof that (3.1.13) implies (3.1.14)
This proof is from [26, p. 9].
Remark that the equality

(6.1.10) n(ulur) = n(ulur)

is equivalent to [26, p. 4]

(6.1.11) []u = [ (w)u — n(w)].

Remark also (as noted in [26, p. 4])

(6.1.12) q(usur) — q(uiur) = [1'A — g — [']A(w).

Then, (3.1.14) is equivalent to (as noted in [26, p. 9])

(6.1.13)

UR
u

Fowawdae o uud
UR — > A( . ) .
J 1" (u) du [ 7" (u) du

Finally, (6.1.13) is true by Jensen’s inequality because n” > 0 so n”(u) du is a measure,
and A is strictly convex.
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6.2. Proof of Lemma 3.5. The following proof of (3.2.3), (3.2.4) and (3.2.5) is based on
the proof of Proposition 1 in [20] and the proof of Lemma 2.2 in [26]. We do not prove
(3.2.6) and (3.2.7): these properties are in Lemma 6 in [20], and their proofs are in the
appendix in [20].

Define

(6.2.1) vn(@, 1) = /Ve(u(az + L0 m+ L, a+ L) dy

Let he, be the solution to the ODE:

(6.2.2) {Ze,zgz)—:vgig,n(t),t>, for ¢ > 0

Due to V. being continuous, v, is bounded uniformly in n (||vp||;e <||Vel| ), Lipschitz
continuous in z, and measurable in ¢t. Thus (6.2.2) has a unique solution in the sense of
Carathéodory.

Because v, is bounded uniformly in n, the h., are Lipschitz continuous in time, with
the Lipschitz constant uniform in n. Thus, by Arzela—Ascoli the he, converge in C°(0,7)
for any fixed 7" > 0 to a Lipschitz continuous function he (passing to a subsequence if
necessary). Note that f, en converges in L™ weak™® to he.

We define
(6.2.3) Vinax(t) = max{Ve(u_, a1, u2), Ve(uy, 41, u2) },
(6.2.4) Vmin(t) —mln{V( , Ul ﬂz),‘/e(U+,ﬂ1,ﬂ2)},

where uy = u(he(t)£,t) and u; = u;(he(t),t).
To show (3.2.5), we will first prove that for almost every ¢t > 0

(6'2'5) nh_)rgo[he,n(t) - Vmax(t)]+ =0,
(6'2'6) JLI&[Vmin(t) - he,n(t)]+ =0,

where [-]; = max(0, -).
The proofs of (6.2.5) and (6.2.6) are similar. We will only show the first one.

(6.2.7)

[he,n (t) —Vinax (t)] +

-1 .

628) = | [ Viluthen(®) + 2.0). 01 hen(®) + 210), t0(hen(6) + 2,8)) dy ~ Vil
° -

(6.29) = / Ve(u(hen(®) + 2,8, @1 (hen(t) + 2,8), Ta(hen(t) + 2,1)) = Vinax(t) dy
LD 4+
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1

(6.2.10) s/ﬁummaw+jnﬂmmaw+jwmxmaw+z¢»—wmamdy
0

(6:211) - < essuplVe(uChn(t) + 9, 1), 1a(on(t) + 9,1, Talhen(t) £ 9,)) = V()4

(6.2.12) < e(ss gup )[Ve(u(hg(t) +y,t), a1 (he(t) + y,t), w2 (he(t) + y, ) — Vinax(t)] +,
YE(—€n,€n

where €, = !he,n(t) — he(t)‘ + % Note €, — 0F.
Fix a t > 0 such that we have a strong trace according to Definition 1.1. Then, by the
continuity of V¢,

(6.2.13)
lim_ess sup[Ve(u(he(t) £ y, 1), w1 (he(t) £ y, 1), ua(he(t) £y, 1)) = Ve(uz, @, G2)]4 = 0,
" ye(0,)

n

where uy = u(he(t)+,t) and u; = @;(he(t),1).
This implies

(6.2.14)  Tim esssup[V(u(he(t) + g, 8), a1 (he(t) £ y, ), ta(he(t) £ 9,1)) — Vinax(8)] 5 = 0.

"% ye(0,1)

n

We can control (6.2.12) from above by
es(s sup)[VE(u(he(t) +y,t), 41 (he(t) + y,t), t2(he(t) + ¥, 1)) — Vinax (t)] ++
yE(—en,0

eziosuli;[‘/e(U(he(t) + 1), tr(he(t) +y, 1), ta(he(t) + 9, 1)) = Vinax(t)]+-

(6.2.15)

Then, by (6:2.14), the quantity (6.2.15) goes to 0 as n — oo. This proves (6.2.5).
Recall that h, converges in L> weak™ to h.. Thus, because the function [ -], is convex,

T T
(6.2.16) [0 = Vi s e < timint [T (6) = Vi (0] .
0 0
By the dominated convergence theorem and (6.2.5),
T
(6.2.17) lim inf / e (t) = Vinax(t)]+ dt = 0.
0

This proves

(6.2.18) [he(t) = Vinax(t)]4 dt = 0.
/
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A similar argument gives

T
(6.2.19) /[me(t) — he(t)]4 dt = 0.
0

This proves (3.2.5).
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