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Abstract. We examine the cohomology and representation theory of a family of finite
supergroup schemes of the form (G−

a ×G−
a )o(Ga(r)×(Z/p)s). In particular, we show that

a certain relation holds in the cohomology ring, and deduce that for finite supergroup
schemes having this as a quotient, both cohomology mod nilpotents and projectivity of
modules is detected on proper sub-supergroup schemes. This special case feeds into the
proof of a more general detection theorem for unipotent finite supergroup schemes, in a
separate work of the authors joint with Iyengar and Krause.

We also completely determine the cohomology ring in the smallest cases, namely
(G−

a × G−
a ) o Ga(1) and (G−

a × G−
a ) o Z/p. The computation uses the local cohomol-

ogy spectral sequence for group cohomology, which we describe in the context of finite
supergroup schemes.

1. Introduction

The calculations in this paper are motivated by the problem of detecting nilpotents in
cohomology theories which has a long history. In algebraic topology, the celebrated nilpo-
tence theorem in the stable homotopy category is due to Devinatz–Hopkins–Smith. For
mod-p finite group cohomology, Quillen showed that nilpotence is detected upon restric-
tion to elementary abelian subgroups. Suslin proved an analogue of Quillen’s detection
theorem for cohomology of finite group schemes where the detection family consisted
of abelian finite groups schemes isomorphic to Ga(r) × (Z/p)s (preceded by the work
of Suslin-Friedlander-Bendel [3] on infinitesimal finite group schemes and Bendel [2] on
unipotent finite group schemes).

In joint work with Iyengar and Krause [7], we study the question of detecting nilpotents
in the cohomology of a finite supergroup scheme, or equivalently, a finite dimensional Z/2-
graded cocommutative Hopf superalgebra. We establish a detecting family in the case
of a unipotent finite supergroup scheme which turns out to have a surprisingly more
complicated structure than what one sees in the ungraded case in the detection theorems
of Quillen and Suslin. A particularly difficult case arising in the course of the proof of
the detection theorem in [7] is that of the degree two cohomology class determined by
the central extension of G−a × Ga(r) × (Z/p)s by G−a , where G−a is a supergroup scheme
corresponding to the exterior algebra of a one dimensional super vector space concentrated
in odd degree. The outcome of this paper, which feeds into the proof of the general result
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in [7], is that a certain product vanishes in cohomology but this relation does not follow
in the usual way from the action of the Steenrod operations.

In the course of producing the desired relation, we study the representation theory and
cohomology of finite supergroup schemes of the form (G−a ×G−a )o (Ga(r)× (Z/p)s), where
the complement Ga(r)× (Z/p)s is acting faithfully on the normal sub-supergroup scheme
G−a ×G−a . We also obtain a great deal of information about the smallest case, computing
the cohomology ring of (G−a × G−a ) o Z/p, which is our first result, proved in Section 5.
Note that for supergroup schemes, the cohomology is doubly graded: we write H i,j(G, k),
where the index i ∈ Z is cohomological, and the index j ∈ Z/2 comes from the internal
grading.

Theorem 1.1 (Theorem 5.1 and Remark 5.7). Let G be either (G−a × G−a ) o Z/p or
(G−a ×G−a )oGa(1), each one being a semidirect product with non-trivial action. Then the
cohomology ring H∗,∗(G, k) is Gorenstein with the Poincaré series given by∑

n

tn dimkH
n,∗(G, k) = 1/(1− t)2.

The algebra structure is given as follows. The generators are

ζ ∈ H1,1(G, k), x ∈ H2,0(G, k), κ ∈ Hp,1(G, k), λi ∈ H i,1+i(G, k) (1 6 i 6 p− 1).

The relations are

λiζ = 0 (1 6 i 6 p− 1), xζp−1 = 0, λiλj =

{
xζp−2 i+ j = p

0 otherwise.

One of the techniques we employ for this calculation is the local cohomology spectral
sequence which Greenlees [13] developed in the context of cohomology of finite groups.
This turns out to be essential to determine that the product λiλp−i is non-zero. For
finite supergroup schemes, this spectral sequence takes the form below, incorporating the
modular function δG (see Section 4).

Theorem 1.2 (Corollary 4.2 and Corollary 4.5). Let G be a finite supergroup scheme.
Then there is a local cohomology spectral sequence

Es,t,j
2 = Hs,t,j

m H∗,∗(G,M)⇒ H−s−t,j+εG(G,M ⊗ δG).

Here, the third index j ∈ Z/2 is given by the internal grading, and δG is the modular
function of internal degree εG ∈ Z/2.

Suppose that δG is trivial, which happens for example in the case where G is unipotent.
In this case, if H∗,∗(G, k) is Cohen–Macaulay then it is Gorenstein, with shift (0, εG).

We also, along the way, make some computations of the structure of the symmetric
powers of a faithful two dimensional representation V of Ga(r) × (Z/p)s. We state it in
terms of the dual V #, because we are interested in cohomology. In the case of (Z/p)s this
is well known by restricting from SL(2, ps), whereas in the case of the Frobenius kernel,
the results follow by restricting from SL2(r) (see, for example, [16, II.2.16]). The following
is a tabulation of the results proved in Section 7.

Theorem 1.3. Let V be a faithful two dimensional representation of H = Ga(r)×(Z/p)s,
V # be the dual vector space, and Sn(V #) be the module of degree n polynomial functions
on V ,

(i) Periodicity: For n > pr+s we have Sn(V #) ∼= kH⊕Sn−pr+s
(V #), where kH is the

group algebra of the finite group scheme H.
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(ii) Projectivity: Sn(V #) is a projective module if and only if n is congruent to −1
modulo pr+s.

(iii) Uniserial: For 1 6 i 6 p−1, the module Si(V #) is a uniserial module of dimension
i+ 1.

(iv) Steinberg tensor product: For 1 6 i 6 r + s the module Sp
i−1(V #) is isomor-

phic to the tensor product of Frobenius twists Sp−1(V #) ⊗ Sp−1(V #)(1) ⊗ · · · ⊗
Sp−1(V #)(i−1).

(v) Rank variety: The rank variety of Sp
i−1(V #) is an explicitly described linear sub-

space of affine space Ar+s of codimension i.

Using Theorem 1.3 to make some spectral sequence computations, the following theo-
rem is proved in Section 8.

Theorem 1.4 (Theorem 8.1). Let k be a field of odd prime characteristic, and let G be
the finite supergroup scheme (G−a × G−a ) o (Ga(r) × (Z/p)s). Then there is a non-zero

element ζ ∈ H1,1(G, k) such that for all u ∈ H1,0(G, k) we have βP0(u).ζp
r+s−1(p−1) = 0.

The following consequence will be used in our joint work with Iyengar and Krause [7].

Corollary 1.5 (Corollary 8.2). Let G be a finite unipotent supergroup scheme, with a
normal sub-supergroup scheme N such that G/N ∼= G−a ×Ga(r)× (Z/p)s. If the inflation
map H1,∗(G/N, k) → H1,∗(G, k) is an isomorphism and H2,1(G/N, k) → H2,1(G, k) is
not injective then there exists a non-zero element ζ ∈ H1,1(G, k) such that for all u ∈
H1,0(G, k) we have βP0(u).ζp

r+s−1(p−1) = 0.

Throughout this paper, k is a field of odd characteristic. Background on finite su-
pergroup schemes can be found in the “sister paper” [7]. We use [16] as our standard
reference for affine group schemes and their representations.
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Institute for Mathematical Sciences. We have enjoyed the hospitality of London, City
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gratefully acknowledge the support and hospitality of the Mathematical Sciences Research
Institute in Berkeley, California where we were in residence during the semester on “Group
Representation Theory and Applications” in the Spring of 2018.

We would also like to thank the anonymous referee, whose careful reading of this paper
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2. Semidirect products

We begin by recalling, for example from Theorem 2.13 of Molnar [19], the Hopf struc-
ture on the smash product of cocommutative Hopf algebras. The same conventions work
just as well in the graded cocommutative case, as follows.

Let B be a graded cocommutative Hopf algebra, and A be a Hopf algebra which is a
B-module bialgebra. Then the tensor product coalgebra structure on the smash product
A#B makes it a Hopf algebra. In more detail, let τ : B ⊗A→ A be the map giving the
action. Then the multiplication on A#B is

(2.1) (a⊗ h)(b⊗ g) =
∑

(−1)|h(2)||b|aτ(h(1), b)⊗ h(2)g,
3



the comultiplication is

∆(a⊗ h) =
∑

(−1)|h(1)||a(2)|(a(1) ⊗ h(1))⊗ (a(2) ⊗ h(2))

and the antipode is

s(a⊗ h) =
∑

(−1)(|a|+|h(1)|)|h(2)|τ(s(h(2)), s(a))⊗ s(h(1)).

If A is also graded cocommutative, we shall write A o B for this construction, and call
it the semidirect product of A and B with action τ . There are obvious maps of Hopf
algebras

A // AoB // Boo

forming a split exact sequence. Theorem 4.1 of the same paper implies that any split
exact sequence of graded cocommutative Hopf algebras is isomorphic to a semidirect
product.

Recall that if G is a finite supergroup scheme, then its group algebra kG is defined
as a linear dual to the coordinate algebra k[G]. Hence, it is a finite dimensional graded
cocommutative Hopf algebra (see, for example, [7] for more extensive background). We
denote by G−a the supergroup scheme with the (self-dual) coordinate algebra k[v]/(v2)
with v an odd primitive element. We denote by Ga(r) the rth Frobenius kernel of the
additive group Ga, a finite connected group scheme with coordinate algebra k[T ]/(T p

r
)

with T primitive, and group algebra kGa(r) Recall from [16, 8.7, 7.8] that kGa(r) has the
divided power basis {γ0, . . . , γpr−1} where γi(T

j) = δij. Writing si for γpi−1 , we have the
following explicit formula

(2.2) γi =
sαi1
1 . . . sαir

r

αi1! . . . αir!

where i =
r∑̀
=1

αi`p
`−1 is the p-adic decomposition of i. Hence, s1, . . . , sr are algebraic

generators of kGa(r). We identify

kGa(r) = k[s1, . . . , sr]/(s
p
1, . . . , s

p
r).

In terms of the divided power basis the comultiplication in kGa(r) is given by

(2.3) ∆(γi) =

j=i∑
j=0

γj ⊗ γi−j.

This formula can be easily checked by applying it to the basis T ` ⊗ T `
′

of (kGa(r) ⊗
kGa(r))

# ∼= k[Ga(r)]⊗ k[Ga(r)]. In the context of supergroup schemes, we think of kGa(r)

as concentrated in even degree.
Getting back to the discussion of the semidirect product, we are interested in the

specific case where A is the group algebra of G−a × G−a , the exterior algebra on two
primitive generators v1 and v2, and B = kH is the group algebra of the finite group
scheme H = Ga(r) × (Z/p)s. Here, either r or s, but not both, may be equal to zero. We
assume that H acts faithfully on G−a × G−a , namely that no proper subgroup scheme of
H acts trivially on G−a ×G−a , and we write G for (G−a ×G−a ) o (Ga(r) × (Z/p)s). We let
(Z/p)s = 〈g1, . . . , gs〉, and write ti = gi−1 ∈ k(Z/p)s, so that ∆(ti) = ti⊗1+1⊗ti+ti⊗ti
(1 6 i 6 s).
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Lemma 2.1. Given a faithful action of H ∼= Ga(r) × (Z/p)s on G−a × G−a , we may
choose notation so that A = k(G−a × G−a ) ∼= Λ(v1, v2) with v2 invariant, and the map
τ : kH ⊗ A→ A describing the action is given by

τ(s1 ⊗ v1) = v2,

τ(si ⊗ v1) = 0 (2 6 i 6 r),

τ(si ⊗ v2) = 0 (1 6 i 6 r),

τ(ti ⊗ v1) = µiv2 (1 6 i 6 s),

τ(ti ⊗ v2) = 0 (1 6 i 6 s).

with µ1, . . . , µs ∈ k constants, linearly independent over Fp.

Proof. Since H is unipotent, its action on the vector space spanned by v1 and v2 can be
upper triangularized. This amounts to choosing an invariant element, and we choose it
to be v2. Then the action of (Z/p)s is as shown. We must check that there are enough
automorphisms of Ga(r) so that its action may also be written as shown. The general
form of an action fixing v2 is given by τ(si⊗v1) = αiv2 for constants α1, . . . , αr ∈ k. Since
the action is faithful we have α1 6= 0, and then by replacing v2 by α1v2 we may assume
that α1 = 1. Finally, there is a Hopf algebra automorphism of Ga(r) which replaces si by
si−αis1 for i = 2, . . . , r, and after applying this automorphism, the action has the given
form. �

By abuse of notation, we write v1 for v1⊗ 1, v2 for v2⊗ 1, si for 1⊗ si and ti for 1⊗ ti
in Ao kH. These elements satisfy the following relations:

v21 = v22 = v1v2 + v2v1 = 0,

s1v1 = v1s1 + v2,

siv1 = v1si + (−1)i−1v2s
p−1
1 . . . sp−1i−1 (2 6 i 6 r),

siv2 = v2si (1 6 i 6 r),

tiv2 = v2ti (1 6 i 6 s),

tiv1 = v1ti + µiv2(1 + ti) (1 6 i 6 s).

To justify the third relation we observe that the action prescribed by Lemma 2.1 implies
that

τ(γj ⊗ v1) =0 (2 6 j 6 pr − 1).(2.4)

We compute for i > 1:

siv1 = (1⊗ si)(v1 ⊗ 1) = (1⊗ γpi−1)(v1 ⊗ 1)

=

pi−1∑
j=0

(−1)|γpi−1−j ||v1|τ(γj ⊗ v1)⊗ γpi−1−j

= τ(1⊗ v1)⊗ γpi−1 + τ(γ1 ⊗ v1)⊗ γpi−1−1

= v1si + (−1)i−1v2s
p−1
1 . . . sp−1i−1 .

The second line follows by applying formula (2.1) and comultiplication rule (2.3). All the
terms in the sum except for the first two disappear by (2.4) which implies the equality in
the third line. Finally, the last equality follows from (2.2) and the p-adic decomposition
of pi−1 − 1.

The other relations on the list follow immediately from Lemma 2.1.
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3. Steenrod operations

We shall need to use Steenrod operations in the cohomology of finite supergroup
schemes. The discussion of these in the literature is almost, but not completely ade-
quate for our purposes, and so we give a brief discussion here.

If A is a Z-graded cocommutative Hopf algebra over Fp, the discussion in Section 11
of May [18] does the job. Specifically, for p odd, [18, Theorem 11.8] produces natural
operations

P i : Hs,t(A, k)→ Hs+(2i−t)(p−1),pt(A, k)

βP i : Hs,t(A, k)→ Hs+1+(2i−t)(p−1),pt(A, k)

satisfying, among others, the following properties:

(i) P i = 0 if either 2i < t or 2i > s+ t
βP i = 0 if either 2i < t or 2i > s+ t

(ii) P i(x) = xp if 2i = s+ t
(iii) (Cartan Formula)
Pj(xy) =

∑
iP i(x)Pj−i(y)

βPj(xy) =
∑

i(βP i(x)Pj−i(y) + (−1)|x|P i(x)βPj−i(y))
(iv) The P i and βP i satisfy the Adem relations.
(v) P i is Fp-linear; that is, P i(x+y) = P i(x)+P i(y), and P i(λx) = λP i(x) for λ ∈ Fp

and x, y ∈ H∗,∗(A, k).

For us, there are two problems with this. The first is that we want to work over a more
general field k of characteristic p, not just Fp. As remarked by Wilkerson [21] (bottom of
page 140), the only difference is that the operations are no longer k-linear. Rather, they
are semilinear, so that (v) should be replaced by

(v) P i is k-semilinear; that is, P i(x + y) = P i(x) + P i(y), and P i(λx) = λpP i(x) for
λ ∈ k and x, y ∈ H∗,∗(A, k).

The other problem is that if we wish to apply this to a Z/2-graded object, then the
way the indices work involves subtracting an element of Z/2 from an element of Z and
expecting an answer in Z. This clearly doesn’t work, so we need to do some re-indexing
to take care of this problem. The origin of the problem is that May has chosen to base
the indexing of the operations on total degree rather than internal degree. The rationale
for doing this is that it avoids the introduction of half-integer indexed operations, but
the disadvantage is that it only works for Z-graded objects, and not for example for
Z/2-graded objects.

In order to reindex using internal degree rather than total degree, we rename May’s
P i as our P i−t/2. Then we have

P i : Hs,t(A, k)→ Hs+2i(p−1),pt(A, k)

βP i : Hs,t(A, k)→ Hs+1+2i(p−1),pt(A, k).

Here, i ∈ Z if t is even and i ∈ Z+ 1
2

if t is odd. Note that since p is odd, pt is equivalent
to t mod 2, so the operations preserve internal degree as elements of Z/2.

These operations are called P i in Theorem A1.5.2 of Appendix 1 in Ravenel [20]. They
are called P̃ i in the discussion following Theorem 11.8 of May [18], but he ignores the
operations indexed by Z + 1

2
.

To accommodate the change from Z-grading to Z/2-grading of the Hopf algebra, the
following observations pertain to §11 of May [18]. In Definition 11.1, if C = (E,A, F ) ∈ C
with E, A and F Z/2-graded, then the bar resolution B(C) is bigraded, with homological
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degree s ∈ Z and internal degree t ∈ Z/2. The total degree s + t makes sense as
an element of Z/2, and so the sign (−1)s+t makes sense as an integer. In particular,
in (3) the definition x̄ = (−1)1+deg xx makes sense with deg x the total degree, and so
d : B(C)s,∗ → B(C)s−1,∗ is well defined. In Lemma 11.3, W ⊗ B(C) is bigraded with
(W ⊗B(C))s,t =

∑
i+j=sWi ⊗Bj,t(C) with s ∈ Z and t ∈ Z/2, and in (iii), (−1)degw deg a

makes sense as an integer. Finally, of the two conventions for numbering the Steenrod
operations, the one used for Theorem 11.8 mixes the homological and internal degrees,
and therefore cannot be used. But the alternative numbering used in the remark after
the proof of the theorem does not mix the two degrees, and therefore makes sense, and
encompasses all the operations once we allow half integer degrees. In particular, the
commutation conventions need to avoid mixing degrees. So if x has degree (q, ε) (i.e.,
homological degree q ∈ Z and internal degree ε ∈ Z/2) and y has degree (q′, ε′) then the
symmetric braiding sends x⊗ y to (−1)qq

′+εε′y ⊗ x, and not (−1)(q+ε)(q
′+ε′)y ⊗ x. So for

example (x⊗ y)⊗p gets shuffled to (−1)m(qq′+εε′)x⊗p ⊗ y⊗p, where m = (p− 1)/2.
The constants in the definition of P i and βP i also need adjustment, because (−1)i

no longer makes sense when i ∈ Z + 1
2
. Instead, we need fourth roots of unity. So we

choose an element γ ∈ k with γ2 = −1. If p ≡ 1 (mod 4) then γ can be taken to be m!
(we continue to write m for (p− 1)/2), but if p ≡ 3 (mod 4) then γ is an element of Fp2 .
This may need an extension of scalars, so whenever we need to, we shall assume that k
contains a square root of −1. For our theorems given in the introduction, extension of
scalars does not affect the validity. The point of introducing the fourth root of unity is
that our operations agree with May’s.

The definition of the operations P i and βP i is then as follows. If x has degree (q, ε)
then

P i(x) = γ2i+mq(q+1)(m!)−qD(q−2i)(p−1)(x),

βP i(x) = γ2i+mq(q+1)(m!)−qD(q−2i)(p−1)+1(x).

These definitions agree with May’s whenever i ∈ Z and x is even, but also make sense
when i ∈ Z + 1

2
and x is odd.

The upshot of this reindexing is that at the expense of introducing half-integer indices
for the Steenrod operations, we have made the notation work for Z/2-graded objects.
Properties (i) and (ii) have been reindexed, so that (i)–(v) are now as follows:

(i) P i = 0 if either i < 0 or i > s/2,
βP i = 0 if either i < 0 or i > s/2.

(ii) P i(x) = xp if i = s/2.
(iii) (Cartan Formula) If x has degree (q, ε) and y has degree (q′, ε′) then

Pj(xy) = (−1)mεε
′∑

i P
i(x)Pj−i(y),

βPj(xy) = (−1)mεε
′∑

i(βP i(x)Pj−i(y) + (−1)qP i(x)βPj−i(y)).
(iv) The P i and βP i satisfy the Adem relations.
(v) P i is k-semilinear; that is, P i(x+ y) = P i(x) + P i(y), and P i(λx) = λpP i(x)

for λ ∈ k and x, y ∈ H∗,∗(A, k).

Note that the Adem relations on elements of odd internal degree also have some extra
signs. We have not written these out explicitly, as we do not need them.

Proposition 3.1. The ring H∗,∗(G−a , k) is a polynomial ring k[ζ] on a single generator
ζ in degree (1, 1). The action of the Steenrod operations on H∗,∗(G−a , k) is given by

P
1
2 (ζ) = ζp, βP

1
2 (ζ) = 0.

7



Proof. We prove this by reducing the grading modulo two on a Z-graded cocommuta-
tive Hopf algebra. The cohomology of a Z-graded Hopf algebra on a primitive exterior
generator in degree one is k[ζ] with ζ in degree (1, 1). If we compute the action of the

Steenrod operations on this, the action of P
1
2 = P1 and βP

1
2 = βP1 follows from The-

orem 11.8 (ii) of [18], and is given as in the Proposition. Now reduce the grading modulo
two. �

We have

H∗,∗(G−a ×Ga(r) × (Z/p)s, k) =

k[ζ]⊗ k[x1, . . . , xr]⊗ Λ(λ1, . . . , λr)⊗ k[z1, . . . , zs]⊗ Λ(y1, . . . , ys).

The degrees and action of the Steenrod operations are as follows.

degree P0 βP0 P
1
2 P1

ζ (1, 1) ζp

λi (1, 0) λi+1 −xi 0

yi (1, 0) yi zi 0

xi (2, 0) xi+1 0 xpi

zi (2, 0) zi 0 zpi

Here, λi+1 and xi+1 are taken to be zero if i = r.

4. The local cohomology spectral sequence

In this section we sketch the construction of a generalization of the local cohomology
spectral sequence to finite supergroup schemes. The spectral sequence was constructed
by Benson and Carlson [6] for finite groups; Greenlees gave a more robust construction
in [13]. The supergroup version comes with a twist which we now describe.

Recall from Section I.8 of Jantzen [15] that there is a one dimensional representation δG
of a finite group scheme G, called the modular function, and that by Proposition I.8.13 of
[15], if Q is a projective kG-module then Soc(Q) ∼= Q/Rad(Q)⊗ δG. This generalizes to
finite supergroup schemes, without change in the argument, the only extra feature being
that δG comes with a parity εG ∈ Z/2. So for example δG−a is the trivial module, but in
odd internal degree, so we have εG−a = 1 ∈ Z/2.

The role of the modular function is that it appears in Tate duality which we deduce
from the general statement of Auslander-Reiten duality. The latter gives an isomorphism

(4.1) Homk(HomG(M,N), k) ∼= HomG(N,ΩνM)

(see [1, Proposition I.3.4], also [17, Corollary p. 269]). Here,

ν : StModG→ StModG

is the Nakayama functor. For a finite supergroup scheme it is given by the formula

ν(−) = −⊗k δG

(see [8, Section 4]).
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Applying (4.1) to N,Ωn+1M , we get Tate duality for finite supergroup schemes:

Êxt
−n−1,∗

(N,M) ∼= Hom(N,Ωn+1M)

∼= Homk(Hom(Ωn+1M,ΩνN), k)
∼= Homk(Hom(ΩnM,N ⊗ δG), k)

∼= Homk(Êxt
n,∗+εG

(M,N ⊗ δG), k).

In particular, for M = N = k, n > 0, this becomes

(4.2) Hn,j+εG(G, δG) ∼= Ĥ−n,j+εG(G, δG) ∼= Homk(Ĥ
n−1,∗+εG(G, δG), k).

The local cohomology spectral sequence is triply graded. The gradings are firstly local
cohomological, secondly group cohomological, and thirdly internal parity. Repeating the
constructions in [13] or [5] (explicitly, Section 3 in [5]) verbatim up to the point where local
duality is used to identify negative Tate cohomology and homology gives the following.

Theorem 4.1. Let G be a finite supergroup scheme. Then there is a spectral sequence

Es,t,∗
2 = Hs,t

m H∗,∗(G, k)⇒ Ĥs+t−1<0,∗(G, k)

converging to the negative part of Tate cohomology.

Now applying the duality isomorphism (4.2), we produce the local cohomology spectral
sequence converging to homology.

Corollary 4.2. Let G be a finite supergroup scheme. Then there is a local cohomology
spectral sequence

Es,t,j
2 = Hs,t,j

m H∗,∗(G, k)⇒ H−s−t,j+εG(G, δG).

Definition 4.3. A finite supergroup scheme is called unimodular if the modular function
δG is the trivial module in degree εG.

Remark 4.4. Finite unipotent supergroup schemes are unimodular since the only one-
dimensional representations are given by the trivial module k in either even or odd degree.

Let r be the Krull dimension of H∗,∗(G, k). Then H i,∗
m H∗,∗(G, k) = 0 for i > r. Hence,

there is an edge homomorphism of the local cohomology spectral sequence:

(4.3) Hr,t,j
m H∗,∗(G, k)→ H−r−t,j+εG(G, δG).

We wish to use the following consequences of Corollary 4.2. The statement of the first
Corollary 4.5 is a direct analogue of [13, Corollary 2.3] (see also [6]).

Corollary 4.5. Let G be a unimodular finite supergroup scheme. If H∗,∗(G, k) is Cohen–
Macaulay, then it is Gorenstein, with shift (0, εG).

Proof. Since G is unimodular, δG is a trivial module. The Cohen–Macaulay assumption
on H∗,∗(G, k) implies that the edge map of (4.3) is an isomorphism which therefore
identifies the top local cohomology Hr

m(H∗,∗(G, k)) with homology H∗,∗+εG(G, k). This is
linear dual to cohomology H∗,∗+εG(G, k), and, hence, the top local cohomology module
is the injective hull of the trivial H∗,∗(G, k)-module k in the internal degree εG. Hence,
H∗,∗(G, k) is Gorenstein (see [14, Theorem 11.26] or [12, Theorem 1.3.4] where the graded
case is made explicit). �

Recall that {ζ1, . . . , ζr} is a system of parameters of a (graded) commutative k-algebra
A if k[ζ1, . . . , ζr] ⊂ A is a Noether normalization of A, that is, A is a finite module over
k[ζ1, . . . , ζr]. The last corollary is a general property of graded Gorenstein k-algebras.

9



Corollary 4.6. Let G be a unimodular finite supergroup scheme. Assume H∗,∗(G, k) is
Cohen–Macaulay, and let ζ1, . . . , ζr be a regular homogeneous sequence of parameters in
H∗,∗(G, k). Then the quotient H∗,∗(G, k)/(ζ1, . . . , ζr) is a finite Poincaré duality algebra
with dualizing degree (−r, εG) +

∑r
i=1 |ζi|.

5. The case (G−a ×G−a ) oGa(1)

Let G = (G−a ×G−a )oGa(1). This is a finite supergroup scheme of height one and, hence,
kG is isomorphic to the restricted universal enveloping algebra of the three dimensional
Lie superalgebra g (see, for example, [11, Lemma 4.4.2]). The Lie superalgebra g has a
basis consisting of odd elements v1 and v2, and an even element t. Specializing calculations
in Section 2 to this case, we get that the Lie algebra generators satisfy the following
relations

[v1, v2] = 0, [t, v2] = 0, [t, v1] = v2

where [ , ] is the supercommutator in g. Thus kG has the following presentation:

(5.1) kG =
k[v1, v2, t]

(v21, v
2
2, v1v2 + v2v1, tp, tv2 − v2t, tv1 − v1t− v2)

.

Theorem 5.1. Let G = (G−a × G−a ) o Ga(1), with Ga(1) acting non-trivially. Then
H∗,∗(G, k) is generated by

ζ ∈ H1,1(G, k), x ∈ H2,0(G, k), κ ∈ Hp,1(G, k), λi ∈ H i,1+i(G, k) (1 6 i 6 p− 1)

with the relations

λiζ = 0 (1 6 i 6 p− 1),

xζp−1 = 0,

λiλj = 0 for i+ j 6= p,

λiλp−i = αixζ
p−2 where αi 6= 0.

The Poincaré series is given by∑
n

tn dimkH
n,∗(G, k) = 1/(1− t)2.

Proof. We examine two spectral sequences, the first one given by the semidirect product:

H i(Ga(1), H
j,∗(G−a ×G−a , k))⇒ H i+j,∗(G, k).

Let V = kv1 ⊕ kv2 be the two dimensional supervector space generated by v1, v2. We
have

H∗,∗(G−a ×G−a , k) ∼= S∗,∗(V #) = k[ζ, η]

with ζ and η in degree (1, 1), dual to the generators v1, v2. For 0 6 j 6 p− 1,

Hj,∗(G−a ×G−a , k) ∼= Sj(V #)

is an indecomposable kGa(1)-module of length j + 1. It is projective for j = p − 1, and
not otherwise. Hence, we have the following restrictions on dimensions of the E2 term of
the spectral sequence:

dimH i(Ga(1), H
j,∗(G−a ×G−a , k)) = 1 for 0 6 j 6 p− 1,(5.2)

dimH1(Ga(1), H
p−1,∗(G−a ×G−a , k)) = 0,(5.3)

dimH0(Ga(1), H
p,∗(G−a ×G−a , k)) = 2.(5.4)

10



To justify the last equality, we do a calculation:

H0(Ga(1), H
p(G−a ×G−a , k)) = H0(Ga(1), S

p(V #)) = kζp ⊕ kηp

where the last equality is a special case of Lemma 6.1.
We conclude that

(5.5) dimHn(G, k) 6
∑
i+j=n

dimH i(Ga(1), H
j(G−a ×G−a , k)) = n+ 1

for 0 6 n 6 p.
We now examine the spectral sequence

H∗,∗(G−a ×Ga(1), H
∗,∗(G−a , k))⇒ H∗,∗(G, k)

corresponding to the central extension

1→ G−a → G→ G−a ×Ga(1) → 1

We write

H∗,∗(G−a ×Ga(1), H
∗,∗(G−a , k)) = H∗,∗(G−a , k)⊗H∗,0(Ga(1), k)⊗H∗,∗(G−a , k)

= k[ζ, x]⊗ Λ(λ)⊗ k[η]

with ζ the generator of the first H∗,∗(G−a , k), x, λ the generators of H∗,0(Ga(1), k), and η
the generator of the second H∗,∗(G−a , k). The degrees of the generators in the spectral
sequence are as follows:

|ζ| = (1, 0, 1), |λ| = (1, 0, 0), |x| = (2, 0, 0), |η| = (0, 1, 1).

Here, the first two indices are the horizontal and vertical directions in the spectral se-
quence, and the third is the Z/2-grading.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1 λ

ζ

x, ζ2

λζ

η
H
HHH

HHHHj

Let Gm be the multiplicative group scheme. Then Gm ×Gm acts on kG (given by the
presentation in (5.1)) in such a way that the first copy is acting on v1 and the second is
acting on t. Both copies act on the commutator v2. Each monomial in the E2 page of
this spectral sequence is then an eigenvector of Gm × Gm. The weights are elements of
Z× Z, and are given by

‖ζ‖ = (1, 0), ‖λ‖ = (0, 1), ‖x‖ = (0, p), ‖η‖ = (1, 1).

The differentials in the spectral sequence have to preserve both the weight and the
Z/2-grading. The latter implies that x, ζ2 cannot be hit by d2(η) and, hence, survive to
E∞. Since dimH1,∗(G, k) 6 2 by (5.2), we conclude that η must die in E∞, and hence
d2(η) is a non-zero multiple of λζ. By the Newton–Leibniz rule, we get that a monomial
λεηi1xi2ζ i3 does not survive in E3 if

(5.6) {ε = 0 and 1 6 i1 6 p− 1},
11



in which case it is not in the kernel of d2 or if

(5.7) {ε = 1, 0 6 i1 6 p− 2 and i3 > 1}

in which case it is in the image of d2. On the other hand, d2(η
p) = 0.

We conclude that the E3 page is generated by the permanent cycles λ, ζ and x on the
base, the element ηp on the fibre, and λη, λη2, . . . , ληp−1 in the first column. Moreover,
E3 has the relations

(5.8) (ληi)ζ = 0, (ληi)(ληj) = 0

for 1 6 i, j 6 p − 2. Since P
1
2 (η) = ηp and P

1
2 (λζ) = 0, Kudo’s transgression theorem

([18, Theorem 3.4]) implies that ηp survives to the E∞ page of the spectral sequence.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1 λ

ζ

x, ζ2

λη

λη2

...

ληp−1

ηp

E3 page

There remains the question of the values of the differentials d3, . . . , dp on the elements
λη, . . . , ληp−1.

Claim 5.2. The differentials d3, . . . , dp−1 vanish on the elements λη, . . . , ληp−1, and
dp(λη

p−1) is a multiple of xζp−1.

Proof of Claim. Suppose some differential d` is non trivial on ληi and let λεηi1xi2ζ i3 be
in the target of that differential. If i1 6= 0, then (5.6), (5.7) imply that i3 = 0 and ε = 1.
Hence ληi hits a monomial of the form ληi1xi2 . The weights are ‖ληi‖ = (i, i + 1) and
‖ληi1xi2‖ = (i1, 1 + i1 + i2p). Since the weights are preserved, we conclude i = i1, which
contradicts the fact that d` must lower the exponent of η by `− 1.

Therefore, i1 = 0, and the differential d` on ληi hits something on the base, a monomial
of the form λεxi2ζ i3 . The weights are ‖ληi‖ = (i, i + 1) and ‖λεxi2ζ i3‖ = (i3, ε + i2p).
Hence, i3 = i > 0. By (5.6) and (5.7), we have ε = 0. The condition on the total
degree gives i+ 1 = 2i2 + i− 1, and so i2 = 1. The condition on the second weight gives
i+ 1 = i2p, and so i = p− 1. Thus the only possible non trivial differential is dp(λη

p−1),
which is some multiple of xζp−1. This proves the claim. �
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Claim 5.2 immediately implies that λη, . . . , ληp−2 are (non-trivial) permanent cycles.
We also conclude that all differentials up to dp−1 vanish on all generators of E3. Hence,
E3 = Ep. It remains to determine the differential dp on ληp−1.

Claim 5.3. dp(λη
p−1) is a non-zero multiple of xζp−1.

Proof of Claim. We have dimHp,∗(G, k) 6 p+ 1 by (5.2). On the other hand, we estab-
lished at least p+ 1 linearly independent cycles of total degree p in E∞:

{ηp, λx
p−1
2 , λη2x

p−3
2 , . . . , ληp−3x, ζp, xζp−2, . . . , x

p−1
2 ζ}.

Hence, ληp−1 is not a permanent cycle, since otherwise we would have dimHp,∗(G, k) >
p+ 2. We have already computed that dp(λη

p−1) is a multiple of xζp−1. This proves the
claim. �

This completes the determination of the E∞ page of the spectral sequence of the central
extension. We also conclude that xζp−1 is zero in Hp+1,0(G, k).

To describe the cohomology ring H∗,∗(G, k), we start by giving elements of E∗,0∞ the
same names in H∗,∗(G, k). We choose a representative κ ∈ Hp,1(G, k) of ηp ∈ E0,p

∞ ; this
is a non zero-divisor. Next, choose λ2, . . . , λp−1 to be representatives in H∗,∗(G, k) of
the elements λη, . . . , ληp−2 in E∞, as follows. Arguing as before, we see that there is
only one dimension in each of these degrees with the correct weight for the action of
Gm × Gm, so this gives a well defined representative. We also write λ1 for λ. Thus we
have ‖λi‖ = (i− 1, i).

Using weights, we see that the product λiζ is equal to zero. Similarly, λiλj is either
zero or a multiple of xζp−2, and the latter can only happen when i + j = p. In the case
where i + j = p, we claim that λiλj is a non-zero multiple of xζp−2. The proof of this
claim uses the local cohomology spectral sequence in the form of Corollary 4.6, and this
will complete the computation of H∗,∗(G, k).

Claim 5.4. H∗,∗(G, k) is Cohen–Macaulay. A regular homogeneous sequence of param-
eters is given by κ ∈ Hp,1(G, k) and x+ ζ2 ∈ H2,0(G, k).

Proof of Claim. It suffices to show that ηp and x + ζ2 form a regular sequence in E∞.
Since ηp is a non zero-divisor, this amounts to showing that x + ζ2 is a non zero-divisor
on E∞/(η

p). The non-zero monomials in E∞/(η
p) come in two types. The first are the

ζ ixj with j = 0 if i > p − 1. Multiplying by x + ζ2, these go to ζ i+2xj + ζ ixj+1, where
the second term is zero if i > p− 1 and j = 0. Ordering lexicographically in (i, j), we see
that these are linearly independent, because their leading terms are linearly independent.
The second kind of monomials are the λix

j with 1 6 i 6 p−1. These go to λix
j+1, which

are again linearly independent. �

We are now in a position to complete the proof of Theorem 5.1. Since H∗,∗(G, k) is
Cohen–Macaulay, Corollary 4.6 implies that H∗,∗(G, k)/(κ, x + ζ2) has Poincare duality
with dualizing element in degree p. The ring H∗,∗(G, k)/(κ, x+ ζ2) has a basis consisting
of ζ i ∈ H i,i(G, k) with 0 6 i 6 p and λi ∈ H i,i−1(G, k) with 1 6 i 6 p − 1 (where
the second degree is taken mod 2). The top degree dualizing element is ζp, which is
equivalent modulo x+ ζ2 to xζp−2. For each element in H∗,∗(G, k)/(κ, x+ ζ2) there has
to be an element whose product with it is equal to the dualizing element. Applying this
to λi, we see that λiλp−i has to be non-zero, and is therefore a non-zero multiple of xζp−2.
Replacing some of the λi by non-zero multiples, we have λiλp−i = xζp−2. We now have
all the generators and relations for the ring structure on H∗,∗(G, k), completing the proof
of Theorem 5.1. �
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Corollary 5.5. With G as in Theorem 5.1, we have∑
n>0

tn dimkH
n,∗(G, k) = 1/(1− t)2.

Proof. This is an easy dimension count using the theorem. �

To analyze the case of a more general semidirect product as we do in Section 8, we
don’t need the force of Theorem 5.1 but only a particular calculation which was obtained
as part of the proof.

Corollary 5.6 (of the proof). In the notation of the proof of Theorem 5.1, we have that
dp(λη

p−1) is a non-zero multiple of xζp−1.

Remark 5.7. The group algebra of the semidirect product (G−a ×G−a )oZ/p is generated
by elements v1, v2 and g satisfying v21 = 0, v22 = 0, gp = 1, v1v2+v2v1 = 0, gv1 = (v1+v2)g,
gv2 = v2g. Writing t for g − 1, this becomes

v21 = v22 = v1v2 + v2v1 = tp = 0, tv2 = v2t, tv1 = v1t+ v2 + v2t.

Substituting v′2 = v2 + v2t then gives the presentation of the group algebra studied in
this section. Since the cohomology only depends on the algebra structure, not on the
comultiplication, we get the same answer as in the case of (G−a ×G−a ) oGa(1) computed
in this section.

6. An invariant theory computation

Let H = Ga(r)× (Z/p)s, acting on G−a ×G−a as in Section 2, and let G be the semidirect
product. In preparation for the computation of H∗,∗(G, k), we begin with an invariant
theory computation.

We have H∗,∗(G−a ×G−a , k) ∼= k[X, Y ] where X and Y are in degree (1, 1). We choose
the notation so that Y is fixed by this action, and X is sent to X plus multiples of Y .
In this section, we compute the invariants of such an action. To this end, we consider
k[X, Y ] to be the ring of polynomial functions on the vector space V with basis v1 and
v2, so that Y and X form the dual basis of the linear functions on V .

We begin with the case s = 0, namely H = Ga(r). In general, an action of a group
scheme G on a scheme Z over a scheme S, is given by a map G×S Z → Z satisfying the
usual associative law defining an action. Corresponding to this is a map of coordinate
rings k[Z] → k[G] ⊗k[S] k[Z] giving the coaction of k[G] on k[Z]. Then the fixed points
k[Z]G is the subring of k[Z] consisting of those f whose image in k[G] ⊗k[S] k[Z] under
the comodule maps is equal to 1⊗ f .

In our case, we have k[Ga(r)] = k[t]/(tp
r
) with t a primitive element in the Hopf

structure. The action Ga(r) on V corresponds to a map Ga(r) ×Spec k V → V , and then
to a map of coordinate rings k[X, Y ]→ k[t]/(tp

r
)⊗ k[X, Y ]. The fact that Y is fixed by

the action implies that Y maps to 1⊗ Y . The fact that X is sent to X plus multiples of
Y , together with the identities describing a coaction, imply that X maps to an element
of the form f(t)⊗ Y + 1⊗X where f is a linear combination of the tp

i
with 0 6 i < r.

Faithfulness of the action then implies that the term with i = 0 is non-zero. Thus f(t)
is primitive, and there is an automorphism of Ga(r) sending f(t) to t. So without loss of
generality, the action is given by X 7→ t⊗ Y + 1⊗X.

Lemma 6.1. The invariants of the action of Ga(r) on k[X, Y ] are given by

k[X, Y ]Ga(r) = k[Xpr , Y ].

Proof. This is an easy computation. �
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Next we describe the case r = 0, namely H = 〈g1, . . . , gs〉 ∼= (Z/p)s with the gi
commuting elements of order p. In this case, the action again fixes Y , and we have
gi(X) = X − µiY (1 6 i 6 s). The fact that the action is faithful is equivalent to the
statement that the field elements µi are linearly independent over the ground field Fp.
Then the orbit product

φ(X, Y ) =
∏

g∈(Z/p)s
g(X) =

∏
(a1,...,as)∈(Fp)s

X + (a1µ1 + · · ·+ asµs)Y

is clearly an invariant.

Lemma 6.2. The invariants of (Z/p)s on k[X, Y ] are given by

k[X, Y ](Z/p)
s

= k[φ(X, Y ), Y ],

where φ(X, Y ) is given above.

Proof. See for example Proposition 2.2 of Campbell, Shank and Wehlau [9]. �

Putting these together, we have the following theorem.

Theorem 6.3. The invariants of Ga(r) × (Z/p)s on k[X, Y ] are given by

k[X, Y ]Ga(r)×(Z/p)s = k[φ(X, Y )p
r

, Y ].

Proof. This follows by applying first Lemma 6.2 and then Lemma 6.1. �

7. Structure of symmetric powers

We can use the computation of the last section to help us understand the structure
of the polynomial functions on the two dimensional space V , as a module for H =
Ga(r) × (Z/p)s. Note that the space of polynomials of degree n is Sn(V #), and has a
basis consisting of the monomials X iY n−i for 0 6 i 6 n. In particular, the dimension of
Sn(V #) is n+ 1.

Lemma 7.1. Let M be a kH-module whose fixed points MH are one dimensional. Then
M is indecomposable and dimk(M) 6 pr+s, with equality if and only if M is projective.

Proof. Since H is unipotent, kH is a local self-injective algebra. So if MH is one di-
mensional, then the injective hull of M is kH. Since kH has dimension pr+s, the lemma
follows. �

Theorem 7.2. For n < pr+s − 1, the symmetric nth power Sn(V #) is a non-projective
indecomposable kH-module. The module Sp

r+s−1(V #) is a free kH-module of rank one.

Proof. It follows from Theorem 6.3 that Sn(V #)H is one dimensional for n 6 pr+s − 1.
The theorem therefore follows from Lemma 7.1. �

Definition 7.3. Let f(X, Y ) =
∑n

i=0 aiX
iY n−i be a degree n homogeneous polynomial

in X and Y . Then the leading term of f is the term aiX
iY n−i for the largest value of i

with ai 6= 0.

Theorem 7.4. For n > pr+s, we have Sn(V #) ∼= kH ⊕ Sn−pr+s
(V #).

Proof. Consider the map Sp
r+s−1(V #) → Sn(V #) given by multiplication by Y n+1−pr+s

,
and the map Sn−p

r+s
(V #) → Sn(V #) given by multiplication by φ(X, Y ). Examining

the leading terms of the images of monomials under these maps, we see that these maps
are injective, the images span and intersect in zero. Therefore Sn(V #) is an internal
direct sum of Y n+1−pr+s

.Sp
r+s−1(V #) and φ(X, Y ).Sn−p

r+s
(V #). By Theorem 7.2, the

first summand is isomorphic to kH. �
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Corollary 7.5. The kH-module Sn(V #) is projective if and only if n is congruent to −1
modulo pr+s. �

Next, we examine the modules Sp
i−1(V #) with 1 6 i < r+ s. We have seen that these

modules are not projective, but we shall show that the complexity is exactly r + s − i,
and we shall identify the annihilator of cohomology. The method we use is a variation
of the Steinberg tensor product theorem. We also use Carlson’s theory of rank varieties,
see for example Carlson [10] or §5.8 of [4].

Lemma 7.6. The kH-module Sp−1(V #) is a uniserial module whose rank variety is the
hyperplane consisting of the points (γ1, . . . , γr, α1, . . . , αs) ∈ Ar+s(k) such that

−γ1 + α1µ1 + · · ·+ αsµs = 0.

Proof. We have

s1(X
i) = iX i−1Y

sj(X
i) = 0 2 6 j 6 r

(gj − 1)(X i) = (X − µjY )i −X i = −iµjX i−1Y + · · · 1 6 j 6 s

and so if (γ1, . . . , γr, α1, . . . , αs) ∈ Ar+s(k) r {0} then

(γ1s1 + · · ·+ γrsr + α1(g1 − 1) + · · ·+ αs(gs − 1))(Xp−1)

= (−γ1 + α1µ1 + · · ·+ αsµs)X
p−2Y + · · ·

Continuing this way, we have

(γ1s1 + · · ·+ γrsr + α1(g1 − 1) + · · ·+ αs(gs − 1))i(Xp−1)

= i!(−γ1 + α1µ1 + · · ·+ αsµs)
iXp−1−iY i + · · ·

and finally

(γ1s1 + · · ·+ γrsr + α1(g1 − 1) + · · ·+ αs(gs − 1))p−1(Xp−1)

= −(−γ1 + α1µ1 + · · ·+ αsµs)
p−1Y p−1.

So the restriction to the shifted subgroup defined by (γ1, . . . , γr, α1, . . . , αs) is projective
if and only if −γ1 + α1µ1 + · · ·+ αsµs 6= 0.

Since there is a non-trivial shifted subgroup such that the restriction is projective, it
follows that the module is uniserial. �

Lemma 7.7. For 1 6 i 6 r + s the kH-module Sp
i−1(V #) is isomorphic to the tensor

product of Frobenius twists

Sp−1(V #)⊗ Sp−1(V #)(1) ⊗ · · · ⊗ Sp−1(V #)(i−1).

Proof. We regard Sp−1(V #)(j) as the linear span of the pjth powers of the elements of
Sp−1(V #). Examining monomials, it is apparent that multiplication provides the required

isomorphism from the tensor product to Sp
i−1(V #). �
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Theorem 7.8. For 1 6 i 6 r + s the rank variety of the module Sp
i−1(V #) is the linear

subspace of Ar+s defined by the first i rows of the (r + s)× (r + s) matrix

−1 0 · · · 0 µ1 . . . µs

0 −1 0 µp1 µps
0 0 0 µp

2

1 µp
2

s
...

...
...

...

0 0 −1 µp
r−1

1 · · · µp
r−1

s

0 0 0 µp
r

1 µp
r

s
...

...
...

...

0 0 · · · 0 µp
r+s−1

1 µp
r+s−1

s


The rows of this matrix are linearly independent, so the complexity of Sp

i−1(V ) is r+s−i.
Proof. It follows from Lemma 7.6 that the rank variety of Sp−1(V )(i) is the hyperplane
given by the vanishing of the ith row of the above matrix. Now apply Lemma 7.7.

Now by the usual Vandermonde argument, given elements a1, . . . , as ∈ k, the determi-
nant of the matrix 

a1 . . . as
ap1 aps
...

...

ap
s−1

1 ap
s−1

s


is, up to non-zero scalar, the product of the non-trivial Fp-linear combinations of a1, . . . , as,
one from each one dimensional subspace (this kind of matrix is called a Moore matrix).
It therefore vanishes if and only if they are linearly dependent over Fp.

Applying this to the lower right corner of the matrix in the theorem, the linear indepen-
dence of the rows of this matrix follows using the fact that the µi are linearly independent
over Fp. Alternatively, this can be deduced from Theorem 7.2. �

Proposition 7.9. Let M be a p-dimensional uniserial kH-module. Then there is a
subalgebra A of kH of dimension pr+s−1 with the following properties:

(i) kH is flat as an A-module,
(ii) the restriction of M to A is a direct sum of p copies of k with trivial action, and

(iii) M is isomorphic to kH ⊗A k as a kH-module.

Proof. Let I ⊆ kH be the annihilator of M . Then I is an ideal of codimension p, and
M is isomorphic to kH/I. Furthermore, for n > 0 we have Radn(M) = Jn(kH).M ,
and so M/Radn(M) ∼= kH/(I+Jn(kH)). Since M/Rad2(M) has dimension two, so does
kH/(I+J2(kH)), and therefore (I+J2(kH))/J2(kH) has dimension r+s−1. As a vector
space, this is isomorphic to I/(I ∩ J2(kH)). Choose elements u1, . . . , ur+s−1 ∈ I which
are linearly independent modulo J2(kH), and let A = k[u1, . . . , ur+s−1] ⊆ kH. Then kH
is flat as an A-module, and A acts trivially on M . So we have dimk HomA(k,M) = p,
and therefore

dimk HomkH(kH ⊗A k,M) = p.

Similarly, we have
dimk HomkH(kH ⊗A k,Rad(M)) = p− 1.

There is therefore a homomorphism from kH ⊗A k to M whose image does not lie in
Rad(M). Both modules are uniserial of length p, so such a homomorphism is necessarily
an isomorphism. �
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Theorem 7.10. (i) There exists a flat embedding A → kH of a subalgebra A of
dimension pr+s−1 and an isomorphism Sp−1(V #) ∼= kH ⊗A k.

(ii) The cohomology H∗(kH, Sp−1(V #)) is annihilated by

−x1 + µp1z1 + · · ·+ µprzr.

(iii) More generally, for 1 6 i 6 r + s, there exists a flat embedding Ai → kH of a

subalgebra Ai of dimension pr+s−i and an isomorphism Sp
i−1(V #) ∼= kH ⊗Ai

k.

The cohomology H∗(kH, Sp
i−1(V #)) is annihilated by the first i elements of the

regular sequence

−x1 + µp1z1 + · · ·+ µprzr

−x2 + µp
2

1 z1 + · · ·+ µp
2

r zr

. . . · · ·
−xr + µp

r

1 z1 + · · ·+ µp
r

r zr

µp
r+1

1 z1 + · · ·+ µp
r+1

r zr

· · ·

µp
r+s

1 z1 + · · ·+ µp
r+s

r zr.

Proof. (i) This follows from Lemma 7.6 and Proposition 7.9.
(ii) The annihilator of cohomology consists of the elements of cohomology of H whose

restriction to A is zero, and is therefore generated by a degree one element and its image
under βP0. Taking into account the Frobenius twist in the relationship between rank
variety and cohomology variety for an elementary abelian p-group, the statement follows
from Lemma 7.6.

(iii) This follows in the same way, using Lemma 7.7 and Theorem 7.8. �

8. Proof of the main theorem

In this section, we prove Theorem 8.1, using the results of the previous sections.

Theorem 8.1. Let G be the semidirect product

(G−a ×G−a ) oH

where H = Ga(r)×(Z/p)s acts faithfully. Then there is a non-zero element ζ ∈ H1,1(G, k)

such that for all u ∈ H1,0(G, k) we have βP0(u).ζp
r+s−1(p−1) = 0.

Proof. In contrast with the case H = Ga(1) studied in Section 5, for more general H we
only have one copy of Gm acting as automorphisms. This acts by scalar multiplication
on the generators v1 and v2 of k(G−a × G−a ) and centralizes H. So it also acts by scalar
multiplication on the generators ζ and η in H1,1(G−a × G−a , k) = k[ζ, η]. As in Section 5
we use weights in Z for this action. So ‖ζ‖ = ‖η‖ = 1, and everything in H∗,∗(H, k) has
weight zero.

We compare two spectral sequences. The first is the spectral sequence

(8.1) H∗,∗(G−a ×H,H∗,∗(G−a , k))⇒ H∗,∗(G, k),

associated with the central extension

1→ G−a → G→ G−a ×H → 1

The second is the spectral sequence of the semidirect product

(8.2) H∗,∗(H,H∗,∗(G−a ×G−a , k))⇒ H∗,∗(G, k).
18



As in Section 5, the differentials in these spectral sequences have to preserve weights for
the action of Gm.

In the first spectral sequence (8.1), we have

d2(η) = (λ1 + µ1y1 + · · ·+ µsys)ζ.

Applying the Kudo transgression theorem, we get

dp+1(η
p) = P

1
2d2(η) = (λ2 + µp1y1 + · · ·+ µpsys)ζ

p.

Continuing this way,

d2(η) = (λ1 + µ1y1 + . . . + µsys)ζ.

dp+1(η
p) = (λ2 + µp1y1 + . . . + µpsys)ζ

p

· · · . . . · · ·

dpr−1+1(η
pr−1

) = (λr + µp
r−1

1 y1 + · · ·+ µp
r−1

s ys)ζ
pr−1

dpr+1(η
pr) = (µp

r

1 y1 + . . . + µp
r

s ys)ζ
pr

· · · · · ·

dpr+s−1+1(η
pr+s−1

) = (µp
r+s−1

1 y1 + · · ·+ µp
r+s−1

s ys)ζ
pr+s−1

and finally dpr+s(ηp
r+s

) is in the ideal generated by the previous ones, so ηp
r+s

is a universal
cycle.

Applying Corollary 5.6 to the restriction of the first spectral sequence (8.1) to the
semidirect product of G−a ×G−a with a minimal subgroup of H we conclude that

(8.3) dp((λ1 + µ1y1 + · · ·+ µsys)η
p−1)

is non-zero. It has to be something of weight p−1, and is therefore something times ζp−1.
Now, in the second spectral sequence (8.2), Theorem 7.10 shows that the element

−x1 + µp1z1 + · · ·+ µpszs

on the base annihilates ζp−1 on the fibre in the E2 page. This means that in H∗,∗(G, k),
this product is zero modulo smaller powers of ζ.

Putting these two pieces of information together, we see that (8.3) has to be a non-zero
multiple of (−x1 + µp1z1 + · · ·+ µpszs)ζ

p−1. Therefore, in H∗,∗(G, k) we have the relation

(−x1 + µp1z1 + · · ·+ µpszs)ζ
p−1 = 0.

We now apply Steenrod operations to this relation to obtain further relations. Applying

P
p−1
2 , we obtain

(−x2 + µp
2

1 z1 + · · ·+ µp
2

s zs)ζ
p2−p = 0.

Continuing this way, applying P
p(p−1)

2 ,P
p2(p−1)

2 , . . . we have
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(−x1 + µp1z1 + · · ·+ µpszs)ζ
p−1 = 0

(−x2 + µp
2

1 z1 + · · ·+ µp
2

s zs)ζ
p(p−1) = 0

· · · · · ·

(−xr + µp
r

1 z1 + · · ·+ µp
r

s zs)ζ
pr−1(p−1) = 0

(µp
r+1

1 z1 + · · ·+ µp
r+1

s zs)ζ
pr(p−1) = 0

· · ·

(µp
r+s

1 z1 + · · ·+ µp
r+s

s zs)ζ
pr+s−1(p−1) = 0.

Every linear combination of x1, . . . , xr, z1, . . . , zs is spanned by the coefficients of the
powers of ζ. In particular, this shows that every xiζ

pr+s−1(p−1) and every ziζ
pr+s−1(p−1) is

zero in H∗,∗(G, k). This completes the proof. �

Finally, we deduce a corollary to be used in [7].

Corollary 8.2. Let G be a finite unipotent supergroup scheme, with a normal sub-
supergroup scheme N such that G/N ∼= G−a × Ga(r) × (Z/p)s. If the inflation map
H1,∗(G/N, k)→ H1,∗(G, k) is an isomorphism and H2,1(G/N, k)→ H2,1(G, k) is not in-
jective then there exists a non-zero element ζ ∈ H1,1(G, k) such that for all u ∈ H1,0(G, k)

we have βP0(u).ζp
r+s−1(p−1) = 0.

Remark 8.3. The condition that the inflation map is an isomorphism on H1,∗ effectively
decodes the fact that G/N is the maximal quotient of prescribed form. See [7] for more
details on how it arises.

Proof. Recall that

H∗,∗(G/N, k) ∼= k[ζ]⊗ k[x1, . . . , xr]⊗ Λ(λ1, . . . , λr)⊗ k[z1, . . . , zs]⊗ Λ(y1, . . . , ys)

with ζ in degree (1, 1) and the rest of the generators in even internal degree. If the
inflation map H2,1(G/N, k)→ H2,1(G, k) is not an isomorphism then the kernel contains
an element of the form uζ with u ∈ H1,0(G/N, k), ζ ∈ H1,1(G/N, k). The five term
sequence corresponding to the extension 1→ N → G→ G/N → 1,

H1,1(G/N, k) // H1,1(G, k) // H1,1(N, k)G
d2 // H2,1(G/N, k) // H2,1(G, k)

gives an element 0 6= η ∈ H1,1(N, k)G such that d2(η) = uζ. Now H1,1(N, k) ∼=
Hom(N,G−a ) (see [7, Lemma 4.1]), so corresponding to η there is a G-invariant sur-
jective homomorphism N → G−a . Letting N1 6 N be the kernel of this homomorphism,
it follows that N1 is normal in G. Looking at the map of five term sequences given by
factoring out N1, we see that we might as well replace G by G/N1 and N by N/N1, since
the hypotheses of the corollary are preserved, and the conclusion for G/N1 inflates to the
same conclusion for G.

We are left in a situation where we have a short exact sequence

1 // N //

∼=
��

G //

=

��

G/N //

∼=
��

1

1 // G−a // G // G−a ×Ga(r) × (Z/p)s // 1.

The fact that d2(η) = uζ means that the restrictions of d2(η) to the two factors G−a and
Ga(r) × (Z/p)s of the quotient are both zero. So the restriction of the extension to these
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two factors gives abelian subgroups. It is then easy to see that the restricted extensions
split, and so G has subgroups G−a ×G−a and Ga(r) × (Z/p)s satisfying the conditions for
a semidirect product. This puts us in the situation of Theorem 8.1, and the Corollary is
proved. �
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