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Nonparametric Estimation of Uncertainty Sets for Robust Optimization

Polina Alexeenko! and Eilyan Bitar'

Abstract— We investigate a data-driven approach to con-
structing uncertainty sets for robust optimization problems,
where the uncertain problem parameters are modeled as
random variables whose joint probability distribution is not
known. Relying only on independent samples drawn from this
distribution, we provide a nonparametric method to estimate
uncertainty sets whose probability mass is guaranteed to ap-
proximate a given target mass within a given tolerance with high
confidence. The nonparametric estimators that we consider are
also shown to obey distribution-free finite-sample performance
bounds that imply their convergence in probability to the
given target mass. In addition to being efficient to compute,
the proposed estimators result in uncertainty sets that yield
computationally tractable robust optimization problems for a
large family of constraint functions.

Index Terms— Chance-constrained optimization, robust opti-
mization, data-driven optimization, nonparametric estimation.

I. INTRODUCTION

In this paper, we consider a class of optimization prob-
lems whose feasible regions are defined in terms of chance
constraints [1] of the form

Pr(f(z,u) <0) > a. ()

Here, f : R x R — R denotes the constraint function,
2 € R? denotes the decision variable, and w is an R¢%-valued
random vector that reflects uncertainty in the constraint pa-
rameters. The chance constraint (1) requires that the decision
variable satisfy the constraint f(z,u) < 0 with probability
no smaller than « € [0, 1].

Chance constrained optimization problems are challeng-
ing to solve for a variety of reasons. First, their feasible
regions are generally nonconvex [2]. For example, chance
constrained problems have been shown to be NP-hard even
in the most basic setting where the constraint function is
affine in both the decision variable and uncertain parameters
[3]. Furthermore, verifying the feasibility of a candidate
solution to a chance constrained problem is difficult, because
it involves the evaluation of a multivariate integral which
can be computationally expensive in high dimensions [2].
To complicate matters further, the underlying distribution
according to which the random vector is distributed may be
unknown.

A variety of approaches to the solution of chance con-
strained problems have been explored in the literature. There
are several works that develop exact convex reformulations of
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chance constrained problems [4]-[8] and their distribution-
ally robust generalizations [9]-[11]. These reformulations
rely on a variety of assumptions, including restrictions on
the family of probability distributions according to which
the random vector is distributed and the functional form
of the chance constraints. Ultimately, many problems of
practical interest may fail to satisfy these narrow structural
and distributional assumptions.

Because of the rarity of problem instances amenable to
exact convex reformulation, there is another line of research
focused on the design of approximation methods for chance
constrained problems. One approach that has been explored
extensively involves the construction of explicit convex inner
(conservative) approximations to chance constrained opti-
mization problems [12]-[17]. Again, a potential drawback
of these methods stems from their reliance (to varying
degrees) on knowledge of certain features of the underlying
distribution, e.g., support or moment information. Data-
driven approximation methods seek to alleviate the reliance
on distributional assumptions that may be overly stringent
or difficult to verify in practice. Instead, they utilize data
sampled from the underlying distribution. For instance, the
sample average approximation method [2] involves selecting
an optimal subset of the sampled data that has empirical
probability mass no smaller than the target reliability level a.
While this approach may be less conservative than other data-
driven methods, it gives rise to approximations in the form of
mixed-integer optimization problems—which become com-
putationally intractable to solve in the large sample regime.

There is another stream of literature focusing on data-
driven approximations that give rise to tractable convex
optimization problems. A particular category of methods
uses the given data to construct estimates of the unknown
distribution or its lower-order moments [9], [18]—[21]. These
estimates, together with suitably defined confidence regions,
give rise to distributionally robust approximations to the
original chance constrained program that, in some instances,
admit tractable convex reformulations.

Another family of data-driven methods known as scenario
approximations have also been widely studied as another
tractable alternative to the approximation of chance con-
strained problems [22], [23] and their distributionally robust
counterparts [24], [25]. Specifically, scenario-based methods
approximate the chance constraint (1) with n sampled con-
straints of the form

f(xaui)goaizla"'ana (2

where wq,...,u, is an ii.d. sample drawn from the un-
known distribution. In addition to being distribution-free,
scenario-based methods do not impose restrictions on the
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functional form of the constraint function beyond requiring
its convexity in the decision variable. However, these meth-
ods require a sample size that is at least O (ﬁln (%))
in order to yield a solution that is feasible for the original
chance constrained problem with probability at least 1 — §.
While the dependence of this sample size requirement on the
problem dimension ¢ can be improved for problems that are
not fully supported (e.g., [23], [26], [27]), the bound is tight
in general. Therefore, when the number of decision variables
is large or when the reliability needed is high, scenario-based
approximations can become computationally challenging to
solve due to the large number of constraints that must be
enforced.

A. Contribution and Related Work

Our approach is predicated on the conservative approxi-
mation of (1) in the form of a robust constraint:

flz,u) <0 Yuel, 3)

where the uncertainty set U C R? is constructed from
data in a manner that ensures its satisfaction of the mass
requirement Pr(u € U) > « with high probability. In this
paper, we provide a nonparametric method to construct such
uncertainty sets from data in a manner that guarantees that
their probability mass is within a given tolerance of the
target mass « with high confidence. The uncertainty sets
that we propose are trivial to compute, satisfy distribution-
free finite-sample statistical guarantees, and give rise to
robust constraints (3) that are computationally tractable for
a large family of constraint functions. Additionally, the
proposed methodology allows for the explicit representation
of nonconvex uncertainty sets as finite unions of convex
sets—e.g., as the union of m € N balls centered at sampled
data points. In this manner, the resulting robust constraint (3)
can be equivalently reformulated as a finite intersection of
m simpler robust constraints, where each robust constraint
is defined in terms of a convex uncertainty set. Importantly,
the geometry of the underlying convex sets can be tailored
to accommodate the structure of the constraint function to
ensure the tractability of the resulting robust constraints. As
another degree of freedom in the parameterization of these
sets, the user is free to specify the number of constitutive sets
used in the representation of the uncertainty set, and, hence,
the number of robust constraints that must be enforced in
the approximation. This provides the user with some degree
of control over the size of the resulting robust optimization
problem, unlike scenario approximation methods.

It is important to mention that the probabilistic cover-
age guarantees accompanying the class of uncertainty sets
proposed in this paper require that the random vector u
have a continuous distribution (cf. Assumption 1). The
guarantees accompanying scenario approximation methods
do not require such assumptions. We also note that, while
we suggest a particular class of uncertainty sets in Section II-
B, the probabilistic coverage guarantees provided in Section
IIT hold for a more general family of uncertainty sets—e.g.,
those that satisfy Assumption 1.

Our approach is closely related to a class of existing
methods that utilize data to construct uncertainty sets that
yield tractable robust approximations to chance-constrained
optimization problems. For example, Margellos et al. [28]
develop a data-driven approach to estimate intervals that
cover each component of the random vector with high
probability, resulting in uncertainty sets that take the form
of hyperrectangles. Bertsimas et al. [29] utilize statistical
hypothesis tests to construct convex uncertainty sets from
data. However, due to the convex geometry of the uncertainty
sets produced by these methods, they may be limited in
terms of their ability to accurately describe nonconvex high
probability regions that reflect multimodality in the under-
lying distribution. Because of the limited expressiveness of
these uncertainty sets, they may result in overly conservative
approximations to the original chance constraint. Closer to
the approach adopted in this paper, Campbell and How [30]
consider representations in the form of unions of ellipsoids.
A potential drawback of their approach, however, stems from
the reliance of their theoretical results on the restrictive
assumption that the unknown distribution belong to a family
of Dirichlet process Gaussian mixtures.

The problem of estimating high probability sets from data
also has similarities to minimum-volume (MV) set estimation
problems. MV-set estimators based on the estimation of
density level sets [31]-[34] typically yield nonconvex sets
that are not readily expressible as finite unions of convex
sets—limiting their tractability from a robust optimization
perspective. More broadly, MV-set estimation methods in-
clude those based on nonparametric set estimation [35], [36],
empirical quantile-based estimation [37], [38], classification
via support vector machines [39], [40], and network flow-
based methods [41]. With the exception of [38], the methods
presented in these papers lack explicit finite-sample guar-
antees on their performance. A practical limitation of the
algorithms proposed by Scott et al. [38], however, is that the
computation of their MV-set estimates is intractable in high
dimensions.

B. Organization

The remainder of the paper is organized as follows. In
Section II, we introduce a data-driven method to construct
uncertainty sets with a given probability mass. In Section
II, we provide finite-sample statistical guarantees on the
performance of the proposed class of estimators. Section
IV illustrates the behavior of the estimators with several
numerical experiments, and Section V concludes the paper.

C. Notation

We employ the following notational conventions through-
out the paper. Let R and Z denote the sets of real numbers
and integers, respectively. Given a positive integer n € Z,
we let [n] := {l,...,n} denote the set of the first n
positive integers. Given a real number x € R, we denote
its ceiling by [z] := min{n € Z | n > z}. Throughout, we
use boldface symbols to denote random variables, and non-
boldface symbols to denote particular values in the range of
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a random variable and other deterministic quantities. We use
Pr (A) to denote the probability of an event A.

II. UNCERTAINTY SET ESTIMATION

In this section, we provide a data-driven method to con-
struct uncertainty sets whose probability mass is both close
to and no smaller than a given target mass « € (0,1) with
high probability, based only on a finite random sample drawn
from the unknown distribution of interest. In addition to
the mass requirement, we seek representations that result in
computationally tractable robust constraints.

The remainder of this section is organized as follows.
In Sec. II-A, we provide a general approach to learning
a-probability sets via the estimation of sublevel sets for
a general class of continuous functions. In Sec. II-B, we
introduce a particular class of functions whose level sets
(expressible as finite unions of convex sets) yield tractable
robust constraints for several important families of constraint
functions. We close with a discussion on the connections be-
tween the proposed family of approximations and scenario-
based approximation methods.

A. Estimation via Level Sets

With the aforementioned objectives in mind, we consider
a family of uncertainty sets defined as r-sublevel sets! of a
given continuous function ¢ : R? 5 R, ie.,

Uy(r) :={u e R | ¢(u) <r}. €))

The proposed family of uncertainty sets (4) is parame-
terized by the user-specified inputs: the shape function ¢
and level r. Intuitively, the shape function ¢ should be
chosen so that it is smallest over those regions with the
greatest concentration of probability mass, in order to limit
the volume (Lebesgue measure) of the resulting sublevel set.
While this might suggest an approach to specifying ¢ in
terms of a density estimate based on an i.i.d. sample drawn
from the unknown distribution, the particular functional form
of ¢ must also yield uncertainty (level) sets that are computa-
tionally tractable from a robust optimization perspective—a
condition that most nonparametric (kernel) density estimators
fail to satisfy. In Sec. II-B, we suggest a particular functional
form for the shape function ¢ that is expressive enough to
represent compact sets of arbitrary form, while ensuring the
tractability of the robust constraints that it yields for a large
family of constraint functions. It is important to note that,
in the interest of lightening notation, we have omitted the
potential dependence that the function ¢ may have on data
drawn from the unknown distribution of interest.

For the remainder of this section, we treat the shape func-
tion ¢ as being fixed (implicitly conditioning all probabilistic
statements on the data on which it is based), and focus
our discussion on the role of the level r in controlling the
behavior of the sublevel sets of ¢. Clearly, the level » € R
directly influences the volume and probability mass of the
sublevel sets of ¢, with larger levels resulting in sublevel

'The decision to specify (4) in terms of sublevel sets of ¢, as opposed
to superlevel sets, is made for notational convenience.

sets of greater volume. Thus, with the aim of limiting the
conservatism of the robust approximations (3) induced by
the proposed family of uncertainty sets, we are interested in
characterizing the smallest level r such that the target mass
requirement is satisfied. We refer to this as the a-covering
level, which we formally define as follows.

Definition 1 (a-covering level): Let oo € (0,1). The a-
covering level is defined as

pla) :=1inf{r e R | Pr(u € Uy(r)) > a}.

As one of the objectives of this paper, we are interested in
constructing an estimator for the a-covering level p(«/) based
only on an ii.d. training sample wq,...,u, drawn from
the unknown distribution. Before introducing the particular
family of estimators that we consider in this paper, it will be
informative to express the a-covering level in terms of the
quantile

pla) = F~H(a),
where F~1(a) := inf{z € R | Pr (¢ < z) > a} denotes the
a-quantile of the transformed random variable ¢ := ¢(u).

This reformulation suggests a natural estimator for p(«) in
the form of an empirical quantile

F Y (a) :==inf{z € R | F,(2) > an}. 5)

Here, «,, € (0,1) is a sequence of probability levels, and
Fo.(z) == (1/n)>°11{¢; < =z} denotes the empirical
distribution function associated with the transformed training
sample

¢ = o(u;)

fort=1,...,n.

In Section III, we investigate the role of «,, in controlling
the limiting behavior and rate of convergence of the proposed
empirical quantile to the a-covering level. In particular, we
establish minimum training sample size requirements on n
ensuring that the probability mass covered by the resulting
uncertainty set Uy (F,, ! (c,)) is within a given tolerance of
(and no smaller than) the given target mass « with high
probability.

B. Shape Functions ¢ Compatible with Robust Optimization

The functional form of the shape function ¢ (and the
geometry of its sublevel sets) will play a critical role in
governing the tractability of the family of robust constraints
that it gives rise to. With this in mind, we suggest a class
of shape functions whose sublevel sets are rich enough to
represent compact sets of arbitrary form, while being simple
enough to ensure the tractability of the resulting robust con-
straints. Specifically, we propose a particular class of shape
functions whose sublevel sets admit explicit representations
as finite unions of regular convex sets, e.g., p-norm balls.
In this manner, the resulting robust constraint (3) can be
equivalently reformulated as a finite intersection of simpler
robust constraints, where each robust constraint is defined
in terms of a convex uncertainty set. Being expressed as
norm balls, the particular geometry of the underlying convex
sets (e.g., #1 versus {5) can be tailored to accommodate the
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structure of the given constraint function to facilitate the
tractability of the corresponding robust constraint. In addition
to determining the number of constraints, the number of
sets in the union will also influence the volume of the
uncertainty sets that we learn, and hence the conservatism
of the resulting robust constraint approximations. Therefore,
in treating the number of sets in the approximation as a
user-specified parameter, one can tradeoff the computational
complexity of the resulting optimization problem against the
quality (conservatism) of its solutions.

With these design criteria in mind, we now introduce
the specific class of estimators we consider. Given an i.i.d.
sample u1, ..., u,, drawn from the unknown distribution of
interest, define

¢ (u) := min [u —w, (6)
i€[m]
where |-|| denotes the p-norm (p > 1) on RZ The spec-
ification of the shape function according to (6) gives rise
to a class of uncertainty sets that are defined as a union of
balls with a common radius, where each ball is centered at
a randomly sampled point

m
Uy (r) = B (as,r). (7)
i=1
Here B(u,r) = {veR?| lu—v| <r} denotes the
closed ball of radius » > 0 centered at u € R? The
parameter r plays an analogous role to that of bandwidth
parameters in the context of nonparametric kernel density
estimation.”

It is important to note that we have augmented the
notation used to denote the sample (@i,...,U,,) (which
we refer to as the shape sample), in order to distinguish
its specification from the training sample (uy,...,u,) that
is subsequently used to estimate the a-covering level. The
two samples, which are assumed to be independent from
one another, play distinct roles in the construction of the
uncertainty set. The shape sample determines the positions
of the balls comprising the uncertainty set, while the training
sample is used to calibrate the radius r of each ball in a
manner guaranteeing that the probability mass covered by
the resulting uncertainty set is within a given tolerance of
the target probability mass with high confidence.

Given an uncertainty set U, (r) defined according to (7),
one can equivalently reformulate the robust constraint (3) as
the intersection of m robust constraints of the form

fz,u) <0 YueB(u,r), i=1,....,m. (8)

Robust constraints defined in terms of uncertainty sets of this
form result in computationally tractable optimization prob-
lems for a large family of constraint functions. For example,
if the given constraint function is a bi-affine function of the
form f(z,u) = z"u — b, then it is straightforward to show

2Nonparametric estimators defined as the union of balls centered on the
sampled data have been previously studied in the context of distribution
support estimation [35], [36].

that the collection of robust constraints specified in (8) can
be equivalently reformulated as convex constraints given by
i=1

mTﬁ,;+r||zH* < b, N 9)

where ||z||, :=sup{z "y | |ly|| < 1} denotes the dual norm
associated with a given p-norm ||-||.

We refer the reader to [42] and [43] for a more comprehen-
sive discussion surrounding the different families of robust
constraints that admit equivalent reformulations as tractable
convex constraints.

C. Comparison to Scenario Approximation Methods

The approach considered here gives rise to optimization
problems that are similar in structure to those based on
scenario approximations of chance constrained problems
and their distributionally robust generalizations. Specifically,
when the radius r of the balls composing the uncertainty
sets is equal to zero, we recover the standard scenario
approximations to chance constrained problems such as those
presented in [22], [23]. When r» > 0, we recover the ro-
bust scenario approximation to distributionally robust chance
constrained problems studied in [24], [25]. Interestingly, the
latter connection suggests that the class of approximations
considered in this paper also possesses an intrinsic distribu-
tional robustness—a point that merits further examination as
part of future research.

Although the class of approximations that we propose is
similar in structure to those based on scenario approximation
methods, our method offers an important computational
advantage in terms of the number of constraints that must
be enforced in the resulting approximation to the original
chance constraint. Specifically, while scenario approximation
methods result in approximations based on a number of sam-
pled constraints that is at least O(7 In (})), the method
proposed in this paper treats the number of constraints m in
the resulting robust approximation as a parameter that can
be set by the user. Importantly, our theoretical guarantees
hold for any value of m, allowing the user to determine the
number of constraints that must be enforced in the resulting
approximation to the original chance constraint.

It is also important to note that the class of approximations
proposed in this paper is accompanied by certain limitations,
as compared to scenario approximation methods. In partic-
ular, while scenario approximations (2) only require that
the constraint function be convex in the decision variable,
the tractability of our approximations (8) requires additional
restrictions on the class of constraint functions that can be
efficiently optimized over—e.g., that the constraint functions
are also concave with respect to the uncertain variable.

III. FINITE-SAMPLE STATISTICAL GUARANTEES

We now establish a bound on the rate at which the
probability mass of the proposed class of uncertainty sets
converges to the target mass as a function of the training
sample size n. It is important to note that the theoretical
results presented in this section hold not only for the class
of uncertainty sets introduced in Section II-B, but more
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generally for any family of uncertainty sets induced by shape
functions that satisfy Assumption 1. To lighten the notation
in the following discussion, we denote the probability mass
of the uncertainty set U, (r) conditioned on a level r by

T(r) :=Pr(u € Uy(r)). (10)

Throughout this section, we treat the shape function ¢ as be-
ing fixed and given. Accordingly, all subsequent probabilities
that we state in this section should be interpreted as being
conditioned on the given shape function ¢. Before stating
the main result of this section, we introduce a technical
assumption that is assumed to hold throughout the remainder
of the paper.

Assumption 1: Given a fixed shape function ¢ : R? — R,
the transformed random variable ¢ = ¢(u) is assumed to
have a continuous distribution.

In particular, Assumption 1 is satisfied by any shape function
¢ constructed according to (6) if the underlying random
vector u is continuous. With Assumption 1 in hand, we have
the following result.

Theorem 1: Let € € (0,1 — «) and o, € (v, @ + €) for
all n > 1. It follows that

Pr (my(F; (o)) < @) < exp (m) 0

and

Pr (my(F), Hay)) > a+¢)

—nla+e—ay)?
Sexp( 2o +2) ) (12)

It follows that, for any fixed tolerance ¢ € (0,1 — «),
the probability that the mass covered by the uncertainty set
Uy(F () is within € of (and no less than) the target
mass « approaches one at an exponential rate in the sample
size. One may also use this result to establish conditions on
the sequence v, guaranteeing that m,(F, '(a,)) — a in
probability as the sample size n tends to infinity.

We note that the proof of Theorem 1 utilizes a number
of standard arguments that have been used to establish
several related results in the literature [44]-[46]. The crux
of the main argument involves the reformulation of the error
probabilities (11) and (12) as binomial tail probabilities,
which are then bounded from above using a variant of the
Chernoff bound.

Proof: All probabilities stated in this proof are assumed
to be conditioned on the given shape function ¢. We first
prove inequality (11). First notice that, conditioned on a level
r, it holds that

me(r) =Pr(¢p(u) <r) = F(r),

where F' denotes the cumulative distribution function of
the transformed random variable ¢ := ¢(w). This identity,
combined with the assumed continuity of the distribution F',
implies that

Pr (ms(F, (o)) < a) = Pr (F, ' (an) < F~ () .

The empirical quantile function can be expressed in terms of
the order statistics of the transformed training sample, which
we denote by C(1) < C(2) <... < C(n). Specifically, it holds
that

F N 0) =€) (13)

for all v € (0,1). Importantly, the cumulative distribution
function of the k-th order statistic can be expressed according
to the upper tail of a binomial:

Pr(Cpy <) =Y (?)F@)i(l SFE)T (4
i=k
for each kK =1,...,n [47]. It follows that
Pr (Fn_l(an) < F_l(a))
=Pr (C([nan‘\) < F_l(a))
- Y (”) a'(l—a)"™  (15)
i=[nay] !
n—[nay] n ‘ ‘
= Z (Z> (1—a)a™" (16)

i=0

The first equality follows from (13). The second equality
follows from (14) and Assumption 1, which implies that
F(F~1(a)) = . The third equality stems from an equiva-
lent reformulation of the upper binomial tail (15) as a lower
binomial tail. One can bound (16) from above using the
following well-known upper bound on the lower tail of a
binomial [48][Theorem 4.5], which is a direct consequence
of the Chernoff bound.

Theorem 2: Let & be a binomial random variable with
parameters n € N and p € [0,1]. For k& < np, it holds

that
—(np — k)2> .

Pr(§ <k) <exp ( 2np

Inequality (11) follows from an application of Theorem 2 to
(16), where we use the fact that n — [na, ] < n(l — ay).

The proof of inequality (12) is analogous in nature to the
proof of (11). Using similar arguments, it is possible to show
that

Pr (ﬂ'qg(F;l(Oén)) >a+ 6)

[nay]—1
= Y (n> (a+e)(l—a—e)™ " (17)
i
i=0
Inequality (12) follows from an application of Theorem 2 to
(17), where we use the fact that [na, | — 1 < nay,. [ |

It is also possible to use Theorem 1 to characterize
a distribution-free bound on the sample size requirement
ensuring that the probability mass covered by the uncertainty
set satisfies the given tolerance with a given confidence 1—9.
We state the following corollary without proof, as it is an
immediate consequence of Theorem 1.

Corollary 1: Letd € (0,1),e € (0,1—a),and A € (0,1).
Set a,, = a+ Xe for all n > 1. If

n>c(\ ae) <€22> In (?) ,

(18)
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where c(\, a, ¢) := max{(1—a)/\2, (a+e)/(1—))?}, then
Pr(a < my(F, ' (an)) <a+e) >1-06.

It is important to note that the sample size requirement
(18) is dimension-free in that it does not depend on the
dimension of the random vector or that of the decision
variable. Additionally, for o € (1/2,1), it is straightforward
to show that the value of A which minimizes the sample size
requirement (18) is given by

3= l—a—/(1-—a)(a+e)
B 1-2a—c¢ '

We also remark that it is possible to improve upon the
sample size requirement (18) through a refinement of the
upper bounds on the lower binomial tails (16)-(17) using
arguments analogous to those in [46]. In particular, the
dependence on the tolerance parameter € can be improved

to O(1/e).

19)

IV. EXPERIMENTS

In this section, we present numerical experiments il-
lustrating certain features and properties of the proposed
uncertainty set estimator. Throughout these experiments, we
consider three different random vectors, each of which is
distributed according to a distinct Gaussian mixture.

A. Examining the Role of m

Figure 1 illustrates the impact of the number of balls m
on the shape and volume of the uncertainty sets produced
by our method for three different random vectors distributed
according to Gaussian mixtures whose density functions are
depicted in Figures 1(a), 1(f), and 1(k). In these experiments,
we consider a fixed probability mass o = 0.9, tolerance
parameter € = 0.05, and confidence parameter § = 0.05. In
specifying the uncertainty set estimator, we set a, = a+\*e
for all n, where \* is specified according to (19). For each
value of m € {1, 10,100, 1000}, we construct an uncertainty
set Uy (F, () according to (7) using a training sample
with size satisfying the bound (18).

As expected, the plots in Figure 1 show that the proposed
quantile estimate for the a-covering level, (i.e., the radius
of each ball) appears to decrease with the number of balls
used in the approximation of the a-probability region. And,
on balance, the volume of the uncertainty sets appears to
shrink with m, resulting in a potential decrease in the
conservatism of the approximation to the original chance
constrained problem. In particular, notice that the volume of
the uncertainty set (m = 1) depicted in Figure 1(1) is much
larger than the volume of the uncertainty set (m = 1000)
depicted in Figure 1(o). From Figure 1(k), we see that
the probability mass of the underlying distribution in this
example is concentrated at four disconnected regions. Due
to the separation between these high probability regions,
uncertainty sets constructed according to a single ball are
likely to have large volume. By contrast, notice that the
difference in volume between the uncertainty sets in Figures
1(g) and 1(j) is smaller, because in that example the un-
derlying distribution has a significant amount of probability

mass concentrated in a small connected region. Furthermore,
the shapes and volumes of the uncertainty sets in Figures
1(b)-1(e) do not vary significantly for different values of
m, because in this case the vast majority of the probability
mass is concentrated in a circular region. It is important to
note, however, that as m increases, the volume of outliers
also appears to increase, potentially resulting in increased
conservatism of the approximation. Thus, from a practical
perspective, the number of balls used in the approximation
should be tuned to balance this tradeoff.

B. Illustrating Mass Consistency

In Figure 2, we conduct a Monte-Carlo analysis to il-
lustrate the mass consistency of the proposed uncertainty
set estimator by varying the tolerance parameter value.
Throughout these experiments, we fix the number of balls to
m = 10, consider a target probability mass of o = 0.9, and
consider a random vector distributed according to a Gaussian
mixture whose density is depicted in Figure 1(f). We vary
the tolerance parameter on a logarithmic scale between 0.005
and 0.05, and set «,, = « + A*e, where \* is defined
according to (19). For each value of the tolerance parameter,
we chose the number of training samples to be the smallest
integer satisfying the sample size requirement (18).

The numerical experiments are conducted as follows for
each value of the tolerance parameter <. First, we generate a
random shape sample u1, . .., u,, that determines the centers
of the balls composing the uncertainty set that we construct.
For each experiment, we draw an i.i.d. training sample
to evaluate F), *(av,) according to (5) and Uy (F, ()
according to (7). We then estimate the probability mass
covered by each uncertainty set my (F,;'(a,)) using an
empirical average based on one million independent samples
of the random vector u. We estimate empirical confidence
intervals associated with 7 (F,j 1(o¢n)) using one thousand
independent experiments. Figure 2 depicts the middle 90%
empirical confidence interval associated with the probability
mass covered by the uncertainty sets for each value of .
Notice that, consistent with the result in Theorem 1, the fifth
percentile of the probability mass covered by the uncertainty
set remains above the target probability mass. Furthermore,
the mass captured by the uncertainty set approaches the
target probability mass with high confidence as the tolerance
parameter value decreases to zero.

V. CONCLUSION

We provide a data-driven method to construct uncertainty
sets for robust optimization problems. The estimators we
consider are consistent, satisfy finite-sample performance
guarantees, are efficient to compute, and give rise to tractable
robust constraints for a large family of constraint functions.
Furthermore, the proposed method provides the user with
two mechanisms by which to control the complexity of the
resulting robust optimization problem. First, the user can
directly control the number of constraints in the resulting
approximation while preserving the conservatism of the
approximation with respect to the original chance constraint.
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Fig. 1: The plots in the first column depict the probability density functions of three different R?-valued random vectors.
The plots in columns two through five depict realizations of the uncertainty set Uy (F,, ' (cv,)) for different values of m for

each random vector.
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Fig. 2: The middle 90% empirical confidence interval as-
sociated with the coverage probability 74 (F, ! (cy,)) for
different tolerance parameter values.

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]
Second, the geometry of the uncertainty sets can be tailored [}
to accommodate the structure of the given constraint func-
tion to ensure the computational tractability of the robust 2]
approximation. As a direction for future research, it would
be interesting to refine our sample complexity results to  [13]
explicitly reflect the role of the number of balls used in the
approximation in determining the volume of the sets learned. [14]
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