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Fig. 1. (a) The real curve given by the zeros of f = 3y3 + 3xy2 − 2x3 − 3y2 + xy + 3x2 − 3y + 3x + 2. (b) The approximation 
produced by the PV algorithm (Plantinga and Vegter, 2004) as well as the regions constructed by the algorithm.

1. Introduction

Subdivision-based algorithms are adaptive methods that start with a domain of interest (often 
an axis-aligned box) and recursively split it into sub-domains until each sub-domain either isolates or 
does not contain an interesting feature of the problem at hand. The output is a partition of the original 
domain (often into axis-aligned boxes) which we can further study or post-process. This algorithmic 
paradigm is one of the most commonly used classes of algorithms with appearances in many fields, 
ranging from computational geometry and graphics to approximating solutions to polynomial systems 
and mathematical programming, see, e.g., Lorensen and Cline (1987); Heiden et al. (1993); Schröder 
(2002); Babuvška and Rheinboldt (1978); Mantzaflaris et al. (2011); Yap et al. (2012); Elber and Kim 
(2001); Allgower et al. (2002). The main goal of this paper is to study the computational complexity 
of these types of algorithms.

The main advantages of subdivision-based algorithms are their great flexibility and their local 
nature. Because of their recursive character, they are easy to implement using simple data struc-
tures, and this ease of use makes them popular among practitioners. Moreover, subdivision-based 
algorithms are intrinsically adaptive, and they are often efficient in practice since they only perform 
additional subdivisions near difficult features. These advantages, however, make the complexity anal-
ysis of subdivision-based algorithms particularly challenging. To analyze these algorithms, we need to 
understand, in detail, the local complexity of the input instance and how the problem-specific predi-
cates behave near problem-specific features because any tight complexity bound must be sensitive to 
the locations and sizes of easy and difficult features.

Our motivating example for this paper is the complexity analysis of the Plantinga and Vegter 
algorithm4 (Plantinga and Vegter, 2004). Their algorithm is a subdivision-based algorithm for correctly 
approximating curves and surfaces, see Fig. 1. We call this algorithm the PV algorithm. It takes, as 
input, a polynomial f ∈ R[x, y] or R[x, y, z], whose real zero set is smooth,5 and an axis-aligned 
square I ⊆ R2 or cube I ⊆ R3. From this input data, the algorithm constructs a piecewise-linear 
approximation to the zero set of f in I . In particular, when I is a bounding box for the variety, the 
approximation has the correct topology in the sense that there is an ambient isotopy between the 
approximation and the zero set. Additionally, by further subdivisions, the Hausdorff distance between 

4 Our approach applies to similar subdivision-based methods for approximating curves such as Yap and Lin (2011). The final 
complexity results are similar, and we leave the details to the interested reader.
5 The correctness depends on the curve being bounded, but the termination of the algorithm depends only on the smooth-

ness. See Burr et al. (2012) for an extension of this algorithm which includes correctness statements for unbounded curves.
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the approximation and the zero set can be made as small as desired. The authors of Plantinga and 
Vegter (2004) claim that the PV algorithm is efficient in practice, but, to the best of our knowledge, 
the work in this paper provides the first complexity analysis of the PV algorithm. A preliminary 
version of this work appeared in Burr et al. (2017).

In this paper, we provide complexity bounds for the class of subdivision-based algorithms which 
use diameter-distance tests. Diameter-distance tests are predicates which become more restrictive as 
sub-domains become closer to problem-specific subsets of the domain. These tests are fairly common 
in the literature, for example, condition number-based tests are related to the inverse of the distance 
to the set of ill-conditioned inputs, see, e.g., Bürgisser and Cucker (2013), tests for motion planning 
are based on the distance to the set of obstacles (Wang et al., 2015), and root isolation is related 
to the inverse of the distance to the nearest root of the polynomial or its derivative, see, e.g., Burr 
et al. (2009); Burr (2016); Eigenwillig et al. (2006). After developing the general theory, we prove, 
using Fourier analysis, that the PV algorithm’s tests are diameter-distance tests, and, as an example, 
we provide the first complexity bounds for the PV algorithm and prove that they are tight (Plantinga 
and Vegter, 2004).

1.1. Related work

For univariate problems, the analysis of subdivision-based algorithms is well-understood, and there 
are several results, especially for the case of approximating the roots of polynomials, see, e.g., Yap 
et al. (2013); Sagraloff and Yap (2011); Burr et al. (2009); Burr (2016); Eigenwillig et al. (2006); 
Du et al. (2007), and the references therein. Moreover, it also possible to modify the subdivision 
process by applying the Newton operator, see Sagraloff (2012); Pan (2000), and considerably im-
prove both the complexity and the actual running time of the corresponding algorithms. However, in 
higher dimensions, very little is known. For example, there are no explicit complexity results for pure 
subdivision-based algorithms for approximating curves and surfaces.

The design of efficient subdivision-based algorithms that are output-sensitive, precision-sensitive, 
certified, and exploit the underlying structure of the problem is an important challenge and an active 
area of research. An important step in this direction was the introduction of soft tests, see Wang 
et al. (2015); Yap et al. (2013), that, roughly speaking, replace harder exact tests (usually comparisons 
with zero) with approximate computations which are exact in the limit. They introduce a new notion 
of correctness called resolution-exactness. In this context, it is exactly the continuous amortization 
tool (Burr, 2016; Burr et al., 2009) that captures the complexity of the soft predicates. Therefore, 
continuous amortization is a key tool for the analysis of such algorithms.

The previous work on subdivision-based methods and inclusion-exclusion predicates is quite ex-
tensive, so we can only scratch its surface. For work that focuses on classical inclusion-exclusion 
algorithms for the isolation of roots of algebraic and analytic functions, but without bit-complexity 
bounds, we refer the interested reader to Giusti et al. (2005); Yakoubsohn (1994); Dedieu and Yak-
oubsohn (1993); Yap et al. (2013), and the references therein. For other approaches for approximating 
curves and surfaces, we refer the interested reader to Cheng et al. (2007); Boissonnat et al. (2008, 
2006); Cheng et al. (2013), and the references therein. For the problem of isolating the roots of 
polynomials with subdivision-based methods, we refer the interested reader to Mantzaflaris et al. 
(2011); Krawczyk (1969); Henrici (1970); Collins and Akritas (1976); Yakoubsohn (2005); Mourrain 
and Pavone (2009); Burr and Krahmer (2012); Sagraloff and Yap (2011); Cheng et al. (2012), and 
the references therein. There are also approaches, see, e.g., (Mourrain and Pavone, 2009; Mantzaflaris 
et al., 2011), that achieve locally quadratic convergence towards the simple roots of polynomial sys-
tems, and they are very efficient in practice. Another interesting direction for the application of 
subdivision-based algorithms, of a more geometric nature, concerns the approximation of algebraic 
varieties (Snyder, 1992; Plantinga and Vegter, 2004; Burr et al., 2012; Sharma et al., 2011; Yap and 
Lin, 2011; Lin et al., 2013) and the computation of the approximate Voronoi diagrams (Yap et al., 
2012). There are also important applications of these algorithms to the problem of robotic motion 
planning (Wang et al., 2015).

For the related problem of computing the topology of an implicitly defined curve in the plane, we 
refer the reader to Bouzidi et al. (2016) for state-of-the-art results. Nevertheless, we emphasize, that 
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even though analyzing the topology of an implicitly defined curve is related to the problem we con-
sider in this paper, the problems and approaches are different and the complexity estimates are not 
directly comparable. Our approach is a general one that we can use for the analysis of any subdivision-
based algorithm that uses diameter-distance tests and it is not a dedicated one for computing the 
topology of curves. This argument also holds for methods and algorithms based on cylindrical alge-
braic decomposition, which can be used as a black-box tool to solve similar problems with curves, 
see Hong and Safey El Din (2012) and references therein.

1.2. Main results

We introduce diameter-distance tests, which formalize a type of test that is frequently used in 
subdivision-based algorithms, see Section 2.2. We then present both straightforward non-adaptive 
complexity bounds for such tests based on separation bounds, see Proposition 3, and adaptive bounds, 
based on continuous amortization, which exploit the local features of the problem at hand in Propo-
sition 7. The diameter-distance tests are quite generic in nature and we illustrate this by formulating 
classical exclusion predicates, in any dimension, in conjunction with interval arithmetic as diameter-
distance tests, see Section 3.2.

We provide the first complexity analysis for (a slightly modified version of) the PV algorithm for 
approximating curves and surfaces from Plantinga and Vegter (2007, 2004). We extend the predi-
cates of the PV algorithm to all dimensions and bound the number of regions and bit-complexity of 
these algorithms in two- and higher-dimensions, see Theorems 24 and 27. Moreover, using continu-
ous amortization, first developed by Burr et al. (2009), we provide adaptive bounds on the number of 
regions and the bit-complexity of the PV algorithm in arbitrary dimensions, see Theorems 25 and 29. 
These results consist of the first application of continuous amortization to a pure high-dimensional 
problem. We provide examples that show that our bounds are tight in Lemma 30.

We anticipate that diameter-distance tests and the tools for the complexity analysis of the under-
lying subdivision-based algorithms that we develop in this paper will be applicable to many other 
algorithms and in related contexts.

1.3. Overview of paper

The rest of this paper is organized as follows: In the next section, we present a general description 
of subdivision-based algorithms, we introduce diameter-distance tests, and we derive adaptive and 
non-adaptive complexity bounds for subdivision-based algorithms that use these tests. In Section 3, 
we show that exclusion tests based on interval arithmetic are diameter-distance tests. This illustrates 
that many algorithms in the literature can be analyzed with the techniques of this paper. In Section 4, 
we present a slight modification of the PV algorithm for curve and surface approximation. We then 
exhibit the tests in the PV algorithm as diameter-distance tests. In Section 5, we present both adaptive 
and non-adaptive bounds on the number of subdivisions that the PV algorithm performs and the 
bit-complexity for the overall algorithm. Finally, in Section 6 we present examples to demonstrate the 
tightness of our bounds.

2. Subdivision-based methods and diameter-distance tests

In Section 2.1, we present the general form of a subdivision-based method which is studied in this 
paper. In Section 2.2, we define the diameter-distance tests, which form the class of predicates studied 
in this paper. Even though our motivating example is the Plantinga and Vegter algorithm (Plantinga 
and Vegter, 2004, 2007), we present this material in a general setting. Additional, related, background 
on this approach for the study of subdivision-based methods in this section can be found in Burr 
et al. (2009) and Burr (2016).

Throughout this section, we assume that X is both a measure space with measure μ and a metric 
space with distance function d. We note that we do not require any compatibility between μ and 
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d. Additionally, we assume the technical condition that X is proper,6 i.e., closed balls are compact. 
Moreover, we let S be a collection of subsets of X which have finite measure (with respect to μ) 
and are compact (with respect to d). We call predicates (boolean functions) on S stopping criteria. In 
the motivating case, X = Rn , μ is the Lebesgue measure, d is the Euclidean distance, and S is the 
collection of n-dimensional cubes in X .

2.1. Subdivision-based methods

In this section, we provide the general form of a subdivision-based method considered in this 
paper. Let C1, . . . , C� be stopping criteria, i.e., each Ci is a function from subsets in S to {True, False}. 
When Ci( J ) is True for some i, then we do not split J , and, when Ci( J ) is False for all i, then we 
must subdivide J .

We use the following simple abstract algorithm to describe subdivision-based tests. Fix C1, . . . , C�

to be stopping criteria, and consider an input region I ∈ S . The output of the algorithm is a partition 
P of I such that for each element J in P , there is some i so that Ci( J ) = True. Initially, P = {I}.

Algorithm 1. Abstract Subdivision-based Algorithm

For each J ∈ P ,

If there exists 1 ≤ i ≤ � such that Ci( J ) = True, report J .
Otherwise, subdivide J and replace J with its children.

To subdivide a region J means to replace J in P with regions J1, . . . , Jk , where k ≥ 2, each J j ∈ S , 
J = ∪ j J j , and the pairwise intersections of the J j are measure zero subsets. In this paper, we add 
two mild additional assumptions to the subdivisions under consideration: Let 0 < ε1, ε2 < 1. Then, we 
add the following assumptions:

Assumption 1: μ( J j) ≥ ε1μ( J ) and
Assumption 2: Diam( J j) ≤ ε2 Diam( J ).

The first condition prevents J from splitting into too many regions at any step, while the second 
condition generalizes the idea that the aspect ratio of J i should not be too large. For additional 
details on the first assumption, see Burr (2016, Lemma 3.5 and Remark 3.6). The subdivision tree is the 
tree whose root is I , whose internal nodes represent sub-domains J that are processed during the 
subdivision, whose leaves are the terminal regions, and where the parent-child relationship is given 
by subdivision. We observe that, in the motivating example for this paper, ε1 = 2−n and ε2 = 2−1.

2.2. Diameter-distance tests

In this section, we define distance-diameter tests. These tests form the class of predicates that 
we consider in this paper. Many tests which have been developed, such as the one-circle condition 
in Descartes’ rule of signs (Krandick and Mehlhorn, 2006; Alesina and Galuzzi, 2000), are diameter-
distance tests. At first glance, it might appear that the definition of diameter-distance tests is very 
specialized; this is not the case. In fact, in Section 3, we provide a nontrivial example of these tests 
which appear frequently in applications.

Definition 2. Let X and S be defined as above. Let C be a stopping criterion on S . C is a diameter-
distance test if there exists a closed set V ⊆ X and a positive constant K such that for any J ∈ S ,

6 The theory continues to apply even with weaker conditions, but there are a few technicalities that arise. For most applica-
tions, this assumption is not an additional constraint. For weaker conditions, we leave the details to the interested reader.
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If

(
Diam( J ) < K max

x∈ J
d(x, V )

)
, then C( J ) = True,

where d(x, V ) = minv∈V d(x, v).

The extra conditions, such as compactness and properness allow one to use the minimum and 
maximum in the definition above instead of infimum and supremum. Loosely speaking, this definition 
states that C( J ) must be True when J includes a point sufficiently far away from V and J isn’t too 
large.

We note that this definition does not state that the stopping criterion C must be a distance-based 
test or even that V is known to C . Instead, the only assumption is that the criterion is less conserva-
tive than the conditional in the definition above. In particular, stopping criteria whose theory is based 
upon condition numbers are frequently diameter-distance tests because the condition number can be 
rewritten in terms of the inverse of the distance to the set of ill-conditioned inputs (Bürgisser and 
Cucker, 2013).

Throughout the remainder of this section, we assume that all stopping criteria are diameter-
distance tests.

2.3. Non-adaptive bounds

In this section, we provide a lower bound on the number of regions produced by Algorithm 1. This 
analysis is not adaptive, so it assumes the worst-case behavior everywhere. We include this approach 
for comparison because the adaptive bounds are based on the ideas of the non-adaptive bounds, and, 
in some cases, the adaptive bounds may be too complicated to compute. In the next section, we 
provide an adaptive bound based on continuous amortization (Burr, 2016).

Proposition 3. Suppose that the stopping criteria C1, . . . , C� in Algorithm 1 are all diameter-distance tests, 
with associated positive constants Ki and closed subsets Vi . Furthermore, assume that the intersection 

⋂
Vi is 

empty. Let K = min Ki , and let I be the initial input region. Define the separation bound δ as

0 < δ ≤ min
x∈I

max
i

d(x, Vi).

Then, the number of regions constructed by the algorithm is at most

max

{
1, ε

−1+ ln Diam(I)−ln(Kδ)
ln(ε2)

1

}
.

Before presenting the proof, we note that δ is a lower bound on the smallest distance from any 
x ∈ I to the furthest Vi . We call δ a separation bound because if the Vi ’s are pairwise disjoint and �
is the minimum distance between them, then �

2 satisfies the conditions for δ.

Proof. If no subdivisions occur, then the only region is the initial region. In this case, 1 region is 
constructed and the bound holds. We, therefore, assume that subdivisions occur. Let J j be a termi-
nal region and J its parent; moreover, let x ∈ J j . Since x ∈ J and J was subdivided, we know that 
Diam( J ) ≥ K maxi d(x, Vi), since, otherwise, by the definition of a diameter-distance test, for some i, 
Ci( J ) would be True, contradicting the assumption that J was subdivided. Since this maximum is 
larger than δ, it follows that Diam( J ) ≥ Kδ.

Suppose that the depth of J j in the tree is k, then the depth of J is k − 1, and, by the as-
sumption on diameters under subdivisions, we know that Diam( J ) ≤ εk−1

2 Diam(I). Therefore, Kδ ≤
εk−1
2 Diam(I). Taking the logarithm of both sides (and recalling that ln(ε2) < 0), it follows that

k ≤ 1+ ln(Kδ) − ln(Diam(I))
.

ln(ε2)
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By the assumption on volumes for subdivisions, it follows that μ( J j) ≥ εk1μ(I). Substituting in our 
expression for k, we can conclude that

μ( J j) ≥ ε
1+ ln(Kδ)−ln(Diam(I))

ln(ε2)

1 μ(I).

This lower bound applies to the measure of every terminal region. Moreover, since the pairwise inter-
section of terminal regions has zero measure, we know that, in the worse-case, I is subdivided into 
regions of this size, which results in the desired bound. �

We observe that in the motivating case, i.e., where ε1 = 2−n and ε2 = 2−1, the maximum above 
simplifies to

max

{
1,

(
2
√
n

Kδ

)n

μ(I)

}
(1)

since Diam(I)n = nn/2μ(I). In many cases, however, this bound is much larger than necessary as the 
analysis assumes that the worst-case situation occurs everywhere. An adaptive bound is necessary to 
account for this non-uniformity.

2.4. Adaptive bounds

In this section, we present adaptive bounds for the number of regions produced by Algorithm 1. 
This adaptive bound is based on the continuous amortization technique (Burr, 2016), which we briefly 
review here.

Continuous amortization was introduced in Burr et al. (2009) as a way to adaptively analyze the 
complexity of subdivision-based algorithms. In Burr (2016), the theory of continuous amortization 
was extended to apply to measure spaces and to evaluate functions on the regions of the partition, 
and we recall this technique here. The key to continuous amortization is a function on X , called a 
local size bound, which is a point estimate, locally describing the worst-case amount of work that is 
required at each point.

Definition 4. Let X and S be defined as above and C a stopping criterion on S . A local size bound for 
C is a function F : X →R≥0 with the property that

F (x) ≤ inf
J∈S
J	x

C( J )=False

μ( J ).

In other words, F (x) is a lower bound on the measure of a region which contains x, but fails the 
stopping criterion. The local size bound provides the link between the algorithm and a quantity that 
we can compute.

Theorem 5 (Burr et al. (2009); Burr (2016)). Let X and S be defined as above, C a stopping criterion on S , 
and F a local size bound for C. Let h :R≥0 → R be a non-increasing function, and let P be the final partition 
formed by Algorithm 1, which recursively subdivides the input region I , subject to Assumption 1. The sum of h
applied to the regions in P is bounded as follows:

∑
J∈P

h(μ( J )) ≤ max

⎧⎨⎩h(μ(I)),

∫
I

h(ε1F (x))

ε1F (x)
dμ

⎫⎬⎭ .

If h ≡ 1, i.e., h is the constant function, then this integral counts the number of regions formed by Algorithm 1. 
In addition, if the algorithm does not terminate, then the integral is infinite.
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We observe that we can use the continuous amortization integral to express the complexity of 
Algorithm 1 in the particular case where each stopping criterion is a diameter-distance test.

Lemma 6. Let X and S be as above and C a stopping criterion on S with constant K and closed set V . Suppose 
that the subdivisions by Algorithm 1 are subject to the two additional conditions following Algorithm 1. Then,

F (x) = ε
1+ ln(Kd(x,V ))−ln(Diam(I))

ln(ε2)

1 μ(I)

is a local size bound for C.

Proof sketch. The proof is identical to that of Proposition 3 except that we begin with the condition 
that Diam( J ) ≥ Kd(x, V ) from the definition of a diameter-distance test. �

In Algorithm 1, we have multiple stopping criteria. Therefore, for each Ci , we can define a local 
size bound Fi : X → R≥0. Moreover, since at least one of the stopping criteria must be true, we can 
take the maximum of all of them for the local size bound for Algorithm 1. In particular, we have the 
following result:

Proposition 7. Suppose that the stopping criteria C1, . . . , C� in Algorithm 1 are all diameter-distance tests 
with associated positive constants Ki and closed subsets Vi . Furthermore, assume that the intersection 

⋂
Vi is 

empty. Let I be the initial input region. Then, the number of regions constructed by the algorithm is at most

max

⎧⎨⎩1,μ(I)−1
∫
I

min
i

{
ε

−1+ ln(Diam(I))−ln(Kid(x,Vi ))
ln(ε2)

1

}
dμ

⎫⎬⎭ .

We observe that in the motivating case, i.e., where ε1 = 2−n and ε2 = 2−1, the continuous amorti-
zation integral simplifies to

max

⎧⎨⎩1,
∫
I

min
i

(
2
√
n

Kid(x, Vi)

)n

dμ

⎫⎬⎭ .

We apply both the adaptive and non-adaptive bounds to the PV algorithm as a specific example in 
Section 5.

3. Interval methods and diameter-distance tests

In this section, we show that a common exclusion test which is based on the standard centered 
form is a diameter-distance test. We begin with a brief review of the standard centered form, for 
more details, see, for example, Ratschek and Rokne (1984); Moore et al. (2009).

Let Y be any set, S a collection of subsets of Y , and consider the function f : Y → R. An interval 
method for f is an algorithm � f such that for any subset J ∈ S , � f ( J ) ⊇ f ( J ), where f ( J ) is the 
image of J under f . In other words, � f ( J ) is an over-approximation for the image of f on J . In 
most applications, Y is a metric space, and we add a convergence condition for � f , i.e., that for a 
sequence of domains { Jk} which converge to a point p, then {� f ( Jk)} converges to f (p).

In our applications, we consider the case where Y is Rn and the regions in S are axis aligned 
n-dimensional boxes, i.e., for J ∈ S , J = ∏

i[ai, bi]. In this case, most interval methods use interval 
arithmetic, i.e., arithmetic operations on intervals that produce the set-theoretic image as an interval. 
In this section, we focus on the standard centered form for multivariate polynomials (Ratschek and 
Rokne, 1984; Moore et al., 2009). Let f ∈ R[x1, . . . , xn] be a multivariate polynomial of total degree d
and J an axis aligned box. Let m = m( J ) be the midpoint of J , then the standard centered form for 
f applied to J is
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� f ( J ) = f (m) +
d∑

|α|=1

∂α f (m)

α! ( J −m)α,

where α ∈ Nn and the notation is multi-index notation, i.e., |α| = ∑
αi , ∂α f (m) = ∂

α1
1 . . . ∂

αn
n f (m), 

α! = ∏
(αi)!, and ( J −m)α = ∏[

ai−bi
2 ,

bi−ai
2

]αi
. Since ( J −m)α is a product of intervals centered at 

zero, using interval arithmetic, this product simplifies to 
∏(

bi−ai
2

)αi [−1, 1]. In the special case where 
J is an axis-aligned, n-dimensional cube, i.e., J is a product of n intervals all of the same width w , 
then all of the factors in ( J −m)α are identical, and the standard centered form can be rewritten as:

� f ( J ) = f (m) +
⎛⎝ d∑

|α|=1

∣∣∂α f (m)
∣∣

α!
(w

2

)|α|
⎞⎠ [−1,1]. (2)

The standard centered form is an interval version of a multivariate Taylor expansion centered at m, 
and the standard centered form has several nice properties including a very structured expression and 
fast convergence.

In the remainder of this section, we consider the following predicate:

C( J ) = True if and only if 0 /∈� f ( J ).

If 0 /∈ � f ( J ), then we can directly conclude that 0 /∈ f ( J ); we observe that the converse does not 
hold in general, but converges in the limit, i.e., if { Jk} is a sequence of n-dimensional boxes whose 
limit is p, then either C( Jk) = False for some k or f (p) = 0. It is often more efficient, in practice, to 
test C( J ) and subdivide J , if necessary, rather than to compute f ( J ) directly. In the remainder of this 
section, we prove that C( J ) is a diameter-distance test.

3.1. Bounds on coefficients of powers of sines and cosines

In this section, we prove a technical lemma on the magnitudes of the coefficients of sines and 
cosines. The main result in this section is used in the following section to prove that C(I) is a 
diameter-distance test.

Lemma 8. Suppose that for all θ ,∣∣∣∣∣∣
k∑

j=0

a j cos
j(θ) sink− j(θ)

∣∣∣∣∣∣ ≤ C . (3)

Then, |a j| ≤ 2k+1C.

Proof. Let f (θ) = ∑k
j=0 a j cos j(θ) sink− j(θ). We observe that this is a square-integrable and 2π -

periodic function. Moreover, its Fourier coefficients are bounded by 2C since | f (θ) cos(nθ)| ≤ C and 
| f (θ) sin(nθ)| ≤ C .

We now observe that cos(x) = 1
2 (eix + e−ix) and sin(x) = 1

2i (e
ix − e−ix). Therefore,

cos j(θ) sink− j(θ) = 1

2kik− j
(eix + e−ix) j(eix − e−ix)k− j = 1

2kik− j

k∑
l=0

ble
i(k−2l)x,

where the bl ’s are sums and products of binomial coefficients. Since ei(k−2l)x = cos((k − 2l)x) +
i sin((k − 2l)x), it follows that cos j(θ) sink− j(θ) has a finite Fourier series whose nonzero terms are of 
the form cos(nθ) and sin(nθ) where 0 ≤ n ≤ k and k − n is even. Therefore, the Fourier series of f (θ)

is can be written as follows:
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f (θ) = c0
2

+
�(k−1)/2
∑

l=0

(ck−2l cos((k − 2l)θ) + dk−2l sin((k − 2l)θ)) (4)

where all the constants are bounded by 2C .
Suppose that k ≥ n and k − n is even. Then, since cos(nx) = �((cos(x) + i sin(x))n) and sin(nx) =

�((cos(x) + i sin(x))n), we have the following7:

cos(nx) = (sin2(x) + cos2(x))
k−n
2

⎛⎝�n/2
∑
m=0

(−1)m
(

n

2m

)
cosn−2m(x) sin2m(x)

⎞⎠
sin(nx) = (sin2(x) + cos2(x))

k−n
2

⎛⎝�(n−1)/2
∑
m=0

(−1)m
(

n

2m + 1

)
cosn−1−2m(x) sin2m+1(x)

⎞⎠ .

We observe that in these expansions, cos(nx) and sin(nx) are written as linear combinations of prod-
ucts of sines and cosines of degree k. Reorganizing these sums, we find that

cos(nx) =

⌊
k
2

⌋∑
m=0

⎡⎢⎢⎣ min
{⌊ n

2

⌋
,m

}∑
p=max

{
0,m− k−n

2

}(−1)p
(

n

2p

)( k−n
2

m − p

)⎤⎥⎥⎦ cosk−2m(x) sin2m(x) (5)

and

sin(nx) =

⌊
k−1
2

⌋∑
m=0

⎡⎢⎢⎣
min

{⌊
n−1
2

⌋
,m

}∑
p=max

{
0,m− k−n

2

}(−1)p
(

n

2p + 1

)( k−n
2

m − p

)⎤⎥⎥⎦ cosk−2m−1(x) sin2m+1(x). (6)

We observe that in the formula for cos(nx), the coefficient of cosk−2l(x) sin2l(x) can be bounded as 
follows:∣∣∣∣∣∣

min{�n/2
,m}∑
p=max{0,m−(k−n)/2}

(−1)p
(

n

2p

)( k−n
2

m − p

)∣∣∣∣∣∣≤
�n/2
∑
p=0

(
n

2p

) (k−n)/2∑
q=0

( k−n
2
q

)

=
�n/2
∑
p=0

((
n − 1

2p

)
+
(

n − 1

2p − 1

)) (k−n)/2∑
q=0

( k−n
2
q

)
≤ 2n−12(k−n)/2 = 2

n+k
2 −1 (7)

Similarly, the coefficient of cosk−2l−1(x) sin2l+1(x) in the formula for sin(nx) is bounded by∣∣∣∣∣∣
min{�(n−1)/2
,m}∑

p=max{0,m−(k−n)/2}
(−1)p

(
n

2p + 1

)( k−n
2

m − p

)∣∣∣∣∣∣≤
�(n−1)/2
∑

p=0

(
n

2p + 1

) (k−n)/2∑
q=0

( k−n
2
q

)

=
�(n−1)/2
∑

p=0

((
n − 1

2p + 1

)
+
(
n − 1

2p

)) (k−n)/2∑
q=0

( k−n
2
q

)
≤ 2n−12(k−n)/2 = 2

n+k
2 −1. (8)

Moreover, we observe that these bounds are independent of m and p, depending only on n and k
In order to bound the coefficients a j , we substitute the formulas above for cos(nx) and sin(nx)

into the Fourier series for f . In particular, we substitute n = k − 2l into 2
n+k
2 −1 to get 2k−l−1. More-

over, by considering the powers in Equations (5) and (6), we conclude that if k − j is even, then 

7 We note that the expression for cos(nx) is a multiple of the Chebyshev polynomials of the first kind.
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cos j(θ) sink− j(θ) only appears in the expansion of the cosine terms (perhaps including the constant 
term) in the Fourier series for f (θ), while if k − j is odd, then cos j(θ) sink− j(θ) only appears in the 
expansion of the sine terms in the Fourier series for f (θ). We can then isolate the occurrences of 
cos j(θ) sink− j(θ) (there are four cases, depending on the parity of k and j). Then, using the triangle 
inequality and the upper bounds in Inequalities (7) and (8), we find that

|a j| ≤ 2C

⌊
k
2

⌋∑
l=0

2k−l−1 < 2k+1C,

which completes the proof. �
Corollary 9. Fix k0 ∈N , and suppose that for all θ1 , . . . , θm,∣∣∣∣∣∣

k0∑
k1=0

k1∑
k2=0

· · ·
km−1∑
km=0

a(k1,...,km)

m∏
j=1

(
sink j−1−k j (θ j) cos

k j (θ j)
)∣∣∣∣∣∣≤ C .

Then, a(k1,...,km) ≤ 2m(k0+1)C.

Proof. Proof by induction on m; the base case is Lemma 8. For the inductive case, we fix θ2, . . . , θm . 
For each k1, we define

ak0−k1 =
k1∑

k2=0

· · ·
km−1∑
km=0

a(k1,...,km)

m∏
j=2

(
sink j−1−k j (θ j) cos

k j (θ j)
)

.

Then, the given inequality simplifies to∣∣∣∣∣∣
k0∑

k1=0

ak0−k1 sin
k0−k1(θ1) cos

k1(θ1)

∣∣∣∣∣∣< C .

By Lemma 8, |ak0−k1 | ≤ 2k0+1C . Since θ2, . . . , θm are fixed, but arbitrary, and the bound does not 
depend on θ2, . . . , θm , we can apply the inductive hypothesis to ak0−k1 to give that |a(k1,...,km)| ≤
2(m−1)(k1+1)|ak0−k1 | ≤ 2(m−1)(k1+1)+(k0+1)C . Since k1 ≤ k0, the claim follows. �
3.2. Exclusion interval arithmetic tests are distance-diameter tests

In this section, we use the results of Section 3.1 to prove that the predicate on n-dimensional 
cubes8 J where C( J ) = True if and only if 0 /∈ � f ( J ) is a distance-diameter test. In this case, the 
set in the definition of a distance-diameter test is the complex variety VC( f ). As our first step, we 
reduce a higher-dimensional problem to a collection of one-dimensional problems as follows:

Definition 10. Let f ∈ R[x1, . . . , xn], p ∈Rn , and v ∈ Sn−1. We define f v(t) to be the univariate poly-
nomial consisting of the restriction of f to the line passing through p and in the direction v , i.e., 
f v(t) = f (p + tv), see Fig. 2. Next, we define 
 f v to be the sum of the reciprocals of the complex 
roots of f v , i.e.,


 f v (p) =
∑

s∈VC( f v )

1

|s| .
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Fig. 2. For a polynomial f ∈R[x, y] and a point p ∈R2, we consider the roots of f , α1, α2, α3, in the direction of a unit vector 
v .

In Burr and Krahmer (2012, Lemma 2.1), it was shown that for a univariate polynomial g ∈ R[x]
with complex roots VC(g),∣∣∣∣∣ g(k)(x)

g(x)

∣∣∣∣∣≤
⎛⎝ ∑

α∈VC(g)

1

|x− α|

⎞⎠k

.

This link between the Taylor coefficients of g and the geometry of the zero set of g can be extended 
to the current setting since f v is a univariate polynomial. We introduce the notation distC(p, f ) to 
represent the complex distance between the point p and the variety VC( f ). Explicitly, we have the 
following lemma:

Lemma 11. Let f ∈ R[x1, . . . , xn], p ∈Rn, and v ∈ Sn−1 . Then∣∣∣∣∣ 1

f (p)

dk f (p + tv)

dtk

∣∣∣∣∣
t=0

∣∣∣∣∣≤ (

 f v (p)

)k ≤
(

deg( f )

distC(p, f )

)k

.

Proof. The claim is trivial when k = 0. Since f v is a univariate polynomial, the first inequality follows 
directly from Burr and Krahmer (2012, Lemma 2.1). The second inequality follows from the fact that 
in the sum for 
 f v (p), there are at most deg( f ) terms, and each element of the sum is the inverse 
of the distance between p and a point on VC( f ), each of which is, in turn, bounded above by the 
inverse of the distance to the closest point on VC( f ). �

We now use this upper bound along with the results from Section 3.1 to bound individual Taylor 
coefficients in the multivariate Taylor expansion.

Proposition 12. Let f ∈ R[x1, . . . , xn] and p ∈Rn. Then, for all multi-indices α ∈Nn with k = |α|,∣∣∣∣∣ 1

f (p)

(
k

α

)
∂k f

∂xα
(p)

∣∣∣∣∣ ≤ 2(n−1)(|α|+1)
(

deg( f )

distC(p, f )

)|α|
,

where 
(k
α

)
is the multinomial coefficient.

Proof. Let (θ1, . . . , θn−1) ∈
(
S1
)n−1

. Consider the surjective map 
(
S1
)n−1 → Sn−1 given by (θ1, . . . ,

θn−1) �→ x = (x0, . . . , xn−1) where

8 This analysis can be extended to the case of a region which is not an n-dimensional cube by considering the smallest 
n-dimensional cube containing the n-dimensional box. We leave the details to the interested reader.
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xi =
⎛⎝ i∏

j=1

cos θ j

⎞⎠ sin θi+1 for 0 ≤ i < n − 1 and xn−1 =
n−1∏
j=1

cos θ j.

Then, for k0 = k ≥ k1 ≥ k2 ≥ · · · ≥ kn−1 ≥ 0 = kn ,

xk0−k1
0 xk1−k2

1 . . . xkn−1−kn
n−1 =

n−1∏
j=1

(sink j−1−k j θ j cos
k j θ j). (9)

Observe that, by the chain rule for v ∈ Sn−1,

1

f (p)

dk f (p + tv)

dtk
= 1

f (p)

∑
|α|=k

(
k

α

)
∂k f

∂xα
(p)vα.

By Lemma 11, we know that the magnitude of these expressions are bounded above by 
(

deg( f )
distC(p, f )

)k
. 

Moreover, since v is a unit vector, there exist k0 = k ≥ k1 ≥ k2 ≥ · · · ≥ kn−1 ≥ 0 = kn so that vα can be 
written in the form of Equation (9),

vα =
n−1∏
j=1

(sink j−1−k j θ j cos
k j θ j).

Therefore,∣∣∣∣∣∣ 1

f (p)

∑
|α|=k

(
k

α

)
∂k f

∂xα
(p)vα

∣∣∣∣∣∣
is of the form for Corollary 9 where m = n −1 and k0 = k. Therefore, the individual terms are bounded 

by 2(n−1)(k+1)
(

deg( f )
distC(p, f )

)k
, as desired. �

With Proposition 12 in hand, we now prove a lower bound on an n-dimensional cube J of width 
w = w( J ) that fails the predicate C( J ) in the following corollary:

Corollary 13. Let f ∈ R[x1, . . . , xn] and p ∈Rn. Suppose that 0 < w ≤ distC(p, f ) ln(1+22−2n)

2n−1 deg( f )
. Then∣∣∣∣∣∣

deg( f )∑
k=1

∑
|α|=k

1

k!
(
k

α

)
1

f (p)

∂ |α| f
∂xα

(p)
(w

2

)k∣∣∣∣∣∣≤ 1.

Proof. Observe that by the triangle inequality,∣∣∣∣∣∣
deg( f )∑
k=1

∑
|α|=k

1

k!
(
k

α

)
1

f (p)

∂ |α| f
∂xα

(w

2

)k∣∣∣∣∣∣≤
deg( f )∑
k=1

∑
|α|=k

∣∣∣∣ 1k!
(
k

α

)
1

f (p)

∂ |α| f
∂xα

(w

2

)k∣∣∣∣ .
Now, we can substitute the bound on the derivatives in Proposition 12 as well as the assumed bound 
on w , resulting in an upper bound of

deg( f )∑
k=1

∑
|α|=k

1

k!2
(n−1)(k+1)

(
ln(1 + 22−2n)

2n

)k

.

Since there are 
(n+k−1

k

)
possibilities for α when |α| = k, which can be trivially bounded from above 

by 2n+k−1, we can bound the expression above by
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22n−2
deg( f )∑
k=1

1

k! (ln(1+ 22−2n))k.

Since this sum is a truncated version of the Taylor series expansion of ex − 1 centered at 0 with 
x = ln(1 + 22−2n), this sum is bounded above by 22−2n , and, hence, the entire expression is bounded 
above by 1. �

Using Corollary 13, we can develop bounds on the size of a region which guarantees the success 
of the given predicate. We make this explicit in the following corollary:

Corollary 14. Let f ∈ R[x1, . . . , xn] and J ⊆ Rn an n-dimensional cube with midpoint m =m( J ) and width 
w = w( J ) such that w ≤ distC(m, f ) ln(1+22−2n)

2n−1 deg( f )
. Then, C( J ) is true.

Proof. From Equation (2), we see that 0 /∈ � f ( J ) is equivalent to⎛⎝ d∑
|α|=1

∣∣∂α f (m)
∣∣

| f (m)|α!
(w

2

)|α|
⎞⎠< 1.

This inequality arises because, in Equation (2), � f ( J ) is an interval centered at the origin shifted by 
f (m). In order for 0 to be excluded from this interval, the shift by f (m) must be larger than the half-
width of the interval. Dividing both sides by | f (m)|, we get exactly the expression in Corollary 13. �

While Corollary 14 gives a test for C( J ) = True for an n-dimensional cube, this test is not enough 
to prove that C is a distance-diameter test because both sides of the inequality involve region J . 
In particular, the midpoint of the region J appears on the right-hand-side of the inequality. The 
following lemma changes the right-hand-side of the inequality to depend on any point within J , 
instead of the midpoint.

Lemma 15. Let f ∈ R[x1, . . . , xn] and J ⊆ Rn an n-dimensional cube with midpoint m = m( J ) and width 
w = w( J ). Suppose that x ∈ J and C and k are positive constants. If

w ≤ 2CdistC(x,h)

2k + C
√
n

,

then

w ≤ CdistC(m,h)

k
.

Proof. We follow the ideas of the argument in Burr and Krahmer (2012). We observe that

w =
(
1+ C

√
n

2k

)
w − C

√
n

2k
w ≤ CdistC(x,h)

k
− C

√
n

2k
w = C

k

(
distC(x,h) −

√
n

2
w

)
,

(10)

where the inequality follows from the assumed upper bound on w . Suppose that α is the closest 
point of V (h) to m, then, by the triangle inequality, distC(m, h) ≥ distC(x, α) −distC(x, m). The 
distance distC(x, m) is at most the radius of J , which is 

√
n
2 w . Moreover, the closest point on V (h)

to x is distance at most the distance to α, so distC(x, α) ≥ distC(x, h). Hence, distC(m, h) ≥
distC(x, h) −

√
n
2 w . By substituting this into Inequality (10), the desired result follows. �

By combining Corollary 14 with Lemma 15, we explicitly show that the predicate C is a distance-
diameter test:
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Corollary 16. Let f ∈ R[x1, . . . , xn] and J ⊆ Rn an n-dimensional cube with width w = w( J ). If there is a 
point x ∈ J such that

w ≤ 2 ln
(
1+ 22−2n

)
distC(x, f )

2n deg( f ) + √
n ln

(
1+ 22−2n

) ,
then, C( J ) is true.

Proof. This result follows from Corollary 14 with Lemma 15 by letting C = ln
(
1+ 22−2n

)
and k =

2n−1 deg( f ). �
Since the diameter of an n-dimensional cube whose side is of length w is scaled by 

√
n, we have 

the following corollary:

Corollary 17. Let f ∈R[x1, . . . , xn] and J ⊆ Rn an n-dimensional cube. If there is a point x ∈ J such that

Diam( J ) ≤ 2
√
n ln

(
1+ 22−2n

)
distC(x, f )

2n deg( f ) + √
n ln

(
1+ 22−2n

) .

Then, C( J ) is true. Therefore, C is a diameter-distance test.

4. The modified Plantinga-Vegter algorithm

In this section, we provide a modified form of the PV algorithm (Plantinga and Vegter, 2004) for 
curve and surface approximation. Our version of the algorithm uses a slight variant of their derivative-
based test, but makes both tests of the appropriate form for the application of Corollary 17. We begin 
by reviewing the original PV algorithm and then discuss our generalization and adaptation.

4.1. The original PV algorithm

Let f ∈ R[x, y] or R[x, y, z] be a square-free polynomial such that its real zero set VR( f ) is 
smooth (see Footnote 5 for a brief discussion of the requirement for the curve to be bounded for 
correctness of the approximation). The PV algorithm recursively subdivides an initial input square or 
cube I with a quad-tree or oct-tree data structure until at least one of the following tests holds on 
each subregion J (in the literature, these tests are often referred to as C0 and C1):

C0( J ) = True if and only if 0 /∈� f ( J )

C1( J ) = True if and only if 0 /∈ 〈�∇ f ( J ),�∇ f ( J )〉.
For the purposes of curve approximation, when C0( J ) is True, the variety does not enter the region 
J , and so J can be discarded. On the other hand, when C1( J ) holds, the curve or surface does not 
bend much within the region J .

The PV algorithm is an instance of an Abstract Subdivision-based Algorithm that uses bisection and 
the two tests C0 and C1, see Algorithm 1. We explicitly include the algorithm here for completeness 
and to illustrate the simplicity of the approach. Given an input polynomial f and region I , the PV
algorithm constructs a partition P of I so that for all regions J of the partition, either C0( J ) = True

or C1( J ) = True. Initially, P = {I}.

Algorithm 18. Main subdivision of PV algorithm

For each J ∈ P ,

If there C0( J ) = True or C1( J ) = True, report J .
Otherwise, subdivide J and replace J with its children.
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After every sub-region J satisfies C0( J ) or C1( J ), the authors of Plantinga and Vegter (2004) per-
form post-processing steps, which include balancing the tree, evaluating the sign of f on the corners 
of each region in P , and using sign changes along the sides of these regions to detect and approxi-
mate the curve or surface. Their approximation is topologically correct for bounded curves as there 
is an ambient isotopy between the approximation and the variety VR( f ). Additionally, by further 
subdivision, the isotopy can be made sufficiently small so that the Hausdorff distance between the 
approximation and the variety is as small as desired. We note that it is possible to extend the PV
algorithm in the plane to provide a topologically correct approximation even when VR( f ) is un-
bounded, when VR( f ) is singular, and when I is not a bounding box, see Burr et al. (2012). In this 
paper, however, we focus on the original PV algorithm without the requirement of a bounded curve.

Our main target is to compute the number of regions that the PV algorithms construct, and not to 
approximate the curve or surface, per se. Therefore, we focus, exclusively, on the C0 and C1 tests and 
apply them in arbitrary dimensions. More precisely, let f ∈ R[x1, . . . , xn] be such that its real zero 
set VR( f ) is smooth. Let I ⊆ Rn be an n-dimensional real cube. Then, we can generalize the tests 
C0 and C1, along with Algorithm 18, to n dimensions, where the subdivision splits an n-dimensional 
cube into 2n children. We mention that, in this case, we no longer use the output of the algorithm to 
construct an approximation to VR( f ).

4.2. Modifying the C1 test

As presented above, the C0 test is of the form considered in Corollary 17, so it is a diameter-
distance test. On the other hand, the C1 test is not of this form; therefore, it is not clear if the C1
test is a diameter-distance test. The difficulty in applying the corollary in this case is that arithmetic 
operations are performed on intervals after an application of interval methods. In this section, we 
describe an alternate C1 test that satisfies the assumptions of Corollary 17.

The predicate C1( J ) has the following two consequences that are fundamental in the proof of the 
correctness of the PV algorithm in Plantinga and Vegter (2004):

1. If a region J satisfies the C1 condition, then, in J , there cannot be any pair of gradient vectors of 
f which are orthogonal to each other.

2. The variety VR( f ) is parametrizable in the direction of at least one of the coordinate axes.

Fact 2 is a direct consequence of Fact 1, but it is used so frequently in the proofs in Plantinga and 
Vegter (2004), that it is worthwhile to mention it explicitly.

We now modify the C1 test in arbitrary dimensions so that it has the form in the assumptions of 
Corollary 17. Consider the function g : Rn ×Rn →R, defined as

g(x1, . . . , xn, y1, . . . , yn) = 〈∇ f (x1, . . . , xn),∇ f (y1, . . . , yn)〉.
It follows that, if, for a region J , 0 /∈ �g( J × J ), then there is no pair of gradient vectors of f in J
which are orthogonal to each other. Thus the modified C1 test, briefly denoted C ′

1, is as follows:

C ′
1( J ) = True if and only if 0 /∈�g( J × J ).

Therefore, when C ′
1( J ) is true, we can conclude the truth of Facts 1 and 2, and the application of an 

interval method appears as the last step as opposed to in an intermediate step. Therefore, C ′
1 satisfies 

the assumptions in Corollary 17, and, therefore, is a diameter-distance test. For the rest of the paper, 
all references to the C1 test refer to this new C ′

1 test. In particular, all discussions of the PV algorithm 
refer to the modified PV algorithm.

Let J be an n-dimensional real cube with midpoint m = m( J ) and side length w = w( J ). The 
explicit formula for the C0 test appears in the proof of Corollary 14. Since the C1 test is based on 
the function g whose domain is 2n-dimensional and the square J × J has midpoint (m, m), but side 
length w , the C1 test simplifies, in terms of multi-index notation, to
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∑
|α|+|β|≥1

∣∣∣∣∣
n∑

i=1

∂α+ei f (m)∂β+ei f (m)

‖∇ f (m)‖2α!β!

∣∣∣∣∣ (w

2

)|α|+|β|
< 1, (C1)

where ei is the i-th standard basis vector. We additionally note that since f and J are real, 
‖∇ f (m)‖2 = g(m, m). Additionally, for future reference, we collect and adapt the statement of Corol-
lary 16 to the case of g on the region J × J in the following corollary:

Corollary 19. Let f ∈ R[x1, . . . , xn] and define g ∈ [x1, . . . , xn, y1, . . . , yn] as g(x1, . . . , xn, y1, . . . , yn) =
〈∇ f (x1, . . . , xn), ∇ f (y1, . . . , yn)〉. Let J ⊆Rn, and suppose that there is a point (a, b) ∈ J × J such that

w ≤ 2 ln
(
1+ 22−4n

)
distC((a,b), g)

22n+1(deg( f ) − 1) + √
2n ln

(
1+ 22−4n

) .
Then, C1( J ) is true.

We end this section by collecting a corollary of Corollary 19 which resembles a diameter-distance 
test and will be used in the next section:

Corollary 20. Let f ∈ R[x1, . . . , xn] and define g ∈ [x1, . . . , xn, y1, . . . , yn] as g(x1, . . . , xn, y1, . . . , yn) =
〈∇ f (x1, . . . , xn), ∇ f (y1, . . . , yn)〉. Let J ⊆Rn, and suppose that there is a point x ∈ J such that

Diam( J ) ≤ 2
√
n ln

(
1+ 22−4n

)
distC((x, x), g)

22n+1(deg( f ) − 1) + √
2n ln

(
1+ 22−4n

) .
Then, C1( J ) is true.

5. Worst-case bounds

In this section, we provide worst-case complexity bounds for the modified PV algorithm. We 
bound both the number of regions produced by the subdivision as well as the overall bit-complexity 
of the algorithm. In the next section, we give examples which show that these bounds are tight in 
the worst case.

5.1. Non-adaptive bounds

In this section, we use Proposition 3 to bound the number of regions produced by the PV al-
gorithm. We assume9 that f ∈ Z[x1, . . . , xn] and the fixed initial input region I has corners in Zn . 
Suppose that we can find a δ so that

0 < δ ≤ min
x∈I

max {distC(x, f ),distC((x, x), g)} ,

and define

K = min

{
2
√
n ln

(
1+ 22−2n

)
2n deg( f ) + √

n ln
(
1+ 22−2n

) , 2
√
n ln

(
1+ 22−4n

)
22n+1(deg( f ) − 1) + √

2n ln
(
1+ 22−4n

)} .

We observe that the terms in the definition of K are the coefficients in Corollaries 16 and 20. With 
a slight modification to Proposition 3, we can substitute K and δ from above into Equation (1) to get 
the following corollary:

9 The argument in this section can be directly generalized for f ∈ Q[x1, . . . , xn] and I whose corners are in Qn . We leave 
the details to the interested reader.
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Corollary 21. Let f ∈ R[x1, . . . , xn]. Then, the PV algorithm performs at most max
{
1,
(
2 Diam(I)

Kδ

)n}
subdi-

visions.

We spend the remainder of this section computing a lower bound for δ. We begin by observ-
ing that f is a polynomial in n variables and g is a polynomial in 2n variables. In other words, 
the varieties VC( f ) and VC(g) are embedded in two different spaces. It becomes easier to study 
and compare the varieties if they are subsets of the same space; therefore, we consider the im-
age of VC( f ) in the diagonal of a 2n-dimensional space. In particular, let the variables of C2n

be {x1, . . . , xn, y1, . . . , yn}. The diagonal � consists of all points of the form xi = yi ; then, � is 
n-dimensional and we can identify Cn with �. In our case, we write f � for the polynomial system 
f (x1, . . . , xn) and xi − yi for all i. We note that for x ∈ Cn , distC((x, x), f �) = √

2distC(x, f ). 
Therefore, we are interested in computing a lower bound for

min
x∈I

max

{
1√
2
distC((x, x), f �),distC((x, x), g)

}
≥ 1√

2
min
x∈I

max
{
distC((x, x), f �),distC((x, x), g)

}
. (11)

We now focus on computing a lower bound on the RHS of Inequality (11).
First we introduce some notation. Let I� be the image of I in �, i.e., I� = {(x, x) ∈ � : x ∈ I}. 

Moreover, let Cε = ([−ε, ε] × [−iε, iε])2n be the cube of side length 2ε centered at the origin in 
C2n . Then, we write I�ε = I� ⊕ Cε , where ⊕ denotes the Minkowski sum. We observe that for all 
(x, y) ∈ I�ε , the distance from (x, y) to I� is at most 2

√
nε since that is the largest distance from a 

point in Cε to the origin. Similarly, if (x, y) ∈ C2n is not in I�ε , then the distance from (x, y) to I� is 
more than ε since Cε contains the closed ball of radius ε centered at the origin.

Suppose that we can find a positive integer k so that for any (x, x) ∈ VC( f �, g), the distance 
between (x, x) and I� is at least 

√
n

2k−1 . Then, we may use a bound of Jeronimo et al. (2013) to find a 
lower bound for the RHS of Inequality (11) as follows:

Proposition 22. Let f ∈ Z[x1, . . . , xn] be of degree d, and define g ∈ R[x1, . . . , xn, y1, . . . , yn] as
g(x1, . . . , xn, y1, . . . , yn) = 〈∇ f (x1, . . . , xn), ∇ f (y1, . . . , yn)〉. Suppose that I ⊆ Rn is an axis-aligned 
n-dimensional cube whose corners have integral coordinates. Let H be the maximum absolute value of the 
coefficients of f and coordinates of the corners of I . Suppose that f � = { f , xi − yi} is the polynomial system 
corresponding to the image of VC( f ) in the diagonal of C2n and I� = {(x, x) : x ∈ I} is the image of I in the 
diagonal of C2n. Let k be a positive integer so that for any (x, x) ∈ VC( f �, g), the distance between (x, x) and 
I� is more than 

√
n

2k−1 . Then,

min
x∈I

max
{
distC((x, x), f �),distC((x, x), g)

}
≥ 1

2k+1

(
24−4nmax

{
2(2d−2)(k+1)nd2H2,60n + 8

}
(2d − 2)8n

)−4n28n(2d−2)8n

. (12)

Proof. If d = 1, then g is a nonzero constant, so the bound holds trivially. Therefore, we assume that 
d ≥ 2. We observe that g has degree 2d −2, and, since the maximum absolute value of the coefficients 
of ∇ f is dH , the maximum absolute value of the coefficients of g is nd2H2.

Let ε = 1
2k
; by the assumption on k, it follows that VC( f �, g) ∩ I�ε is empty. We proceed by 

applying a homothety centered at the origin by a factor of 2k in C2n . Therefore, if we let ̃ I� be the 
image of I� after applying the homothety, then applying the homothety to I�ε results in ̃I�1 . Let f̃ and 
g̃ be the images of f and g under the homothety and a suitable scaling to restore integer coefficients. 
Then, the maximum absolute value of the coefficients of f̃ is 2dkH and the maximum absolute value 
of the corners of ̃ I� is 2kH . Additionally, the linear terms of the form xi − yi are unchanged and the 
maximum absolute value of the coefficients of g is 2(2d−2)knd2H2.
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Next, we identify C2n with R4n by decomposing each complex variable into two real variables. 
This doubles the number of polynomials and scales the maximum absolute value of the coefficients 
by binomial coefficients, which can be trivially bounded by 2d for the polynomials coming from f̃
and 22d−2 for the polynomials coming from ̃g . Hence, the maximum absolute value of the coefficients 
coming from f̃ is at most 2d(k+1)H , and the maximum absolute value of the coefficients coming from 
g̃ is at most 2(2d−2)(k+1)nd2H2.

We observe that if I =∏[ai, bi], then ̃ I�1 can be defined by the inequalities:

2kai − 1 ≤ �(xi),�(yi) ≤ 2kbi + 1

−1 ≤ �(xi),�(yi) ≤ 1

−2 ≤ �(xi) − �(yi) ≤ 2.

This system accounts for 10n inequalities with largest absolute value of the coefficients at most 
2kH + 1. Moreover, f̃ � corresponds to 2n + 2 equalities while g̃ corresponds to 2 equalities. By ap-
plying Jeronimo et al. (2013, Theorem 1.2), we get that the distance between VC( f̃ �) and VC (̃g)
within ̃ I�1 is at least(

24−4n max
{
2(2d−2)(k+1)nd2H2,60n + 8

}
(2d − 2)8n

)−4n28n(2d−2)8n

.

By scaling this by 1
2k

to remove the homothety and appealing to the triangle inequality, we get the 
desired result. �

In the remainder of this section, we find an upper bound for k. We find this bound by computing 
a separation bound between I� and VC( f �, g).

Proposition 23. Let f ∈ Z[x1, . . . , xn] be smooth and of degree d, and define g ∈ R[x1, . . . , xn, y1, . . . , yn]
as g(x1, . . . , xn, y1, . . . , yn) = 〈∇ f (x1, . . . , xn), ∇ f (y1, . . . , yn)〉. Suppose that I ⊆ Rn is an axis-aligned 
n-dimensional cube whose corners have integral coordinates. Let H be the maximum absolute value of the 
coefficients of f and coordinates of the corners of I . Suppose that f � = { f , xi − yi} is the polynomial system 
corresponding to the image of VC( f ) in the diagonal of C2n and I� = {(x, x) : x ∈ I} is the image of I in the 
diagonal of C2n. Let (x, x) ∈ VC( f �, g), then the distance between (x, x) and I� is at least(

24−2n max
{
2(2d−2)nd2H2,32n + 8

}
(2d − 2)4n

)−2n24n(2d−2)4n

.

Proof. If d = 1, then g is a nonzero constant, so the bound holds vacuously. Therefore, we assume that 
d ≥ 2. Throughout this proof, we restrict our attention to I�1 and we observe that if (x, x) ∈ VC( f �, g)
is outside of I�1 , then 1 is a lower bound on its distance to I� . Since f is smooth, it follows that 
VC( f �, g) ∩R2n is empty. Therefore, by a compactness argument, VC( f �, g) ∩ I�1 is bounded away 
from the real points in the diagonal, i.e., R2n ∩�. Moreover, since VC( f �, g) contains no real points, 
it follows that 2 

∑�(xi)2 is bounded away from zero for all (x, x) ∈ VC( f �, g) ∩ I�1 and the sum is 
a lower bound on the square of the distance to I1� . We now proceed to find a lower bound on this 
sum.

As in Proposition 22, we identify C2n with R4n . Since no homotheties are required, I�1 corre-
sponds to 10n inequalities with maximum coefficient size H + 1, f � corresponds to 2n + 2 equalities 
with coefficient size at most 2dH , and g corresponds to 2 equalities with coefficient size at most 
2(2d−2)nd2H2. Finally, the sum of interest is of degree 2 with maximum coefficient size of 2. By ap-
plying Jeronimo et al. (2013, Theorem 1.1), we get that on VC( f �, g) ∩ I�1 , the sum 2 

∑�(xi)2 is at 
least (

24−2n max
{
2(2d−2)nd2H2,32n + 8

}
(2d − 2)4n

)−4n24n(2d−2)4n

.
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Since the sum 2 
∑�(xi)2 is the square of the distance from (x, x) to R2n , which contains I�1 , so, by 

taking the square root, the result follows. �
By combining Corollary 21 with Propositions 22 and 23, we obtain an explicit bound for the num-

ber of terminal regions produced by the PV algorithm.

Theorem 24. Let f ∈ Z[x1, . . . , xn] be smooth and of degree d and I ⊆ Rn be an axis-aligned n-dimensional 
cube whose corners have integral coordinates. Let H be the maximum absolute value of the coefficients of f
and coordinates of the corners of I . The number of (terminal) regions produced by the PV algorithm is

2O (n3224nd12n+1(d+lg H+n lg d)).

Proof. We observe that for any positive constant a, lg(ln(1 + 22−an)) = O (−n) and 
√
x ln(1 + 22−2x)

is bounded, so − lg K = O (n + lgd). By Proposition 22, − lg δ = O (n216nd8n(dk + lg H + n lgd)). Next, 
since k is an integer and in the exponent of 2, k can be chosen to be within 1 of the base 2 logarithm 
of the bound in Proposition 23. Therefore, k = O (n28nd4n(d + lg H + n lgd)). Substituting this into the 
bound for δ, we find that − lg δ = O (n2224nd12n+1(d + lg H + n lgd)). Substituting the bounds into the 
expression in Corollary 21 results in the stated complexity. �
5.2. Adaptive bounds

In this section, we use continuous amortization to adaptively compute the number of boxes created 
by the PV algorithm. We follow the formulation of continuous amortization in Theorem 5. While 
Corollary 17 shows that the C0 test can be substituted directly into the integral of Proposition 7, 
the C1 test is slightly more challenging to use, even with Corollary 20 in hand, since it involves 
both n-dimensional and 2n-dimensional spaces. We, therefore, return to the original formulation of 
continuous amortization in Theorem 5. We observe that Corollary 16 can be reformulated into a local 
size bound since the volume of an n-dimensional cube is the width of the cube to the nth power, 
namely,

G0(x) =
(

2 ln
(
1+ 22−2n

)
distC(x, f )

2n deg( f ) + √
n ln

(
1+ 22−2n

))n

is a local size bound for the C0 test. Similarly, Corollary 19 can be reformulated into a local size bound 
as follows:

G1(x) =
(

2 ln
(
1+ 22−4n

)
distC((x, x), g)

22n+1(deg( f ) − 1) + √
2n ln

(
1+ 22−4n

))n

.

In this case, even though the test in Corollary 19 uses points (a, b) ∈ J × J , since the statement is 
existential, the upper bound only gets smaller when restricted to the points in J × J on the diagonal 
�. Applying these local size bounds to Theorem 5 gives the following result:

Theorem 25. Let f ∈R[x1, . . . , xn], and define g ∈ R[x1, . . . , xn, y1, . . . , yn] as g(x1, . . . , xn, y1, . . . , yn) =
〈∇ f (x1, . . . , xn), ∇ f (y1, . . . , yn)〉. Suppose that I ⊆ Rn is an axis-aligned n-dimensional cube. The number 
of (terminal) regions after the subdivision performed by the PV algorithm (before balancing) is bounded above 
by the maximum of 1 and

2n
∫
I

min

{(
2n deg( f ) + √

n ln
(
1+ 22−2n

)
2 ln

(
1 + 22−2n

)
distC(x, f )

)n

,

(
22n+1(deg( f ) − 1) + √

2n ln
(
1+ 22−4n

)
2 ln

(
1+ 22−4n

)
distC((x, x), g)

)n}
dVn
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where dVn is the n-dimensional volume form. Moreover, the algorithm does not terminate if and only if the 
integral diverges.

Proof. This is a straight-forward application of continuous amortization from Theorem 5 with ε1 =
2−n . The only statement left to prove is that if the integral diverges, then the algorithm does not 
terminate. The integral diverges if and only if there exists a point x ∈ I so that distC(x, f ) = 0
and distC((x, x), g) = 0. This, however, only happens when f has a real singularity, and regions 
containing real singularities never pass either of the C0 or C1 tests. �

This integral provides a more adaptive and accurate estimate on the complexity than the worst-
case a priori bounds based on the size of the input because it does not assume that the worst case 
occurs at every point (or even at any point). Moreover, this integral can be evaluated even when 
the input polynomial has complex (but not real) singularities. Additionally, this integral applies even 
when f does not have integral coefficients.

5.3. Overall bit-complexity bound

In this section, we extend the results of Theorems 24 and 25 to bound the bit-complexity of the
PV algorithm using both adaptive and non-adaptive approaches. We begin by bounding the cost for 
evaluating each of the tests C0 and C1 on an arbitrary n-dimensional cube. In this section, we use O (·)
and O B(·) to denote the arithmetic complexity and bit-complexity, respectively. The soft-O notation, 
Õ (·) and Õ B(·) means that we are ignoring logarithmic factors of the dominant term.

A closer look at the predicates C0 and C1 and the centered form (see Section 3) reveals that 
each step of the PV algorithm consists of a multivariate Taylor shift. In particular, given a polynomial 
F ∈ Z[x1, . . . , xn] and dyadic rational numbers a1, . . . , an , we recursively compute the coefficients of 
F (x1 + a1, . . . , xn + an), cf. Mantzaflaris et al. (2011).

Lemma 26. Consider a polynomial F ∈ Z[x1, · · · , xn] of total degree d and whose coefficients have maxi-
mum bit-size τ , and integers a1, . . . , an of bit-size at most 
. The Taylor shift F (x1 + a1, . . . , xn + an) costs 
Õ B(dn+1
 + dnτ ).

Proof. We begin the proof with two observations: The maximum degree of any polynomial appearing 
in this proof is d and the logarithm of the bit-size of the coefficients is Õ (d
 + τ ), see, e.g., von zur 
Gathen and Gerhard (1997, Lemma 2.1). We prove this lemma by induction; when n = 1, this is a 
univariate Taylor shift, whose complexity is Õ B(d2
 + dτ ) by von zur Gathen and Gerhard (1997, 
Theorem 2.4).

For the inductive step, we assume that d + 1 is a power of 2. We begin by calculating (xn + an)2
i

for i = 0, . . . , lgd. Since each of these polynomials has coefficients of maximum bit-size Õ B(d
) and 
these expressions can be computed through successive squaring, the total cost is Õ B(d2
). We now 
write

F (x1 + a1, . . . , xn + an) = F0(x1 + a1, · · · , xn + an) + (xn + an)
d/2F1(x1 + a1, · · · , xn + an)

where in each Fi , the degree in xn is at most d/2. The cost to compute the product (xn +an)d/2F1(x1+
a1, · · · , xn+an) is Õ B(dn(d
+τ )). By continuing this computation recursively, we see that the number 
of polynomials doubles each time and the maximum degree of xn halves each time, so the total cost 
of multiplication remains Õ B(dn(d
 + τ )) at every step. The recursion has depth lg(d + 1), and the 
final step of the recursion requires (d + 1) Taylor shifts on (n − 1) variables. The result then follows 
from the inductive hypothesis. �

Using Theorem 24 and Lemma 26, we can calculate the overall bit-complexity of the PV algorithm.
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Theorem 27. Let f ∈ Z[x1, . . . , xn] be smooth and of degree d and I ⊆ Rn be an axis-aligned n-dimensional 
cube whose corners have integral coordinates. Let τ = lg H be the maximum bit-size of the coefficients of f
and the corners of I . The overall bit-complexity of the PV algorithm is

2O (n3224nd12n+1(d+τ+n lg d)) Õ B(2
26nd14n+2(d + τ )).

Proof. We observe that, after each subdivision in the PV algorithm, the bit-size of the center of the 
Taylor shift increases by at most 1. To simplify the calculation, we charge each n-dimensional cube 
in the final partition for all intermediate n-dimensional cubes that contain it, proportionally to their 
relative areas. Following the approach of Burr (2016, Section 7.1), it follows that the total complexity 
cost of the PV algorithm is at most twice the cost incurred by the terminal regions themselves.

We observe that the maximum bit-size of a Taylor shift is O (− lg δ) from Theorem 24, so we 
replace 
 in Lemma 26 by the bound from this theorem. We also recall, from Proposition 22, that g
is a polynomial of degree 2d − 2 in 2n variables whose coefficients have maximum bit-size O (τ +
d + lgn). By substituting these values into Lemma 26 and multiplying by the maximum number of 
regions, we arrive at the overall bit-complexity of

2O (n3224nd12n+1(d+τ+n lg d))

× Õ B((2d − 2)2n+1(n2224nd12n+1(d + τ + n lgd)) + (2d − 2)2n(τ + d + lgn)),

which simplifies to the desired expression. �
We observe that in the 2-dimensional case that frequently occurs in applications, the overall bit-

complexity of the PV algorithm is as follows:

Corollary 28. The bit-complexity of the PV algorithm for curves is

2O (d25(d+τ+lg d)) Õ B(d
30(d + τ )).

We may also use Theorem 5 to find an adaptive bound for the bit complexity. To be able to use 
this Theorem, we need to define the appropriate functions h0 and h1 that compute the charges to the 
terminal regions depending on the C0 and C1 tests. The main complexity costs in the C0 and C1 tests 
are the costs for the Taylor shifts. Therefore, we use Lemma 26 to derive appropriate cost functions. 
We observe that for an n-dimensional cube J , the bit-size of the appropriate Taylor shift is at most 
(lgw(I) − lgw( J )). By the discussion above, since the complexity cost of the PV algorithm is at most 
twice the complexity cost of the terminal regions, we may focus on terminal regions.

If J passes C0, since f is a degree d polynomial in n variables whose coefficients have maximum 
bit-size τ , it follows that the charge associated to J is Õ B(dn+1 lgw(I) − dn+1 lgw( J ) + dnτ ). Since 
the functions in Theorem 5 are based on the measure of J and not its width, we define the function

h0(y) =
(
dn+1 lgw(I) − dn+1

n
lg y + dnτ

)
k0(d, τ ,n)

where k0(d, τ , n) is the maximum value over I of the suppressed terms in the Õ B . We observe that 
h0(μ( J )) is an upper bound on the bit-cost to compute the Taylor shift for the C0 test for J .

On the other hand, if J passes C1, since g is a degree 2d − 2 polynomial in n variables whose 
coefficients have maximum bit-size O (τ + d + lgn), it follows that the charge associated to J for 
the C1 test is Õ B(22nd2n+1 lgw(I) − 2nd2n+1 lgw( J ) + 22nd2n(τ + d + lgn)), which simplifies to 
Õ B(22nd2n+1 lgw(I) − 22nd2n+1 lgw( J ) + 22nd2nτ ). As above, we define the function

h1(y) =
(
22nd2n+1 lgw(I) − 22nd2n+1

n
lg y + 22nd2nτ

)
k1(d, τ ,n)
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where k1(d, τ , n) is the maximum value over I of the suppressed terms in the Õ B . We observe that 
h1(μ( J )) is an upper bound on the bit-cost to compute the Taylor shift for the C1 test for J .

We use these two functions along with G0 and G1 as defined in Section 5.2 to develop adaptive 
bounds on the bit-complexity of the PV algorithm as follows:

Theorem 29. Let f ∈ Z[x1, . . . , xn] be smooth and of degree d and I ⊆ Rn be an axis-aligned n-dimensional 
cube whose corners have integral coordinates. Let τ = lg H be the maximum bit-size of the coefficients of f
and the corners of I . The overall bit-complexity of the PV algorithm is the maximum of h0(w(I)n), h1(w(I)n), 
and

2n
∫
I

min

{
h0(2−nG0(x))

G0(x)
,
h1(2−nG1(x))

G1(x)

}
dVn.

6. Examples

The bounds in Theorems 24 and 25 are both exponential with respect to the degree of the poly-
nomial and the number of variables. They remain exponential even if we assume that the number of 
variables is constant. In Plantinga and Vegter (2004), the authors show that for several examples the 
computation time is efficient in practice. The following examples illustrate that:

• The exponential behavior is optimal, up to constants in the exponents and
• In particular cases, the complexity is provably better than the worst-case.

Lemma 30. The bound of Theorem 24 is asymptotically tight.

Proof. Following the construction in Eigenwillig et al. (2006), consider the Mignotte polynomial 
P (x) = xd − 2(ax − 1)2 and the related polynomial P2(x) = xd − (ax − 1)2 where a is a sufficiently 
large positive integer. The product P (x)P2(x) is of degree 2d and the largest coefficient is of size 2a4. 
In Eigenwillig et al. (2006), it is shown that the product P (x)P2(x) has (at least) three roots in the 
interval (a−1 − h, a−1 + h) where h = a−d/2−1, see Fig. 3(a). Treating P (x)P2(x) as a polynomial in n
variables, we see that the PV algorithm to approximate the variety in an n-dimensional cube I of side 
length w = w(I) requires subdividing until the regions have side length at most 2h to separate the 
three vertical hyperplanes in the interval (a−1 − h, a−1 + h). Since this occurs along an entire hyper-
plane of the input region, the number of small boxes is, at least, wn−1

2h = 1
2w(I)n−1ad/2+1, which is 

exponential in both the size of the input region and the size of the coefficients of the polynomial. �
The previous example, while illustrating that the bounds are tight, raises the question of whether 

exponential behavior is due to the fact that the example is a one-dimensional problem lifted to higher 
dimensions. We now provide an example that shows that this exponential behavior can be observed 
for a curve involving both x and y in two dimensions. In particular, in Lemma 30, the exponential 
behavior in two-dimensions was caused by two curves which were close together, but had a curve of 
critical points between them. We can mimic that behavior for a curve in two-dimensions by consid-
ering a situation where two local components of the curve share an asymptote.

Example 31. Fix ε > 0 and consider f (x1, x2) of one of the following forms:

• f (x1, x2) = xa11 xa22 − εa1+a2 where a1 and a2 are both positive integers and at least one is even or
• f (x1, x2) = xa11 xa22 + εa1+a2 where a1 and a2 are both positive integers and exactly one is even.

In either of these cases, the PV algorithm produces exponentially many regions in the size of the 
input box and the size of the coefficients of the polynomial, see Fig. 3(b).
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Fig. 3. (a) The output of the PV algorithm for f (x, y) = (xd − 2(ax − 1)2)(xd − (ax − 1)2). The solutions to f (x, y) = 0 are close 
vertical lines (the illustrated case is when d = 3 and a = 3). The width of boxes between vertical lines is at most 2a− d

2 −1 and 
they extend the entire length of the initial region. The number of regions is bounded from above by �(wa

d
2 +1) where w = w(I)

is the width of the initial region. (b) The output of the PV algorithm on 1000x4 y4 − 1. We observe that the near-singularity 
at (0, 0) does not cause exponentially many subdivisions. Instead, the pair of curves with the same asymptote contribute to 
this behavior since the width of boxes along the horizontal (vertical) axis must be less than the vertical (horizontal) distance 
between the two branches.

Since all of the cases are similar, we focus on the case where f (x1, x2) = xa11 xa22 − εa1+a2 and 
a2 is even. In this case, we show that the number of regions which intersect the positive x-axis is 
exponential in the size of the input. Since ∇ f is zero on the positive x-axis, any box which is terminal 
and intersects the positive x-axis must satisfy Condition C0. For any positive x,(

x,±
(

εa1+a2

xa1

)1/a2
)

are points on the variety VR( f ). Therefore, any region which is terminal and contains (x, 0) must 
have width at most

2

(
εa1+a2

xa1

)1/a2

(13)

since, otherwise, the region would contain a point of VR( f ) and could not satisfy Condition C0.
Let J be a terminal region which intersects the positive x-axis and let [s1, s2] be the intersection 

of J with the positive x-axis. Then, consider the integral

1

2

s2∫
s1

(
xa1

εa1+a2

)1/a2
dx ≤ w( J )

2

(
sa12

εa1+a2

)1/a2

, (14)

where the inequality follows since the integrand is increasing. Since (s2, 0) ∈ J , by the bound in 
Expression (13), it follows that Expression (14) is at most 1.

Suppose that the intersection of the initial region I with the positive x-axis is [r1, r2]. Then, by the 
bound on Integral (14) from above, it follows that

1

2

r2∫
r

(
xa1

εa1+a2

)1/a2
dx = a2

2(a1 + a2)

(( r2
ε

) a1+a2
a2 −

( r1
ε

) a1+a2
a2

)

1
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Fig. 4. (a) The output of the PV algorithm for f (x, y) = x2 + y2 − ε2. The number of regions is bounded by O (lg(w) − lg(ε)). 
(b) The output of the PV algorithm for f (x, y) = x2 + y2 + ε2. The number of regions is bounded by O (lg(w) − lg(ε)).

is a lower bound on the number of regions formed by the PV algorithm along the positive x-axis. This 
region count is exponential in both the size of the input region and the size of the coefficients of the 
polynomial.

We remark that the example above is intrinsically hard for the algorithm and it can be adapted to 
higher dimensions and applies even under a change of coordinates. We also note that the exponential 
behavior does not come from the near singularity at (0, 0), but from the curves sharing asymptotes. 
For the centered form, see Section 3, the complex portions of the curve also affect subdivisions, so, 
when using the centered form for the tests C0 and C1, the exponential behavior from the analysis 
above can be extended for all positive integers a1 and a2 such that a1 + a2 > 2.

Even though our bounds are optimal, in practice, these are often quite pessimistic, as the actual 
separation bounds do not follow the worst case behavior. We illustrate this better behavior in the 
following two examples:

Example 32. Fix ε > 0 and consider f (x1, x2) = x21 + x22 + ε2. Then,

distC((x1, x2), f ) =
√

x21 + x22
2

+ ε2

and

distC((x1, x2, x1, x2), g) =
√
x21 + x22.

Let I be the initial input square where w = w(I) is the width of I . By substituting these bounds into 
Theorem 25, we find that the number of regions constructed by the PV algorithm is O (lg(w) − lg(ε)), 
see Fig. 4(a).

Example 33. Fix ε > 0 and consider f (x1, x2) = x21 + x22 − ε2. Then,

distC((x1, x2), f ) =

⎧⎪⎨⎪⎩
∣∣∣∣√x21 + x22 − ε

∣∣∣∣ x21 + x22 ≤ 4ε2√
x21+x22

2 − ε2 x21 + x22 > 4ε2

and
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distC((x1, x2, x1, x2), g) =
√
x21 + x22.

Let I be the initial input square where w = w(I) is the width of I . By substituting these bounds into 
Theorem 25, we find that the number of regions constructed by the PV algorithm is O (lg(w) − lg(ε)), 
see Fig. 4(b).

Moreover, we observe that for each of these examples, the minimum distance between VC( f �)

and VC(g) is at most ε. Therefore, a bound coming from Theorem 24 would be much larger than the 
bound continuous amortization provides.

It remains an open question to deduce adaptive complexity bounds for the PV algorithms from 
Theorem 25 based on geometric and a priori parameters. We observe that since the complexity of 
the algorithm can be exponential in the inputs, the integral must be described in terms of more 
parameters than the degree of f and the size of the coefficients of f .
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