CONTRACTION FOR LARGE PERTURBATIONS OF
TRAVELING WAVES IN A HYPERBOLIC-PARABOLIC SYSTEM
ARISING FROM A CHEMOTAXIS MODEL
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ABSTRACT. We consider a hyperbolic-parabolic system arising from a chemotaxis model in
angiogenesis, which is described by a Keller-Segel equation with singular sensitivity. It is
known to allow viscous shocks (so-called traveling waves). We introduce a relative entropy
of the system, which can capture how close a solution at a given time is to a given shock
wave in almost L2-sense. When the shock strength is small enough, we show the functional
is non-increasing in time for any large initial perturbation. The contraction property holds
independently of the strength of the diffusion.

1. INTRODUCTION AND MAIN THEOREM
We consider the following one dimensional hyperbolic-parabolic system:

L1 8tn—8z(nq) = Vazxn7
(1.1) ohq—0n=0 forxeR andfort>0

where v > 0 is a positive constant. We are interested in stability of viscous shocks (so-called
traveling waves) of the above system.

1.1. Model from Chemotaxis. The system (1.1) is related to the following Keller-Segel
system [19]:

om —vAn ==V - (nx(c)Ve),

(12) .
Oic —eAc=—c"n forxeR" andfort>0

with m > 0 and € > 0. In chemotaxis, the unknown n(x,t) > 0 represents the bacterial
density while the unknown ¢(x,¢) > 0 means the concentration of chemical nutrient con-
sumed by bacteria at position x, and time t. We assume that the given sensitivity function
X(-) : RT — R" is decreasing since the chemosensitivity gets usually lower as the concentra-
tion of the chemical gets higher. The positive constant m indicates the consumption rate of
nutrient ¢, and the non-negative constant ¢ > 0 means the chemical diffusion rate for c.
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Such a Keller-Segel system can play a role of a simplified model of angiogenesis on the
formation of new blood vessels from pre-existing vessels, which is considered to be the mech-
anism for tumor progression and metastasis (see [7, 8, 21, 26, 27, 31], and references therein).
In this interpretation, n denotes the density of endothelial cells while ¢ does the concentra-
tion of the protein known as the vascular endothelial growth factor(VEGF). In biological
implications, we usually consider € small (or negligible) (e.g. see [21]).

To derive our system (1.1), we just take x(c) = ¢ and m = 1, N = 1, and € = 0 into
(1.2) to get

C

Oyn — V0zzn = —0, (n%) ,
(1.3)

0yc = —cn.

To have a traveling wave of (1.3), the chemosensitivity function y(c) needs to be singular
near ¢ = 0 (e.g. see [19]). In particular, y(c) = ¢! was assumed in [19]. Thanks to the
restriction m = 1, we can treat the singularity in ¢ of the sensitivity by the Cole-Hopf
transformation

After the transform, we have (1.1) as in [36].

1.2. Traveling waves of (1.1). We notice that if n > 0, which is biologically relevant by
the derivation from chemotaxis, then the principal part (i.e. when v = 0) of the system (1.1)
is hyperbolic. By [36] (also see [24]), it has been known that for any v > 0, (1.1) admits a

smooth traveling wave Z (x — ot) connecting two end-states (n_,q_) and (ny,qy), i.e.,

(1.4) n(—o00) =n_ >0, n(+o0)=ny >0, ¢(—o0)=q_, ¢(+00)=4q;
(we denote lirf f(z) by f(£o0) in short), provided the two end-states satisfy the Rankine-
T—>L00
Hugoniot condition and the Lax entropy condition:
3 0 € R such that { —o(ny —n-) = (n4qy —n-q-) =0,
—0o(q+ —q-) = (ny —n_) =0,
and either n_ > ny and ¢_ < gy or n_ < n,4 and ¢_ < ¢4 holds.

(1.5)

Here, the velocity o is given by

(1.6) > —q_ t /¢ +4n,
. = 5 .

. . —q—++/q> +4 .
More precisely, if n_ > n, > 0, then o = TV ETE 0, whereas if 0 < n_ < n,, then

2
0 — )P +An

o= % < 0 (See Subsection 2.2 for more details). For this topic, we also refer to

the survey paper [35] by Wang,.

In this parabolic conservation laws, it is an interesting topic to discuss how stable these
viscous shocks are. By [24], it has been known that these waves are stable if the anti-

derivative of a perturbation (n — 7, ¢ — ¢) is small in the Sobolev space [H?(R)]?. Thus the
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perturbation needs at least to have the mean-zero condition:

no(z) — n(x — xo) 0
dJzy € R such that ~ dz = .
0 /R (QO(I) — q(z — x0) 0
This condition is quite common in studying stability of viscous shocks since [9] and [18].

In this paper, we introduce a relative entropy functional of the system, which plays a
similar role of L?-distance between a solution (n,q) and a given shock profile (7, G). Then
we show that the functional is non-increasing in time for any large initial perturbation.
Therefore, we prove that the contraction property holds independently of the size of the
perturbation or the strength of the viscosity v. It is remarkable that our result do not ask
a perturbation to have either the mean-zero condition or the smallness in a Sobolev space.
However, we need that the shock strength [n_ —n| is small enough while this smallness on
the wave amplitude was not required in [24].

For the Cauchy problem of (1.1), we refer to [10, 23, 25] for global well-posedness. For
multi-dimentional cases, see [22] and references therein. For stability of planar shocks under
the mean-zero condition, we refer to [1, 2.

1.3. Main result.

7

For U; = (nl> with n; > 0 for ¢« = 1, 2, we consider the relative entropy

|Q1 - QQ|2

n(U1|Us) = 5

+ H(TL1|TL2),

where
[I(ny|ng) :=(ny) — l(ng) — VII(ng)(ny — ng), II(n) :=nlogn —n.

Since II(n) is strictly convex in n, its relative functional II(+|-) above is positive definite, and
sois n(-|-). That is, n(U;|Usz) > 0 for any U; and Uy, and n(U;|Us) = 0 if and only if U; = Us.

Global existence and uniqueness of weak solutions to (1.1) belonging to the space
Xr:={(n,q) € L>((0,T) x R)? | n >0, n~' € L=((0,T) x R), d,n € L*((0,T) x R)}
for each T' > 0, is studied in [3].

Here is the main result. We first state it for a fixed viscosity ¥ = 1. Then, in Remark 1.5,
we illustrate that the main result still holds for any v > 0.

Theorem 1.1. Let v = 1. For a given constant state (n_,q_) € RT xR, there exist constants
do € (0,1/2) and C > 0 such that the following is true:

For any e, A > 0 with ¢ € (0,n_) and d;'c < A\ < &, and for any (ny,q.) € RY x R
satisfying (1.5) with [n_ — ny| = €, there exists a smooth monotone function a : R — R
with im, 1+ a(x) = 1 + ay for some constants a_,a, with |ay —a_| = X\ such that the
following holds:

) be a traveling wave of (1.1) with the boundary condition (1.4) and with the

n

Let U = <
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speed o from (1.6). For a given T > 0, let U(t,x) = (q o ) be a solution to (1.1)

belonging to X with initial data Uy(x) := (Z%g) satisfying
0

(1.7) /_OO n(Uo|U)dx < 0.

[e.e]

Then there ezists an absolutely continuous shift function X : [0, T] — R with X € VVlicl and
X (0) =0 such that

/00 a(z — ot)n(U(t,z — X(1))|U(z — ot))dx

O ( log n(i’ i X(T))> ‘2dxd7'

n(x —or)

(1.8) + 50/0 /OO a(x — JT)n(T,x — X(T))
< [ alon(O@)ie)a,

and
. 1 oo ~
| X (t) — o §§<f(t)+0/ T](U0|U)dx+l) for a.e. t €[0,T]
(1.9) o N [
where f is some positive function satisfying || f| 1071y < C’g/ n(Uo|U)dzx.

Remark 1.2. The result can be considered to be an a-priori estimate for solutions of (2.1).
The existence issue of solutions in the class X7 for any 7" > 0 with the initial condition (1.7)
will be covered in the forthcoming paper [3]. The estimate on the dissipation in (1.8), will
be crucially used for the proof of the global existence of weak solutions to (1.1) in [3].

Remark 1.3. Notice that it is enough to prove Theorem 1.1 in the case of n_ > n, > 0.
Indeed, the result for ny > n_ > 0 is obtained by the change of variables z — —z with
o +— —o. Therefore, from now on, we assume n_ > n, > 0 and thus

—q_ +/¢% +4n,
5 .

O<o=

Remark 1.4. Since the weight function a satisfies that |a(z) — 1] < XA < §y < 1/2 for all
x € R, the contraction estimate (1.8) yields

[e.9]

/ n(U(t,z — X)|U(x — ot))dx < 4/ n(Ug(x)|U(:E))dx.

Remark 1.5. In fact, such a contraction property (1.8) holds for any v > 0, by scaling as

follows. This scaling argument makes sense because of no condition on the strength of the

initial perturbation. Let U” and U” be a solution and traveling wave to (1.1) with initial

data Uy, respectively. Then, U(t,x) := U"(vt,vz) (resp. U(x) := U¥(vz)) is a solution
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(resp. traveling wave) to (1.1) with v = 1. Therefore, using (1.8) together with the fact that
/a”(:v —at)n(U”(t,z — X)) U (z — ot))dz

= I//a(yc —ot/v)n(U(t/v,z — X (t/v)|U(x — ot/v))dz,

where a”(z) := a(x/v) and X" (t) := v X(t/v), we get

/a”(x—Ut)n(U”(t,x—X”(t))|0”(x—at))dx < /a”(m)n(Uo(x)|U”(x))d:z:.

Notations Throughout the paper, C' denotes a positive constant which may change from
line to line, but which is independent of ¢ (the strength of the shock) and A (the total varia-
tion of the function a). The paper will consider two smallness conditions, one on ¢, and the
other on /. In the argument, ¢ will be far smaller than £/ .

1.4. Ideas of Proof.

We basically take advantage of the new method introduced by Kang-Vasseur in [13], which
is also used in the recent works [11, 14]. The main scenario of the method is briefly explained
as follows.

For a given viscous traveling wave U with small amplitude In_ — ny| = e, the weight
function a is defined by U (see (2.12)). We employ the weighted relative entropy with the
weight a, to get the contraction of any large perturbation U from U, up to a time-dependent
shift X (¢). The shift function X is constructed after the relative entropy computation in
Lemma 2.3, which gives

G| amues+ xo)0©)

= XOY(U(t,-+ X)) + I U(t, -+ X (1)) — T9°UU(t, - + X(1))).

Because of the relative entropy structure, the bad terms Z* and the good terms Z9°°? (i.e.
79°4 > ) are quadratic when the perturbation is small. However, we have no uniform
control on the size of the large perturbation U(t, ), therefore we should carefully estimate
what happens for large values of U(t, z).

The key idea of the technique is to exploit the degree of freedom of the shift X(¢) in
the first term X ()V(U(t,- + X (t))). First of all, when Y(U(t,-)) is not too small, we can
construct the shift X (¢) such that the term X (£)Y(U(t, -+ X (t))) absorbs all the bad terms
7% (see (3.2)). Specifically, we ensure algebraically that the contraction holds as long as
|V(U(t))] > €2. Thus, the rest of the method is to show that the contraction still holds when
YU ®)] < e

In the argument, for the values of ¢ such that |Y(U(t))| < €2, we construct the shift as a

solution to the ODE: X (t) = —Y(U(t, - + X (t)))/e*. From this point, we forget that U is a
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solution to the system and X (t) is the shift. That is, we leave out X (¢) and the t-variable
of U. Therefore, it remains to show that for any function U satisfying Y(U) < &2,

—614322(U) + YUY — 79U (U) < 0.

This is proved by Proposition 3.1 together with Lemma 2.6. This completes the proof of The-
orem 1.1. Proposition 3.1 is obtained thanks to a generic non-linear Poincaré type inequality
(see Lemma 4.2), which is first introduced in [13]. It was first discovered for the scalar case in
[16]. The general method then follows [13] by performing a careful expansion on the strength
of the shock. Note that the parabolic system (1.1) is degenerate (that is, there is no diffu-
sion in terms of ¢). Therefore, following [13], we first maximize the bad terms with respect
to g for n fixed (see Lemma 2.6). The expansion is then performed only on n. A new fea-
ture compared to [13] is that the maximization can be performed only locally for |n—n| < 1.

The remaining parts of the paper are organized as follows. In Section 2, we introduce
background materials including some properties of traveling waves, the definition of the
weight function a(+), and the main inequality (Lemma 2.3) from the relative entropy. Then in
Section 3, we give the definition of our shift X and present the main proposition (Proposition
3.1), which implies our main result (Theorem 1.1). The proof of Proposition 3.1 is presented
in Sections 4 and 5. In Section 4, we get sharp estimates when |n — 7| is small enough while
in Section 5, we control all bad terms when |n — 72| is not small.

2. BACKGROUND

2.1. Moving frame. From now on, we fix ¥ = 1 so our system (1.1) becomes
o — 0x(nq) = Open,

(2.1) 0yq — O,n = 0.

For simplification of our analysis, we rewrite (2.1) into the following system, based on the

—g—+/a* +any

change of variables (¢,z) — (t,£ = x — ot), where 0 = 5

59 O — 00¢n — Og(ngq) = Ogen,
(22) 0yq — 00eq — Oen = 0.

We are interested in a traveling wave solution U = (g) of (2.1) as a solution of

(23) —a@gfz —~8£(ﬁ(j~) = 85573,
—aﬁgq - 8571 =0.

2.2. Existence and properties of traveling wave solutions.
In the sequel, without loss of generality, we consider the traveling wave (7, q) satisfying
i(0) = =",

Lemma 2.1. (1) For any ny, qr with n_ > ny > 0 satisfying (1.5), the system (2.1) admits

a smooth traveling wave Z (x — ot) connecting the two end-states (n_,q_) and (ny,qy)
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as (1.4) with velocity

2
g+ /E 14
(2.4) P QQ+ <o

Moreover,

~/
n
n<0 ¢g=——>0, and

(25) i) n.)

(2) For any (n_,q_) € RT x R, there exist positive constants €1 and C' such that for any
0<e<epand any (ny,qy) € RT X R satisfying (1.5) with ny = n_ — g, the following is
true:

Let g (x — at) be the traveling wave connecting the two end states (n_,q_) and (ny,qy)

such that 7(0) = (n_ +n4)/2.

Then,
2 _elal 2 el
(2.6) T <) < e -,
o_ 4o_

where
(2.7) o —q_++/¢% +4n_

) = 5 )
Moreover, we have
(2.8) O<%§(0_—C’6)§J<a_,

and

7" (§)] < Celi' (€.

Proof. e proof of (1) : The proof can be found in [24] and [36]. Here we sketch its proof for
completeness. Since
7= _on — (ﬁqN)/,
we have
W= —o(h—n_)— (Ad—n_q_),

which can be written as
i =—c(fi—n_)—7(q—q-) — (i —n_)q-.

But, since § — ¢_ = —%(ﬁ —n_) from § = —%ﬁ’, we have
iy .

n n
=—0+——q-_.
o

n—n_
Since it follow from (2.4) that
o + q—0 = N4,

we have
7/ o*+q.o—n ny — 1

n—n_ o o
7



That is,

(2.9) Y ”‘L(ﬁ — ),

This ODE has a smooth solution 7 connecting n_ to ny, and 7’ < 0. By ¢ =

(1.5), we have q.

e proof of (2) : First of all, since it follows from (2.4) and ny = n_ — ¢ that

”o —q_—i-\/q%—i-ll(n_—s)
— 5 :

taking ; small enough such that

(0-/2)<(0--Ce)<o <o,
which gives (2.8).
To show (2.6), we first observe that (2.9) yields

(2.10) (7 —nay = = ”gn —n+)

Since 7' < 0 and 7(0) = (n— + n4)/2 imply

£<0 = no—ny >0(8) —ny >20(0) —ny = ——5—,
(2.11) 2
£E>0 = n_—ny>n_—n() >n_—n(0) =

> —
it follows from (2.10) and n_ — ny = ¢ that
£ £
< =)< (n_—7) < —Z(n_ —n
E<0 = —(n_— i) < (n_—1) < —(n_—),
£, By £
§20 = —;(”—n+) <(i—ny) < —%(”—”Jr)

These together with 7(0) = (n_ 4+ n)/2 imply

g 2 E E.
E>0 = 56_75 <(h—ny) < §e_£.

Applying the above estimates to (2.10) together with (2.11), we have
e? ek g2 el
——e 20 <P ——e 7.
206 SRS 406
Finally, using (2.8), we have the desired estimates in (2.6).
Moreover, we differentiate (2.9) to get

5 L, /N—n_ n—n
n//:n/< + +>.
o o
Since . B
n—n_ n—ny 2¢e  4e
‘ + §_§_7
o o o o_

8
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we have

7)) < o)l

o_

2.3. Definition of the weight a.
For a given stationary solution U of (2.2)(i.e. a solution of (2.3)), we define a(-) by

(2.12) a:= 1+§(n_ —n).
Note
!/ )\ ~/
(2.13) a(—o0) = 1,a(+00) =1+ A, and o’ = (— g)n > 0 by (2.5).

2.4. Relative entropy method. As mentioned in Subsection 1.4, we employ the new anal-
ysis in [13], which is based on the relative entropy method. The method is purely nonlinear,
and allows to handle rough and large perturbations. The relative entropy method was first
introduced by Dafermos [5] and Diperna [6] to prove the L? stability and uniqueness of Lip-
schitz solutions to the hyperbolic conservation laws endowed with a convex entropy.
Recently, the relative entropy method has been extensively used in studying on the contrac-
tion (or stability) of large perturbations of viscous (or inviscid) shock waves (see [4, 11, 12,
13, 15, 16, 17, 20, 28, 29, 30, 33, 34]).

To use the relative entropy method, we rewrite (2.2) into the following general system of
viscous conservation laws:

(2.14) O + O[A(U)] = 0| M(U)Tn(U) .

where

215) 0= () o= (T = ()

n(U) = Ul +1I(n) where II(n):=nlogn —n.
Indeed, since
(2.16) Vn(U) = (0un(U) 9yn(U)) = (logn q),

we see that (2.2) is equivalent to (2.14).
Notice that 7 is a strictly convex entropy of the system (2.14), since

G(U) := —gnlogn —on(U)
is the entropy flux of n such that 0,G(U) = 22:1 On(U)0;A(U), 1<i<2.

In general, for a given function f, we define its relative function f(:|) of two variables by
flulv) = f(u) = f(v) = Vf(v)(u—0).
Then for U; = (nl> 1 =1,2,

)

@17)  AWUL|U2) = A(UY) — A(U) — VAWU)(Us — Us) = (‘(”l ~ )l = q”) |

9



and
|Q1 - QQ|2

n(U1|Uz) = n(Ur) = n(Uz) — V(Ua)(Uy — Us) = 5

-+ H(n1|n2),
where

H(n1|n2) = H(nl) — H(n2> — VH(ng)(nl — TLQ).
Since II(n) = nlogn — n, we find that

(2.18) [I(ny|ng) = ny log(Z—:) — (n1 — na).

We define the corresponding flux G(-;-) for our relative entropy 7(:|-) by
(2.19) G(U1;U) - = G(Uh) = G(Uz) = Vin(Uz)(A(Ur) — A(Us))
' —(1 — @)I(n1|n2) — @2Il(n1[n2) — (n1 — n2)(@1 — g2) — on(U1|Uz).

In what follows, we use a simple notation: for any function f : R>o x R — R and any shift
X :[0,00) — R,

) = fEE X ().

We also introduce the function space
(220)  H:={(m,p) € L=(R) x L(R) | m > 0,m~* € L=(R), (9§<log %) e L2(R)).

Remark 2.2. As mentioned before, we consider the solution U to (1.1) belonging to X7. Then,
since den € L*((0,T) x R) and n~! € L>=((0,T) x R), using 7 € L>(R) and 7' € L*(R), we
find
85(log ?) e L2((0,T) x R),
n

which implies U(t) € H for a.e. t € [0,T].

Lemma 2.3. Let U := (Z) be the traveling wave in (2.3), and a : R — RY be the weight
function by (2.12). For any solution U = (Z) € Xr of (2.2) for some T > 0 and for any
absolutely continuous shift X : [0,T] — R, we have, for a.e. t € [0,T],

(221) % | a(©n(U (1 U(E)de = XOYU™) +I(UY) = (U7,
where
V() := —/Ra’n(U\(N])dfnt/Ra@Vn(U)(U—U)dg,
() = — [afn<nm)+ (a’—a%)(n—ﬁ)] (q — q)de — / o' Gll(n|7)de
(2.22) B _, UE
+/R<a%— ) (1og )(95(10g )dg+/Ra%H<n|ﬁ)d§
g —

5 ar d§+a/R (n|ﬁ)d§+/Ran‘@(log%ﬂ?d{.

10
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Remark 2.4. By Remark 2.2, we know U(t) € H for a.e. t € [0,7]. It makes the above
functionals ), 7% 79°°¢ in (2.22) well-defined for a.e. t € [0, T).

Proof. To derive the desired structure, we use here a change of variables £ — £ — X (t) as

(2.23) / (U (1,6)|T(€))dé = / X (U1, )|T X (€)de.

Then, by a straightforward computation together with [32, Lemma 4] and the identity
GWU;V)=GU|V)—=Vn(V)AU|V) (see also [13]), we have

d

gt o @mU I )

— X /IR d~Xn(U|TX)de + /R a X [(VU(U) . vmﬁﬂ)(— DeA(U) + ag(M(U)agvn(U)»
VIO = 0 (= K0T — 0A ) + (M(ﬁ‘X)c‘)gVn(U‘X)»] de

:X(—/RQ/XU(UWX)d5+/RaXa£vn<Ux)(U_ fo)d§> L

where

We first use (2.17) and (2.19) to have
h= [ (@) XG0
R

== [ @) g =Ml — [ (@)X Tl )de
- @) == e = [ (@) w10




For the parabolic part Is, we rewrite it into
B~ [ @ [Va) = Va0 )]0 [M(©)26(0n(0) ~ V)] ag
+ [ [Va) = @) o [M0)0:0n(0 )]
- /R a0~ 00 [MO) oV (0)] de
== [ a0 [w) = In(@ )] [M@)0VHV) = T
- [@) X [vaw) = va@ )] [p(©)2e(T0(w) — Vo0 de
+ /R @ X[ Vn(U) = V()| 0| M(U)0Tn(0) | de

- / a V(U U - U)o [M(U_X)agvﬁ(ﬁ_x)] d§
R
=: I31 + I3y + I35 + I34.
Substituting the explicit quantities in (2.15), we have

I3 = —/RaXn 6§<log ﬁ_LX)
I3 = —/R(a’)_xn(log ﬁ_LX)@g(log ﬁ_LX)dﬁ,
I35 = /Ra_X<log %)65 <n8€ logﬁ_x>d§,

fy = — / (X OO T () oxyge / o e,
R R

2
dg,




Therefore, we have

d -X Fr—X
= d
i /. n(U|U™)d§

_ X( . /Ra’Xn(U\UX)dﬁ—i— / a X9 Vn(U—X) (U - U*X)d§>

%“‘X(? X)de — / ‘ag 1og—)( de.

Again, we use a change of variable £ — £ + X () to have

4
dt Jy

~ (- /R dn(UX|0)de + /R adUn(0)(U — 0)d)
- [ata* — ane¥ s — [ dan e
- [ (= B ) = i~ e~ [ anioas
+/R(a%—a')nX(log%)ag(log%ﬁu/Ra%ﬁn(nxlﬁ)d&

_/IRanX‘E)g(log g )(ng.

an(UX|U)dé

Remark 2.5. Notice that since ¢ > 0 and o’ > 0, the three terms of 79 in (2.22) are

non-negative. Therefore, —Z9°°¢ consists of good terms, while Z%* consists of bad terms.

2.5. Maximization in terms of ¢ — ¢. In order to estimate the right-hand side of (2.21),
we will use Proposition 4.1 on a sharp estimate with respect to n — n when |n — n| < 1,
for which we will first rewrite the functional Z% in the right-hand side of (2.21) into the
maximized representation in terms of ¢ — ¢. More precisely, we use the first good term of

79004 in (2.22):
=12
_O_/al|q CI| d§7
R 2

to separate ¢ — ¢ from the factors related to n in the first term of 7% in (2.22). However,

we will keep 7% for remaining cases as follows.
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Lemma 2.6. Let U := ( ) be the traveling wave in (2.3), and a : R — R* be the weight
function by (2.12). Let 6 be any positive constant. Then, for any U = ( ) € H, we have

(2.24) TN U) — 79°NU) = Bs(U) — G5(U),
where
pn) =~ (Twli) + (14 52) (n— ),

Bs(U) := —/Ra’cjﬂ(nlﬁ)df+%/Ra’lsO(n)IQlﬂ(n/m1|sa}d€
— /Ra’ [H(n[ﬁ) + (1 - ;%) (n— ﬁ)} (7 — Q) Lyynym)-11>5ydE

(2:25) ~ [ (14 52108 2)0x (108 £ )ae — = [ EiGulae

g

~12
. q—q
Gs(U) := §/Ra’(q—q+so(n)) 1{|<n/m—1|<s}d£+0/Ra” 5 t nsmr-sirde
n 2
+U/a/]‘[(n\ﬁ)dfjt/an‘ag(logf)’ d¢.
R R n

Remark 2.7. The bad term Bs(U) does not ask any information on ¢ when |(n/n) —1| < ¢ .

Proof. First of all, using a’ = —?ﬁ’ and ¢ = —%/, we have from (2.22) that

70) = = [ [li) + (14 55) (0= )] (0 = D0 e 4

_ /Ra, [H(nln) + (1 + ;%) (TL — ﬁ)} (q - (j)l{l(n/ﬁ)—lbé}dg _ /Ra,(jn(nm)df

—/R (H_Xﬁ) <log >a§<10g >d€——/Ra”%H(nm)df’

00 g —al? lg —qf
— 97U = —O/R im0y dE —o Ra’ 5 Him/m-11>5d8

-~

=
_g/Ra'H(nm)df—/Ran‘@(log%)rd{.

By using a simple identity az? + fr = a(z + %)2 - % with putting « := ¢ — ¢, we have

o o 5 2
Tt = / a'|(n) [ Lg (nymy—11<0ydE — B / a’(q —q+ 90(”)) L{|(n/m)-1/<6}d8.
R R

Therefore, we have the desired relation. 0

2.6. Global and local estimates on the relative quantity II(-|-).
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2.6.1. Global estimates on the relative quantity I1(-]-).

Lemma 2.8. For given constants 6 € (0, %] and n_ > 0, there exist positive constants
Cy=Ci(n_),Cy = Cy(n_,0) and C3 = Cg(n ,0) such that the following inequalities hold:
1) For any ny > 0 and any ny > 0 with = -5 <nzg<n_,

1
(2.26) 5|n1 —ng|? <TI(ny|ng) < Ci|ny — no|®  whenever |E -1 <9,
1 2

1
(2.27) 3 —(1+nylog® ) < TI(nq|ng) < Co(1 + nylog™ ) whenever \ﬂ — 1] >4,
2 U U

1
(2.28) E!nl — ny| < (ny|ng) < Cslny — ny|®  whenever \E —1] >4,
3 U

where log™ (y) is the positive part of log(y).
2) For any ny,ng, m > 0 satisfying m < ny < ny orny < ng < m,
(2.29) II(ny|m) > I(ng|m).
Proof. e proof of (2.26) : We use the fact that the definition of the relative functional implies

1 1
I(ni|ns) = (ny — n2)2/ / 1" (ny + st(ny — no))tdsdt.
o Jo

Notice that since I1"(n) = 1/n,
1

H// t _ —
(2 + st(n1 = nz)) stny + (1 — st)ngy

Since\z—;—1|§5§%and%‘<n2<n_,wehave
n- _ o _3n-
—<n < —.
4 D
Thus for any 0 < s,t < 1,
1 1
< I"(ny + st(ng —ny)) < — :
st (1= styn_ (n2 + st(m —nz)) < st + (1 — st)

Hence
c1(ng — ny)? < Tl(ng|ny) < ca(ng — ny)?,

where the constant ¢y, co only depends on n_ as

dsdt, dsdt.
“- //ost—+ (1 —st)n_ ’ 2= //st"‘ (1 —st)% °

e proof of (2.27) : First of all, we observe from (2.18) that

(2.30) [I(ny|ng) = n2H<n2>, (y) == ylogy — (y — 1) for y > 0.

Notice that IT is smooth and non-negative on (0, oc), and II(y) = 0 if and only if y = 1, since

I is strictly convex, and y = 1 is the only critical point.
15



We will first estimate II(y) as follows:
For any fixed ¢ € (0,1/2], since II'(y) =logy < 0 for 0 < y < 1 — 4, we have

(2.31) 0<TII(1—26) <T(y) < nr&ﬁ@) =1, Vye(0,1-9)
5—
On the other hand, using
sup ¥ <
y>1+5 L +ylogy
we have a small constant k > 0 such that

(2.32) k(1 +ylogy) <I(y), Vy>1+06.

Moreover, since )
(y) <ylogy, Vy=>1+9,
this together with (2.31) and (2.32) implies that there exists C' = C'(§) > 0 such that
1 .
c(1+ylogTy) <Il(y) < C(1 +ylogTy) for any |y — 1] > 4.
Hence, this together with (2.30) and % < ny < n_ implies (2.27).
e proof of (2.28) : Likewise, since there exists a constant C' = C'(d) > 0 such that

Cly—1]<I(y) <Cly—1]* for any |y — 1| >4,

we have (2.28).
e proof of (2.29) : Since z — II(z|y) is convex in z > 0 and zero at z =y, z — I(z|y) is
increasing in |z — y|, which implies (2.29).

U
Remark 2.9. C) is independent of § € (0,1/2] while Cy blows up as § goes to zero.

2.6.2. Local inequalities on the relative quantity I1(-]-). We present now some local estimates
on II(n|ng) for |ny — na| < 1, based on Taylor expansions. The specific coefficients of the
estimates will be crucially used in our local analysis.

Lemma 2.10. For a given constant n_ > 0, there exist positive constants C' and 6, such
that for any 0 < § < oy, the following is true.

For any (n1,n2) € R% satisfying ‘Z—; — 1‘ <8 and " <ny < 2n_,

(2.33) (na|ng) > % [(Z—; . 1)2 . %(Z—: . 1)3]
(2.34) (11 |ns) < %[(%—1)2—§<%—1>3} +05‘Z—;—1(3.

Proof. Since the function f[(y) = ylogy — (y — 1) is smooth for y > 0, we apply Taylor
theorem to the function II. That is, using

. . 1 1 . 2
H/(y> — logy, H//(y) — -, H”/(y> — __2’ H””(y) — _3’
) ) Y
for any 0 < 0 < 1 and any y € [1 — 4,1 + 6], there exists y. between 1 and y such that
. 1 (y—1)°

I(y) = 5y —1)* - é(y —1)* + 1—12(y — 1)+ 1O (y,)

2 5!
16



Then we take 4, small enough such that for any 0 < § < d, and y € [1 — §,1 4 6], we have

1 1 - 1 1

Sy=17=-(y—17° <My <5y —1)* = ~(y = 1)° + Coly — 1*.

2 6 2 6
Since II(nq|ng) = nQﬂ(Z—;), for any (n1,n9) € R satisfying |72 — 1‘ <9,
N9 nq 2 1 nq 3 N9 nq 2 1 nq 3 nq 3
() )] <t < (0 3o o]
2 |:<n2 3 N9 - <nl|n2> - 2 N9 3 N9 * N9
which completes the proof. O

3. PROOF OF THEOREM 1.1

Let n_ > 0 and ¢ € R. Consider A > 0 and ¢ € (0,n_). Define ny > 0by e = (n_—ny).

Let U := (g) be a traveling wave of (2.2) with the boundary condition (1.4) and with the

speed ¢ > 0 from (1.6). We define a : R — R by (2.12).

3.1. Construction of the shift X. For any fixed ¢ > 0, we consider a continuous function
®. defined by

%, ify < —¢%
(3.1) (I)e(y> = _54% if |y| < 527
—E%, if y > &2

For a given solution U € Xp, we define a shift function X (¢) as the solution of the nonlinear
ODE:

X(t) = <I>€(y(UX))<2|Ibad(UX)| + 1) for a.e. t € [0,7],
(3.2)
X(0) =0,
where the functionals J and 7% are as in (2.22).
Then, for any solution U € Xr for some T > 0, an absolutely continuous shift X satisfying

(3.2) exists on [0,7] and is unique. Indeed, if we call the right-hand side of the ODE by
F(t, X), then it can be shown that there exist functions a,b € L*(0,T) such that

sup |F(t,z)| <a(t) and sup|D,F(t,z)| <b(t) forte|0,T]
zeR z€R

by using the information from U € X together with the change of variables £ — & — X (¢)
as in (2.23). Then we obtain the existence of a local solution by Picard’s iteration argument,
and it is extended up to time T thanks to the estimate a,b € L?*(0,T). Uniqueness also
follows (see Appendix A for the detail).

The following is the main proposition as a corner stone of proof of Theorem 1.1.

Proposition 3.1. There exist 6 € (0,1/2) and 6, € (0,1/2) such that if positive constants
e and \ satisfy 0yl < A < &, then for any traveling wave U := (Z) in (2.3) and for any
U € H satisfying |Y(U)| < &%, we have

1

(33)  R(U) == W) + By (U) + b05|B5, (U)] = G5, (U) + 8:D(U) <0,
17



where the functional Y is as in (2.22), Bs, and Gs, are as in (2.25), and D is defined by

(3.4) D(U) :z[gan)é@(log%)

We will first show how this proposition implies Theorem 1.1.

2
d¢.

3.2. Proof of Theorem 1.1 from Proposition 3.1.

In order to prove the contraction (1.8) in Theorem 1.1, by (2.21) and (3.2), it is enough
to show that for almost every ¢ € [0, 77,

@(Y(UY)) (AU + 1) YUX) + TUY) - U <0,
For every U € H we define
FU) = @.(V(U) (2T(0)| + 1) Y (U) + T(U) = T(U).
Since it follows from (3.1) that
—2|Zbad|if | Y] > 2,
—E%)ﬁ, if | V] < &2
we first find that for all U € H satisfying |V (U)| > &2,
F(U) < =[2**(U)| = 7°°*(U) < 0.

On the other hand, using (2.24), we find that for any § > 0 and any U € H satisfying
Y(U)| < e,

@4ymﬂﬁwmﬁ)ys{

1
FU) < =3 YWU)* + Bs(U) = Gs(U).
Then, Proposition 3.1 implies that for any U € H satisfying |Y(U)| < €2,
F(U) < ~6051B5, ()] = 6D(U) < 0.

Therefore, using the above estimates with U = U*X and 6, < %, we find that for a.e. ¢t € [0,T],

d 5
55 7 | an(UHU)dE + 00D(UY) = F(UY) +8D(U)
3.5 R
a €
< [N vy — o |Ba (U Lgyj<e2y <0,

which together with the initial condition [, n(Us|U)d€ < oo yields that

(3.6) /Ran(UXW)df—l—do /OtD(UX)ds < /]Rcm(UO]U)df.

To conclude (1.8), we recover x variable from £ variable (see Subsection 2.1).
Hence we have (1.8) by redefining X (¢) by (ot — X(1)).

Next, to estimate | X|, we first observe that it follows from (3.1) and (3.2) that

y 1 bad (77X
(3.7) (X] < S QIT*UH|+1).
18



Since (3.5) yields

d ~ €
7 RGH(UX!U)df HIZ U L ywysey + 50X|B51(UX)]1{|3,(UX)|§52} <0,

we have (using [|afz~ <2 by A < dy < 3)

0 £ ~
(3.8) / <|Ib“d(UX)|1{\y(UX)|262}+5OX|851(UX)|1{D)(UX)|§€2}>dt < 2/”(U0|U)d5'
0 R
Notice that (2.24) together with the definitions of Z9°°¢ and G, yields
[Zh(U))
= [2UYUY) Ly zey + [TUU) Ly <)
= |2 U) Ly zey + [T7UUT) + Bs, (UY) = Go, (U™ 1yw)<e2y
< |ZNU) Ly zey + 1Bs (US| Lyw<ey
o 2 ~ 2
+ |_2|/ @[ (" = a)" = (6" = d+o(n™))
R
< TN U™) L ywxyzezy + 1Bs, (U1 ywx)<e2y

~12 ~ ~
+ C/R @1 (Ja* =l + T|A) + 0™ = 12 1y -aion)

Lyjnx i)—1/<61 1 A€

Since (2.26) implies that
(n/f) =11 <6 = M(n|n) < Cin —af> < C1(6in_)?,

we use (2.26), a’ < Cdy, 6y < 5 < a and by (2.6) and (2.13), to have

3
[ ZUU)] < [ZUU) L gypysery + 1Bo (U) Ly <e2y +C/RCWI(UX|U)<1£-
Therefore, it follows from (3.6), (3.7) and (3.8) that
1X| < %(|Ibad(UX)|1{|y(UX)|zs2} + |551(UX)|1{W(UX)\§52}) +8—C;/R77(Uo|ﬁ)d§+ %27

where

T 2\ -
/0 <‘Ibad(UX)’1{|y(UX)|252} + "851(UX)‘1{|))(UX)\§52}>dt < (50_6 /]RLH(UO‘U)df
Hence we have (1.9) by redefining X (¢) by (ot — X (¢)) as mentioned above.

The remaining part is dedicated to prove Proposition 3.1. In Section 4, we study behaviour
of a scalar function in a certain class near a given traveling wave n. Then, in Section 5, we

construct a truncation V = (ZL) for V€ H with |Y(V)| < €% so that the truncated

function m lies on the class covered in Proposition 4.1 while the error between V and V in

our functionals can be estimated in a proper way. It will give us Proposition 3.1.
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4. ESTIMATES NEAR THE TRAVELING WAVE
4.1. Expansion in the size of the traveling wave. We define the following functions:
1 €a
= L+ (14 52) ),
e(n) =~ ((wla) + (14+ 3 ) (0 —7)

| 2

V,(n) == —/Ra’(@ + H(nyﬁ)>d§ _ ;/Raa($ + @)dg,
T, (n) = —/Ra’gn(nm)dg . ;/Ra”%ﬂ(n]ﬁ)df,

Tun) = § [ alon) e,

(4.1)

Go(n) ::a/Ra'H(nm)df,
D(n) ::/Ran‘85<10g2)

Proposition 4.1. For any K > 0, there exist §; € (0, %) such that for any 6;'e < X\ < 4,
and for any 0 € (0,01), the following is true:
For any function n : R — R such that if

2
d¢.

(42) (IDm)] + / dU(n[R)dS) s finite, [Vy(m) <K=, and ||= 1|z < 6
then
Res(n) =~ D) + (T(n) + To(n)) + 6 (5) (T ()] + [ Zm)

~(1-9 (;)) Go(n) — (1 — 8)D(n) < 0.
To prove this proposition, we will use the nonlinear Poincaré type inequality in [13]:

Lemma 4.2. [Proposition 3.3. in [13|] For any given M > 0, there exists 0* = 6*(M) > 0,
such that, for any ¢ € (0,0%), the following is true:

For any W € L*(0,1) with \/y(1 — y)d,W € L*(0,1), if fol W (y)|?dy < M, then
Rs(W) < 0.

where

1 1 1 2 1
Ré(W)::—g(/o W2dy—|—2/0 Wdy) +(1+5)/0 W2 dy

2 1 ) 1 ) 1
22 [ wsages [[wpay—a-9) [ ya-ylowiay
0 0 0
4.1.1. Proof of Proposition 4.1. We first consider d; € (0, %) such that 7 is smaller than

(4.3) min(+/(n_/2), V/&.6.),
where €7 is as in Lemma 2.1, and ¢, is as in Lemma 2.10. Then it follows from Lemma 2.1
that

(1.4) 0—0 | <Ce, fii—n_|lp~m <& [ld—a-llzmm < Cs,
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where o_ denotes the constant in (2.7).
Note also that

(4.5) e= iA < o2
We define
(4.6) y(6) = =M cer

Since 7/(€) < 0, we will use a change of variables £ € R +— y € [0, 1] to rewrite the functionals
ygazlazQaI?n g?a D in (41)
Notice that it follow from (2.12) that a = 1 + Ay and

dy —1 ~/ . 1 !

e - (&) = 3@ (€).
In what follows, for simplification, we use the notation

n(§(y)) An_
4.7 w(y) == ———=~ — 1, y) = —w(y).
(4.7) () AEw) Wiy) == —wl(y)

e Change of variables for ),: We first set
Vo(n) =Y1+ Yo+ Y3+ Yy,

o [0
R

y;:—/ﬁnmmm@
R

YB = —E/aa’njndfa
R

A n
Y, = —E/aa’Mdﬁ.
AJr o
We use the change of variables with |a — 1| < §; to have
1 1
(4.8) ‘Yg +5/ wdy’ < 651/ lw|dy
0 0
Since

1 € n
- o o+ 50) (59
©o(n) 0[ (n|n) + n+sa) (=
it follows from (2.33) and (2.34) in Lemma 2.10 together with {a < 26, that for any n
satisfying H% — 1HL°°(]R) S (51,

o) = 2 (2 1) | < 05,

g \n

Jetor = (7)) < omfs

21
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Then we use the change of variables to have

1 1
YZ;—i—&/ —dey‘ SC’gél/ |w|dy,
0o 9 0

)\ 1 77L 2 1
Yi + —/ (—) w? dy‘ < C’)\(Sl/ widy.
2 Jo \o 0

Thus, using (4.4) with (4.5), we have

n [ 1
‘Y4—|—8—2_/ w dy gCaél/ lwl|dy,
o-Jo 0

)\ n_ 2 1 1
‘Yl—l——(—) /w2dy‘§0/\51/ wdy.
2 \o- 0 0

Likewise, since it follows from (2.33) and (2.34) that

(4.9)

1 1
Y, —l—%/ nw? dy‘ < C’)\él/ widy,
0 0

we have
)\n 1 1
(4.10) ‘Yg—kT/ w? dy‘ gcml/ w2dy.
0 0

Therefore, combining (4.8), (4.9), (4.10) with the notation (4.7), we have

e (1 1 ro 1 2, ol 1
S . p < 06— 2 .
Vit o (n+02)(/0 W2dy + /OWdy>'_C<51)\</O Wdy+/0 yW|dy>

-1
Setting [ := 2 (ni_ + J%) , we have

)\ 1 1 1 1
(4.11) '5—2yg+/ W2dy+2/ Wdy‘ §051</ W2dy—|—/ ]W|dy).
€ 0 0 0 0

e Change of variables for Z;,7Z,: We first use (2.33) and (2.34) to find that for any n
satisfying H%—Z — 1HLOO(R) S 51,

IlS—/Ra’%(%—lydﬁ/Ra’%(%—1)3d5+c51/Ra'

Then using (4.4), we have

: - 1]%%0?/{;{(% _ 1>2d§.

1 1 1 1

(412) I, < _)\q_zn_/ w%iy%—k%/ w3dy+C)\5/ w2dy—|—C(51)\/ lw|*dy.
0 0 0 0

Since

el = = [(7+ §a>2 (5- 1)2 +2(i+ Sa) (5 = 1)M(wla) + T(nli)?],

g n
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using (2.34), we have
2

IQS/Ra’g<%—1>2d§+§/ﬂ§a’ag<%—1)2d§+/ﬂ§a’g—g<%—l>3d§

2 3
+0515/a’(2—1) d§+051/a’ de.
A Jr n R

n2 [l ot n2 [l
Igg/\—/ dey—l-an—/ w2dy+)\—/ w dy
20_ /o o_ Jo 20_ /o

1

1
+ 0(518/ w2 dy + 0(51)\/ ’U)P dy
0 0

e Change of variables for G,: We use (2.33) and (4.4) to find that
7 2 7 3
ggza/a@(?—Q df—a/a’ﬁ<g—1) de
R 2 \n r 6 \n

1 1 ! '
> AO_N_ / dey _ Ao_n_ / wgdy _ C/\E/ dey — C)\E/ |w|3 dy
2 Jo 6 Jo 0 ’

e Estimates on 7, + 7, — Go: We combine (4.12), (4.13) and (4.14) to have

Thus,

(4.13)

(4.14)

Ti+1,— Go
A7 1 B 1
S—n—(n_—q_a_—a2)/ w2dy+5n—/ w? dy
20_ N ~- < J0o 0-Jo

=:J1

An_ 1 2 ! 3 ' 2 ! 3
+ 55\ n- +-qo_+ -0 w’dy + Cedy | w*dy + C Aoy lw|” dy.
0 0 0

—q—++/¢> +4n_

Since the constant o = ——%5——— solves the quadratic equation 02 +q_o_ —n_ =0,
the above coefficients J;, Jo become J; =0, Jo, = §n_
Therefore, we have

Ty +1y— G
23

1 ! 2 (1
<= (/ W2dy+—/ W3dy +O 51 /W2dy+/ |W|3dy
AMn_o_\J, 3 Jo

which can be rewritten as (by normalizing the right-hand side above)

2

n_o_% <I1 +1; — g2>

1 2 1 1 1
g/ W2dy+—/ W3dy+(]51(/ W2dy+/ |W|3dy).
0 3 0 0 0

Asin (4.12), (4.13) and (4.14), we can estimate

(4.15)

1 2 1
T, + |Ta] + |Gl gm/ w2dy§0%/ W2dy,
0 0
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which yields
€
51X(|Il| + |Zo| + |QQ < 051—/ W2dy.
Therefore, we have
Nroe L
(4.16) n,a,g[élx(ﬂl] +[T] + |g2\)} < 051/0 W2dy.

e Change of variables for D: Since

D— /an ‘85 ——1)‘(15,
D:/l aﬁ—2|8yw|2<d—y>dy

using (4.6) with n_ —n; = ¢, and (2.5), we have

we have

To compute

d5=
(n_—n)(n—ny) on’ o ,
1— — = —_——,— = —
which implies
dy d ¢
A
T y(l—y)
Since
n? n?
i “V>inf(—) > —6) > — —6) >n_ —
Hylf(an)_lgf<n)_n+(1 5)) > (n- —e)(1—6,) > n_ — C6,

using (4.4), we have

1
D221 Ch) [yt - ol
0

o_
Therefore,
3 1 1
> S (1= CB) [ u(1 - )0,V Py
0
Hence
A2 !
(4.17) —n_ J_;D <-(1-06&) [ y(1—y)|o,W|dy.
0

e A uniform bound of fo W2dy: Using (4.2) and (4.11), we have

/Wzdy—Q‘/ Wdy‘</W2dy+2/ Wdy

1
A
S‘ﬁ;yfl—/WQdy—l—Q/ Wdy‘+5€—2
0 0

Yy

1 1
3051(/ W2dy+/ |W|dy> + 8K,
0 0




where K is the constant in the assumption (4.2).

Using
1 1 1 1
[ was| < [1wiay< g [ weage,
0 0 8 0

1 1 1 1
/W2dy§2‘/ Wdy‘JrCél(/ W2dy+/ |W|dy> + 8K
0 0 0 0

1 /1
S—/ Widy + C
2Jo

we have

by taking d; small enough. Therefore there exists a positive constant M depending on K
such that

1
(4.18) / W2dy < M.
0

e Control on —|),|* : As in [13], we here use the following inequality: For any a,b € R,
b2
—a? < - + b —al?.

Using this inequality with

)\ 1 1
a:—ﬁgyg, b:/o ngy+2/0 W dy,

we find

2

N2 noo-
53 661 B (51B2

—n_o_

A
Bgyg

2

N o 1 1
- W?2d 2 Wd
26,57 /0 vt /0 v
n_o_ | _A 1 1 2
—— = W3dy+2 | Wd

Then by (4.11), we have
)\_2|yg‘2 < _nfo-f
g3 851 - 25152
Using (4.18), we have

2

—n_o_

1 1 2
+C6, (/ W%ly+/ yW|dy) .
0 0

1 1
/ Wzdy+2/ W dy
0 0
2

1 1 2 1 1 1
(/ WQder/ yW\dy) < /W%iyﬂ// W2 dy gc/ W2 dy.
0 0 0 0 0

Therefore, we have
1 1
/ W2dy + 2 / W dy
0 ) 0

5

)\_2|:)}g|2 < _n_o-_ ’

4. —Nn_o_
(4.19) n-g g3 by — 20,52

1
0




e Conclusion: Since G, > 0, we see that for any § < 4y,

1 €
Rs,é(n) < —g‘ygﬁ + (Il +7Z, — 9'2) + 51X <|I1’ + ’1-2‘ + ‘92‘) + (1 - 51)D~
1

Multiplying (4.17) by (1 — d1), and summing it with (4.15), (4.16) and (4.19) with putting
C, = 26 e find

n_o_’

2
n_a_g—gR&(;(n)

1 1 1 2 1
< - (/ W2dy+2/ Wdy) —1—(1—1—051)/ W?2 dy
C.o1 0 0 0

2 1 1 1
o5 [wrayrcs [wPay-a-cs) [y -piawEd.
0 0 0

Let 6* be the constant in Lemma 4.2 corresponding to the constant M of (4.18).
Taking ¢; small enough such that max(C,, C)d; < 6*, therefore we have

2
n_a_gjog(n)

1 1 1 2 1
3—5-(/LWWy+2/1W@O +u+ﬁg/mwﬂ@
* 0 0 0

9 1 1 1
o3 [wrays [ WPy -5 [y - oW dy = Re (V)
0 0 0
Then we have R;, (W) < 0 by Lemma 4.2. Therefore R, 5(n) < 0.

5. PROOF OF PROPOSITION 3.1

5.1. Truncation of the big values of |(n/n) — 1|. In order to use Proposition 4.1, we
need to show that the values for n such that |(n/n) — 1| > ¢; have a small effect. However,
the value of ¢; is itself conditioned to the constant K in Proposition 4.1. Therefore, we need
first to find a uniform bound on ), which is not yet conditioned on the level of truncation
Jy.

We define a truncation on |(n/n) — 1| with any constant 6 € (0,1/2) as follows:

nif |2 —1] <60
(5.1) igi={ (1+0)aif2—-1>0
(1—O)nif2—1< 4.
Notice that
Ny
5.2 LT—Q<a
(52) R E

Lemma 5.1. There ezist constants dy € (0,1/2), C, K > 0 such that for any e, A > 0 with
§te < A\ < 0y, the following holds for U € H whenever |Y(U)| < &%
2
(5.3 [ amiyde+ [ olo- a2 i <0
" 4



and
g2 1
(5.4) | Vy(ng)| < KX for any 0 € (0, 5)

Proof. e proof of (5.3) : We consider ¢y small enough such that it is smaller than (4.3), and
therefore there exists C' > 0 such that o,n € (C~1, C).

First of all, using (2.16) together with o' = —27 and ¢ = —%', we rewrite Y(U) in (2.22)

€

as
_ ! |q_6|2 ~ € / n—n q—d
(5.5) y(U)——/Ra <T+H(n|n))d§—X/Raa( - >d§.
Then we have
/ & € /n_ﬁ q_(j
[ amwitnd < pwi+ 5 [ aa] =2 - L

§52+c§/ a'|n—ﬁ|d§—|—0§/ a’|n—ﬁ|d§+0§/a’|q—q~|d§.
(2-11<1} {12-11>1} R

Thus we use (2.26) and (2.28) to have
[ anwioae
R
5 € _ £ , _
<e*4+C— a'ln — n|2d§ - a'd§ + C— a'ln — n|d¢
AV izt R AJgz-ish
£ _
+C—¢/GM—@H%-¢/Q%§
AV e R
<2+0- / a'Tl(n|n)dE + 050/ a'Tl(n|n)d¢
VI Sz {12-11>4}
+Of—_/wm—mws
VAV Jr
|

IS ~
< — — !
<Cx +2/Ran(U|U)d£

by taking dp small enough. Hence we have
~ 82
[ anwinge < e,
R A
which implies (5.3).

e proof of (5.4) : Let 8 € (0,1/2). Recall the functional ), and ¢ in (4.1). Since

lp(ng)| < CT(7g|R) + Clng — 7|,
27



we have
Y, (ng) < C/Ra’n(mmfdg + (J/Ra’m(, — 7i|?d€ + C%/Ra’m@ — n|dé + C’/Ra’H(ﬁgm)df.
Since it follows from (2.26) with Remark 2.9 and (5.2) that
T(ny|it) < Chlng — i < c‘% -1|<c

we have

/a’H(n9|ﬁ)2d§ < O/a’H(nem)dg.
Likewise, using (2.26), we ha\i )

/Ra’]ﬁg —n|2d¢ < C/Ra’l_[(ﬁg]ﬁ)dﬁ,

and

;/Ra’\ng — filde < %\//R o |fig — 7|2dE < c%\//R a1 (7ig| 1) dE.
Since (2.29) and (5.1) imply
(5.6) (ng|n) < T(n[n),
we use (5.3) to find that there exists K > 0 such that
_ s e 5 e e?
Y, (ig) < C’/Ra Mnfa)de + O /Ra M(njide < K-
U

From now until the end, we take and fix the constant ¢; from Proposition 4.1 associated
to the constant K of Lemma 5.1. In what follows, we use the simple notation: (without
confusion)

n = fg,, U :=(n,q), B = Bs, and G :=Gs, (see (2.25)).

Note that from Lemma 5.1, we have
2

(5.7) V()] < K

In what follows, we will set Q := {{ | |5 — 1| < 01}
We decompose G = GI + G + G, + D where

g

6!(0) = 5 [ a(a—i+ o) dc
o) =o [ 150
Go(U) = o /R o TI(n]f)de

D(U) :Aan’8§<log%)

28
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Notice that the functionals Gy, D are as in (4.1) and they do not depend on q.
We first notice that it follows from (5.6) that

5:9) Q1) ~ Go(0) = [ o W) () d€ > 0
R
which together with (5.3) yields
0< Go(U) — Go(U <o/ nyndg<0—

On the other hand, since n/n is constant for any n satisfying either (n/n) > 14 §; or
(n/n) < 1—6; by the definition of 7, we see

ni2
D(ﬁ) :/an‘ag logj‘ 1{|%,1|§51}d§.
R n
Therefore we have
n.12
(5.10) D(w) ~ D() = | anfoglog 21| 13-y 2 0.
R

Hence, since (5.7), (5.9) and (5.10) together with (2.20) imply that for any (n,q) € H, n
satisfies the assumptions (4.2), Proposition 4.1 implies

(5.11) R..5,(7) < 0.
Before specifying the following proposition, we first recall (5.5) as

Y(U) = —/Ra’<|q_2‘j|2 +H(n|ﬁ))d£— ;/Raa(";" - q;‘j)dg.

We split Y into four parts V,, Vs, Vi, Vs as follows:

Y=YV, +Vp+ I+ s,

M(nli)) f——/Q '<n%ﬁ+@)d§,
>) i+ [ aoto)(a =i+ olm) e
q—q+90( ))dé,

V) = —/ca'(‘q;“ g - 5 [ o ("2 - ag

Notice that the functional ), is as in (4.1). We also notice that ), consists of the terms
related to n, while ), and ), consist of terms related to ¢q. While )}, is quadratic, and ) is
linear in q.

where

/

1
2 Jo
1
o Jg

\\

> ™

For the bad terms B in (2.25), we will use the following notations :

B =B, +Bi+BY + Bs,
29



where

Notice that B;(U) = Z;(n) and BL(U) = BL(U) < Z,(n) in (4.1).
We now state the following proposition.

Proposition 5.2. There exist constants 6y € (0,1/2),C,C* > 0 such that for any d;'e <
A < do, the following statements hold.

1. For any U € H such that |Y(U)| < &2,
- €
B.0) - 8,(0)] < ¢, [5200),

w&vnscygﬂwm
B3 (U)| < 6.*D(U) + CCSO%QQ(U),

e
A
2. For any U € H such that |[Y(U)| < &* and D(U) < %62

V()] + IO + [ Y:(0)

(5.12) < C§ <\/§D(U) + G2(U) + (g)m Gi(U) + (;)1/4 gz(U)) |

5.2. Proof of Proposition 5.2. We will first derive a point-wise estimate on |n—n/| 1gn 1563
as follows:

IB(U)| < C*= + 6,/ *D(U).
0

Lemma 5.3. For a sufficiently small 5o > 0, there exists C' > 0 such that for any &, 'c <
A\ < 8 and any U € H satisfying |Y(U)| < €2, the following estimates hold:

(513) n(&) ~ (@) < (% +1¢1) (o)
whenever £ € R satisfies

e _
(5.14) G 1‘ > 5.

Remark 5.4. Recall that we assumed 7(0) = (n_ +ny)/2.
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Proof. We set o := flije @' d. Using § [pa'dé =1 and o/ =

we obtain

2

e~1/7-) is a positive constant.

1
(1—eV)<a<l.

Notice that (1 —
Since (5.3) implies

1/e 52
/ d'Tl(n|n)d¢ < CX’

1/e

we have

/1/5 9 (nfi)de < C(%)Q.

—1/e /\Oé
Since fl/a 2L d¢ =1, there exists a point & € [—%, é] such that
_ ~(E\? _ ~ 2
(5.15) I(n(&) (&) < C(5) < ()

where C is some constant. We take &, small enough to get

C - (00)2 < Cy/2

where Cj is the constant in (2.27) by plugging § = d;.
We observe that (2.26) and (2.27) imply

(&) (&) > min (€7 (&) — (&), Cs

> min (C7 (&) — (&), C ).

Then from (5.15), we get
[n(&0) — (&)I” < Cill(n(&)|(&)) < C1C - (80)*.

Thus, by taking dy small enough, we can assume that

gl VIEB =)= G+,

ey =m
2 2

(5.16) e

For the reference point &, since for any ¢ € R,

o i [ 4
55%%@%? Wi O

(14 () log* %g;

= (A\/e)|n| together with (2.6),

C?



we have

3020 = | e OV s (210

517 SWS%% ey [ acmic] s (200) [

T 1d5\/ 2_¢|€ SolvD(n) \/j €1+ - ¢

On the other hand, we claim that there exists L = L(d;) > 0 such that if y > 0 and yo > 0

with
VIT0 —1)(/1=(01/2) + 1
o~ 1] < ming 2, WO ZVOVAZ ORI, gy s,
then
(5.18) ly — 1] < LIvy — Vol

Indeed, we can split it into two cases: 0 <y <1—46; and y > 1+ 6.

Denote 8 := |\/y — /%0| > 0.

For the first case 0 <y <1 -6, since y <1—0; <1—(61/2) <y <1+ (61/2), we have

)
—1 < !y — ol < BIVY + Vil <26y <261+ (61/2) <46
Thus we get 1 < . Therefore

o
(61)?

ly—1]=1-y<1=1"< 8.

For the second case y > 1 + 41, since

- _ N 1
%0 1|< lyo — 1] <( 14+ 6; 1)<\/§ .

R e V77 E R B
we have
(5.19) 5=I(x/§—1)—(\/%—1)|>|\/§—1|_|\/%_1|>f L
Thus we get

1+6 <y<(26+1)7
which yields
0<0 <4B(8+1).
Let By = Bo(01) be the positive constant satisfying 45y(5p + 1) = ;.
Since 4fo(By + 1) < 48(8 + 1), we have 8 > fy s0 1 < 2
Therefore, using (5.19), we get

ly=1=y-1=(y-D(Vy—1)+2) <2626 +2) <456(5 +

It proves the above claim (5.18) by taking L := (5 )2 +4(1+ )

3 1

2\ p2
50) 4(1+ﬁo)5'
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By considering y := %(§) and yo := 2(£) in the claim (5.18) together with (5.16) and
(5.14), it follows from (5.17) that

n(€) ~ (0)] < (n )y — 11 < (n)EIVG — Vil < € (2 +1¢) D).

Lemma 5.5. Under the same assumption as in Lemma 5.3, we have

(5.20) / a’(1 +nlog* %)dg < C\/éD(n),
(5.21) /C a’(l + n[long %} 2) d¢ < C\/§D(n),
(5.22) /c |q—q|<1+nlog >d§<C’\/; (n).

2
Proof. e proof of (5.20) : Since log™ 2 < [log } whenever |% —1| > d;, the desired

result (5.20) follows from (5.21).
e proof of (5.21) : Since if n satisfies & — 1 < —0; then

1og(1+61)

+TL

log =0,

and
n—7| =i—n> (i7) > (51—) >0, I(n|f) > Cy >0,

we find that there exists a constant C' > 0 (depending on d;) such that
n72 — -
(1 + n[logJr 5] )1{%_13_51} < CVIl(n|n)[n — A1z 1< 5y

Since if n satisfies & — 1 > ¢; then (by (2.27))
1
(nf7) > (1 + flog(1+ 61)] )
2

using the inequality:
(5.23)

2 1/6 1
(1 4 n[long Z} > <1+ nr (2) <14 [P22/n )R8, 1= sup 01% < 00,
7 n ye[l+61,00) Y

we find that there exists a constant C' > 0 such that
<1 + n[long } )1{2_1>51} < VI(n|A)|n — 2l 155

Indeed for large n, the left-hand side is bounded above by C(1 4 Cn"/®) while the right one
is bounded below by (1 + n*?).

By combining these two cases, we obtain

ni?2 = -
(1 + n[logJr 5] )1{\%—1\261} < VI(n|a)n — allyn 155
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Then, we have

ni?2 = .
/a/(l + ”[10g+ 5] )1{\%—1\261}655 < /a, VI(n|R)|n = A1z -126)dE
R R
a /H(n’ﬁ)’n — flll{‘%,l‘ztgl}dg—k /l l\/ya’, /H(nlﬁ)‘n — ﬁ‘1{|%,1|251}d£.
f2zv 2

<

/sls;\/f

(& J/

=:J1 =:J2

Since it follows from (2.28) that 6, < C|n — | < Cl(n|7) whenever |2 — 1| > d;, we use
(5.13) and (5.3) to find that there exists a constant C' > 0 (depending on d;) such that

Ji < sup In — n| / a’ /T (n|n)d¢
agae ) ezt

< Cé\/gp(zf) /]R o/ TI(n|7) de

€

£
<C XD(U)'
Using (5.13) and (5.3), we have
, - 1
nzepw) [ a Vi (14+7) d

13

52 , 1/2
<coonS( [ | akra)”
le|>14/2
Notice that

A
a'[¢f* dg < CaA/ e~ Rl de < C—/ € [Peclelde.
/lﬁzi\/T 61>1/% e?

E2VE

< oow)( [ amonin) )" ( [ ﬁa'|s|2ds)” 2

Taking &y small enough such that for any e/ < &, |[£]? < e/l for € > \/)\/e and

lEl>y/2 4

€1>4/2

Jy < C \/§D(U )
which gives the desired estimate.

e proof of (5.22) : Following the same estimates together with (5.23) as above, and using

2
log™ 2 < m [long %] , we find that there exists a constant C' > 0 such that

we have

n ~ ~
(1 +nlog" 5) Lz 1ssy < T(n|2) Y = Allz 154
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Indeed for large n, the right-hand side is bounded below by %(1 + %ng‘/ H.

Then, we have
/ da'lqg —q| (1 + nlog* >1{|7—1|>51}d§
R

< q — G (n|n)Y4n — a|lge_qsedE
/Mf g — alTI(nl) . — ALz

VvV
=K

+ / a'lq — GII(n|a) " |n — 7112 156,y dE .
€22y 2

J/

=:K>

Using the same argument as in J; above, we have

K, < cl\ﬁw) [ tta— iy ag
9 € R

<c\2ow)( [ la-—ar i) ( [t de)”

9 €

< C\/§D(U).

Since |q — ¢|II(n|n)Y* < Cn(U|U)3/*, we have
@i 1+ 7 ) de
- 3/4 1/4
CD(U 'n(U|U)d 11 d
< o) ( [ anwio) ac) (/@Mam 3

<er)(5)"(5)" = o\ f5p00

5.2.1. Proof of (5.12). We first use (2.27) and (5.20) to have

|B.(U) —

TI(n|7) — (ﬁ|ﬁ)‘d§

| /\

I/\
g\\\

H n]n 1{‘ 1‘251}df
(5.24)
1+nlog™ )1{|,_1|>51}d£

| /\



We use (2.28), (2.27) and (5.22) to have
B < | atlallo—qldc +C [ aln—nllg - dlds
<C | dll(n|i)lg — qldg

< C/ a’(l +nlog*t %)|q —qld¢ < C’\/ép(n).

We use Young’s inequality to have
n n
< ! — —
1By(U)] < C/Ra ﬁ(log n) ﬁ@g(log ﬁ)d&
C n\ 2
< ~ 12 o
< 6,D(U) + 5O/R|a| n(logﬁ) de
Cel n\ 2
< —[d — .
< 6,D(U) T /Ran(log n) d@;

—:Ba(n)

We separate the remaining term By(n) into
|Ba(n)| < [Ba(n) — Ba(n)| + |Ba(n)].

Since there exists a constant C' > 0 such that

n\ 2 +n 2
n<10g %) Lyz_1>6} < C[l + n(log %> ]1{|%—1|261}7

we use (5.21) to have

_ , n\ 2 €
|By(n) — By(n)| < Cs/Ra [1 —1—n<10g+ 5) }1{‘%,”251} < C\/;D(n).

Since there exists a constant C' > 0 such that
|logy| < Cly — 1| for any y satisfying |y — 1| < 0y,

using n < (14 d;1)n < C and (2.26), we have

— -1

Cel Ra (n

|Baln) < ==

) de < C [ aminli)de.
50 R

Using € < do(e/A), we have
£ _
|Ba(12)] < CéOXg2(U)‘
Therefore, by taking §y small enough, we get

1By(U)| < 6Y°D ()+050§g2(0).
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5.2.2. Proof of (5.12). Using (5.9) and (5.3), we have

wgﬁngc/dnmmuggo/dnmmmggcf.

A
R
Since |n| < C, using (2.26), (5.9) and (5.3), we have
1 : cay o
BL(U \<C/ (H —|—/\n>(n n)>d§
(5.25) /a’(n +|n—n|2>d§

2
go/@ﬂwm@gcf
g X

Hence, combining these estimates with (5.12), using (5.3), and taking d, small enough, there
exists C* > 0 such that

% 1/Ap
Bw)| < 8y D).

5.2.3. Proof of (5.12). We split the proof in two steps.
Step 1: We use the good term G/ defined in (5.8) and (5.25) to have

MO <0Gl W)+ C [ alotmas
< CG{(U) + C|B3(U))
< C(gl(U) + Ga(D)).
In particular, since
gmnscAd@%ﬁjﬂwwﬁ&gcédﬁgﬁ@+c%w%

we use (5.3) to have
2

€
(5.26) V(U)] < CX'
We use the notations Y7’, Yy, Yy and Y’ for the terms of ) as follows:

_ 7 _ A2 e
ysz—/ a’H(nm)dg—f/ aa’udg— "q a d§+ / aa’ T4 ge .
c A Joe n 2 c o

=Yy =Yy =Yy =Yy

Using (5.24), we have

’ - g
YO = [Ty asads < Oy 5D
R
Using (2.28), we have

€ ! ~ / ~ g
Y2 (U)] < CX/ a'ln —nfd§ < 0/ a'Tl(n|) gz 1j26)d < C\/;D(n)
Qe R
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We use GP defined in (5.8) to control
Y3 (U)] < €GP (U).
Therefore, we have

(5.27) Y2+ Y2 U)] + Y5 (U)] < C\/gp(n) +CG7(U).

Using (5.3) together with the assumption |[D(U)| < C%, we have
2

(5.28) YOO+ Y5 (U)] + Y5 (U)] < C%-

Step 2: First of all, using Young’s inequality and (5.25), we estimate

[+ etm)emae] < (2) gty o (5)" [ atomr i

< (2)1/4 Gl(U) +C (;)1/4 Gao(D).

Then we have »
A e\ 1/4 _
< - I - .
mwi=c(2) awe(]) " ao
Therefore, this together with (5.27), (5.26) and (5.28) implies

Vo(U)|? + [YP(O) + Y5 (O + Y5 (U))?
< [ Fowy o+ (N e+ (5) auw
<o (s raew+ (2) g+ (5) " a ).
We use Holder’s inequality to have
i <o (5) ([1alde) [ ata-arae < 0Sa0w)
4 — )\ R e q = A 1 9

i <¢ ()" ([lo1de) [ @@=+ o de < oSelw)
Hence we have (5.12)

5.3. Conclusion. We are now ready to complete the proof of Proposition 3.1. We split the
proof into two steps, depending on the strength of the dissipation term D(U).

Step 1: We first consider the case of D(U) > 4C*§, where the constant C* is defined as in
Proposition 5.2. Then using (5.12) and taking dp small enough, we have

R(U) = —ély(U)\2 +B(U) + 50%\3((])! = G{(U) = GP(U) = Go(U) = (1 = 60)D(U)
< 2[B(U)| = (1 = 60)D(U)

62

< 20" - (1 6 — 253“) D(U)

<o _Llpun <o
=N TR EE
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which gives the desired result.

Step 2: We now assume the other alternative, i.e., D(U) < 40*%.
We will use Proposition 4.1 to get the desired result. First of all, we recall the constant K
satisfying (5.7) and the fixed small constant d; of Proposition 4.1 associated to the constant

KSince YV, (U) = Y,(U), we have
Yo(U) = Y(U) = Yp(U) = Ni(U) = V().
Thus we have
VoD <4 (VO + DU + D) + [ X:(U))
which can be written as
—AVO)]F < =Y, (O)° + 4N(U)]F + 4N (U] + 4V (U)[
Below, we will take 8§y small enough compared to the fixed constant d; (e.g. & < C6Y).

Then, using the facts that BL(U) = BL(U), Go(U) < Go(U) and D(U) < D(U), we find that
for sufficiently small &y and for any &;'c < A < &,

RU) = - 4D;(51)|2 +B(U) +5o§|B(U)\ —G{(U) =GP (U) = Go(U) — (1 = 60)D(U)
_|yg€(g)!2 + (B.(U) + BY(D)) +50§ (1B.(0)| + |BL(D)))

~ (1-85) Ga(0) = (1 = 3)D(D)
+ogs (MOR + DO + DO

J/

-~

=:J1

+ (14005 ) (IBUU) = Bi(O)] + B (U)] + |Bo(U)])

—Gl(U) - GO(U) — 51§gg(U> — (6, — 60)D(U) .

J/

We claim that J; + Jo + J3 < 0 for sufficiently small dy > 0. Indeed, it follows from (5.12)
and (5.12) that for sufficiently small §y and for any £/\ < &y, we have

nsls (\ﬂm )+G2(0) + (2)1/4gf<v>+(§)”492<v>)

()" (pw) +600) + 610) + 500

5 (D(U) +G2(U)+6G{(U) + ;92(17))

IN
=1 Q

<

| =

and

Iy < 055/3( (U) + igg((_])> 5 (D(U)+—Qg((7)>.
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Therefore, if o > 0 is small enough, then we have J; + Jo + J3 < 0. Thus we get
|V, (0)

€01
(1—51 )QQ((_]) (1—6,)D(0).

Since the above quantities Y, (U), B,(U), B:(U), G2(U) and D(U) depends only on 7 through
U and we have By (U) = Z,(n) and 0 < B(U) < Zy(n), it follows from Proposition 4.1 that
R(U) <0 (or see (5.11)).

Hence we complete the proof of Proposition 3.1.

R(U) < -

+ (B.(O) + BY(T)) + 51 (1B.(0)| + |1BL(O)))

APPENDIX A. EXISTENCE OF THE SHIFT

In this subsection, we present the existence of the shift satisfying (3.2) in Subsection 3.1.
For a fixed € > 0 and for a given solution U € Xr, we define F': [0,7] x R — R by

F(t, X) = 2.(V(U¥) (22/0%)| +1)
where @, is as in (3.1) and Y and Z%? are as in (2.22).

We observe that ®.,a, n and (1/7) are bounded, 7/, 7", ¢, and o’ are bounded and inte-
grable. Together with the information from U € Xr, we get D(U) € L'(0,T) where D is
defined in (3.4). From these information, we can show

(A1) |F(t,z)] < C(1+/DU*)( for te€]0,7] and for x € R.
Since we have sup, g D(U”)(t) < C’(D(U)(t) + 1) for each t € [0,7] and D(U) € L*(0,T),

we can estimate
sup|F(t, )| < a1
zeR
for some a € L*(0,T).
Similarly, we can prove
sup [(D.F)(t,z)| < b(t) fort e [0,T]
zeR
for some function b € L*(0,T). Indeed, we can use the same idea as in (2.23) in order to
move the translation symbol ()X from U into smooth functions such as a,U and so on. It
enables us to differentiate F'(¢,x) with respect to = without requiring any higher regularity
of U. Then we can get a similar control for |(D,F)| as in (A.1).

Then we can use the following lemma which is a simple adaptation of the well-known
Cauchy-Lipschitz theorem.

Lemma A.1. Let p > 1 and T > 0. Suppose that a function F : [0,T] x R — R satisfies

F(t,z) — F(t
sup |F(t,z)| < a(t) and sup (¢, 2) (t:y) <b(t) fortel0,T]
zeR z,yeER, Ay r—yY
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for some functions a € L'(0,T) and b € LP(0,T). Then for any zo € R, there exists a
unique absolutely continuous function X : [0,T] — R satisfying

(A.2) { §Eé))::§§t,X(t)) for a.e. t €10,T7,

Proof. First we note that (A.2) is equivalent to

(A.3) X(t) =z0+ /t F(s,X(s))ds forte0,T].

Then, the proof follows the classical Picard’s iteration argument:

{ o(t) = o,

Top1(t) = w0 + [§ F(s,2,(s))ds for n>0

Indeed, we observe that a € L' makes the iteration possible. In particular, x, : [0,7] — R
is continuous and it satisfies

|zn — 2ol Lo 0,1y < |lal| 10y for each n.

Thanks to b € L? with p > 1, we take ¢, > 0 such that ||b]|zror) - (t)' /P < L andt, <T.
Then we get, for each n > 1,

[

[
v = alimoay < [ F(s,0() = Fs,aa(s))ds < = 2acallimon - | bls)ds
0 0

/) < L

<@ = Tn-1llzeo,) - |0l o0,y - (E5) 5 |20 — 2p—1]l L (0,t,)-

Thus we obtain ||z,41 — Zn||ze(0) < 27"||la||z10,r) so that the uniform limiting function
X :[0,t.] — R of the sequence {z, : [0,t,] — R}>, exists and it satisfies (A.3) for every
t € [0,t.]. If t. < T, then we just do the process again with new data X(¢,) in order to
obtain X on [t,,2t,]. Since we can repeat as many times as we want, we get X up to the
given time 7. Similarly, uniqueness follows the assumption p > 1.

O

REFERENCES

[1] Myeongju Chae and Kyudong Choi. Nonlinear stability of planar traveling waves in a chemotaxis model
of tumor angiogenesis with chemical diffusion. preprint, arXiv:1903.04372.

[2] Myeongju Chae, Kyudong Choi, Kyungkeun Kang, and Jihoon Lee. Stability of planar traveling waves
in a Keller-Segel equation on an infinite strip domain. J. Differential Equations, 265(1):237-279, 2018.

[3] Kyudong Choi, Moon-Jin Kang, and Alexis Vasseur. Global existence and contraction of weak solutions
around traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model. in preparation.

[4] Kyudong Choi and Alexis Vasseur. Short-time stability of scalar viscous shocks in the inviscid limit by
the relative entropy method. SIAM J. Math. Anal., 47:1405-1418, 2015.

[5] C. M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal.,
70(2):167-179, 1979.

[6] R. J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J.,
28(1):137-188, 1979.

[7] Marco A. Fontelos, Avner Friedman, and Bei Hu. Mathematical analysis of a model for the initiation
of angiogenesis. SIAM J. Math. Anal., 33(6):1330-1355, 2002.

[8] Avner Friedman and J. Ignacio Tello. Stability of solutions of chemotaxis equations in reinforced random
walks. J. Math. Anal. Appl., 272(1):138-163, 2002.

41



[9]

Jonathan Goodman. Remarks on the stability of viscous shock waves. In Viscous profiles and numerical
methods for shock waves (Raleigh, NC, 1990), pages 66-72. STAM, Philadelphia, PA, 1991.

Jun Guo, Jixiong Xiao, Huijiang Zhao, and Changjiang Zhu. Global solutions to a hyperbolic-parabolic
coupled system with large initial data. Acta Math. Sci. Ser. B (Engl. Ed.), 29(3):629-641, 2009.
Moon-Jin Kang. L?-type contraction for shocks of scalar viscous conservation laws with strictly convex
flux. https://arziv.org/pdf/1901.02969.pdf.

Moon-Jin Kang. Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic
magnetohydrodynamics. Kinet. Relat. Models, 11(1):107-118, 2018.

Moon-jin Kang and Alexis Vasseur. Contraction property for large perturbations of shocks of the
barotropic navier-stokes system,. J. Eur. Math. Soc. (JEMS), to appear.

Moon-Jin Kang and Alexis Vasseur. Uniqueness and stability of entropy shocks to the isentropic Euler
system in a class of inviscid limits from a large family of Navier-Stokes systems,. posted on arXiv.
Moon-Jin Kang and Alexis Vasseur. Criteria on contractions for entropic discontinuities of systems of
conservation laws. Arch. Ration. Mech. Anal., 222(1):343-391, 2016.

Moon-Jin Kang and Alexis Vasseur. L?-contraction for shock waves of scalar viscous conservation laws.
Annales de Ulnstitut Henri Poincaré (C) : Analyse non linéaire, 34(1):139156, 2017.

Moon-Jin Kang, Alexis Vasseur, and Yi Wang. L2-contraction for planar shock waves of multi-
dimensional scalar viscous conservation laws. J. Differential Equations, to appear.

Shuichi Kawashima and Akitaka Matsumura. Stability of shock profiles in viscoelasticity with non-
convex constitutive relations. Comm. Pure Appl. Math., 47(12):1547-1569, 1994.

E. F. Keller and L. A. Segel. Traveling bands of chemotactic bacteria: A theoretical analysis. J. theor.
Biol., 30:235-248, 1971.

N. Leger. L? stability estimates for shock solutions of scalar conservation laws using the relative entropy
method. Arch. Ration. Mech. Anal., 199(3):761-778, 2011.

Howard A. Levine, Brian D. Sleeman, and Marit Nilsen-Hamilton. A mathematical model for the roles
of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in
preventing angiogenesis. Math. Biosci., 168(1):77-115, 2000.

Dong Li, Tong Li, and Kun Zhao. On a hyperbolic-parabolic system modeling chemotaxis. Math. Models
Methods Appl. Sci., 21(8):1631-1650, 2011.

Dong Li, Ronghua Pan, and Kun Zhao. Quantitative decay of a one-dimensional hybrid chemotaxis
model with large data. Nonlinearity, 28(7):2181-2210, 2015.

Tong Li and Zhi-An Wang. Nonlinear stability of traveling waves to a hyperbolic-parabolic system
modeling chemotaxis. STAM J. Appl. Math., 70(5):1522-1541, 2009/10.

Vincent R. Martinez, Zhian Wang, and Kun Zhao. Asymptotic and viscous stability of large-amplitude
solutions of a hyperbolic system arising from biology. Indiana Univ. Math. J., 67(4):1383-1424, 2018.
Benoit Perthame. PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl.
Math., 49(6):539-564, 2004.

Gerald Rosen. Steady-state distribution of bacteria chemotactic toward oxygen. Bull. Math. Biol.,
40(5):671-674, 1978.

D. Serre and A. Vasseur. L2-type contraction for systems of conservation laws. J. Ec. polytech. Math.,
1:1-28, 2014.

D. Serre and A. Vasseur. About the relative entropy method for hyperbolic systems of conservation
laws. Contemp. Math. AMS, 658:237-248, 2016.

D. Serre and A. Vasseur. The relative entropy method for the stability of intermediate shock waves; the
rich case. Discrete Contin. Dyn. Syst., 36(8):4569-4577, 2016.

Jonathan A. Sherratt. Traveling wave solutions of a mathematical model for tumor encapsulation. STAM
J. Appl. Math., 60(2):392-407, 2000.

Alexis Vasseur. Recent results on hydrodynamic limits. In Handbook of differential equations: evolu-
tionary equations. Vol. IV, Handb. Differ. Equ., pages 323-376. Elsevier/North-Holland, Amsterdam,
2008.

Alexis Vasseur. Relative entropy and contraction for extremal shocks of conservation laws up to a shift.
In Recent advances in partial differential equations and applications, volume 666 of Contemp. Math.,
pages 385-404. Amer. Math. Soc., Providence, RI, 2016.

42



[34] Alexis Vasseur and Yi Wang. The inviscid limit to a contact discontinuity for the compressible navier-
stokes-fourier system using the relative entropy method. STAM J. Math. Anal., 47(6):4350-4359, 2015.

[35] Zhi-An Wang. Mathematics of traveling waves in chemotaxis—review paper. Discrete Contin. Dyn.
Syst. Ser. B, 18(3):601-641, 2013.

[36] Zhi-An Wang and Thomas Hillen. Shock formation in a chemotaxis model. Math. Methods Appl. Sci.,
31(1):45-70, 2008.

(Kyudong Choi)

DEPARTMENT OF MATHEMATICAL SCIENCES,

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY, ULSAN 44919, REPUBLIC OF KOREA
E-mail address: kchoi@unist.ac.kr

(Moon-Jin Kang)
DEPARTMENT OF MATHEMATICS & RESEARCH INSTITUTE OF NATURAL SCIENCES,
SOOKMYUNG WOMEN’S UNIVERSITY, SEOUL 04310, REPUBLIC OF KOREA

E-mail address: moonjinkang@sookmyung.ac.kr

(Young-Sam Kwon)

DEPARTMENT OF MATHEMATICS,

DonG-A UNIVERSITY, BUSAN 49315, REPUBLIC OF KOREA
E-mail address: ykwon@dau.ac.kr

(Alexis F. Vasseur)

DEPARTMENT OF MATHEMATICS,

THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712, USA
E-mail address: vasseur@math.utexas.edu

43



