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GLOBAL SMOOTH SOLUTIONS FOR 1D BAROTROPIC
NAVIER-STOKES EQUATIONS WITH A LARGE CLASS OF
DEGENERATE VISCOSITIES

MOON-JIN KANG AND ALEXIS F. VASSEUR

ABSTRACT. We prove the global existence and uniqueness of smooth solutions to the one-
dimensional barotropic Navier-Stokes system with degenerate viscosity u(p) = p®. We
establish that the smooth solutions have possibly two different far-fields, and the initial
density remains positive globally in time, for the initial data satisfying the same conditions.
In addition, our result works for any a > 0, i.e., for a large class of degenerate viscosities.
In particular, our models include the viscous shallow water equations. This extends the
result of Constantin-Drivas-Nguyen-Pasqualotto [5, Theorem 1.6] (on the case of periodic
domain) to the case where smooth solutions connect possibly two different limits at the
infinity on the whole space.
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1. INTRODUCTION

S O RN
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15

We consider the one-dimensional barotropic Navier-Stokes system in the Eulerian coor-
dinates:

(1.1)

{ pi + (pu)z =0,
(pu)i + (pu?)z + p(p)e = (1(p)uz) e,
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where the pressure p(p) follows the case of a polytropic perfect gas, i.e.,

(1.2) pp)=p", 7>1,
with + the adiabatic constant. Here, 1 denotes the viscosity coefficient given by
(1.3) w(p) = p™.

Notice that if & > 0, pu(p) degenerates near the vacuum, i.e., near p = 0. Very often, the
viscosity coefficient is assumed to be constant, i.e., « = 0. However, in the physical context
the viscosity of a gas depends on the temperature (see Chapman and Cowling [4]). In the
barotropic case, the viscosity depends directly on the density. In general, the viscosity is
expected to degenerate on the vacuum as a power of the density as in (1.3).

There are many results on the existence of solutions to the compressible Navier-Stokes
equations with the constant viscosity for the one-dimensional case. The existence of weak
solutions was first established by Kazhikhov and Shelukhin [13] for smooth enough initial
data close to the equilibrium bounded away from zero. The case of discontinuous data but
still bounded away from zero was addressed by Shelukhin [17, 18, 20] and then by Serre
[16] and Hoff [8]. First result for vanishing initial density was obtained by Shelukhin [19].
Hoff [9] proved the existence of global weak solutions with large discontinuous initial data,
possibly having different limits at the infinity. There, he also proved that the vacuum cannot
form in finite time. The issues on regularity and uniqueness of solutions was first studied
by Solonnikov [21] for smooth initial data and for small time. However, the regularity may
blow-up as the solution gets close to vacuum. Hoff and Smoller [10] show that any weak
solution of the one-dimensional Navier-Stokes equations do not have vacuum states for every
time, provided that no vacuum states initially exist.

Concerning the 1D existence theory for the degenerate case (1.1), Mellet-Vasseur [15]
proved the global existence and uniqueness of strong solutions with large initial data having
possibly different limits at the infinity without no vacuum states in the case of o < 1/2
and v > 1. To control the L*>-norm of 1/p globally in time, they used the relative entropy
inequality based on the Bresch-Desjardins entropy, which was derived in [1] for the multi-
dimensional Korteweg system of equations (for the case of & = 1 and with an additional
capillary term) and later generalized in [3]. In the one-dimensional case, a similar inequality
was introduced earlier by Vaigant [22] for flows with constant viscosity.

The result of Mellet-Vasseur [15] was extended by Haspot [7] to the case of o € (1/2,1].
Recently, Constantin-Drivas-Nguyen-Pasqualotto [5, Theorem 1.6] extended it to the case
of « >0 and v € [a,a + 1] with v > 1, but they dealt with it on the periodic domain, and
with an additional technical condition (see (1.6)).

In this article, we aim to extend the result [5, Theorem 1.6] to the case where smooth
solutions have possibly different limits at the infinity on the whole space. This extended
result is motivated by the recent works [11, 12] of the authors on the contraction property,
up to a time-dependent shift, for large perturbations of viscous shocks (connecting two
different end states at = +o00) for the one-dimensional barotropic Navier-Stokes system
with degenerate viscosity. In [11, 12], solutions of the Navier-Stokes system need to be
regular for the existence of the time-dependent shift.

1.1. Main results. We study global existence of smooth solutions to (1.1) with initial data
having possibly two different limits (p4,ut) at x = £oo, where py > 0. For that, we let p



and % be smooth monotone functions such that
(1.4) p(x) =p+ >0 and u(zr)=wuxr, when +z>1.

Theorem 1.1. Assume v > 1,a > 0, and v € [a,a + 1]. Let py and ug be the initial data
such that

po—ﬁer(R), uo—ﬂer(R), for some integer k > 4,

1.5

(1.5) 0 < kg <po(z) <Ry, VzeR, for some constants Ky, Ro,
and

(1.6) Opuo(z) < po(x)™%,  Vz eR,

where p and 4 are the smooth monotone functions satisfying (1.4).
Then there exists a global-in-time unique smooth solution (p,u) of (1.1)-(1.3) such that for
any T >0,

p—peL¥0,T; H*(R)
w—1a € L>(0,T; H*(R)) N L(0,T; H***(R)).
Moreover, there exists constants £(T) and ®(T') such that

8(T) < p(t,z) <R(T),  V(t,z)e[0,T] x R.

)
)

Remark 1.1. Note that the system (1.1) is equivalent to the one in the mass Lagrangian
coordinates for the regularity in Theorem 1.1. Therefore, the above result provides a class of
global-in-time solutions smooth enough, in which the authors proved the contraction property
[11, 12] for viscous shocks of the barotropic Navier-Stokes system in the mass Lagrangian
coordinates, with any large initial data satisfying (1.5) and (1.6).

Remark 1.2. Note from the assumption on o and ~ that Theorem 1.1 also holds for the
viscous shallow water equations (i.e., v =2, a = 1). We refer to Gerbeau-Perthame [6] for
a derivation of the viscous shallow water equations from the incompressible Navier-Stokes
equations with free boundary.

Remark 1.3. The initial assumptions on (1.6) and k > 4 in (1.5) are the same conditions
as in [5, Theorem 1.5], which is used to control the active potential (2.9) defined by the
density and the velocity (see Lemma 2.2).

Remark 1.4. In [12], the authors showed some stability property of entropy shock of the
Euler system as the inviscid case v = 0 of the Navier-Stokes system:

(1‘7) { Py + (puuu)x =0,
(P"u")e + (p"(u")?)a + p(P")a = v(1(p”)ta)a-

There, the proof is based on stability for viscous shock of (1.7), uniform with respect to
v. This theory is to substitute the motion of inviscid limit of Navier-Stokes system for
the notion of weak solution of the Fuler system. More specifically, for any initial data
(p°,u®) for the inviscid dynamics, consider Fpo,u0) the set of inviscid limits (v — 0) of
solutions for (1.7) with suitable initial values (p4,uy) converging to (p°,u"). This set can
be seen as a generalization of the set of entropy solutions to the Euler system with the
initial data (p°,u®). In [12], it was proved that the entropy shocks are stable in this class
Fpo,u0)- However, the existence of the class Fyo 0y is subject to the existence of solutions
to the Navier-Stokes system (1.7) for any fixzed v > 0. This requirement is achieved by
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Theorem 1.1. Note that, for the initial value (pg,ug) of (1.7), the technical condition (1.6)
corresponds to Oyul(z) < v 1pk(x)7™%, which is not restrictive in the limit process v — 0.

2. PROOF OoF THEOREM 1.1

2.1. Idea of Proof. Since we are looking for solutions converging to possibly two different
limits (p4,us) at @ = £oo, we do not expect that solutions are integrable. Thus, as a
starting point, we may take advantage of the existence result [15], for solutions (p,u) to
satisfy p—p,u—u € L°°(0, T; L?(R)). However, since the result [15] require the assumption
a < 1/2 while we consider any a > 0, we may perturb the viscosity coefficient (1.3) by
adding 5p1/ 4 with small parameter ¢ as in (2.4), under which we ensure the global existence
of strong solution (p.,u.) satisfying the H'-spatial regularity and the positive lower-bound
of the density (see (2.7) and (2.8)).

To remove the e-dependence of the approximate viscosity p. as in (2.21), we may first show
that the lower bound of the density p. is independent of € as in Proposition 2.2. For that,
we basically use the idea in [5] on the analysis for the time-evolution of the active potential
(see Lemma 2.2). To perform the analysis, we need at least H*-spatial regularity of (pe, uc),
which requires the initial condition (1.5).

2.2. Approximate viscosity. As mentioned above, we first recall the existence result in
[15] as follows:

Proposition 2.1. [15] Let py and uy be the initial data such that
(2.1) 0< kg <po(xr) <Fo, po—peH R), u—ueH (R),

for some constants kg, kKo. Let v : Ry — Ry be a function such that for some constants
C>0andqel0,1/2),

Cy? Vy<1
(22 v ={ ¢ W
and
(2.3) v(y) < C+ Cy” Yy > 0.

Then there exists a global-in-time unique strong solution (p,u) of (1.1)-(1.2) with p = v
such that the following holds: B
For any T > 0, there exist positive constants S(T') and 3(T) such that

p—peL®0,T;H' (R)),
u—ae L®0,T; H(R)) N L*0,T; H*(R)),
B(T) < p(t,x) < B(T),  V(t,z)€[0,T] xR.

To use Proposition 2.1, we consider an approximate viscosity coefficient p. defined by
perturbing the viscosity p in (1.3) as follows: For any 0 < e < 1,

1 1
(2.4) pe(p) == max (u(p),ep™), Vp=>0, where a, := 3 min (a, 2) .



Since
ept/t Wp<i
€ Vp > 1,

pe(p) = {

and it follows from v > « that
(2.5) pe(p) <1+p"  Vp=>0,

ite satisfies the assumptions (2.2) and (2.3). Therefore, for the initial datum (pg, up) satis-
fying (1.5), Proposition 2.1 implies that there exists a global-in-time unique strong solution
(pe, ue) of (1.1)-(1.2) with u = pe, i.e.,

8t,05 + ax(paus) =0
(2.6) O (peue) + 8:E(P5Ug) + 0zp(pe) = Ox(pe(pe)Ozue)
(p=; ue)lt=0 = (po, uo),

such that the following holds: For any T > 0, there exist positive constants k.(T"), Re(T)
and C = C (T, ¢, kg, Ro) such that

(2-7) Hpa - /3||L°°(O,T;H1(R)) + Hus - ﬂHLOO(O,T;Hl(R)) + HUS - ﬂ”LQ(O,T;H2(R)) <C,
and
(2.8) 5(T) < pe(t,x) <F(T),  V(t,x) € (0,T) x R.

2.3. Higher Sobolev regularity. For the system (2.6), we consider the active potential

(2.9) We = —p(pe) + e (pe) Optte.

This is the potential in the momentum equation of (2.6). Indeed, its gradient is the force:
pe(Opue + ucOptie) = Opwe.

Then it follows from [5, Proposition 3.1] that w. satisfies a forced quadratic heat equation
with linear drift:

(2.10)
_Helpe) o (o %abe 5 Ppe) pebe(pe) + Helpe) )
atwa— i 895 e ( 5+M6(ps) pg >az e+ <peu6(p5) QP(Pg) Ne(pe)Q ) e
_ peii(pe) + pe(pe) o Pps) peiic(pe) + pe(pe)
TR e o R 7 e L)

Note that the new viscosity coefficient p-(pz)/pe of the parabolic equation (2.10) on w,
is less degenerate than the viscosity coefficient pe(p:) of the momentum equation in (2.6).
Through the coupled system of (2.10) and the continuity equation (2.6),, we obtain the
higher Sobolev regularity of p. and w, as long as p. is positive (that is guaranteed by (2.8))
as follows:

Lemma 2.1. Let v, be any real numbers. Assume that the initial data pg and ug satisfy
po—p < HYR), wup—ae HYR), for some integer k> 2,

(2.11) B
0< kg <po(z) <Ry, VzekR,

for some constants kg, Ro. Then, there exists a global-in-time unique smooth solution (pe, e )
of (2.6) such that the following holds: For any T > 0, there exists positive constants k_(T),
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®e(T) and C = C(T,v,a, k, e, ky, Ro) such that (2.7), (2.8) and

108 pell oo (0.7:12(R)) + 108 well oo o 7. r2Ry) + 05 well L2 (0.7:12(R))

+ (|05 || oo vz (m)) + 105 el 220,72y < C-

This follows straightforwardly from [5, Lemma 4.2 and 4.3] when |[we|| o0 (0, 7;r2(r)) 18
bounded. However, for the density having two different limits at the infinity, we do not
have a L?-bound on w(t, x) for each t. Therefore, we may prove Lemma 2.1 without using
a L?-bound on w.. Although we need a slight modification of the proof in [5], we present
details of the proof in Appendix A for the sake of completeness and the justification on
uniformity of the high Sobolev norms in Proposition 2.4.

2.4. Uniform lower bound for the density.

Lemma 2.2. Assume the same hypotheses as in Theorem 1.1. Then, for any T > 0, there
exist positive constants C., and ey such that

we(t,z) < Cye?, Ve<e,, Vt<T, VrcR,
where 0 is the positive constant as follows:

(2.12) 0= - ja , where o is the constant as in (2.4).

Proof. First of all, using Lemma 2.1 with k£ > 4, together with (2.6) and (2.9), we have
e e, we € CH[0,T] x R).
Then, note from (2.9), (2.4), (1.2), (1.3) and the initial condition (1.6) that

we(0,2) = —p(po) + max (1(po),epy") Oxuo < —pg + max (pj,epy") pg -
Since, for all z € R,

we(0,z) < (—p3 + ,08,03_0‘) Lipasepery + (—p3 + Epﬁ*pg_a) Lipa<epory

= (=) P
< €0 Lpg<epgry S €070

we have

w.(0,z) <&, VzeR.
Since w. € C([0,T] xR), if there exists a point (tg, o) € (0, T] xR such that w.(tg, 2¢) > €?,
then there exists t;1 > 0 such that

(2.13) supwe(t,z) < Vte0,t],

z€R
and

supw.(t,z) > ¥ Vit € (t1,to].

zeR
Let

to 1= sup {t € (t1,T] | supwe(t,x) > 59} .
Tz€R

Then,

supwe(t,x) > €%Vt e [t ta].
zeR



Thus, using the fact that for each ¢t < T,
we(t,x) = —p(p+) <0 as x — +oo,

we can define the function

wyr(t) := max we(t, x),
zeR

which is Lipschitz continuous, and differentiable almost everywhere on [t1, t2] thanks to the
regularity w. € C1([0,T] x R). Moreover, for each t € [t1,ts], there exists x; such that

wM(t) = ’UJE(t, xt)'
Then w',(t) = (Owe)(t, x¢) for a.e. t € (t1,1t2), since
wE(t + h7 xt+h) — ws(ta xt)

why(t) = lim

h—0+ h
> lim et +hw) — welt, ) = Oywe(t, xt),
h—0+ h
t — t—h,z_
e
S lim wa(t, th) — wg(t — h’ mt) = 8twg<t, .’Iit).
h—0+ h

Using this together with 02w, (t,7;) < 0, dywe(t,x;) = 0 and p.p’(ps) > 0, we have from
(2.10) that

wir(t) < JiOwa(t) + Ja(t), € (tr.t2),
where (putting pas(t) := pe(t, x¢))

Ji(t) = PREE (vie(prr) = 2 (parpi(par) + pre(par)))
Pl
Jo(t) == Ms(p]‘L)Q (vie(onr) = (paci(par) + pe(pnr))) -
Since v < a + 1, we have
PA1
h0) = ((r =200+ 1)P5r g sepsy + (7 = 20 + 1) 55 L4, <o)
Par
< ME v = 2(0on + )] P37 L e, <cpy-

(&

Moreover, using p(par) > €py; and pe(par) > pQy by the definition, we have

_ a—a
1) < by = 2o + D] o3 " Lips, <opiry < 17 — 2+ 1)]e7or.

Likewise, we have

2y
Py *
J2(t) = ME(PM)Q ((,y - (a + 1))p%/[1{p%/1>6pij*} +e (7 - (a* + 1)) p?\%l{ﬁ’?\é/lﬁep%f})
i

= we(par)?” 7= (e + D123 Lpg, <epf)
27—«

<[y~ (o + 1) 50
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The above estimates and (2.13) imply that for any ¢t € [¢1, 2] and € € (0,1),

(2.14) wi (t) < wa(ty) exp </t1t Jl(S)dS> + /tj Jo(s) exp (/t Jl(T)dT> ds
<exp (T |y = 2a + 1)) () + e Ty = (o + 1)),

If v > a, it follows from (2.14) that for all € satisfying

a—ox

(e tem)
g )
“\1+T] = (o +1)|

the following holds:
war(t) < 2exp (T |y — 2(an + 1)) €%, Yt € [t1, ta].
If v = a, since § = 37__63, it follows from (2.14) that
war(t) <21+ Ty — (ax+ D)) exp (T |y — 20 + 1)), Ve <1, Vte [ty ta].
Therefore, the above estimates together with (2.13) yield that

sup we(t, z) < C,yee, Ve <e,, Vtel0,ty],
zeR

where C is the constants as in (2.12).
If to < T, then the definition of to implies

supwe(t,z) <&, Vt e (to, T).
z€eR

Hence we complete the proof. ]

Proposition 2.2. Assume the same hypotheses as in Theorem 1.1. Then, for any T > 0,
there exist positive constants (1) = k(T') (7, o, ky) and 61 = 61(T, 7, a, ky) (independent of
e) such that

pe(t,z) > k(T), Vt<T, VzeR, Ve<d.

Proof. Let

as in Lemma 2.2.

q(7y) = { o ify>a, where 0 =

1 if v = a, o — Oy

We first choose a constant 47 > 0 such that
-y
. Ko\ 00— O 201 a(vV)(v—a) .
min <5w )" (m) ) ify>a,

(2.15) 5y = oo
min <57, (@)a , (0;1(20‘ — 1)6_0‘T)T> if y=a,

4
where £ is the constant as in (1.5), and €., C, are the constants as in Lemma 2.2.

Then, since

o

5 < (i )Z_a* .if7>a,
1_{(4) if v = a,

o

we have 25‘11(”/7 < Ky for any v > a.
Therefore, it follows from the initial condition of (1.5) that

, S 9500/
inf po(z) 2 20,
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For any fixed ¢ < 4§y, since p. € C(]0,T] x R), if there exists a point (tp,zo) € (0,7] x R
such that p(tg, xo) < 25‘11(7)/7, then there exists ;7 > 0 such that

(2.16) inf p.(t,2) > 2691yt e [0,4y],
S

inf p.(t,2) < 2597yt e (1, 1].

S

Then,

(2.17) inf p.(t,z) < 2697yt € [y, 1),
xe

where

to 1= sup {t € (t1,T] | inltépa(t,a:) < 25;1(7)/7}.
re

Thus, using 2(5‘11(7)/7 < kg < min(p_, p4+) together with the fact that for each t < T,
pe(t,x) = pr as x — +oo,

we define the function

pun(t) := min pe (1, 2),
z€R

which is Lipschitz continuous, and differentiable almost everywhere on [t1,ts] thanks to
the regularity p. € C1([0,T] x R). So, let y; be a minimizer for p,,(t) = p(t,y:). Since
o (t) = (Orpe)(t, yr) for ae. ¢ € (t1,t2), and Oyp:(t,y;) = 0, we have from the continuity
equation of (2.6) that

Pin(t) = =pm(D)0xte(ye), T € (t1,t2).
Then, using (2.9), Lemma 2.2 with ¢ < §; < e, and pc(pm) > pf,, we have

m +w -« -«
(2.18) Pr(t) = —pm(t)W > —p T = Oyl tE (t, ).
€ m

Case of v > a) Using (2.17) together with ¢(y) = 6, we have
P 2 —(27 + )81 pry ©,
which yields
(p) = —a(27 + Cy)d],  t€ (tr,ta).
Thus, using (2.16), we have

pint) > pi(t1) — a2 + C)AT > (261777)" — (27 + C AT, Vi€ [, 1),

Since ¢(v) = 0 when v > «, and
5 < 20 _1 o=
= la@+ C))T ’

P2 (t) > (63(””>a, Vt € [tr,to].
Therefore, this together with (2.16) and the definition of t5 implies

we have

in{{pg(t,x) > 5(11(7)/7 vt € [0,T).
e
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Case of v = «a) First, it follows from (2.18) with v = « that

P = —pm — Cy6lpi @, tE (t, ).
Then, since

(pm) = —app, —aCyd],  te(t,ta),
we have .

pin(t) 2 i t)e 00 —aCuaf [ emetas
t1

which together with (2.16) yields

P2 (1) > (25‘11(’”/7)0 e T —C.80, Vet t].

Since ¢(v)/y = 1/a and 6 = o/ (o — ) when v = «, if needed, taking J; again such that

5 < (G 2Y —1)emoT) =,

we have
P2 (1) > e 1§y, Vit € [ty,ta].
Therefore, this together with (2.16) and the definition of t5 implies

in& pe(t,x) > e_TcSi/a = e_T(S(fm/7 vt € [0,T].
Te
Hence we complete the proof. O

2.5. Uniform bounds for the solutions (p.,u.). Thanks to Proposition 2.2, we first
have the uniform upper bound for the density as follows:

Proposition 2.3. Under the same hypotheses as in Theorem 1.1, there exists a positive
constant ®(T') (independent of €) such that

peltix) <H(T), V<T, VreR, VYe<d,
where d1 is the constant as in Proposition 2.2.

For the proof of Proposition 2.3, we refer to the proof of [15, Proposition 4.5], in which
the uniform estimates (2.19) and (2.20) are crucially used to get the uniform upper bound
R(T) of the density: One estimate is on the uniform lower bound of the viscosity p. as

(2.19) we(pe) > p2 > w(T)°, Vi<T, VxeR, Ve<d.

The others are the estimates [15, Lemmas 3.1 and 3.2] on the relative entropy related to
the Bresch-Desjardins entropy (see [1, 2, 3]) as follows:

T
sup / <p€ ue — al? —i—p(pg!ﬁ)) dx + / / pie (p2)|Opuc P dzdt < K,
R o Jr

0<t<T

s [ (oo ltwe =)+ 1(e(p0)  +2pe) do < K.

(2.20)

where ¢'(pe) := pe(pz)/p?, and the above constant K is independent of & thanks to (2.5).
Indeed, it follows from [15, Lemmas 3.1 and 3.2] that the constant K depends only on
T,~,(p,u), (po,up), and the constants appearing in (2.3).

Propositions 2.2 and 2.3 together with the above estimates (2.19)-(2.20) imply the fol-
lowing uniform estimates on the Sobolev norms of the solutions (p., u.) :
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Proposition 2.4. Under the same hypotheses as in Theorem 1.1, there exists a constant
C (independent of €) such that

[pe = Pl oo (0,114 w)) + ltte = @l oo (0,715 )y + [we — Ul 20,1541 (m)) < C-

For the proof of proposition 2.4, we first refer to the proof of [15, Proposition 4.6 and
4.7], from which the constant in (2.7) does not depend on ¢ anymore. Then, from the proof
of Lemma 2.1, we deduce that the constant C' in Lemma 2.1 is independent of . Therefore,
we have Proposition 2.4

2.6. Conclusion. We have shown that for any ¢ < §7, the system (2.6) has the unique
smooth solution (pg, uc) such that Propositions 2.2, 2.3 and 2.4 hold.
We now take i1 as
o7 = min (E(T)O‘_O‘*,él) ,
where the constants £(7") and 07 are as in Proposition 2.2.
Then, since Proposition 2.2 implies that for all ¢ < dp,

epd” < Oorpet S K(T)* "% pd* <pd,  VI<T, VreR,
it follows from the definition (1.3) that
(2.21) e (pe) = p(pe), Ve <dp, Vt<T, VxeR.

Recall that the approximate system (2.6) represents the system (1.1) with p. instead of .
Therefore, for any 7' > 0, and any ¢ with € < dp, (ps, u.) is the unique smooth solution of
(1.1) with the initial datum (po, uo) such that Propositions 2.2, 2.3 and 2.4 hold.

Hence we complete the proof.

APPENDIX A. PROOF OF LEMMA 2.1

Let (ps,ues) be the global strong solution to (2.6) such that (2.7) and (2.8) hold.
Once the desired estimates for kK = 2 are obtained, the remaining part proceeds by induction
in k, which follows the same proof of [5, Lemma 4.3]. Therefore, we here present the proof
only when k = 2, based on the proof of [5, Lemma 4.2].

First of all, since d,ue € L(0,T; L°°(R)) by (2.7), using (2.7) and (2.8), we have
we € L*(0,T; L™(R)),
Oywe = —p'(pe)Oxpe + He(pe)OupeOstic + pie(pe)Dzue € L*(0,T; L(R)).

Step 1) Differentiating the equation (2.10) in space, multiplying the resulting equation by
O,w. and integrating by parts, we have

2
d/ |amw8‘ dx:_/ ’ue(p‘s)|8§w5’2dl‘+/ <UE+NE(§E)890P&> 8xwga§w5d:c
dt R 2 R Pe R P

€

+/fl(P6>‘axw6’2dx+/f{(pe)axpawaamwadx_Q/f2<p€)w6’amwa‘2dw
R R R

(A1)

_/fé(p€)8mp€wgaﬂiw€d$+/ fé(pE)awaawwde
R

— _ /#E(p&: ‘ €| dx—i—ZI
R
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where
AN phe(p) + pe(p)
pre(p) + pe(p)
f (p) - 5(p)2 ’
(o) = (0205 = plp) LR ),
Since, thanks to (2.8), L*([0,T] x R)-norms of p. to some power are all bounded, there

exists a positive constant C; = Cy(k.(T),R<(T)) such that

/ LE('OE)|8§11)6|2CZ:U§ C’l/ 02w, |?dz,
R R

£

and

He (ps)
p2

3
+Z Hf] Pe ||L°° ([0, T]xR) + Hf (ps)HLOO(OT]xR)) < (.
LOO([(),T]XR j=1

Thus, the above terms I; can be controlled as follows:

11| < JJuell poo () | Oawel | L2 ry |02 we || L2 () + Cul| O pe | Lo () | Ouwe| L2y |02 we || 12 ()

C
< ?IH&%@UEH%%R) +C <||u€||%°°(R) + Haxﬂs||%2(ua) + HangH%?(R)) HastH%%R)

|Io| < C1|0awe |7 ),
[I3] < C1110upe | ey lwe e e 10w 2y < CullOupell ey (el ) + 100w 3agey )
| Ia] < 2C1 |wel| oo () |0z t0e |72 )
5] < ClHaar/)SHLZ(R)”w€H%°°(R)H8xw6HL2(R)
< C1l19epell oy (el ooy + 10l ey 100 By )
I < C1]10upel| T2y + C1llOwe 72wy
Moreover, since it follows from (2.7) and p € L*°(R) that
(A.2) Dppe € L®(0,T; L*(R)) and wu. € L>(0,T; L*(R)),

we have

(A.3)

d
00wl ) + CallO2wel ey < C (14 102030z + 0l gy ) 10000 F2zy +

where

rF_c (1 T st||%°°(R)) '

Note from (A.1) that F € L1((0,T)).
Step 2) We next estimate [|92pc | 12(r), to control H@%pSH%Q(R) in (A.3).
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Differentiating the continuity equation of (2.6) twice in space, and multiplying the resulting
equation by 92p., we have

d 62 p 2

7 A | x;‘ dx = — /R 8£(u€6xp5)3§p€dx — A@g(pgﬁxus)ﬁgpsdx

2
— _/ 0.0 <| el )dm —/ (92(ue0ppe) — U020, p: ) O2p-dx
R 2 R
=:J1

— / P03 0% p.dx —/ (8§(p58xu5) —paai’ua) D2 p.dz.
R R

=:J2

Using the commutator estimates [14, Lemma 3.4] and the Sobolev embedding, we have
11l r2) < Cll0Fuell 2 ) 102 | Lo r) + CllOwtic]| oo (r) 1020 | 22 ()
< C||02ue|l 2wyl 0w pe | 2 ) + CllOwtie | 1 ) 107 02 || £2(R)
12l 2y < CllO2pell 2(r) |02t | Loo ) + Cll0wpe | Loo () | O2ue | 12 (R)
< C|102pe | 2 @) | 0xc | 1 ) + CllOwpell w102 tte | L2

Therefore, we have
/ de < 1H@a:uallLoo ) 1020c 1172wy + 1102l oo @) 1050 | L2y 103 0c | 2R
dt Jp 2 =9 (R) 19z PellL2(R) (R) 19z (R) 10z (R)
+C (H3§U5||L2(R)Haa:PeHL?(R) + HaxUEHHl(]R)Haa%paHLQ(R)) Hagl)EHLQ(R)

Moreover, using (2.8), (A.2) and the Sobolev embedding, we have

d
%H /)6”1;2 <C (H@ Ue || 1 R) T Ha%LaHL?(R ) 10 PEH%Q(R)
+ Cl|Ducl| 2 () 107 pe | L2 () + C-

(A.4)

To estimate ”8§UEHL2(R) in (A.4), we use the definition (2.9) of w. as follows:

(A.5) Oyue = g(pe)we + h(p:), where g(pe) = M‘s(lpe)’ flpe) = 56(();3)

Since
Pue = ¢"(pe)|0wpePwe + g (pe)02pew: + 29/ (pe) OupeOzwe + g(p2) 02w,
+ h”(pa)\@xp5|2 + h/(Pa)a%Psa

we use (2.8) to have
103 ue| r2ry < C((stHLw(R) + 1) 102z || oo () 102 pell L2y + [l oo (m) 10202 | L2 (i)
+ 102 e || oo () 10 we | L2(r) + H@%waHLZ(R) + Hag%paHLQ(R))‘

Combining this with (A.4), and using (A.2) and the Sobolev embedding, we have

d 1
(A7) 020130 m) < 1020 By + G020 22z + G
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where
G1:=C <”axua||H1(R) + Hag%UeH%z(R) + lwel| oo (r) + [|Oxwe |l L2 (m) + 1) ;
Gy 1= O (wel3 o my + 10l 3oy + 1)

Note that G1,G2 € L'((0,T)) by (2.7) and (A.1).
Step 3) Adding (A.3) to (A.7), we have

d

Ch
= (100 2y + 1020l By ) + 5 1020 ey

< H (100w 320 + 102032y ) + F + G,
where
H:=C <1 + HaacwaH%%R) + [Jwe | Foo my + 102 || 111 ) + HaguEH%Q(R)> :
Since H, F,Go € L'((0,T)), and it follows from (2.9) and (2.11) that
102w (0)]| 2y < C k9, Fo) (10200l L2(r) + 10200/l L2 Ry |0zt L2(r) + 03uol| L2(r)) »
Gronwall lemma implies that
(A.8) 102 pell oo 0,722 (R)) + 102we | poo (0.1:22(R)) + 105well 200, 7:22(R)) < C,

where the constant C' > 0 depends on T' and the bounds of (2.7), (2.8) and (2.11).
This now together with (A.1), (A.2) and (A.6) imply the bound for d3u.:

Hagua”LQ(O,T;LQ(R)) <C

Moreover, differentiating the both sides of (A.5) in z, and using (2.8), we have

102l 2wy < C (190 el 2y el ey + 1000l 2@y + 19epel2gey )
Therefore, we use (2.7), (2.8) and (A.8) to have
107 ue | oo 0,752 () < C-
Indeed, since it follows from (2.7) and (2.8) that
we = —p(pe) + pe(pe)Opue € L2((0,T) x R) + L2(0, T; L*(R)),
we use (A.8) to have

1 x+1

z+1
5 [ o)+ ety + 5 [

2 —1 z—1

IN

|we ()]

[ 10 dzdy
Yy

IN

1
[p(p) Ml Lo (0,7 xR) + ﬁHNE(/OE)aIuSHLOO(O,T;LQ(R)) + V2| el oo (0722 (R))

which gives ||we|| o (0,7)xr) < C-
Hence we complete the proof.
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