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CLASSICAL SOLUTIONS FOR THE 3D QUASI-GEOSTROPHIC SYSTEM ON

A BOUNDED DOMAIN

MATTHEW D. NOVACK AND ALEXIS F. VASSEUR

Abstract. We revisit a model for three-dimensional, inviscid quasi-geostrophic flow on bounded,
cylindrical domains introduced by the authors in [20]. We prove the local-in-time existence of
classical solutions.

1. Introduction

The quasi-geostrophic system is a set of equations used to describe oceanic and atmospheric
motion over large time-scales. Much of the existing literature treats the case of a physical boundary
at the (top and) bottom of the domain while specifying that the horizontal variables (x, y) belong
to either Ω = R

2,T2. In these cases, the equations take the form






(

∂t +∇
⊥
Ψ · ∇

)

(L(Ψ) + β0y) = 0 Ω× [0, h] × [0, T ]
(

∂t +∇
⊥
Ψ · ∇

)

(∂νΨ) = 0 Ω× {0, h} × [0, T ].
(QG)

The normal derivative of Ψ on Ω × {0, h} is denoted by ∂νΨ, while ∇ = (∂x, ∂y , 0), and ∇
⊥

=
(−∂y, ∂x, 0). The operator L is defined by

L := ∂xx + ∂yy + ∂z (λ∂z)

where λ > 0 is a smooth function depending only on z and is related to the density of the fluid.
To ensure ellipticity of L one requires that

1

Λ
≤ λ(z) ≤ Λ

for some Λ ∈ (0,∞).
In a recent work [20], the fully three-dimensional system was considered on a domain with non-

trivial lateral boundary conditions for the first time. Using only the assumption that the fluid

velocity ∇
⊥
Ψ does not penetrate the boundary ∂Ω× [0, h] (i.e. ∇

⊥
Ψ · νs = 0), the following model

was derived:






































(

∂t +∇
⊥
Ψ · ∇

)

(L(Ψ) + β0y) = 0 Ω× (0, h) × [0, T ]
(

∂t +∇
⊥
Ψ · ∇

)

∂νΨ = 0 Ω× {0, h} × [0, T ]

Ψ(x, y, z, t) = Ψ(z, t) ∂Ω × [0, h] × [0, T ]

∂

∂t
−

∫

∂Ω×{z}
∇Ψ(z, t) · νs = 0 [0, h] × [0, T ].
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The quantity

(1) −

∫

∂Ω×{z}
∇Ψ(z, t) · νs = −

∫

∂Ω×{z}
∇Ψ(z, 0) · νs =: j(z)

is therefore a datum that must be prescribed along with an initial vorticity f = L(Ψ0) and Neumann
condition g = ∂νΨ0. We emphasize however that we do not prescribe the lateral boundary values
Ψ(z, t). They instead arise as the boundary conditions naturally dual to (1) when solving an elliptic
problem in an appropriate Hilbert space (see Definition 2.1). In [20], we proved the existence of a
global weak solution to this system.

In this paper we prove the existence of a classical solution to this system for smooth enough
initial data on a short time interval.

Theorem 1.1. Given λ, f , g, j such that

(1) λ is C5, there exists Λ such that 1
Λ ≤ λ ≤ Λ, and ∂k

∂zk
λ|z=0,h = 0 for k = 1, 2, 3

(2) f ∈ H4(Ω× (0, h)) and f vanishes in a neighborhood of ∂Ω× {0, h}
(3) g ∈ H̄4(Ω× {0, h}) and g is compactly supported in Ω× {0, h}

(4) j ∈ H4(0, h) and ∂k

∂zk
j(z)|z=0,h = 0 for k = 1, 3

there exists a time T0 which for large data satisfies

T0 & (‖f‖H4 + ‖g‖H̄4 + ‖j‖H4)−1

such that QG posed on the cylindrical domain Ω× [0, h] has a classical solution on the time interval
[0, T0].

The compatibility conditions appear necessary for the construction of smooth solutions. Essen-
tially, we can only treat data f , g which are zero in a neighborhood of the corners ∂Ω×{0, h} and
datum j which retain smoothness after even reflection over the boundaries at z = 0, h. While we
can prove higher order elliptic regularity under weaker conditions on the data f , g, j, and λ (see
Definition 2.3), it is not clear that these conditions are preserved by the evolution of the system (see
(3) on page 11). However, an important consideration is that our conditions are still sufficiently
general to treat a broad class of initial data for the special case of 2D SQG (see the next subsection
for a discussion of the relation of our model to proposed models for 2D SQG on bounded domains).

1.1. Previous Results. Quasi-geostrophic flow is an asymptotic limit of 3D Navier-Stokes or Euler
equations as the Rossby number ǫ → 0. Study of the inviscid three dimensional QG system was
initiated in the absence of boundary conditions by Bourgeois and Beale [2]. With the aid of viscosity
at the boundary, Desjardins and Grenier built global-in-time weak solutions [12]. Both of the afore-
mentioned papers also include proofs that on the interval of time for which a smooth solution to
the limiting system persists, the solutions to Navier-Stokes/Euler converge to the solution to QG.
In [22], Puel and the second author introduced a reformulation of the inviscid 3D QG system in
terms of ∇Ψ which allowed for the construction of weak solutions via compactness. Using again
the reformulation, the first author then extended this existence result to a wider class of initial data
and determined the conditions under which the energy ‖∇Ψ(t)‖L2 is conserved [18]. In a recent
work, the first author also addressed the case of energy-dissipative weak solutions via a convex
integration argument [19]. Global regularity to the 3D model with dissipation was shown by the
authors in [21].

A special case of the three-dimensional model called the surface quasi-geostrophic equation arises
by specifying that β0 = 0, λ = 1, and ∆Ψ|t=0 = 0. Then the stream function Ψ remains harmonic
for all times t > 0, in which case the dynamics can be described completely by the evolution of

∂νΨ. Since Ψ is harmonic, one has that ∂νΨ|z=0 = (−∆)
1
2Ψ|z=0 =: θ and ∇

⊥
Ψ|z=0 = R⊥θ =: u
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where R is the vector of two dimensional Riesz transforms, and thus the equation can be written
as

∂tθ + u · ∇θ = 0.

Study of 2D SQG began with the work of Constantin, Majda, and Tabak [5]. Weak solutions were
constructed by Resnick [23], with an extension of the theory by Marchand [16]. The equivalences
of the various notions of weak solutions to 2D SQG and 3D QG were shown by the first author in

[18]. In the presence of a viscous term (−∆)
1
2 θ, global regularity of 2D SQG has been shown by

Kiselev, Nazarov, and Volberg [14], Caffarelli and the second author [4], Constantin and Vicol [6],
and Kiselev and Nazarov [13].

One way of approaching two-dimensional quasi-geostrophic dynamics on a smooth, bounded set
Ω ⊂ R

2 is to specify a notion of Riesz transform in order to define the velocity u = R⊥θ. A natural
choice is to define the half-Laplacian spectrally using the Dirichlet eigenfunctions, an approach
initiated by Constantin and Ignatova in [8] and [7]. Further work by Constantin and Nguyen
[11], [10], Nguyen [17], and Constantin, Nguyen, and Ignatova [9] has explored further questions
concerning this model. However, it is not hard to see that solutions to inviscid SQG constructed
using the spectral Riesz transform and extended harmonically to z > 0 cannot coincide with the
solutions to 3D QG we produce in this paper. The difference lies in the lateral boundary conditions.
The use of the Dirichlet Laplacian ∆Ω imposes that the extended stream function

Ψ|∂Ω×[0,h] = 0.

However, the lateral boundary values of our stream function are not uniformly zero. Furthermore,
in the introduction of [20], we show that solutions constructed via the spectral Riesz transform
do not satisfy (1) either. Therefore, one of the main motivations of this work was to validate
the physical relevance of the three-dimensional model and associated lateral boundary conditions
derived in [20].

The outline for this paper is as follows. In the next section, we first provide an intuition for the
elliptic problem in the simple case that Ω is a ball. We then recall previous results and prove the
higher regularity estimates needed to construct classical solutions. In the third section, we construct
classical solutions using a fixed-point argument. The appendix contains a short justification for the
use of a commutator estimate in our setting which is classical for Tn or Rn.

2. A Non-Standard Elliptic Problem

2.1. A Simple Case. As described previously, building solutions to QG on a cylinder requires a
choice of datum j(z) which encodes the ”average Neumann condition” as

−

∫

∂Ω×{z}
∇Ψ(z, t) · νs = j(z).

With this choice, reconstrucing Ψ(t) at a given time can be done by solving an elliptic problem
using ∆Ψ(t), ∂νΨ(t), and j(z) as data. This elliptic problem takes the form

(E) =































L(u) = f Ω× [0, h]

∂νu = g Ω× {0, h}

u(x, y, z) = u(z) ∂Ω× [0, h]
∫

∂Ω×{z}
∇u · νs = j(z) [0, h].

As alluded to before, we cannot choose u(z); rather, it arises as the condition naturally dual to the
average Neumann datum j(z). Let us suppose now that Ω is the unit ball so that we have access
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to rotational symmetries. Define ũ to be the rotational average of u

ũ =

∫ 2π

0
u(r, θ, z) dθ,

and set u′ = u− ũ. Assuming for the time being that we can solve the elliptic problem (E), what
is the equation satisfied by ũ? Due to the fact that L commutes with rotations in θ, we see that

L(ũ) =

∫ 2π

0
f(r, θ, z) dθ =: f̃ .

In addition, we will also have that ∂ν ũ = g̃, where g̃ is the rotational average of g. Finally, as j is
invariant under rotations and ∂νs ũ depends only on z, we find that ũ solves the Neumann problem























L(ũ) = f̃ Ω× [0, h]

∂ν ũ = g̃ Ω× {0, h}

ũ(x, y, z) = u(z) ∂Ω× [0, h]

∇ũ · νs = j(z) ∂Ω× [0, h].

By linearity, u′ = u− ũ then solves










L(u′) = f − f̃ Ω× [0, h]

∂νu
′ = g − g̃ Ω× {0, h}

u′(x, y, z) = 0 ∂Ω× [0, h].

That is, ũ encodes the rotationally symmetric portion of u and solves a Neumann problem, while
u′ encodes the deviations from rotational symmetry and solves an elliptic problem with Neumann
data on the top and bottom and Dirichlet data on the lateral boundaries. We remark that even in
this simplified setting, it is evident that the data must satisfy some compatibility conditions at the
corners in order for u to be smooth.

2.2. Previous Results and Definitions. Following [20], we define the Hilbert space to which
the solution Ψ(t) will belong for each time t.

Definition 2.1. Define H by

H :=

{

α ∈ C∞
(

Ω̄× [0, h]
)

:

∫

Ω×[0,h]
α dx dy dz = 0, α|∂Ω×[0,h](x, y, z) = α(z)

}

.

Using the notation ∇̃ = (∂x, ∂y, λ(z)∂z), equip H with the inner product

〈α, γ〉H :=

∫

Ω×[0,h]
∇̃α · ∇γ dx dy dz.

Define the Hilbert space H as the closure of H under the norm induced by this inner product.

The construction of weak solutions requires a compatibility condition on the initial data due to
the fact that test functions which are equal to a nontrivial constant throughout Ω × (0, h) do not
belong to H.

Definition 2.2 (Basic Compatibility). Any triple (f, g, j) of functions with f(x, y, z) ∈ L2(Ω×
[0, h]), g(x, y, z) ∈ L2(Ω× {0, h}), j(z) ∈ L2(0, h) is compatible if

∫

Ω×[0,h]
f(x, y, z) dx dy dz =

∫ h

0
j(z) dz +

∫

Ω×{0,h}
λ(z)g(x, y, z) dx dy.

For compatible data, we proved the following existence result.
4



Lemma 3.1 ([20]). For compatible data (f, g, j), there exists a unique solution u ∈ H to the elliptic
problem

(E) =































L(u) = f Ω× [0, h]

∂νu = g Ω× {0, h}

u(x, y, z) = u(z) ∂Ω× [0, h]
∫

∂Ω×{z}
∇u · νs = j(z) [0, h].

satisfying the bound
‖u‖H ≤ C(Ω, h, λ) (‖f‖L2 + ‖g‖L2 + ‖j‖L2) .

Let {en}
∞
n=1 and {λn}

∞
n=1 be the sequence of eigenfunctions and corresponding eigenvalues for

the operator −∆ on Ω with homogenous Dirichlet boundary conditions; that is,
{

−∆en = λnen (x, y) ∈ Ω

en = 0 (x, y) ∈ ∂Ω.

For s ≥ 0, define

H̄s(Ω) = {g =
∑

n

gnen ∈ L2(Ω) :
∑

n

(

√

λn

)s

gnen ∈ L2(Ω)}.

It is well known (consult section 2 of [11] for example) that the domain of the homogenous Dirichlet
Laplacian is H2(Ω) ∩H1

0 (Ω), and for such functions the H2(Ω) and H̄2(Ω) norms are equivalent.
We now define the higher-order compatibility conditions needed to prove higher regularity esti-

mates. Data which satisfy Definition 2.2 and Definition 2.3 will be called fully compatible.

Definition 2.3 (Fully Compatible Data). A triple of functions (f, g, h) is fully compatible if it
is compatible (Definition 2.2) and satisfies in addition that

(1) f ∈ H4 (Ω× (0, h)) and ∂zf vanishes on ∂Ω× {0, h}
(2) g ∈ H̄4 (Ω× {0, h})
(3) j ∈ H4(0, h) and for k = 1, 3 and h the solution to











L(h) = f Ω× (0, h)

∂νh = g Ω× {0, h}

h = 0 ∂Ω × [0, h],

the equality

∂k

∂zk
j
∣

∣

z=0,h
=

∂k

∂zk

(

∫

Ω×{z}
∇h · νs

)

∣

∣

∣

∣

z=0,h

holds.

We now recall Lemma 3.4 from [20].

Lemma 3.4. ([20]) Consider the equation










∆u = 0 Ω× [0, h]

∂νu = g Ω× {0, h}

u = 0 ∂Ω× [0, h].

for g ∈ H̄s(Ω× {0, h}), s ≥ −1
2 . Then there exists a solution u which satisfies

‖∇u‖
Hs+1

2 (Ω×[0,h])
≤ C(Ω, h)‖g‖H̄s(Ω×{0,h})

In [20], we proved the following elliptic regularity theorem (refer to Lemmas 3.4, 3.5, 3.6 from
[20] for the details).

5



Theorem 3.2. ([20]) Let s ∈ [0, 12 ], and let f ∈ L2(Ω × (0, h)), g ∈ Hs(Ω × {0, h}), and j ∈
Hs((0, h)). Let u ∈ H be the solution to (E). Then

‖∇u‖
Hs+1

2 (Ω×[0,h])
≤ C(Ω, h, λ)

(

‖f‖L2(Ω×[0,h]) + ‖g‖Hs(Ω×{0,h}) + ‖j‖Hs([0,h])

)

.

2.3. Higher Regularity. In order for the lateral boundary conditions to make sense, we assume
the boundary of Ω has no discrete subcomponents. Higher (than H5.5) regularity is likely available
through a more careful analysis of higher order compatibility conditions. However, the following
result is satisfactory for building smooth solutions to QG and already somewhat delicate, and so
we do not pursue any higher regularity here.

Theorem 2.1 (Higher Regularity). Let Ω be a bounded, open set in R
2 with a smooth (C∞,

non-self-intersecting, no discrete subcomponents) boundary ∂Ω. Consider the elliptic problem


















L(u) = f Ω× [0, h]

∂νu = g Ω× {0, h}

u(x, y, z) = u(z) ∂Ω × [0, h]
∫

∂Ω×{z}∇u · νs = j(z) [0, h].

for a fully compatible triple of data (f, g, j). Then u ∈ H5.5 (Ω× (0, h))∩H and satisfies the bound

‖u‖H5.5 ≤ C(Ω, h, λ) (‖f‖H4 + ‖g‖H̄4 + ‖j‖H4) .

Proof. Throughout the proof, we use the notation C(Ω, h, λ) to describe constants that depend only
on Ω, h, λ and may change from line to line. The proof is broken into two steps, which proceed as
follows. In Step 1, we isolate the effect of f and g while imposing homogenous Dirichlet conditions
on ∂Ω × [0, h]. The regularity for Step 1 proceeds via a combination of a change of variables in z

and bootstrapping. By using classical elliptic regularity for f and Lemma 3.4 for g, we obtain H5.5

regularity. We note that we require the compatibility condition on f in this first step. Then in Step
2, we analyze the effect of j by reflecting over the boundaries at z = 0, h and utilizing Theorem 3.2
and the compatibility condition between j and f and g.

Step 1: Let u1 be the solution to










L(u1) = f Ω× (0, h)

∂νu1 = g Ω× {0, h}

u1 = 0 ∂Ω× [0, h].

We can construct u1 variationally in the subspace of H consisting of functions which vanish
on ∂Ω× [0, h]. Then u1 satisfies the bound

‖u1‖H ≤ C(Ω, h, λ) (‖f‖L2 + ‖g‖L2) .

Now consider

ũ1 := u1 (x, y, θ(z))

for θ solving
{

θ′(z) =
√

λ(θ(z))

θ(0) = 0.

By the strict positivity and smoothness of λ, θ : [0, h] → [0, h̃] is well-defined, smooth, and

a bijection for h̃ = θ(h). Then we can calculate

∆ (u1 (x, y, θ(z))) = ∆ (u1 (x, y, θ(z))) + (∂zzu1) (x, y, θ(z)) (θ
′(z))2 + (∂zu1) (x, y, θ(z)) θ

′′(z)

= ∆ (u1 (x, y, θ(z))) + (∂zzu1) (x, y, θ(z))λ(θ(z)) + λ′(θ(z))(∂zu1) (x, y, θ(z))

− λ′(θ(z))(∂zu1) (x, y, θ(z)) + (∂zu1) (x, y, θ(z)) θ
′′(z)

6



= f (x, y, θ(z)) − λ′(θ(z))(∂zu1) (x, y, θ(z)) + (∂zu1) (x, y, θ(z)) θ
′′(z)

:= f̃(z).

Notice that although f̃ only belongs to L2 for now, ∂ν f̃ is well-defined pointwise on ∂Ω ×
{0, h̃} and vanishes by the assumption on f and the fact that u1 ≡ 0 on ∂Ω× [0, h̃]. Letting

g̃ = g
√

λ(θ(z)), we have shown that ũ1 solves














∆ũ1 = f̃ Ω× (0, h̃)

∂ν ũ1 = g̃ Ω× {0, h̃}

ũ1 = 0 ∂Ω× [0, h̃]

for f ∈ L2(Ω× (0, h̃)) and g̃ ∈ H̄4(Ω× {0, h̃}).

Let ΩE be an open, bounded set in R
3 with smooth boundary such that Ω× (0, h̃) ⊂ ΩE ,

and ∂Ω × [0, h̃] ⊂ ∂ΩE. Let fE be an L2 Sobolev extension of f̃ to R
3 restricted to ΩE .

Then consider the elliptic problem
{

∆u2 = fE ΩE

u2 = 0 ∂ΩE.

Classical elliptic regularity theory yields that u2 ∈ H2 (ΩE). Note as well that since u2

vanishes on ∂ΩE ,
∂k

∂zk
u2 ≡ 0 for any k on ∂Ω × {0, h}. Therefore, we can set u3 = ũ1 − u2

to be the solution to














∆u3 = 0 Ω× (0, h̃)

∂νu3 = g̃ − ∂νu2 Ω× {0, h̃}

u3 = 0 ∂Ω× [0, h̃]

where g̃ − ∂νu2 ∈ L2(Ω × {0, h̃}). Then by Lemma 3.4, u3 = ũ1 − u2 ∈ H1.5(Ω × (0, h̃)).

Bootstrapping this estimate, we find that f̃ ∈ H
1
2 (Ω× (0, h̃)), and therefore u2 ∈ H2.5(Ω×

(0, h̃)) by the same extension and restriction argument as before. Then ∂νu2 ∈ H̄1(Ω ×

{0, h̃}), and so u3 ∈ H2.5(Ω × (0, h̃)) from Lemma 3.4. Bootstrapping again gives that

u2 ∈ H3.5(Ω × (0, h̃)). By the trace, ∂νu2 ∈ H2(Ω × {0, h̃}). But since ∂νu2 vanishes

at ∂Ω × {0, h̃}, ∂νu2 ∈ H̄2(Ω × {0, h̃}), and applying Lemma 3.4 again gives that u3 ∈

H3.5(Ω × {0, h̃}). Bootstrapping yet again yields u2 ∈ H4.5(Ω × {0, h̃}), and by the trace,

∂νu2 ∈ H3(Ω × {0, h̃}) ∩ H̄2(Ω × {0, h̃}). We now claim that ∂νu2 ∈ H̄3(Ω × {0, h}). For
this to be true, we must show that ∆(∂νu2) ∈ H̄1(Ω× {0, h}). For this we write

∆(∂νu2) = (∆ − ∂zz)∂νu2

= ∆(∂νu2)

= ∂ν f̃ ∈ H1
0 (Ω× {0, h})

by the earlier remark that ∂ν f̃ vanishes at ∂Ω×{0, h̃}. Therefore, we can apply Lemma 3.4
to deduce that u3 ∈ H4.5(Ω × {0, h}). Then bootstrapping a final time with u2 gives that

u2 ∈ H5.5(Ω × (0, h̃)). Thus we find that ∂νu2 ∈ H̄4(Ω × {0, h̃}), and we obtain that

u3 ∈ H5.5(Ω× (0, h̃)).
Step 2: Now we analyze the effect of j. Define

j̃(z) = j(z) −

∫

∂Ω×{z}
∇u1(z) · νs

7



and set u4 = u− u1. Then u4 solves


















L(u4) = 0 Ω× (0, h)

∂νu4 = 0 Ω× {0, h}

u4 = u4(z) ∂Ω× [0, h]

−
∫

∂Ω×{z} ∇u4 · νs = j̃(z) [0, h].

To show higher regularity estimates on u4, we will reflect over the boundaries at z = 0, h.
Let η(z) : [0, h) → [0, 1] be a smooth, compactly supported function of z such that η ≡ 1
for z ∈ [0, 3h4 ]. Let u4,E : Ω × (−h, h) → R be the reflection of ηu4 over the boundary

z = 0, and let j̃E(z) : (−h, h) → R be the reflection of j̃ over z = 0. By the assumptions of
Definition 2.3, for k = 1, 3,

∂k

∂zk
j̃(z)|z=0,h = 0.

Therefore jE retains L2 integrability up to derivatives of order 4. Here is the only point
that we require the higher-order compatibility conditions on j.

Let us extend the operator L by even reflection of λ(z) to λ(|z|). By the assumption
that λ′ = λ′′′ = 0 at z = 0, we have that λ(|z|) has well-defined derivatives up to order 4
on [−h, h]. One finds immediately that L(u4,E) = 0 for all (x, y, z) ∈ Ω× (−h, h). We now
calculate L(∂zu4,E) by writing

L(∂z(u4,E))(x, y, z) = [L, ∂z] (u4,E)(x, y, z)

= −λ′(|z|)
z

|z|
(∂zzu4(x, y, |z|) −

z

|z|
λ′′(|z|)(∂zu4)(x, y, |z|)

:= fj(x, y, z).(2)

We have that fj is well-defined since λ′ vanishes at 0 and ∂zu4 vanishes at 0, and

‖fj‖L2(Ω×(−h,h)) ≤ C(Ω, h, η)‖u4‖H2(Ω×(0,h)).

Note that u4 ∈ H2(Ω×(0, h)) by Theorem 3.2, and so this estimate makes sense. Continuing
the analysis, ∂z(ηu4,E) then satisfies the equation































L(∂z(ηu4,E)) = fj Ω× [−h, h]

∂z (∂z(ηu4,E)) = 0 Ω× {−h, h}

∂z(ηu4,E) = ∂z(ηu4,E)(z) ∂Ω × [−h, h]

−

∫

∂Ω×{z}
∇(∂z(ηu4,E)) · νs = ∂z(ηj̃E) [−h, h].

Applying Theorem 3.2, we obtain that ∇(∂z(ηu4,E)) ∈ H1(Ω × (−h, h)) and satisfies the
bound

‖∇(∂z(ηu4,E))‖H1(Ω×(−h,h)) ≤ C(Ω, h, η) (‖u4‖H2 + ‖j‖H1.5) .

Repeating the argument, but this time with a reflection of (1− η)u4 over z = h, shows that

‖∇(∂zu4)‖H1(Ω×(0,h)) ≤ C(Ω, h, η) (‖u4‖H2 + ‖j‖H1.5) .

We must show that ∇
2
u4 ∈ H1(Ω× (0, h)) as well. Letting τ denote the tangent vector

to ∂Ω, we have that ∂ττu4|∂Ω×[0,h] = 0, and therefore we can differentiate in the τ direction
near ∂Ω. Then we have that

∂τ⊥τ⊥u4 = L(u4)− λ∂zzu4 − λ′∂zu4 − ∂ττu4.
8



Therefore we can differentiate in the τ⊥ direction near the lateral boundaries as well. Thus
for any (x, y, z) near ∂Ω × [0, h], we have found a basis of directions (τ, τ⊥, z) such that

∂zzu3, ∂ττu3, and ∂τ⊥τ⊥u3 all belong to H1(Ω×(0, h)), and therefore∇
2
u4 ∈ H1(Ω×(0, h)).

We now outline how to obtain higher regularity (Hs for 3 < s ≤ 5.5) inductively. The
estimate (2) yielded H3 regularity contingent on the finiteness of the H2 norm of u3. Dif-
ferentiating this equality again in z and arguing as before gives a finite H4 norm of u3.
We remark that as in the equality (2), the vanishing of λ′, λ′′, and λ′′′ eliminates singu-

larities or Dirac deltas at z = 0, h which arise when calculating L( ∂k

∂zk
u4,E). Applying the

same reasoning another time, we reach H5. For the final half-derivative, jE runs out of
differentiability at order 4, and so we reach H5.5.

�

3. Construction of a Smooth Solution

We begin this section with a technical lemma which will be used to show that under the assump-
tions on f and g in the statement of Theorem 1.1, L(Ψ)(t) and ∂νΨ(t) vanish in a neighborhood
of ∂Ω× {0, h} for all t.

Lemma 3.1. Let u : Ω × [0, T ] → R
2 be a divergence-free vector field belonging to L∞

t

(

C1(Ω̄)
)

such that u(x) · νs = 0 for x ∈ ∂Ω. Let Γ(x, t) be the solution to the
{

Γ̇(x, t) = u (Γ(x, t), t)

Γ(x, t0) = x

for x ∈ Ω̄ and t0 ∈ [0, T ]. Let Ω̃ ⊂⊂ Ω. Then
{

Γ (x, t) : x ∈ Ω̃
}

⊂⊂ Ω for all t ∈ [0, T ].

Proof. First, by the regularity assumption on u and the vanishing of the normal component of u
on ∂Ω, Γ is well-defined as the solution to the ODE. Note that if x ∈ ∂Ω, Γ(x, t) remains in ∂Ω
forwards and backwards in time from t0 since u|∂Ω is tangent to ∂Ω. Conversely, it then holds that
any point in the interior of Ω at time t0 remains so under the flow of Γ. Consider the function
d(x, t) : Ω̃ × [0, T ] → [0,∞) which gives the distance from Γ(x, t) to ∂Ω for x ∈ Ω̃. By the

continuity in x of Γ, for a fixed t ∈ [0, T ], d(·, t) is a continuous function on Ω̃. However, we know

that d(·, t) > 0 since Γ maps the interior of Ω to itself. Since the domain Ω̃ of d(·, t) is compact,

the image of Ω̃ under d(·, t) is compact in (0,∞) and therefore has a minimum value which must

be strictly larger than 0. Therefore, for x ∈ Ω̃ the distance from Γ(x, t) to ∂Ω is strictly bounded

away from zero, and thus Ω̃ remains compactly supported in Ω for all t ∈ [0, T ].
�

Throughout the remainder of this section, the notation C(Ω) indicates a constant which depends
on Ω but may change from line to line (similarly for h, β0, λ, etc.). Constants whose values remain
fixed from line to line will be noted. We aim to build a smooth solution on a short time interval to
the system







































(

∂t +∇
⊥
Ψ · ∇

)

(L(Ψ) + β0y) = 0 Ω× (0, h) × [0, T ]
(

∂t +∇
⊥
Ψ · ∇

)

∂νΨ = 0 Ω× {0, h} × [0, T ]

Ψ(x, y, z, t) = Ψ(z, t) ∂Ω × [0, h] × [0, T ]

−

∫

∂Ω×{z}
∇Ψ(z) · νs = j(z) [0, h] × [0, T ]

Consider the set of functions

X =
{

Ψ ∈ L∞
(

[0, T ];H ∩H5.5
)}
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for T to be chosen later. For Ψ ∈ X, we define a solution operator S, which maps Ψ to the solution

of the linearized version of the system with velocity field ∇
⊥
Ψ. Specifically, let F = F (Ψ) and

G = G(Ψ) solve






























(

∂t +∇
⊥
Ψ · ∇

)

(F + β0y) = 0 Ω× (0, h) × [0, T ]
(

∂t +∇
⊥
Ψ · ∇

)

G = 0 Ω× {0, h} × [0, T ]

F |t=0 = f

G|t=0 = g,

and for t ∈ [0, T ], define S(Ψ)(t) as the solution to the elliptic problem






























L (S(Ψ)(t)) = F (t) Ω× (0, h)

∂ν (S(Ψ)(t)) = G(t) Ω× {0, h}

S(Ψ)(x, y, z, t) = S(Ψ)(z, t) ∂Ω× [0, h]

−

∫

∂Ω×{z}
∇ (S(Ψ)(t, z)) · νs = j(z) [0, h].

Claim 1: S : X → X is a well-defined mapping.

Proof. We first note that by the incompressiblity of the flow, the quantities
∫

Ω×(0,h)
F (t),

∫

Ω×{0,h}
G(t)

are preserved in time. Therefore the compatibility condition from Definition 2.2 is satisfied
for all time so that S(Ψ)(t) is well-defined as the solution to the elliptic problem. We now
show that S(Ψ)(t) ∈ H5.5(Ω× (0, h)) for all time t.

Since F solves
(

∂t +∇
⊥
Ψ · ∇

)

F = −β0∂xΨ,

we apply Dα to the equation for |α| = 4, multiply by DαF , and integrate by parts to obtain

1

2

∂

∂t

∫

Ω×(0,h)
|DαF |2 = −

∫

Ω×(0,h)
Dα
(

∇
⊥
Ψ · ∇F

)

DαF − β0

∫

Ω×(0,h)
∂x(D

αΨ)DαF

= −

∫

Ω×(0,h)

[

Dα,∇
⊥
Ψ·
]

(∇F )DαF − β0

∫

Ω×(0,h)
∂x(D

αΨ)DαF

≤ C (Ω, h, β0) ‖D
αF‖L2

×
(
∥

∥

∥
∇

⊥
Ψ
∥

∥

∥

C1

∥

∥

∥
∇|α|−1∇F

∥

∥

∥

L2
+ ‖F‖L∞

∥

∥

∥
∇|α|∇

⊥
Ψ
∥

∥

∥

L2
+ ‖Dα∂xΨ‖L2

)

.

Summing over α and using Sobolev embedding to control ∇
⊥
Ψ, we obtain that

∂

∂t
‖F‖H4 ≤ C (Ω, h, β0) (‖Ψ‖H5 ‖F‖H4 + ‖Ψ‖H5) .

Applying Grönwall’s inequality gives that for t ∈ [0, T ],

‖F (t)‖H4 ≤ C (Ω, h, β0) e
∫ T

0 ‖Ψ(τ)‖
H5 dτ

(

‖f‖H4 +

∫ T

0
‖Ψ(τ)‖H5 dτ

)

.

An entirely analogous argument for G yields

‖G(t)‖H4(Ω×{0,h}) ≤ C (Ω) ‖g‖H4(Ω×{0,h})e

∫ T

0

∥

∥

∥
∇

⊥
Ψ(s)

∥

∥

∥

H4(Ω×{0,h})
ds
.

Before applying Theorem 2.1, we must verify the compatibility conditions from Defini-
tion 2.3. Applying Lemma 3.1, we deduce that if the support of f(·, ·, z) ⊂⊂ Ω for fixed z,
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then the support of F (·, ·, z, t) ⊂⊂ Ω. By the assumption on f in Theorem 1.1, for z close
enough to 0 or h, the support of f(·, ·, z) ⊂⊂ Ω. Therefore, suppF (·, ·, z, t) ⊂⊂ Ω, and thus
suppF remains at positive distance from ∂Ω × {0, h} for all time. Then ∂zF |∂Ω×{0,h} = 0,
and we have now shown the first condition from Definition 2.3.

To show the second condition, we must show that we can replace theH4(Ω×{0, h}) norms
in the differential equality for G(t) with H̄4(Ω × {0, h}). Since g is compactly supported
in Ω × {0, h} by the assumptions of Theorem 1.1, applying Lemma 3.1 shows that G(t) is
compactly supported in Ω× {0, h} for all time. Therefore,

‖G(t)‖2H̄4(Ω×{0,h}) =

∫

Ω×{0,h}

∣

∣

∣
∆

2
G(t)

∣

∣

∣

2
≤ ‖G(t)‖2H4(Ω×{0,h}).

Next, we have that due to the continuous inclusion of the domain of (−∆)α into the classical
Sobolev space Hα(Ω) for α ≥ 0 (consult [11] for example), replacing ‖g‖H4 with ‖g‖H̄4 on
the right hand side can be done immediately without any assumptions on g, and we have
shown the second condition from Definition 2.3.

To verify the third compatiblity condition, after appealing to the assumptions on j in
Theorem 1.1, it suffices to show that

∂k

∂zk

∫

∂Ω×{0,h}
∇u1 · νs = 0

for k = 1, 3 and u1 the solution to










L(u1) = f Ω× (0, h)

∂νu1 = g Ω× {0, h}

u1 = 0 ∂Ω× [0, h].

For k = 1, we use the compact support of G(t) to notice that ∂z∇u1 = 0 in a neighborhood
(in x and y) of ∂Ω×{0, h}. For k = 3, first note that by the assumption on λ in Theorem 1.1,

∂

∂z

(

L −∆
)

u1|z=0,h = λ
∂3

∂z3
u1|z=0,h.

Therefore, we can write that

λ
∂3

∂z3

∫

∂Ω×{0,h}
∇u1 · νs =

∂

∂z

∫

∂Ω×{0,h}

(

L −∆
)

∇u1 · νs

=

∫

∂Ω×{0,h}

(

∂

∂z
∇F −∇∆G

)

· νs

= 0(3)

by the fact that F and G vanish near ∂Ω × {0, h}. Thus we have verified the third com-
patibility condition from Definition 2.3. We remark that this step of the argument is the
one of the main reasons that we impose the conditions on f , g, j, and λ in the statement
of Theorem 1.1.

Now we can apply Theorem 2.1 to give that S is a self-map of X, and

‖S(Ψ)(t)‖H5.5 ≤ C̃(Ω, h, λ, β0)e
∫ T

0 ‖Ψ(s)‖
H5.5 ds

(

‖f‖H4 + ‖g‖H̄4 + ‖j‖H4 +

∫ T

0
‖Ψ(s)‖H5.5 ds

)

,(4)

showing that S maps X into itself (for any T ). �

Claim 2: There exists a choice of T1 and a set B ⊂ X such that S : B → B.
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Proof. Define

R = 4C̃(Ω, h, λ, β0) (‖f‖H4 + ‖g‖H̄4 + ‖j‖H4)

where C̃(Ω, h, λ, β0) is the constant from (4), and B ⊂ X by

B = {Ψ ∈ X : ‖Ψ‖X ≤ R} .

We have that S(Ψ)|t=0 is independent of Ψ, and

‖S(Ψ)(0)‖H5.5 ≤ C̃(Ω, h, λ, β0) (‖f‖H4 + ‖g‖H̄4 + ‖j‖H4) =
1

4
R < R.

For 0 < T and Ψ ∈ B, (4) shows that

‖S(Ψ)(t)‖H5.5 ≤ C̃(Ω, h, λ, β0)e
∫ T

0
‖Ψ(s)‖

H5.5 ds

(

‖f‖H4 + ‖g‖H̄4 + ‖j‖H4 +

∫ T

0
‖Ψ(s)‖H5.5 ds

)

≤ C̃(Ω, h, λ, β0)e
∫ T

0 Rds

(

‖f‖H4 + ‖g‖H̄4 + ‖j‖H4 +

∫ T

0
Rds

)

.

Since this bound varies continuously in T and is strictly less than R at T = 1, we can find
T1 > 0 such that for all t ∈ [0, T1] and Ψ ∈ B,

‖S(Ψ)(t)‖H5.5 ≤
1

3
R < R.

To check the size of T1 for large data, we must control the exponential term e
∫ T

0 Rds, which
given the choice of R remains comparable to 1 for

T1 ≈ (‖f‖H4 + ‖g‖H4 + ‖j‖H4)−1 .

�

Claim 3: There exists T0 such that S has a fixed point in B.

Proof. Define Ψ(0)(t, x, y, z) = Ψ0(x, y, z), and define the sequence of functions

Ψ(n) = S(Ψ(n−1))

inductively. Since S is a self-map of B, Ψ(n) is well-defined for all n ∈ N. We claim that
for a suitable choice of T0, ∇Ψ(n) is a Cauchy sequence in the space

L∞
(

[0, T0];H
1
2 (Ω× (0, h))

)

.

Let integers n and k be fixed. Then L(Ψ(n+k))− L(Ψ(n)) satisfies the equation

∂t

(

L(Ψ(n+k))− L(Ψ(n))
)

+∇
⊥
Ψ(n+k−1) · ∇

(

L(Ψ(n+k))− L(Ψ(n))
)

=
(

∇
⊥
Ψ(n−1) −∇

⊥
Ψ(n+k−1)

)

· ∇
(

L(Ψ(n)) + β0y
)

.

Multiplying by L(Ψ(n+k))−L(Ψ(n)), integrating by parts, and using Gronwäll’s inequality
again shows that for t ∈ [0, T0],
∥

∥

∥
L(Ψ(n+k))(t)− L(Ψ(n))(t)

∥

∥

∥

L2(Ω×(0,h))

≤

∫ T0

0

∥

∥

∥

(

∇
⊥
Ψ(n−1)(τ)−∇

⊥
Ψ(n+k−1)(τ)

)

· ∇(LΨ(n)(τ) + β0y)
∥

∥

∥

L2(Ω×(0,h))
dτ

< T0

(

∥

∥

∥

(

∇Ψ(n−1) −∇Ψ(n+k−1)
)
∥

∥

∥

L∞([0,T0];L2(Ω×(0,h)))

×
∥

∥

∥
∇
(

LΨ(n) + β0y
)
∥

∥

∥

L∞([0,T0];L∞(Ω×(0,h)))

)
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≤ T0(R+ β0)
∥

∥

∥

(

∇Ψ(n−1) −∇Ψ(n+k−1)
)∥

∥

∥

L∞([0,T0];L2(Ω×(0,h)))
.

A completely analogous argument holds for ∂νΨ
(n). Solving the elliptic problem and sum-

ming then shows that

∥

∥

∥

(

∇Ψ(n) −∇Ψ(n+k)
)
∥

∥

∥

L∞([0,T0];H
1
2 (Ω×(0,h)))

≤ 2T0(R+ β0)C(Ω, h, λ)
∥

∥

∥

(

∇Ψ(n−1) −∇Ψ(n+k−1)
)∥

∥

∥

L∞([0,T0];H
1
2 (Ω×(0,h)))

≤
1

2

∥

∥

∥

(

∇Ψ(n−1) −∇Ψ(n+k−1)
)∥

∥

∥

L∞([0,T0];H
1
2 (Ω×(0,h)))

if T0 is chosen to absorb the constant 2(R+ β0)C(Ω, h, λ). Iteratively applying this bound

then shows that ∇Ψ(n) is a Cauchy sequence as desired. In addition, the choice of R gives
the desired lower bound on T0 for large data.

Since Ψ(n) converges strongly to Ψ in L∞
(

[0, T0];H
1
2 (Ω× (0, h))

)

and is uniformly

bounded in L∞
(

[0, T0];H
5.5(Ω × (0, h))

)

, interpolation gives that Ψ(n) converges strongly
in L∞ ([0, T0];H

s(Ω× (0, h))) for s < 5.5. Then define Ψ(t) to be the solution to the elliptic
problem







































L (Ψ(t)) = lim
n→∞

L
(

Ψ(n)(t)
)

Ω× (0, h)

∂ν (Ψ(t)) = lim
n→∞

∂ν

(

Ψ(n)(t)
)

Ω× {0, h}

Ψ(x, y, z, t) = Ψ(z, t) ∂Ω× [0, h]

−

∫

∂Ω×{z}
∇ (Ψ(t, z)) · νs = j(z) [0, h].

Passing to the limit in the QG equations, we have therefore shown that Ψ is a fixed point
of S.

�

4. Appendix

Proposition 4.1 (Commutator Estimate). For f, g : Ω × (0, h) → R, there exist constants
C(Ω, h, s) such that for α a multi-index with |α| = s,

‖Dα(fg)− fDα(g)‖L2(Ω×(0,h)) ≤ C(Ω, h, s)
(

‖∇f‖L∞‖∇(s−1)g‖L2 + ‖g‖L∞‖∇sf‖L2

)

.

Proof. Substituting Ω×(0, h) for Tn, the statement is precisely the Klainerman-Majda commutator
estimate from [15]. The ingredients of the proof in that case are Hölder’s inequality and the
Gagliardo-Nirenberg interpolation inequality. As Hölder’s inequality is valid for Ω× (0, h), we can
follow the classical proof provided that the Gagliardo-Nirenberg inequality holds for Ω × (0, h).
Since Ω × (0, h) is a bounded domain Lipschitz domain, Stein’s linear Sobolev extension operator
E [24] gives that for k ∈ N and 1 ≤ p ≤ ∞,

E : W k,p (Ω× (0, h)) → W k,p
(

R
3
)

is bounded with constants depending only on k, p, Ω, and h. Utilizing the extension, it is simple
to show that Gagliardo-Nirenberg holds for Ω× (0, h), completing the proof. �
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