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Abstract. We prove the global existence and uniqueness of smooth solutions to the one-
dimensional barotropic Navier-Stokes system with degenerate viscosity µ(ρ) = ρα. We
establish that the smooth solutions have possibly two different far-fields, and the initial
density remains positive globally in time, for the initial data satisfying the same conditions.
In addition, our result works for any α > 0, i.e., for a large class of degenerate viscosities.
In particular, our models include the viscous shallow water equations. This extends the
result of Constantin-Drivas-Nguyen-Pasqualotto [5, Theorem 1.6] (on the case of periodic
domain) to the case where smooth solutions connect possibly two different limits at the
infinity on the whole space.
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1. Introduction

We consider the one-dimensional barotropic Navier-Stokes system in the Eulerian coor-
dinates: {

ρt + (ρu)x = 0,
(ρu)t + (ρu2)x + p(ρ)x = (µ(ρ)ux)x,

(1.1)
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where the pressure p(ρ) follows the case of a polytropic perfect gas, i.e.,

(1.2) p(ρ) = ργ , γ > 1,

with γ the adiabatic constant. Here, µ denotes the viscosity coefficient given by

(1.3) µ(ρ) = ρα.

Notice that if α > 0, µ(ρ) degenerates near the vacuum, i.e., near ρ = 0. Very often, the
viscosity coefficient is assumed to be constant, i.e., α = 0. However, in the physical context
the viscosity of a gas depends on the temperature (see Chapman and Cowling [4]). In the
barotropic case, the viscosity depends directly on the density. In general, the viscosity is
expected to degenerate on the vacuum as a power of the density as in (1.3).

There are many results on the existence of solutions to the compressible Navier-Stokes
equations with the constant viscosity for the one-dimensional case. The existence of weak
solutions was first established by Kazhikhov and Shelukhin [13] for smooth enough initial
data close to the equilibrium bounded away from zero. The case of discontinuous data but
still bounded away from zero was addressed by Shelukhin [17, 18, 20] and then by Serre
[16] and Hoff [8]. First result for vanishing initial density was obtained by Shelukhin [19].
Hoff [9] proved the existence of global weak solutions with large discontinuous initial data,
possibly having different limits at the infinity. There, he also proved that the vacuum cannot
form in finite time. The issues on regularity and uniqueness of solutions was first studied
by Solonnikov [21] for smooth initial data and for small time. However, the regularity may
blow-up as the solution gets close to vacuum. Hoff and Smoller [10] show that any weak
solution of the one-dimensional Navier-Stokes equations do not have vacuum states for every
time, provided that no vacuum states initially exist.

Concerning the 1D existence theory for the degenerate case (1.1), Mellet-Vasseur [15]
proved the global existence and uniqueness of strong solutions with large initial data having
possibly different limits at the infinity without no vacuum states in the case of α < 1/2
and γ > 1. To control the L∞-norm of 1/ρ globally in time, they used the relative entropy
inequality based on the Bresch-Desjardins entropy, which was derived in [1] for the multi-
dimensional Korteweg system of equations (for the case of α = 1 and with an additional
capillary term) and later generalized in [3]. In the one-dimensional case, a similar inequality
was introduced earlier by Vaigant [22] for flows with constant viscosity.

The result of Mellet-Vasseur [15] was extended by Haspot [7] to the case of α ∈ (1/2, 1].
Recently, Constantin-Drivas-Nguyen-Pasqualotto [5, Theorem 1.6] extended it to the case
of α ≥ 0 and γ ∈ [α, α+ 1] with γ > 1, but they dealt with it on the periodic domain, and
with an additional technical condition (see (1.6)).

In this article, we aim to extend the result [5, Theorem 1.6] to the case where smooth
solutions have possibly different limits at the infinity on the whole space. This extended
result is motivated by the recent works [11, 12] of the authors on the contraction property,
up to a time-dependent shift, for large perturbations of viscous shocks (connecting two
different end states at x = ±∞) for the one-dimensional barotropic Navier-Stokes system
with degenerate viscosity. In [11, 12], solutions of the Navier-Stokes system need to be
regular for the existence of the time-dependent shift.

1.1. Main results. We study global existence of smooth solutions to (1.1) with initial data
having possibly two different limits (ρ±, u±) at x = ±∞, where ρ± > 0. For that, we let ρ̄
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and ū be smooth monotone functions such that

(1.4) ρ̄(x) = ρ± > 0 and ū(x) = u±, when ± x ≥ 1.

Theorem 1.1. Assume γ > 1, α > 0, and γ ∈ [α, α + 1]. Let ρ0 and u0 be the initial data
such that

ρ0 − ρ̄ ∈ Hk(R), u0 − ū ∈ Hk(R), for some integer k ≥ 4,

0 < κ0 ≤ ρ0(x) ≤ κ0, ∀x ∈ R, for some constants κ0, κ0,
(1.5)

and

(1.6) ∂xu0(x) ≤ ρ0(x)γ−α, ∀x ∈ R,
where ρ̄ and ū are the smooth monotone functions satisfying (1.4).
Then there exists a global-in-time unique smooth solution (ρ, u) of (1.1)-(1.3) such that for
any T > 0,

ρ− ρ̄ ∈ L∞(0, T ;Hk(R))

u− ū ∈ L∞(0, T ;Hk(R)) ∩ L2(0, T ;Hk+1(R)).

Moreover, there exists constants κ(T ) and κ(T ) such that

κ(T ) ≤ ρ(t, x) ≤ κ(T ), ∀(t, x) ∈ [0, T ]× R.

Remark 1.1. Note that the system (1.1) is equivalent to the one in the mass Lagrangian
coordinates for the regularity in Theorem 1.1. Therefore, the above result provides a class of
global-in-time solutions smooth enough, in which the authors proved the contraction property
[11, 12] for viscous shocks of the barotropic Navier-Stokes system in the mass Lagrangian
coordinates, with any large initial data satisfying (1.5) and (1.6).

Remark 1.2. Note from the assumption on α and γ that Theorem 1.1 also holds for the
viscous shallow water equations (i.e., γ = 2, α = 1). We refer to Gerbeau-Perthame [6] for
a derivation of the viscous shallow water equations from the incompressible Navier-Stokes
equations with free boundary.

Remark 1.3. The initial assumptions on (1.6) and k ≥ 4 in (1.5) are the same conditions
as in [5, Theorem 1.5], which is used to control the active potential (2.9) defined by the
density and the velocity (see Lemma 2.2).

Remark 1.4. In [12], the authors showed some stability property of entropy shock of the
Euler system as the inviscid case ν = 0 of the Navier-Stokes system:{

ρνt + (ρνuν)x = 0,
(ρνuν)t + (ρν(uν)2)x + p(ρν)x = ν(µ(ρν)ux)x.

(1.7)

There, the proof is based on stability for viscous shock of (1.7), uniform with respect to
ν. This theory is to substitute the notion of inviscid limit of Navier-Stokes system for
the notion of weak solution of the Euler system. More specifically, for any initial data
(ρ0, u0) for the inviscid dynamics, consider F(ρ0,u0) the set of inviscid limits (ν → 0) of

solutions for (1.7) with suitable initial values (ρν0 , u
ν
0) converging to (ρ0, u0). This set can

be seen as a generalization of the set of entropy solutions to the Euler system with the
initial data (ρ0, u0). In [12], it was proved that the entropy shocks are stable in this class
F(ρ0,u0). However, the existence of the class F(ρ0,u0) is subject to the existence of solutions
to the Navier-Stokes system (1.7) for any fixed ν > 0. This requirement is achieved by
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Theorem 1.1. Note that, for the initial value (ρν0 , u
ν
0) of (1.7), the technical condition (1.6)

corresponds to ∂xu
ν
0(x) ≤ ν−1ρν0(x)γ−α, which is not restrictive in the limit process ν → 0.

2. Proof of Theorem 1.1

2.1. Idea of Proof. Since we are looking for solutions converging to possibly two different
limits (ρ±, u±) at x = ±∞, we do not expect that solutions are integrable. Thus, as a
starting point, we may take advantage of the existence result [15], for solutions (ρ, u) to
satisfy ρ− ρ̄, u− ū ∈ L∞(0, T ;L2(R)). However, since the result [15] require the assumption
α < 1/2 while we consider any α > 0, we may perturb the viscosity coefficient (1.3) by

adding ερ1/4 with small parameter ε as in (2.4), under which we ensure the global existence
of strong solution (ρε, uε) satisfying the H1-spatial regularity and the positive lower-bound
of the density (see (2.7) and (2.8)).
To remove the ε-dependence of the approximate viscosity µε as in (2.21), we may first show
that the lower bound of the density ρε is independent of ε as in Proposition 2.2. For that,
we basically use the idea in [5] on the analysis for the time-evolution of the active potential
(see Lemma 2.2). To perform the analysis, we need at least H4-spatial regularity of (ρε, uε),
which requires the initial condition (1.5).

2.2. Approximate viscosity. As mentioned above, we first recall the existence result in
[15] as follows:

Proposition 2.1. [15] Let ρ0 and u0 be the initial data such that

(2.1) 0 < κ0 ≤ ρ0(x) ≤ κ0, ρ0 − ρ̄ ∈ H1(R), u0 − ū ∈ H1(R),

for some constants κ0, κ0. Let ν : R+ → R+ be a function such that for some constants
C > 0 and q ∈ [0, 1/2),

ν(y) ≥
{
Cyq ∀y ≤ 1
C ∀y ≥ 1,

(2.2)

and

(2.3) ν(y) ≤ C + Cyγ ∀y ≥ 0.

Then there exists a global-in-time unique strong solution (ρ, u) of (1.1)-(1.2) with µ = ν
such that the following holds:
For any T > 0, there exist positive constants β(T ) and β(T ) such that

ρ− ρ̄ ∈ L∞(0, T ;H1(R)),

u− ū ∈ L∞(0, T ;H1(R)) ∩ L2(0, T ;H2(R)),

β(T ) ≤ ρ(t, x) ≤ β(T ), ∀(t, x) ∈ [0, T ]× R.

To use Proposition 2.1, we consider an approximate viscosity coefficient µε defined by
perturbing the viscosity µ in (1.3) as follows: For any 0 < ε < 1,

(2.4) µε(ρ) := max (µ(ρ), ερα∗) , ∀ρ ≥ 0, where α∗ :=
1

2
min

(
α,

1

2

)
.
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Since

µε(ρ) ≥
{
ερ1/4 ∀ρ ≤ 1
ε ∀ρ ≥ 1,

and it follows from γ ≥ α that

(2.5) µε(ρ) ≤ 1 + ργ ∀ρ ≥ 0,

µε satisfies the assumptions (2.2) and (2.3). Therefore, for the initial datum (ρ0, u0) satis-
fying (1.5), Proposition 2.1 implies that there exists a global-in-time unique strong solution
(ρε, uε) of (1.1)-(1.2) with µ = µε, i.e., ∂tρε + ∂x(ρεuε) = 0

∂t(ρεuε) + ∂x(ρεu
2
ε) + ∂xp(ρε) = ∂x(µε(ρε)∂xuε)

(ρε, uε)|t=0 = (ρ0, u0),
(2.6)

such that the following holds: For any T > 0, there exist positive constants κε(T ), κε(T )
and C = C(T, ε, κ0, κ0) such that

‖ρε − ρ̄‖L∞(0,T ;H1(R)) + ‖uε − ū‖L∞(0,T ;H1(R)) + ‖uε − ū‖L2(0,T ;H2(R)) ≤ C,(2.7)

and

(2.8) κε(T ) ≤ ρε(t, x) ≤ κε(T ), ∀(t, x) ∈ (0, T )× R.

2.3. Higher Sobolev regularity. For the system (2.6), we consider the active potential

(2.9) wε := −p(ρε) + µε(ρε)∂xuε.

This is the potential in the momentum equation of (2.6). Indeed, its gradient is the force:

ρε(∂tuε + uε∂xuε) = ∂xwε.

Then it follows from [5, Proposition 3.1] that wε satisfies a forced quadratic heat equation
with linear drift:

∂twε =
µε(ρε)

ρε
∂2xwε −

(
uε + µε(ρε)

∂xρε
ρ2ε

)
∂xwε +

(
ρε
p′(ρε)

µε(ρε)
− 2p(ρε)

ρεµ
′
ε(ρε) + µε(ρε)

µε(ρε)2

)
wε

− ρεµ
′
ε(ρε) + µε(ρε)

µε(ρε)2
w2
ε +

(
ρε
p′(ρε)

µε(ρε)
− p(ρε)

ρεµ
′
ε(ρε) + µε(ρε)

µε(ρε)2

)
p(ρε).

(2.10)

Note that the new viscosity coefficient µε(ρε)/ρε of the parabolic equation (2.10) on wε
is less degenerate than the viscosity coefficient µε(ρε) of the momentum equation in (2.6).
Through the coupled system of (2.10) and the continuity equation (2.6)1, we obtain the
higher Sobolev regularity of ρε and wε as long as ρε is positive (that is guaranteed by (2.8))
as follows:

Lemma 2.1. Let γ, α be any real numbers. Assume that the initial data ρ0 and u0 satisfy

ρ0 − ρ̄ ∈ Hk(R), u0 − ū ∈ Hk(R), for some integer k ≥ 2,

0 < κ0 ≤ ρ0(x) ≤ κ0, ∀x ∈ R,
(2.11)

for some constants κ0, κ0. Then, there exists a global-in-time unique smooth solution (ρε, uε)
of (2.6) such that the following holds: For any T > 0, there exists positive constants κε(T ),
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κε(T ) and C = C(T, γ, α, k, ε, κ0, κ0) such that (2.7), (2.8) and

‖∂kxρε‖L∞(0,T ;L2(R)) + ‖∂k−1x wε‖L∞(0,T ;L2(R)) + ‖∂kxwε‖L2(0,T ;L2(R))

+ ‖∂kxuε‖L∞(0,T ;L2(R)) + ‖∂k+1
x uε‖L2(0,T ;L2(R)) ≤ C.

This follows straightforwardly from [5, Lemma 4.2 and 4.3] when ‖wε‖L∞(0,T ;L2(R)) is
bounded. However, for the density having two different limits at the infinity, we do not
have a L2-bound on wε(t, x) for each t. Therefore, we may prove Lemma 2.1 without using
a L2-bound on wε. Although we need a slight modification of the proof in [5], we present
details of the proof in Appendix A for the sake of completeness and the justification on
uniformity of the high Sobolev norms in Proposition 2.4.

2.4. Uniform lower bound for the density.

Lemma 2.2. Assume the same hypotheses as in Theorem 1.1. Then, for any T > 0, there
exist positive constants Cγ and εγ such that

wε(t, x) ≤ Cγεθ, ∀ε ≤ εγ , ∀t ≤ T, ∀x ∈ R,
where θ is the positive constant as follows:

θ :=
γ

α− α∗
, where α∗ is the constant as in (2.4).(2.12)

Proof. First of all, using Lemma 2.1 with k ≥ 4, together with (2.6) and (2.9), we have

ρε, uε, wε ∈ C1([0, T ]× R).

Then, note from (2.9), (2.4), (1.2), (1.3) and the initial condition (1.6) that

wε(0, x) = −p(ρ0) + max (µ(ρ0), ερ
α∗
0 ) ∂xu0 ≤ −ργ0 + max (ρα0 , ερ

α∗
0 ) ργ−α0 .

Since, for all x ∈ R,

wε(0, x) ≤
(
−ργ0 + ρα0 ρ

γ−α
0

)
1{ρα0>ερ

α∗
0 } +

(
−ργ0 + ερα∗0 ργ−α0

)
1{ρα0≤ερ

α∗
0 }

≤ εργ−(α−α∗)0 1{ρα0≤ερ
α∗
0 } ≤ ε

γ
α−α∗ ,

we have
wε(0, x) ≤ εθ, ∀x ∈ R.

Since wε ∈ C([0, T ]×R), if there exists a point (t0, x0) ∈ (0, T ]×R such that wε(t0, x0) > εθ,
then there exists t1 ≥ 0 such that

(2.13) sup
x∈R

wε(t, x) ≤ εθ ∀t ∈ [0, t1],

and
sup
x∈R

wε(t, x) > εθ ∀t ∈ (t1, t0].

Let

t2 := sup

{
t ∈ (t1, T ] | sup

x∈R
wε(t, x) > εθ

}
.

Then,
sup
x∈R

wε(t, x) ≥ εθ ∀t ∈ [t1, t2].
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Thus, using the fact that for each t ≤ T ,

wε(t, x)→ −p(ρ±) ≤ 0 as x→ ±∞,

we can define the function

wM (t) := max
x∈R

wε(t, x),

which is Lipschitz continuous, and differentiable almost everywhere on [t1, t2] thanks to the
regularity wε ∈ C1([0, T ]× R). Moreover, for each t ∈ [t1, t2], there exists xt such that

wM (t) = wε(t, xt).

Then w′M (t) = (∂twε)(t, xt) for a.e. t ∈ (t1, t2), since

w′M (t) = lim
h→0+

wε(t+ h, xt+h)− wε(t, xt)
h

≥ lim
h→0+

wε(t+ h, xt)− wε(t, xt)
h

= ∂twε(t, xt),

w′M (t) = lim
h→0+

wε(t, xt)− wε(t− h, xt−h)

h

≤ lim
h→0+

wε(t, xt)− wε(t− h, xt)
h

= ∂twε(t, xt).

Using this together with ∂2xwε(t, xt) ≤ 0, ∂xwε(t, xt) = 0 and ρεµ
′
ε(ρε) ≥ 0, we have from

(2.10) that

w′M (t) ≤ J1(t)wM (t) + J2(t), t ∈ (t1, t2),

where (putting ρM (t) := ρε(t, xt))

J1(t) :=
ργM

µε(ρM )2
(
γµε(ρM )− 2

(
ρMµ

′
ε(ρM ) + µε(ρM )

))
,

J2(t) :=
ρ2γM

µε(ρM )2
(
γµε(ρM )−

(
ρMµ

′
ε(ρM ) + µε(ρM )

))
.

Since γ ≤ α+ 1, we have

J1(t) =
ργM

µε(ρM )2

(
(γ − 2(α+ 1))ραM1{ραM>ερ

α∗
M } + ε (γ − 2(α∗ + 1)) ρα∗M 1{ραM≤ερ

α∗
M }

)
≤

ργM
µε(ρM )2

ε |γ − 2(α∗ + 1)| ρα∗M 1{ραM≤ερ
α∗
M }.

Moreover, using µε(ρM ) ≥ ερα∗M and µε(ρM ) ≥ ραM by the definition, we have

J1(t) ≤ |γ − 2(α∗ + 1)| ργ−αM 1{ραM≤ερ
α∗
M } ≤ |γ − 2(α∗ + 1)| ε

γ−α
α−α∗ .

Likewise, we have

J2(t) =
ρ2γM

µε(ρM )2

(
(γ − (α+ 1))ραM1{ραM>ερ

α∗
M } + ε (γ − (α∗ + 1)) ρα∗M 1{ραM≤ερ

α∗
M }

)
≤

ρ2γM
µε(ρM )2

ε |γ − (α∗ + 1)| ρα∗M 1{ραM≤ερ
α∗
M }

≤ |γ − (α∗ + 1)| ε
2γ−α
α−α∗ .
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The above estimates and (2.13) imply that for any t ∈ [t1, t2] and ε ∈ (0, 1),

wM (t) ≤ wM (t1) exp

(∫ t

t1

J1(s)ds

)
+

∫ t

t1

J2(s) exp

(∫ t

s
J1(τ)dτ

)
ds

≤ exp (T |γ − 2(α∗ + 1)|)
(
εθ + ε

2γ−α
α−α∗ T |γ − (α∗ + 1)|

)
,

(2.14)

If γ > α, it follows from (2.14) that for all ε satisfying

ε ≤
(

1

1 + T |γ − (α∗ + 1)|

)α−α∗
γ−α

,

the following holds:

wM (t) ≤ 2 exp (T |γ − 2(α∗ + 1)|) εθ, ∀t ∈ [t1, t2].

If γ = α, since θ = 2γ−α
α−α∗ , it follows from (2.14) that

wM (t) ≤ 2 (1 + T |γ − (α∗ + 1)|) exp (T |γ − 2(α∗ + 1)|) εθ, ∀ε ≤ 1, ∀t ∈ [t1, t2].

Therefore, the above estimates together with (2.13) yield that

sup
x∈R

wε(t, x) ≤ Cγεθ, ∀ε ≤ εγ , ∀t ∈ [0, t2],

where Cγ is the constants as in (2.12).
If t2 < T , then the definition of t2 implies

sup
x∈R

wε(t, x) ≤ εθ, ∀t ∈ (t2, T ].

Hence we complete the proof. �

Proposition 2.2. Assume the same hypotheses as in Theorem 1.1. Then, for any T > 0,
there exist positive constants κ(T ) = κ(T )(γ, α, κ0) and δ1 = δ1(T, γ, α, κ0) (independent of
ε) such that

ρε(t, x) ≥ κ(T ), ∀t ≤ T, ∀x ∈ R, ∀ε ≤ δ1.

Proof. Let

q(γ) :=

{
θ if γ > α,
1 if γ = α,

where θ =
γ

α− α∗
as in Lemma 2.2.

We first choose a constant δ1 > 0 such that

(2.15) δ1 :=


min

(
εγ ,
(κ0

4

)α−α∗ ,( 2α−1
α(2γ+Cγ)T

) γ
q(γ)(γ−α)

)
if γ > α,

min
(
εγ ,
(κ0

4

)α
,
(
C−1γ (2α − 1)e−αT

)α−α∗
α∗
)

if γ = α,

where κ0 is the constant as in (1.5), and εγ , Cγ are the constants as in Lemma 2.2.

Then, since

δ1 ≤
{ (κ0

4

)α−α∗ if γ > α,(κ0
4

)α
if γ = α,

we have 2δ
q(γ)/γ
1 < κ0 for any γ ≥ α.

Therefore, it follows from the initial condition of (1.5) that

inf
x∈R

ρ0(x) ≥ 2δ
q(γ)/γ
1 .
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For any fixed ε ≤ δ1, since ρε ∈ C([0, T ] × R), if there exists a point (t0, x0) ∈ (0, T ] × R
such that ρε(t0, x0) < 2δ

q(γ)/γ
1 , then there exists t1 ≥ 0 such that

(2.16) inf
x∈R

ρε(t, x) ≥ 2δ
q(γ)/γ
1 ∀t ∈ [0, t1],

inf
x∈R

ρε(t, x) < 2δ
q(γ)/γ
1 ∀t ∈ (t1, t0].

Then,

(2.17) inf
x∈R

ρε(t, x) ≤ 2δ
q(γ)/γ
1 ∀t ∈ [t1, t2],

where

t2 := sup

{
t ∈ (t1, T ] | inf

x∈R
ρε(t, x) < 2δ

q(γ)/γ
1

}
.

Thus, using 2δ
q(γ)/γ
1 < κ0 ≤ min(ρ−, ρ+) together with the fact that for each t ≤ T ,

ρε(t, x)→ ρ± as x→ ±∞,

we define the function

ρm(t) := min
x∈R

ρε(t, x),

which is Lipschitz continuous, and differentiable almost everywhere on [t1, t2] thanks to
the regularity ρε ∈ C1([0, T ] × R). So, let yt be a minimizer for ρm(t) = ρε(t, yt). Since
ρ′m(t) = (∂tρε)(t, yt) for a.e. t ∈ (t1, t2), and ∂xρε(t, yt) = 0, we have from the continuity
equation of (2.6) that

ρ′m(t) = −ρm(t)∂xuε(yt), t ∈ (t1, t2).

Then, using (2.9), Lemma 2.2 with ε ≤ δ1 ≤ εγ , and µε(ρm) ≥ ραm, we have

(2.18) ρ′m(t) = −ρm(t)
p(ρm) + wε(yt)

µε(ρm)
≥ −ρ1+γ−αm − Cγδθ1ρ1−αm , t ∈ (t1, t2).

Case of γ > α) Using (2.17) together with q(γ) = θ, we have

ρ′m ≥ −(2γ + Cγ)δθ1ρ
1−α
m ,

which yields

(ραm)′ ≥ −α(2γ + Cγ)δθ1, t ∈ (t1, t2).

Thus, using (2.16), we have

ραm(t) ≥ ραm(t1)− α(2γ + Cγ)δθ1T ≥
(

2δ
q(γ)/γ
1

)α
− α(2γ + Cγ)δθ1T, ∀t ∈ [t1, t2].

Since q(γ) = θ when γ > α, and

δ1 ≤
(

2α − 1

α(2γ + Cγ)T

) γ
q(γ)(γ−α)

,

we have

ραm(t) ≥
(
δ
q(γ)/γ
1

)α
, ∀t ∈ [t1, t2].

Therefore, this together with (2.16) and the definition of t2 implies

inf
x∈R

ρε(t, x) ≥ δq(γ)/γ1 ∀t ∈ [0, T ].
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Case of γ = α) First, it follows from (2.18) with γ = α that

ρ′m ≥ −ρm − Cγδθ1ρ1−αm , t ∈ (t1, t2).

Then, since
(ραm)′ ≥ −αραm − αCγδθ1, t ∈ (t1, t2),

we have

ραm(t) ≥ ραm(t1)e
−α(t−t1) − αCγδθ1

∫ t

t1

e−α(t−s)ds,

which together with (2.16) yields

ραm(t) ≥
(

2δ
q(γ)/γ
1

)α
e−αT − Cγδθ1, ∀t ∈ [t1, t2].

Since q(γ)/γ = 1/α and θ = α/(α− α∗) when γ = α, if needed, taking δ1 again such that

δ1 ≤
(
C−1γ (2α − 1)e−αT

)α−α∗
α∗ ,

we have
ραm(t) ≥ e−αT δ1, ∀t ∈ [t1, t2].

Therefore, this together with (2.16) and the definition of t2 implies

inf
x∈R

ρε(t, x) ≥ e−T δ1/α1 = e−T δ
q(γ)/γ
1 ∀t ∈ [0, T ].

Hence we complete the proof. �

2.5. Uniform bounds for the solutions (ρε, uε). Thanks to Proposition 2.2, we first
have the uniform upper bound for the density as follows:

Proposition 2.3. Under the same hypotheses as in Theorem 1.1, there exists a positive
constant κ(T ) (independent of ε) such that

ρε(t, x) ≤ κ(T ), ∀t ≤ T, ∀x ∈ R, ∀ε ≤ δ1,
where δ1 is the constant as in Proposition 2.2.

For the proof of Proposition 2.3, we refer to the proof of [15, Proposition 4.5], in which
the uniform estimates (2.19) and (2.20) are crucially used to get the uniform upper bound
κ(T ) of the density: One estimate is on the uniform lower bound of the viscosity µε as

(2.19) µε(ρε) ≥ ραε ≥ κ(T )α, ∀t ≤ T, ∀x ∈ R, ∀ε ≤ δ1.
The others are the estimates [15, Lemmas 3.1 and 3.2] on the relative entropy related to
the Bresch-Desjardins entropy (see [1, 2, 3]) as follows:

sup
0≤t≤T

∫
R

(
ρε |uε − ū|2 + p(ρε|ρ̄)

)
dx+

∫ T

0

∫
R
µε(ρε)|∂xuε|2dxdt ≤ K,

sup
0≤t≤T

∫
R

(
ρε |(uε − ū) + ∂x(ϕ(ρε))|2 + p(ρε|ρ̄)

)
dx ≤ K,

(2.20)

where ϕ′(ρε) := µε(ρε)/ρ
2
ε, and the above constant K is independent of ε thanks to (2.5).

Indeed, it follows from [15, Lemmas 3.1 and 3.2] that the constant K depends only on
T, γ, (ρ̄, ū), (ρ0, u0), and the constants appearing in (2.3).

Propositions 2.2 and 2.3 together with the above estimates (2.19)-(2.20) imply the fol-
lowing uniform estimates on the Sobolev norms of the solutions (ρε, uε) :
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Proposition 2.4. Under the same hypotheses as in Theorem 1.1, there exists a constant
C (independent of ε) such that

‖ρε − ρ̄‖L∞(0,T ;Hk(R)) + ‖uε − ū‖L∞(0,T ;Hk(R)) + ‖uε − ū‖L2(0,T ;Hk+1(R)) ≤ C.

For the proof of proposition 2.4, we first refer to the proof of [15, Proposition 4.6 and
4.7], from which the constant in (2.7) does not depend on ε anymore. Then, from the proof
of Lemma 2.1, we deduce that the constant C in Lemma 2.1 is independent of ε. Therefore,
we have Proposition 2.4

2.6. Conclusion. We have shown that for any ε ≤ δ1, the system (2.6) has the unique
smooth solution (ρε, uε) such that Propositions 2.2, 2.3 and 2.4 hold.
We now take δT as

δT = min
(
κ(T )α−α∗ , δ1

)
,

where the constants κ(T ) and δ1 are as in Proposition 2.2.
Then, since Proposition 2.2 implies that for all ε < δT ,

ερα∗ε < δTρ
α∗
ε ≤ κ(T )α−α∗ρα∗ε ≤ ραε , ∀t ≤ T, ∀x ∈ R,

it follows from the definition (1.3) that

(2.21) µε(ρε) = µ(ρε), ∀ε < δT , ∀t ≤ T, ∀x ∈ R.
Recall that the approximate system (2.6) represents the system (1.1) with µε instead of µ.
Therefore, for any T > 0, and any ε with ε < δT , (ρε, uε) is the unique smooth solution of
(1.1) with the initial datum (ρ0, u0) such that Propositions 2.2, 2.3 and 2.4 hold.
Hence we complete the proof.

Appendix A. Proof of Lemma 2.1

Let (ρε, uε) be the global strong solution to (2.6) such that (2.7) and (2.8) hold.
Once the desired estimates for k = 2 are obtained, the remaining part proceeds by induction
in k, which follows the same proof of [5, Lemma 4.3]. Therefore, we here present the proof
only when k = 2, based on the proof of [5, Lemma 4.2].

First of all, since ∂xuε ∈ L2(0, T ;L∞(R)) by (2.7), using (2.7) and (2.8), we have

wε ∈ L2(0, T ;L∞(R)),

∂xwε = −p′(ρε)∂xρε + µ′ε(ρε)∂xρε∂xuε + µε(ρε)∂
2
xuε ∈ L2(0, T ;L2(R)).

(A.1)

Step 1) Differentiating the equation (2.10) in space, multiplying the resulting equation by
∂xwε and integrating by parts, we have

d

dt

∫
R

|∂xwε|2

2
dx = −

∫
R

µε(ρε)

ρε
|∂2xwε|2dx+

∫
R

(
uε +

µε(ρε)

ρ2ε
∂xρε

)
∂xwε∂

2
xwεdx

+

∫
R
f1(ρε)|∂xwε|2dx+

∫
R
f ′1(ρε)∂xρεwε∂xwεdx− 2

∫
R
f2(ρε)wε|∂xwε|2dx

−
∫
R
f ′2(ρε)∂xρεw

2
ε∂xwεdx+

∫
R
f ′3(ρε)∂xρε∂xwεdx

=: −
∫
R

µε(ρε)

ρε
|∂2xwε|2dx+

6∑
j=1

Ij .
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where

f1(ρ) := ρ
p′(ρ)

µε(ρ)
− 2p(ρ)

ρµ′ε(ρ) + µε(ρ)

µε(ρ)2
,

f2(ρ) :=
ρµ′ε(ρ) + µε(ρ)

µε(ρ)2
,

f3(ρ) :=

(
ρ
p′(ρ)

µε(ρ)
− p(ρ)

ρµ′ε(ρ) + µε(ρ)

µε(ρ)2

)
p(ρ).

Since, thanks to (2.8), L∞([0, T ] × R)-norms of ρε to some power are all bounded, there
exists a positive constant C1 = C1(κε(T ), κε(T )) such that

−
∫
R

µε(ρε)

ρε
|∂2xwε|2dx ≤ −C1

∫
R
|∂2xwε|2dx,

and ∥∥∥∥µε(ρε)ρ2ε

∥∥∥∥
L∞([0,T ]×R)

+

3∑
j=1

(
‖fj(ρε)‖L∞([0,T ]×R) + ‖f ′j(ρε)‖L∞([0,T ]×R)

)
≤ C1.

Thus, the above terms Ij can be controlled as follows:

|I1| ≤ ‖uε‖L∞(R)‖∂xwε‖L2(R)‖∂2xwε‖L2(R) + C1‖∂xρε‖L∞(R)‖∂xwε‖L2(R)‖∂2xwε‖L2(R)

≤ C1

2
‖∂2xwε‖2L2(R) + C

(
‖uε‖2L∞(R) + ‖∂xρε‖2L2(R) + ‖∂2xρε‖2L2(R)

)
‖∂xwε‖2L2(R),

|I2| ≤ C1‖∂xwε‖2L2(R),

|I3| ≤ C1‖∂xρε‖L2(R)‖wε‖L∞(R)‖∂xwε‖L2(R) ≤ C1‖∂xρε‖L2(R)

(
‖wε‖2L∞(R) + ‖∂xwε‖2L2(R)

)
,

|I4| ≤ 2C1‖wε‖L∞(R)‖∂xwε‖2L2(R),

|I5| ≤ C1‖∂xρε‖L2(R)‖wε‖2L∞(R)‖∂xwε‖L2(R)

≤ C1‖∂xρε‖L2(R)

(
‖wε‖2L∞(R) + ‖wε‖2L∞(R)‖∂xwε‖

2
L2(R)

)
,

|I6| ≤ C1‖∂xρε‖2L2(R) + C1‖∂xwε‖2L2(R).

Moreover, since it follows from (2.7) and ρ̄ ∈ L∞(R) that

(A.2) ∂xρε ∈ L∞(0, T ;L2(R)) and uε ∈ L∞(0, T ;L∞(R)),

we have

d

dt
‖∂xwε‖2L2(R) + C1‖∂2xwε‖2L2(R) ≤ C

(
1 + ‖∂2xρε‖2L2(R) + ‖wε‖2L∞(R)

)
‖∂xwε‖2L2(R) + F,

(A.3)

where

F = C
(

1 + ‖wε‖2L∞(R)

)
.

Note from (A.1) that F ∈ L1((0, T )).
Step 2) We next estimate ‖∂2xρε‖L2(R), to control ‖∂2xρε‖2L2(R) in (A.3).
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Differentiating the continuity equation of (2.6) twice in space, and multiplying the resulting
equation by ∂2xρε, we have

d

dt

∫
R

|∂2xρε|2

2
dx = −

∫
R
∂2x(uε∂xρε)∂

2
xρεdx−

∫
R
∂2x(ρε∂xuε)∂

2
xρεdx

= −
∫
R
uε∂x

(
|∂2xρε|2

2

)
dx−

∫
R

(
∂2x(uε∂xρε)− uε∂2x∂xρε

)︸ ︷︷ ︸
=:J1

∂2xρεdx

−
∫
R
ρε∂

3
xuε∂

2
xρεdx−

∫
R

(
∂2x(ρε∂xuε)− ρε∂3xuε

)︸ ︷︷ ︸
=:J2

∂2xρεdx.

Using the commutator estimates [14, Lemma 3.4] and the Sobolev embedding, we have

‖J1‖L2(R) ≤ C‖∂2xuε‖L2(R)‖∂xρε‖L∞(R) + C‖∂xuε‖L∞(R)‖∂2xρε‖L2(R)

≤ C‖∂2xuε‖L2(R)‖∂xρε‖H1(R) + C‖∂xuε‖H1(R)‖∂2xρε‖L2(R),

‖J2‖L2(R) ≤ C‖∂2xρε‖L2(R)‖∂xuε‖L∞(R) + C‖∂xρε‖L∞(R)‖∂2xuε‖L2(R)

≤ C‖∂2xρε‖L2(R)‖∂xuε‖H1(R) + C‖∂xρε‖H1(R)‖∂2xuε‖L2(R).

Therefore, we have

d

dt

∫
R

|∂2xρε|2

2
dx ≤ 1

2
‖∂xuε‖L∞(R)‖∂2xρε‖2L2(R) + ‖ρε‖L∞(R)‖∂3xuε‖L2(R)‖∂2xρε‖L2(R)

+ C
(
‖∂2xuε‖L2(R)‖∂xρε‖L2(R) + ‖∂xuε‖H1(R)‖∂2xρε‖L2(R)

)
‖∂2xρε‖L2(R).

Moreover, using (2.8), (A.2) and the Sobolev embedding, we have

d

dt
‖∂2xρε‖2L2(R) ≤ C

(
‖∂xuε‖H1(R) + ‖∂2xuε‖2L2(R)

)
‖∂2xρε‖2L2(R)

+ C‖∂3xuε‖L2(R)‖∂2xρε‖L2(R) + C.
(A.4)

To estimate ‖∂3xuε‖L2(R) in (A.4), we use the definition (2.9) of wε as follows:

(A.5) ∂xuε = g(ρε)wε + h(ρε), where g(ρε) :=
1

µε(ρε)
, h(ρε) :=

p(ρε)

µε(ρε)
.

Since

∂3xuε = g′′(ρε)|∂xρε|2wε + g′(ρε)∂
2
xρεwε + 2g′(ρε)∂xρε∂xwε + g(ρε)∂

2
xwε

+ h′′(ρε)|∂xρε|2 + h′(ρε)∂
2
xρε,

we use (2.8) to have

‖∂3xuε‖L2(R) ≤ C
((
‖wε‖L∞(R) + 1

)
‖∂xρε‖L∞(R)‖∂xρε‖L2(R) + ‖wε‖L∞(R)‖∂2xρε‖L2(R)

+ ‖∂xρε‖L∞(R)‖∂xwε‖L2(R) + ‖∂2xwε‖L2(R) + ‖∂2xρε‖L2(R)

)
.

(A.6)

Combining this with (A.4), and using (A.2) and the Sobolev embedding, we have

(A.7)
d

dt
‖∂2xρε‖2L2(R) ≤

C1

2
‖∂2xwε‖2L2(R) +G1‖∂2xρε‖2L2(R) +G2,
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where

G1 := C
(
‖∂xuε‖H1(R) + ‖∂2xuε‖2L2(R) + ‖wε‖L∞(R) + ‖∂xwε‖L2(R) + 1

)
,

G2 := C
(
‖wε‖2L∞(R) + ‖∂xwε‖2L2(R) + 1

)
.

Note that G1, G2 ∈ L1((0, T )) by (2.7) and (A.1).
Step 3) Adding (A.3) to (A.7), we have

d

dt

(
‖∂xwε‖2L2(R) + ‖∂2xρε‖2L2(R)

)
+
C1

2
‖∂2xwε‖2L2(R)

≤ H
(
‖∂xwε‖2L2(R) + ‖∂2xρε‖2L2(R)

)
+ F +G2,

where

H := C
(

1 + ‖∂xwε‖2L2(R) + ‖wε‖2L∞(R) + ‖∂xuε‖H1(R) + ‖∂2xuε‖2L2(R)

)
.

Since H,F,G2 ∈ L1((0, T )), and it follows from (2.9) and (2.11) that

‖∂xwε(0)‖L2(R) ≤ C(κ0, κ0)
(
‖∂xρ0‖L2(R) + ‖∂xρ0‖L2(R)‖∂xu0‖L2(R) + ‖∂2xu0‖L2(R)

)
,

Grönwall lemma implies that

(A.8) ‖∂2xρε‖L∞(0,T ;L2(R)) + ‖∂xwε‖L∞(0,T ;L2(R)) + ‖∂2xwε‖L2(0,T ;L2(R)) ≤ C,

where the constant C > 0 depends on T and the bounds of (2.7), (2.8) and (2.11).
This now together with (A.1), (A.2) and (A.6) imply the bound for ∂3xuε:

‖∂3xuε‖L2(0,T ;L2(R)) ≤ C.

Moreover, differentiating the both sides of (A.5) in x, and using (2.8), we have

‖∂2xuε‖L2(R) ≤ C
(
‖∂xρε‖L2(R)‖wε‖L∞(R) + ‖∂xwε‖L2(R) + ‖∂xρε‖L2(R)

)
.

Therefore, we use (2.7), (2.8) and (A.8) to have

‖∂2xuε‖L∞(0,T ;L2(R)) ≤ C.

Indeed, since it follows from (2.7) and (2.8) that

wε = −p(ρε) + µε(ρε)∂xuε ∈ L∞((0, T )× R) + L∞(0, T ;L2(R)),

we use (A.8) to have

|wε(x)| ≤ 1

2

∫ x+1

x−1
(|p(ρε)|+ |µε(ρε)∂xuε|)dy +

1

2

∫ x+1

x−1

∫ x

y
|∂zwε|dzdy

≤ ‖p(ρε)‖L∞((0,T )×R) +
1√
2
‖µε(ρε)∂xuε‖L∞(0,T ;L2(R)) +

√
2‖∂xwε‖L∞(0,T ;L2(R)),

which gives ‖wε‖L∞((0,T )×R) ≤ C.
Hence we complete the proof.
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