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a b s t r a c t

This research is a continuation of the Algebraic 3D Graphic Statics Methods that addressed the
reciprocal constructions in an earlier publication (Hablicsek et al. 2019). It provides algorithms and
(numerical) methods to geometrically control the magnitude of the internal and external forces in
the reciprocal diagrams of 3D/Polyhedral Graphic statics. 3D graphic statics (3DGS) is a recently
rediscovered method of structural form-finding based on a 150-year old proposition by Rankine and
Maxwell in Philosophical Magazine. In 3DGS, the form of the structure and its equilibrium of forces
are represented by two polyhedral diagrams that are geometrically and topologically related. The areas
of the faces of the force diagram represent the magnitude of the internal and external forces in the
members of the form diagram. The proposed method allows the user to control and constrain the areas
and edge lengths of the faces of general polyhedrons that can be convex, self-intersecting, or concave
in a group of aggregated polyhedral cells. In this method, a quadratic formulation is introduced to
compute the area of a face based on its edge lengths only. This quadratic function is then turned
into a linear formulation to facilitate the non-trivial computation of reciprocal polyhedral diagrams.
The approach is applied to force diagrams, including a group of polyhedral cells, to manipulating
the face geometry with a predefined area and the edge lengths. The method is implemented as a
multi-step algorithm where each step includes computing the geometry of a single face with a target
area and updating the polyhedral geometry. One of the remarkable results of this framework is to
control the construction of the zero-area faces as proposed by McRobie (2017b). The zero-area faces
represent a member with zero force in the form diagram. This research shows how self-intersecting
faces, including the zero-area faces, can be constructed with additional edge constraints in a group of
polyhedral cells without breaking the reciprocity of the form and force diagrams. Thus, it provides more
hints on the generalization of the principle of the equilibrium of polyhedral frames. It also suggests a
design approach where the boundary conditions and internal forces of compression-only systems can
be manipulated to the design systems with both compression and tensile forces with no change in the
geometry or the faces’ planarity of the form diagram.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, geometry-based structural design methods, known
s Graphic Statics, have been extended to 3D dimensions based
n various approaches, among them those based on a historical
roposal by Rankine and Maxwell in Philosophical magazine will
e the subject of this article [1–11].
In this method which is called 3D Graphical Statics using Re-

ciprocal Polyhedral Diagrams, the equilibrium of the forces in a
single node is represented by a closed polyhedron or a polyhedral
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cell with planar faces (Fig. 1). Each face of the force polyhedron is
perpendicular to an edge in the form diagram, and the magnitude
of the force in the corresponding edge is equal to the area of
the face in the force polyhedron. The sum of all area-weighted
normals of the cell must equal zero that can be proved using
the divergence theorem [7,12,13]. In some cases, a cell can have
complex faces (self-intersecting), which have multiple enclosed
regions (Fig. 2b). The direction and the magnitude of the force
corresponding to a complex face can be determined by summing
the area-weighted normals of all of the enclosed regions (Fig. 2b,
c). As a result, the direction of the internal force in the members
of the structure might flip based on the direction of the face of
a single force cell. In the context of the paper, we will use the

‘3DGS’ acronym in place of 3D/polyhedral graphic statics and it
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Fig. 1. (a) A 3D structural joint with an applied force and internal forces in
its members; (b) the form diagram/bar-node representation of the same joint
in the context of 3DGS; and (c) the force diagram/polyhedron representing the
equilibrium of the same node in 3DGS.

Fig. 2. From left to right: (a) A convex face with a positive force direction (out
of the page); (b) a complex face with two enclosed regions and a positive net
force direction; (c) and a complex face with two enclosed regions and a negative
net force direction.

should not be mistaken by the vector-based 3D graphic statics
[14,15].

Multi-layered funicular form-finding

Funicular structural forms carrying the applied loads in the
form of pure tensile/compressive axial forces maximize the struc-
tural performance and minimize the use of materials. The internal
structure of a bone is a classic example where material follows
the principal stress directions and forms delicate lattice struc-
tures [16]. The 3D graphic statics discussed in this paper may
be used to design the topology and the equilibrium geometry of
funicular polyhedral systems. These funicular networks are quite
similar to the Thrust-Network Analysis (TNA) proposed by Block
nd Ochsendorf [17]. The main difference is that TNA uses polyg-
nal reciprocal diagrams [4,18], whereas 3DGS uses polyhedral
eciprocal diagrams. Consequently, the thrust networks of TNA
ethods are two-manifolds (single layer), but the network gen-
rated by 3DGS can be two-manifolds or multi-layered polyhedral
etworks based on the topology of the force diagram.

ssigning the design loads

Prescribing the applied loads is an essential part of using
D/polyhedral graphic statics. In this regard, three possible sce-
arios might be considered in the design process: the applied
oads are the self-weight of the system; the applied loads are
he combination of the self-weight/dead load and live load in the
ystem, and the applied loads are significantly larger than the
elf-weight of the system.
The funicular polyhedral structures can be single-layer or

ulti-layered systems. In the case of a single-layer/two-manifold
ystem, the self-weight can be calculated as the tributary area for
2

each node multiplied by the thickness of the shell and compared
with the area of the face corresponding to the applied load in
the force diagram. Thrust Network Analysis (TNA) is an excellent
example for this approach [17,19,20]. Each force diagram can
describe the equilibrium of an infinite family of solutions of
funicular forms due to the geometric degrees of freedom of the
form diagram [17,21]. The tributary area can be different for each
solution. Thus, matching the self-weight with the applied loads in
the form-finding process should be achieved in multiple steps. In
each step after form-finding, the tributary area will be calculated
and compared with the area of the face of the applied load in the
force diagram. The area of the face should be updated accordingly
using iterative methods [2,5] or algebraic methods, which will
be discussed in this paper. Once the difference between the self-
weight and the area of the applied load face is minimized, the
form-finding process for the self-weight of the structure may
stop. The self-weight for multi-layered funiculars can be calcu-
lated based on segments of the structure under the 2D extrusion
of the tributary area of an external load where the applied load
is exerted. The best example for this scenario is the design of
Hedracrete structure where the weight of the spatial members
connected to an external node of a funicular polyhedral structure
is used as the applied load for the system [22].

The second scenario where both live load and dead load are
considered can be addressed: first, a funicular form resulting
from the self-weight can be found. Subsequently, an additional
funicular form resulting from the live load can be superimposed
on the initial form to create a pushover funicular solution for both
loading cases. The Salginatobel bridge designed by Robert Maillart
is an excellent example where the funicular forms from both self-
weight and live load were used to derive the final geometry of the
bridge [23,24].

The third approach is often used in the design of frames
or trusses where the self-weight is negligible compared to the
externally applied loads. The design of the Eiffel tower could
be used as a good example where the applied load other than
gravity is used in the design process, which made the self-weight
of the structure insignificant to be included in the form-finding
process [25].

In addition, in geometry-based form-finding methods, it is
assumed that the stiffness of the construction material is almost
infinite. I.e., the construction material has a very large modulus
of elasticity and a very small Poisson’s ratio, and therefore, the
deflection in the system is negligible. That assumption is, in fact,
the main reason that such techniques were quite powerful in the
design of masonry structures [26]. Moreover, the joints in the
structural form are also rotation free with no moment resistance.

In reality, the modulus of elasticity of common construction
materials such as steel or concrete is not infinite. Thus the self-
weight might cause deformation in the system, particularly in the
structural forms designed for applied loads much larger than the
self-weight of the system. In such scenarios, if the self-weight
is not considered in the form-finding process, the global defor-
mation of the system under the self-weight should be measured
using Finite Element Analysis to avoid excessive internal stress.
Adding moment-resistance stiffness at the location of the joints
for the frame structures could also help to resist an internal
bending moment caused by deflection in the system.

Structural efficiency of the systems

In the funicular forms resulted from 3DGS, if the stiffness
is not infinite then the efficiency of the structural system be-
comes a function of material property and load-bearing capac-
ity. The structural efficiency of funicular polyhedral structures
designed by 3DGS has recently been investigated in multiple
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Fig. 3. Top: form and force diagram for a cylindrical sample design by using
3DGS; and bottom: the final compression-only prototype tested to failure [27].

studies [27,28]. For instance, a small-scale prototype with di-
mensions proportional to the standard concrete cylindrical com-
pression test was constructed using in-situ high-performance,
self-consolidating concrete. The 12 kg (26.45 lbs) specimen could
ake 240 kN load (2000 times more than its self-weight). The
xperimental results revealed the resiliency of the system as the
ocal buckling did not immediately cause the global failure of the
ystem due to the internal indeterminacy (states of self-stress)
f the funicular geometry. The structural efficiency of the system
as also verified as all remaining members of the specimen
imultaneously collapsed under their maximum strength [27]
Fig. 3). Bolhassani et al. [22] includes further discussions on the
fficiency of the system compared with a conventional concrete
rame structure.

abrication rationalization

The polyhedral constraints of the method and the resulting
unicular forms with planar faces might seem restricting in the
esign process. Yet, the polyhedral geometries of the result-
ng structural forms facilitate their construction using flat-sheet
aterials. For instance, 3DGS can be used for the design and con-
truction of compression-only glass shells with planar faces [21].
herefore, the methods of 3D/polyhedral graphic statics can com-
ine form-finding and fabrication rationalization in one step.

valuable teaching tool

The geometric relationships between the form and force di-
grams in an interactive environment help students intuitively
nderstand the internal force flow in structural systems and
unicular forms. This property has been very well demonstrated
sing the methods of 2D graphic statics [29,30]. For instance,
designer can change the magnitude of the applied forces by
eometrically adjusting the force diagram and observe the result-
ng change in the form of the structure and its internal forces.
he algebraic implementation of the methods of graphic statics
roposed by Van Mele and Block [31] was an important step
n developing an educational platform for students to explore

he structural forms and the geometry of their force equilibrium

3

interactively. This geometric relationship can teach students what
parameters control their design and how they can deliberately
modify/optimize them to achieve specific design criteria. There is
currently no educational platform for students to learn the prin-
ciples of 3DGS presented in this paper. The graphic statics’ pro-
cedural methods are insufficient to develop such a platform, and
algebraic formation is needed for the development of interactive
tools.

Another limitation of using 3DGS for educational purposes
is the necessary preparation to understand the reciprocal rela-
tionship between the polyhedral cells and the geometry of the
funicular forms. Some might find the polyhedral representation of
forces as not intuitive and explicit as the 2D methods of graphic
statics. This observation is accurate: the relationship between the
faces of the force diagram and the edges of the form diagram
might not be trivial to understand and reflect upon instantly
for an untrained eye. This obstacle could be overcome in the
future using more comprehensive visualization methods and ed-
ucational packages. Particularly, including examples which relate
2D graphic statics methods to polyhedral graphic statics could be
quite beneficial.

Like many other new concepts and methodologies, practic-
ing procedural methods and reviewing a series of examples can
overcome this obstacle. In this regard, a helpful approach is to
use Minkowski sum in transforming the form and force diagrams
into each other as suggested by McRobie [7]. Both form and
force diagrams must be constructed first and added together
using Minkowski sum to make an interactive transformation. An
algebraic formulation can play an essential role in facilitating this
process.

There are currently many tools and packages available for
structural form-finding [32–34], and the paper intends not to
provoke competition between the use of 3DGS and other tools
and methods available for structural form-finding. Instead, au-
thors rely on valuable characteristics of the methods of 3DGS.
Understanding the geometric relationship between the funicular
form and its force distribution suffices to find the spatial funicular
forms. Thus, further research in the mathematical relationship
between the form and force diagrams in 3D is inevitable and
will provide resources for researchers who intend to learn and
contribute to the computational implementation of the methods
of 3DGS.

Application in material science

The cellular/polyhedral structures have numerous applications
in materials with specific micro-architecture [35]. For instance,
in bio-medical research, the porosity of such structures reduces
the weight and increases the biodegradability of an implant. In a
recent study, the application of 3D/polyhedral graphic statics has
been investigated to design the cellular solids’ architecture. It has
been shown that subdividing the cells of the force diagram with
respect to particular axes can translate buckling-prone cellular
funicular structures of 3DGS to shellullar [36] funicular systems
with a very low density of the material, which can be used
to design highly efficient structural systems in large and small
scales [37].

Exploiting the potential of 3DGS in design and engineering re-
quires the ability to manipulate the geometric diagrams without
breaking the reciprocity between the two and instantly observe
the effect of the change in the other diagram. The existing com-
putational tools for the design and manipulation of the reciprocal
polyhedrons of 3DGS are quite limited. Moreover, controlling and
optimizing the magnitude of forces by changing the areas of the
faces needs efficient algorithms.
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.1. Related works

In 2016, Akbarzadeh [2] showed that the reciprocal diagrams
f 3DGS can be constructed in a procedural (step-by-step) ap-
roach in a parametric software by assigning constraints between
eciprocal components of each diagram that allows simultaneous
ontrol over the geometry of both diagrams. This method is
xtremely time-consuming and tedious for structures with a large
umber of nodes and members. Akbarzadeh et al. [13] developed
computational algorithm that could receive convex polyhedral
ells as a primal, and construct its reciprocal diagram iteratively
ithin a certain tolerance defined by the user (see also [38]).
he main limitation of this method is that it cannot deal with
non-convex) self-intersecting polyhedrons or explore tension
nd compression equilibrium. Moreover, controlling the areas
f the faces was computationally quite expensive. In 2018, Lee
t al. [6] proposed a method called Disjointed Force Polyhedra
here the equilibrium of the system was computed by construct-

ng a single convex polyhedron for each node using Extended
aussian Image algorithm [39–41] and matching the areas of
he shared faces [6,42]. This method allows the control of the
reas of the convex cells, but it breaks the reciprocity between
he two diagrams. Moreover, it cannot control the areas of the
elf-intersecting faces. Recently, Hablicsek et al. [43] developed
n algebraic formulation relating the geometry of the reciprocal
olyhedral diagrams using a linear system of equations. This
ethod can directly construct the dual from a given primal in one
tep. Although the previous formulation could immediately con-
truct the reciprocal polyhedral diagrams, it did not provide any
nsight into how to control the areas of the faces corresponding
o the magnitude of the forces in the form diagram. Moreover,
eometrically constrained constructions were also not addressed.

.2. On the importance of algebraic formulation

The algebraic formulation of the graphic statics methods can
eveal the true potentials of the method in design. For instance,
n a previous study, the authors showed that the algebraic rela-
ionship between the form and force allows exploring multiple
quilibrium configurations for a single force distribution, which
as not trivial to compute using other approaches. For instance,

or a single convex force distribution of Fig. 4, a compression-only
ynclastic funicular form, as well as two other anticlastic config-
rations with combined tension and compression members, can
e found [44]. Such properties can be explored by utilizing the
orm diagram’s geometric degrees of freedom computed using the
lgebraic approach. The previously explored iterative methods
ould not lead to such explorations. Thus the algebraic formula-
ion provides insight into the possibilities of using the methods of
DGS in design and construction, which could remain unexplored
therwise.

n the limitations of 3D/polyhedral graphic statics

The 3D/polyhedral graphic statics methods discussed in this
aper are based on the reciprocal polyhedral diagrams proposed
y Rankine [1] and Maxwell [4]. That is, the reciprocity be-
ween the form and force diagram is induced by polyhedral sys-
ems. Consequently, the resulting equilibrium states are limited
o polyhedral systems or configurations that can be translated
nto polyhedral systems by the inclusion of zero-bar elements or
etrahedralization [45]. Nevertheless, the 3D/polyhedral graphic
tatics’ planarity constraints significantly facilitate the construc-
ion of structures designed using this method. The application
f these methods in other sciences and their unique educational
4

Fig. 4. (a) A force diagram consisting of convex polyhedral cells with 377
number of faces resulting in (b) a (synclastic) compression-only form with 133
degrees of freedom; (c) and (d) two different (anticlastic) shells with both
tension and compression members by assigning both negative and positive
values to the edges of the form (b) [44].

advantages justifies further research in their relevant theoreti-
cal approaches. In addition, the relatively challenging readings
of polyhedral diagrams and their relationship to the funicular
structural form should also be considered as a limitation that
needs to be addressed in broadening the use of this technique
among the practitioners and designers.

Another limitation of the methods of 2D and 3D graphic stat-
ics, in general, is that the application of external loads on the
internal nodes of the structure is not allowed. This limitation can
be explained by visiting the algebraic methods for 2D graphic
statics proposed by Van Mele and Block [31]. In the mentioned
approach, it is required that the primal graph be planar meaning
that it can be drawn on a 2D plane without crossing edges.
Connecting an external load or a free edge to the internal vertices
of a form diagram results in a non-planar graph and overlap-
ping spaces. Thus the reciprocal diagram cannot be found using
the proposed method. The same limitation applies in polyhedral
reciprocal diagrams. Adding a free-edge as an applied load to
the form will result in overlapping the topological /decomposed
spaces, and thus the reciprocal diagram cannot be found using the
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roposed methodology of this paper. In contrast, other numerical
orm-finding methods such as force density and dynamic relax-
tion methods may overcome that limitation in the form-finding
rocess (see, for instance, [33,34]).

.3. Contributions

This paper provides a robust algebraic method to construct
olyhedrons with assigned areas and edge lengths of their faces,
rom which its reciprocal dual can be constructed as the structural
orm. The formulation introduced in this paper relates the areas
f the faces of the polyhedral system to its edge lengths allowing
he combination of this method with the previous algebraic for-
ulation to control the areas of the faces. Moreover, the methods
f this research can compute the areas of self-intersecting faces
ith constraint edges, which has never been addressed in the

iterature previously. Specifically, this approach can construct
ero-area, self-intersecting faces in the system, where the sum of
he signed areas of a self-intersecting face is zero. The existence of
uch faces in the force diagram allows the removal of the forces in
he boundary or internally and therefore, describes internal force
quilibrium that previously was not possible using reciprocal
olyhedral diagrams.
The paper is organized as follows. A quadratic formulation

o compute the area is introduced for a single face based on
ts edge lengths (Section 2.3). Then, a methodology is described
o manipulate the geometry of the face with a predefined area
nd edge lengths (Section 2.4). Subsequently, the geometry of
he polyhedron is updated with the newly changed faces (Sec-
ion 2.5). This approach is a multi-step algorithm, where each step
ncludes the computation of the geometry of a single face and an
pdate of the polyhedral geometry. In the end, the dual structural
orm is updated with the new magnitude of the internal or
xternal forces (Section 2.6). Alongside the theory, we provide the
omputational setup in Section 3 describing the main algorithms
in detail. Finally, Section 4 shows the application of this method
in the design of funicular structures with zero force members or
reactions in the boundary conditions.

1.4. Nomenclature

We denote the algebra objects of this paper as follows; ma-
trices are denoted by bold capital letters (e.g. A); vectors are
denoted by lowercase, bold letters (e.g., v), except the user input
vectors which are represented by the Greek letters (ν and ξ ).
Table 1 encompasses all the notations used in the paper.

2. Research methods

2.1. Overview

The first step in the methodology is to link the areas of the
faces of the polyhedral system to their edge lengths. The def-
inition of the area based on the edge lengths will result in a
quadratic function per face of the polyhedron. As a result, con-
trolling the areas of the faces of the polyhedral system requires
to solve a complex system of non-homogeneous quadratic equa-
tions simultaneously. This complex system of quadratic equations
is usually solved using quadratically constrained quadratic pro-
gramming. However, to the knowledge of the authors, these
methods usually fail in computing self-intersecting/compression
– and – tension combined systems. Moreover, the objective of
our research is to provide a methodology to control the areas
of the faces without perturbing the system drastically. There-

fore, in this section, we provide a simple methodology to solve

5

Table 1
Nomenclature for the symbols used in this paper and their corresponding
descriptions.
Topology Description

Γ Primal diagram
Γ † Dual, reciprocal diagram
v # of vertices of Γ
e # of edges of Γ
f # of faces of Γ
c # of cells of Γ
v† # of vertices of Γ †

e† # of edges of Γ †

f † # of faces of Γ †

Matrices

Mf Area matrix of the face f
Ef Equilibrium matrix of the face f
Lf Matrix of predefined edge lengths of the face f
Ep Equilibrium matrix of the polyhedral system p
E† Equilibrium matrix of the dual
Lp Matrix of predefined edge lengths of the polyhedron p
Bf Constraint matrix of the face f
Bp Constraint matrix of the polyhedron p
B+p Moore–Penrose inverse of Bp

RREFf RREF of
(
Bf |bf

)
E† Equilibrium matrix of the dual diagram
(E†)+ Moore–Penrose inverse of E†

Vectors

n Consistent unit normal vector
q Vector of edge lengths
uj Direction vector of edge vector ej
bf Constraint vector for the face f
lf Vector of predefined edge lengths of the face f
bp Constraint vector for the polyhedron p
lp Vector of predefined edge lengths of the polyhedron p
qnci Vector of nci edge lengths of a face fi
qfix Vector of fixed edge lengths of a face fi
qnfd Vector of nfd edge lengths of a face fi
qci Vector corresponding to the edge length of the ci edge

e†j Edge vector of e†j in Γ †

u†
j Direction vector of edge vector e†j

q† Vector of edge lengths of Γ †

Parameters

ν Parameter for the MPI method to solve Eq. (30)
ξ Parameter for the MPI method to solve Eq. (33)

Other

qi Signed length of the edge ei
|ei| Length of the edge ei
O Centroid of a face
hi,j (signed) distance of vj from ei
Hi Average (signed) distance of the vj from ei
Af Area of face f
µi,j The scalar ratio between ei × ej and n
ηi,j The scalar ratio between ui × uj and n
GDoFf Geometric Degrees of Freedom of face f
CGDoFf Constrained Geometric Degrees of Freedom of face f
efix (user)-selected fixed edges of a face
eind List of independent edges of a face
enfd List of nfd edges of a face
enci List of nci edges of a face
epfix (user-)selected fixed edges of the polyhedron
eci Critical independent edge
qci Signed length of the eci edge
r Rank of RREFf

these quadratic equations sequentially by preserving the main
geometric features of both the form and force diagrams.
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In this method, there are two types of equation; (i) the
quadratic equations that compute the areas of the faces based on
the edge lengths; and (ii) the linear equations that provide the
geometry of the faces of the polyhedrons with user-defined edge
lengths as constraints. The quadratic equations of the faces are
solved using the linear equations around the edges of each face
with constrained edge lengths. Each quadratic equation for a face
area has as many variables as the number of edges of the face
which results in a variety of significantly different solutions (see
Fig. 10a–d for illustration). However, we can control the solution
space by reducing the number of variables to one. This allows
us to find a solution for the quadratic equation with a limited
geometric perturbation in the system.

In the following sections, we introduce the steps to develop
the quadratic equation to compute the area of a face of a polyhe-
dral system based on the edge lengths, and then we develop the
non-homogeneous linear equation system describing the equi-
librium equation for the face with predefined edge lengths. In
the end, we show how to solve the equation system and how to
recompute the geometry of the form.

2.2. Linear equilibrium equations for a polyhedral system

In a previous paper, Hablicsek et al. [43] showed how to write
the equilibrium equations for a system of polyhedral cells with
planar faces. For each face fi, we can write an equation based on
its edge lengths that shows the closeness of the face. The term
edge length is used in two occasions in this paper: (a) a scalar
which represents the signed length of an edge vector ei and is
hown by qi both in the formulation and the text; and (b) the
ctual edge length of the vector ei which is always positive and
enoted by |ei|. By choosing a normal vector for each face fi,
e can obtain a consistent edge orientation. We denote the unit
irection vector uj corresponding to the edge vector ej of Fig. 5a.
ince each face provides a closed loop of edges, the sum of the
dge vectors has to be the zero vector. Thus, we obtain a vector
quation for the edge lengths qj of ej as∑
ej

ujqj = 0 (1)

here the sum runs over the edges ej of the face fi. We remark
hat the edge lengths qj can take both negative and positive values;
hanging the length of an edge to its negative means that we
hange the direction of the edge to the opposite direction without
hanging the direction of the unit vector.
Thus, each face fi of the polyhedron p provides three equations

or the edge lengths, one equation for each of the x-coordinates,
-coordinates, and z-coordinates. Thus, Eq. (1) can be described
y a [3× e] matrix, Efi

fiq = 0 (2)

here q denotes the vector of the edge lengths of the polyhedron.
his equation describes the geometry of the face.
Similarly, we can obtain a [3f × e] matrix, Ep describing the

eometry of the entire network. Here f denotes the number of
aces and e denotes the number of edges in the network. In other
ords, we have a linear equation system

pq = 0 (3)

here q denotes (again) the vector of edge lengths of the polyhe-
ron p. Each solution of the linear equation system (3) represents

a network, whose edges are parallel to their associated edges of

the original network with different edge lengths.

6

Fig. 5. (a) Vertices and edge vectors of the face f with a normal direction nf ;
and (b) dividing the face into triangles with a base ei and the height Hi from
the centroid of the vertices.

2.3. Quadratic equation system for the area of a face

In this section, we explain, how to develop a quadratic system
of equations for a face fi of a polyhedral network based on the
edge vectors of the face after O’Rourke [46].

Consider a face fi with k vertices: v0, v1, . . . , vk−1. We denote
the edge ei by the vertices vi and vi+1. Let n be a chosen unit
normal vector of the face fi. Using the right-hand rule, the normal

provides the direction of the edges. We denote the directional
dges by e0, e1, . . . , ek−1 vectors. For the sake of simplicity, in the
ollowing explanation, we use a cyclic order of the edges, meaning
k and ek+1 will also denote the edges e0 and e1, etc.
We can compute the area of the face fi by:

• dividing the face fi into k triangles given by the ei and the
geometric center (centroid) of vertices, O; and
• computing the area of each triangle by computing its height

Hi which is the distance from O to the edge ei (Fig. 5b).

Average height
The height Hi, the perpendicular distance of O from the edge ei,

s the average of the signed projected distances hi,j of the vertices
0, v1, . . . , vk−1 from ei (Fig. 6d).
For instance, h0,2, h0,3, and h0,4 are the signed distances of the

ertices v2, v3 and v4 from the edge e0. The h0,0 and h0,1 are zero
ince the vertices v0 and v1 lay on edge e0. Therefore, the area Ai
f the triangle O, vi and vi+1 can be written as

i =
1
2
|ei|Hi =

1
2k
|ei|

k−1∑
j=0

hi,j,

nd the total area of the face equals

f =

k−1∑
i=0

Ai =
1
2k

∑
0≤i,j≤k−1

|ei|hi,j.

We are looking for a formula for the area Ai based on the edge
vectors. Thus, let us compute the hi,j based on the edge lengths of
the face fi. Recall, that the vertices vi and vi+1 are on the edge ei,
ence, hi,i and hi,i+1 are zero (see Fig. 6a, d). The first vertex that
an contribute non-trivially is vi+2, and the height, hi,i+2, can be
omputed by constructing the triangle of the vertices vi, vi+1 and
i+2 (Fig. 6a). We denote the signed area of this triangle by Ai,i+2
hat can be computed using the two following methods:

• the area can be found by the height hi,i+2 (Fig. 6a):

Ai,i+2 =
1
2
|ei|hi,i+2. (4)
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Fig. 6. Finding the average height Hi for each edge ei by constructing triangles
tarting from (a) ei and ei+1 , and (b) ei and ei+1+ ei+2 until we find all heights
of the vertices in (c) and (d); and repeating the same process for other edges
to find all His in (e) and (f).

• also, the cross product of ei and ei+1 provides the signed
area:

Ai,i+2n =
1
2
(ei × ei+1) (5)

Note that the sign of the area in Eq. (4) is defined by
the hi,i+2 where it can only be negative in a concave or a
self-intersecting polygon.

From Eqs. (4) and (5), we get the following equation of vectors

1
2
(ei × ei+1) =

1
2
|ei|hi,i+2n. (6)

We would like to solve this equation for the scalar hi,i+2.
owever, we have two vectors on the sides of the equation above.
n one hand, it is not allowed to divide vectors by vectors if their
irections are neither exactly the same nor opposite. On the other
and, the vectors ei and ei+1 are perpendicular to n. Hence, the
ross product of vectors ei and ei+1 is either parallel or opposite
o n. Therefore, there exists a scalar µi,i+1 so that

i,i+1n = ei × ei+1.

hus, we can think of µi,i+1 as

i,i+1 =
ei × ei+1

. (7)

n h

7

Going back to Eq. (6), using the notations introduced above,
we obtain a formula for hi,i+2:

i,i+2 =
ei × ei+1
|ei|n

= µi,i+1
1
|ei|

. (8)

Eq. (8) is not of the form of a linear equation, because the
scalar µi,i+1 depends on the lengths of the edges ei and ei+1. By
dividing both sides of Eq. (7) by the edge lengths of ei and ei+1,
the scalar µi,i+1 will become

ηi,i+1 =
1

|ei| · |ei+1|
· µi,i+1. (9)

he scalar ηi,i+1 will only depend on the directions of ei and ei+1
nd not on the edge lengths. Using this notation, we can write
i,i+2 as

i,i+2 = ηi,i+1|ei+1|. (10)

In Eq. (10), the height is expressed as a product of a scalar
i,i+1 that depends only on the direction of the edges, and the
dge length of ei+1. Therefore, we obtained the height hi,i+2 based
n the linear function of the edge length.
In the next step, we will compute hi,i+3. Consider the triangle

ith vertices vi, vi+1, vi+3 (see Fig. 6b). Note that the vector from
i+1 to vi+3 is the vector

i+1 + ei+2.

We compute the area Ai,i+3 of the triangle using two methods.
he area can be computed by using the height hi,i+3 (Fig. 6b):

i,i+3 =
1
2
|ei|hi,i+3.

Also, the cross product of ei and ei+1+ei+2 provides the signed
area:

Ai,i+3n =
1
2
(ei × (ei+1 + ei+2)).

As a consequence, we obtain the following relationship.
1
2
(ei × (ei+1 + ei+2)) =

1
2
|ei|hi,i+3n

e combine this equation with Eq. (6) to obtain

i × ei+2 + |ei|hi,i+2n = |ei|hi,i+3n (11)

Again, we would like to divide Eq. (11) by the vector n to
solve the equation for the scalar hi,i+3. As before, the vectors ei
and ei+2 are perpendicular to n, hence ei × ei+2 is either parallel
or opposite to the direction of n. We, again, introduce the scalar
µi,i+2 satisfying

µi,i+2n = ei × ei+2.

With this notation, Eq. (11) becomes

µi,i+2 + |ei|hi,i+2 = |ei|hi,i+3,

so we obtain a recursive formula

hi,i+3 = hi,i+2 +
1
|ei|

µi,i+2. (12)

he scalar µi,i+2 depends on the lengths of the edge vectors ei
nd ei+2, however ηi,i+2 defined below does not:

i,i+2 =
1

|ei| · |ei+2|
µi,i+2.

The scalar ηi,i+2 only depends on the directions of the edges. Us-
ing this notation and Eqs. (10), (12) becomes a linear expression
or hi,i+3

= h + η |e | = η |e | + η |e | (13)
i,i+3 i,i+2 i,i+2 i+2 i,i+1 i+1 i,i+2 i+2
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Repeating this process for the rest of the edges (Fig. 6c) results
in a formula for hi,i+l

hi,i+l =
∑

1≤m≤l−1

ηi,i+m|ei+m|.

Finally, we compute the average of these heights, Hi by repeat-
ing the same process for all the edges of the face
(Fig. 6e,f):

Hi =
1
k

k−1∑
j=2

hi,i+j =
1
k

k−1∑
j=2

∑
1≤m≤j−1

ηi,i+m|ei+m| (14)

=
1
k

k−2∑
j=1

(k− j− 1)ηi,i+j|ei+j| (15)

As a consequence, we obtain a quadratic formula for the area
f the face f in the edge lengths of the edges of f

f =
1
2

k−1∑
i=0

|ei|Hi =
1
2k

k−1∑
i=0

k−2∑
j=0

(k− j− 1)ηi,i+j|ei| |ei+j|. (16)

uadratic form
The next step is to turn the quadratic equation (16) into a

quadratic form with a matrix. Note, that we can compute the
coefficients

(k− j− 1)ηi,i+j

in Eq. (16) without knowing the edge lengths. As a result, we can
formulate the right-hand side of Eq. (16) in a quadratic form given
by a matrix Mf , whose entries are given by the coefficients:

Mf ,ij =

⎧⎨⎩
(k− j+ i− 1)ηi,j if j > i
(i− j− 1)ηi,j if j < i
0 if i = j.

(17)

Thus, we can rewrite Eq. (16) in a quadratic form

Af =
1
2k

qTMf q (18)

here q is the column vector of the edge lengths

q = (|e1|, |e2|, . . . , |ek|)T .

Symmetric matrix
Usually, the matrix Mf is not a symmetric matrix. However,

the computations may become simpler if the matrix is symmetric.
Indeed, the matrix Mf can be turned into a symmetric matrix.
ince

qTMf q
)T
= qTMT

f q

the quadratic form given as
1
2k

qTMT
f q

also computes the area of the face.
As a consequence,

Af =
1
2k

qT
Mf +MT

f

2
q,

nd in this case, the corresponding matrix

Mf +MT
f

2
(19)

s symmetric.
For the sake of computational simplicity, from now on, we

ssume that the matrix Mf appearing in Eq. (16) is always sym-
metric.
8

Note that in the formulation, if the edge vectors need to be
computed, the notation qi is used which can take positive or
negative values. This means that the reconstructed face can have
negative edge length and its corresponding edge vector ei may
flip to the opposite direction (compared to its initial orientation).
In all formulations, the notation |ei| represents the actual length
of the vector that is always positive.

2.4. Computing the face geometry for a target area

In this section, we develop a method to reconstruct a given
face fi by constraining particular user-defined edge lengths and
the target area for the face. To give a general overview of our
approach, consider the face fi of Fig. 5a. Initially, without any
constraint, we have five unknowns which are the edge lengths of
the five edges e0−4. There are three equilibrium equations based
on Eq. (2), in −x, −y, −z around the face fi, and one of them
is redundant [43]. As a consequence, the dimension of the pos-
sible solutions, i.e. the possible faces, satisfying the equilibrium
equations is

e− 2 = 3.

Instead of solving the quadratic area equation (18) for three
unknowns, we constrain two of them and solve the quadratic
equation for only one unknown. Using this technique, we can
significantly reduce the complexity of finding a solution for this
quadratic equation. This provides additional design possibilities
for the user, as we either allow the user to define up to two edge
lengths out of three or we use the existing edge lengths for two
edges and compute the area based on the last unknown edge.

In general, our goal is to simplify solving the quadratic equa-
tion of the face by solving it for only one edge length.

Computing GDoFf using RREF
The dimension of the possible solutions for the geometry of

the face is called the Geometric Degrees of Freedom (GDoFf ). In
fact, GDoFf describes the dimension of the family of polygons with
edges parallel to the edges of face f which is always equal to:

e− 2.

The GDoF is also equal to the number of independent edges
in each face. In fact, the lengths of the independent edges can
define the lengths of the rest of the edges and the geometry of the
face [44]. The independent edges can be found using the Reduced
Row Echelon form method (RREF).

Specifying the edge lengths for the e − 2 independent edges
yields a unique solution for the geometry of the face. In other
words, a unique solution to Eq. (2) is obtained with preassigned
edge lengths for the e − 2 independent edges. Although, the
equilibrium equations (Eq. (2)) are satisfied, there is no guarantee
that the area equation, Eq. (18), is satisfied as well.

However, we can specify e−3 independent edges. In that case,
we will have infinitely many solutions given by the edge length
of the last independent edge that, in fact, provides the possibility
to solve the area equation.

This method provides a solution to recompute the geometry of
the face with a given target area. However, the objective of the
research is to construct the geometry of a face with a given target
area and user-defined edge lengths.

Constrained Geometric Degrees of Freedom (CGDoFf )
The user-defined edge lengths provide linear equations for

the edge lengths that are in general non-homogeneous. As a
consequence, the dimension of the solution space for possible
geometries of the face may decrease significantly.
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The user may over-determine the system, for instance, by
assigning too many edge lengths. To avoid this problem, we
compute the dimension of the constrained solution space, called
the Constrained Geometric Degrees of Freedom (CGDoF), using
RREF.

The result of this method classifies the edges into the follow-
ing classes:

• the fixed edges, efix: the edges chosen by the user with
predefined edge lengths (these edges are always dependent
edges of the equation system);
• the non-fixed dependent edges, enfd: the dependent edges

which are not predefined by the user, and
• the independent edges, eind.

o solve the quadratic equation for the area, we reduce the num-
er of independent edges eind to one, by assigning the existing

edge length for all independent edges except one. The last re-
maining independent edge is called the critical independent edge,
eci, the length of which we find using the quadratic equation. This
method will be described in detail in the next sections.

Defining the constrained equations for a face
In Section 2.3, we expressed the area of a face polygon based

on a quadratic form of the edge lengths. Now, we develop linear,
non-homogeneous constrained equations describing the geome-
try of the face with preassigned lengths for certain edges of the
face.

We can write the edge ei with a predefined length qi as a
onstraint vector equation in the following way:
T
i q = qi (20)

here li is the [e × 1] column vector whose entries are all zero
0) except at the index of ei where it is one (1).

Similarly, multiple constraints, i.e other fixed edge lengths, can
e written as a matrix equation

f q = lf (21)

here the rows of Lf are the row vectors lTi and lf is the vector
hose entries are the qi, the predefined edge lengths.
Together with the equilibrium equations of (2), we obtain

ll the linear equations describing the linear constraints which
esults in the constraint equation system

f q = bf (22)

here the matrix Bf is obtained by stacking the matrices Ef and
f

f =

(
Ef
Lf

)
,

nd the vector bf is obtained as stacking the zero vector and the
ector lf together

f =

(
0
lf

)
e call the matrix Bf the constraint matrix and the vector bf the

onstraint vector.

nalyzing the constraint equation system (RREF)
The constraint equation system, Eq. (22), is, in general, a non-

omogeneous, linear equation system. The solution space of this
quation system is often not a linear subspace but rather the
mpty set or an affine subspace of the possible solution space
e. Here, e denotes the number of edges. The dimension of this
ffine subspace is the Constrained Geometric Degrees of Freedom
9

f the face (CGDoFf ). The CGDoFf is the geometric degrees of the
ace after applying the edge constraints by the user.

It is also possible to have no solutions for Eq. (22). In this
ase, we say that the CGDoFf is −∞. If there exists a solution to
q. (22), then the CGDoFf is a non-negative integer, which is the
imension of the affine subspace formed by the solutions. When
he CGDoFf is zero, the constraint equations have a unique solu-
ion. If the CGDoFf is positive, then there are many significantly
ifferent solutions to the constraint equations.
In order to compute the CGDoFf , we use the reduced row

chelon form (RREFf ) of the matrix obtained from the constraint
atrix, Bf , and the constraint vector bf :

Bf bf
)
.

The CGDoFf can be easily computed from this reduced- row-
echelon form, but the following two possibilities might occur:

• If there exists a row of RREFf , so that the last entry is one,
but all other entries are zero:(
0 ... 0 1

)
then, the constraint equation, Eq. (22) has no common

solution. In this case, the CGDoFf is −∞, and the user
needs to modify the constraints and/or release some of the
constrained edges from their input.
• Otherwise, we have at least one solution. In this case, the

CGDoFf equals e − r where e is the number of edges of the
face and the number of columns of the constraint matrix Bf ,
and r is the rank of the RREFf . This rank equals the number
of pivots, and as a consequence, in this case, it also equals
the rank of Bf .

Solving the area equation
The main idea of manipulating the edge lengths of the face

to obtain a required area is to solve the area equation (18) by
educing the number of unknown edges to a single unknown edge
ength.

We reduce the unknowns by finding all the independent edges
f the constraint equation system (22) and assigning either the

current values or a user-defined values to them.
From now on, we assume that there exists a solution to

Eq. (22). The columns in RREFf corresponding to the pivots are
called the pivotal columns. The non-pivotal columns correspond
to the so-called independent edges whose lengths can be manip-
ulated freely. Once the values for the independent edges are set
(possibly by the user), there is a unique solution to Eq. (22).

The edges corresponding to the pivotal columns are the edges
which depend on the independent ones. These edge lengths will
be updated so that Eq. (22) is satisfied.

Our method for solving the area equation (18) is to set as many
alues of the lengths of the independent edges as possible. In
his case, it is one less than the number of independent edges:
−r−1. The length of the last independent edge, qci, is the length
f the critical independent edge, eci. This length will be treated as
variable for which we will solve Eq. (18).
To solve Eq. (18), we organize the edges according to the form

f RREFf into vectors:

• the vector corresponding to the critical edge is defined as an
[e× 1] column vector qci:

qci,i =

{
qci if i is the index of the eci
0 otherwise

Here qci, the edge length of the eci edge, is the unknown and
we will solve the area equation for q ;
ci
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• the vector of the edge lengths of the non-critical independent
edges, enci, is defined as qnci which is an [e × 1] column
vector:

qnci,i =

{
qi if i is the index of an enci edge
0 otherwise

where qi are the current edge lengths of the enci edges;
• Similarly, the vector of the edge lengths of the fixed

/predefined edges, efix is defined by qfix as

qfix,i =

{
qi if i is the index of a user-selected edge
0 otherwise

where qi denote the length of the user-selected edge. The
indices of fixed edges are indices of some of the pivotal
columns. These qi are fixed in the beginning of the problem
and will not be updated;
• Finally, the vector of edge lengths of the non-fixed dependent

edges, enfd is defined by vector qnfd as

qnfd,i =

{
qi if i is the index of an endf
0 otherwise

The edge lengths qi of the enfd edges can be computed from
the lengths of the edges corresponding to eci, enci, and efix.
The edge lengths will be updated in order to satisfy the area
equation.

After setting up the notations, we begin to solve the area
equation (18).

Since any edge is either eci, enci, efix or enfd, we have an equality

q = qci + qnci + qfix + qnfd. (23)

Moreover, the lengths of the enfd depend linearly on the lengths
of the eci, enci and efix, hence there exist an [e× e] square matrix,
D and vectors d, g so that:

qnfd = Dqnci + dqci + g (24)

The matrix D and the vectors d and g can be computed from the
RREF form easily as follows.

The matrix D is a matrix whose entries are mostly 0 except
at the entries corresponding to the columns of enci and to the
rows of the enfd, where the value has the opposite sign than the
corresponding value in the RREFf matrix of

(
Bf bf

)
.

The vector d is a vector whose entries are mostly zero (0)
xcept at the entries corresponding to the column of the eci edge
nd to rows of the dependent edges, where the value has the
pposite sign than the corresponding value in the RREFf matrix
f
(
Bf bf

)
.

The vector g is the contribution coming from the fixed edges.
his is a vector whose entries are mostly zero (0), except for
ntries corresponding to the indices of the enfd edges, when the
ntry is the last entry of the corresponding row of the RREFf

matrix
(
Bf bf

)
.

We simplify Eq. (23) slightly. Consider the [e×e] square matrix
Idnci, which is the identity restricted to the enci edges, and 0
elsewhere. Since,

Idnciqnci = qnci

we have that

qnfd + qnci = D′qnci + dqci + g

where D′ is the matrix D+ Idnci.
Thus, by Eq. (23), we have

q = q + D′q + q + dq + g.
ci nci fix ci S

10
Fig. 7. A sample face showing the edge vectors, its normal direction and the
choices of efix , ecr , enci , and enfd .

Let us denote d′ by the vector obtained by adding a 1 to the vector
d at the index of the critical edge, i.e d′qci = qci + dqci. Then, we
have

q = D′qnci + qfix + d′qci + g (25)

Now, we can solve the area equation (18) by plugging in the
ight-hand side of Eq. (25) into q: the quantity

1
2k

(
D′qnci + qfix + d′qci + g

)T Mf
(
D′qnci + qfix + d′qci + g

)
(26)

omputes the area of the face, Af . Rearranging the terms, we
btain a quadratic equation for qci:

q2ci + bqci + c = 0 (27)

here

= d′TMfd′

nd

= 2d′TMf
(
D′qnci + qfix + g

)
and

c =
(
D′qnci + qfix + g

)T Mf
(
D′qnci + qfix + g

)
− 2kAf

We can solve this quadratic equation (using the quadratic
formula) to obtain possibly two solutions for qci:

qci =
−b±

√
b2 − 4ac
2a

Number of solutions
Depending on the target area, Af , we might have different

number of solutions for Eq. (27). It is possible to have no solution,
a unique solution, or two significantly different solutions (see
Fig. 8).

Depending on the sign of A, a large positive or a small negative
prescribed area ensures that we have multiple (two) solutions.

2.4.1. Updating the edges of the face
Once we computed the length qci of the eci edge, we can update

he lengths of the dependent edges using Eq. (24). Now, all the
engths of the edges are computed. The face corresponding to
he edge lengths has the required area and the edges of the
ace satisfy the constraint equation system, Eq. (22) while only
he lengths of the enfd edges and the length of the eci were
anipulated (Fig. 10).
The above discussion is summarized in Algorithm 2 in

ection 3.2.
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Fig. 8. There are at least two significantly different geometries that represent
he same area of a polygon.

.4.2. Example
Consider the pentagon of Fig. 5. The coordinates of the ver-

ices of the pentagon are the following: v0 = (0, 0, 0), v1 =
6.79,−18,−9), v2 = (35.3,−21.5,−1), v3 = (55.7,−8.9, 14.5),
nd finally v4 = (36.3, 8.9, 18.7). The matrix Mf for this example
s the following:

0 2.872 1.85 −0.506 0
0 0 1.893 1.358 −0.38

−0.925 0 0 2.97 0.577
1.012 −0.679 0 0 2.722
2.986 0.761 −0.288 0 0

⎞⎟⎟⎟⎠
Here, the order of the edges is given as e0, e1, e2, e3 and e4.

ence, the matrix is a [5×5]matrix. Its elements were computed
sing Eq. (17), for instance,

f ,12 = 3
|e0 × e1|
|e0| · |e1|

.

We remark also that most entries of the matrix are positive,
however, we can see that Mf ,14 has to be negative, since the
ectors e0, e3 and n have negative orientation with respect to the
ocal coordinate of the surface (Fig. 7).

The user selects e4 as the fixed edge and assigned area of the
ace to be zero.

The matrix Bf is given as

0.319 0.956 0.714 −0.731 0.867
−0.847 −0.117 0.445 0.663 −0.215

0 0 0 0 1

)
.

nd the vector bf is( 0
0

41.78

)
.

Here the first two rows describe the equilibrium equations, Eq.
(2), — for the x- and y-coordinates. The third equation is the
constraint equation, Eq. (21), for the fixed edge whose length is
41.78. In our case, the fixed edge corresponds to the last entry.

The RREFf matrix is(1 0 −0.659 −0.709 0 −16.602
0 1 0.966 −0.529 0 43.441
0 0 0 0 1 41.78

)
. (28)

s a consequence, the CGDoFf can be computed as e−r = 5−3 =
.

11
Fig. 9. (a) Multiple steps to compute the new face geometry with the pre-
assigned area (for visualization purposes only); and (b) the computed face
geometry with zero area.

Fig. 10. (a) to (d) Various zero-area computation for a starting face with the
area Af and different chosen fixed edges.

Moreover, we can identify the eci, enci, efix and enfd edges from
the RREF matrix, (28) as follows.

The fixed edge e4 corresponds to the fifth entry. Since, the
CDGoFf is equal to 2, we have two more (5 − 2 − 1 = 2)
dependent edges. These are the enfd edges, e0 and e1, given by
the other pivotal columns. The eci edge was chosen to be the
edge corresponding the fourth entry, e3. Finally, the enci edge is
the remaining edge, e2 for which we solve the quadratic area
equation (see Fig. 7).

Now, we compute the coefficients of Eq. (27) to solve for the
edge length, qci of the eci edge. Here, the target area, Af is zero.

a = 1.796, b = 390.646, c = 1898.751

We obtain two solution for Eq. (27)

qci = −4.974 and 212.535.

As a consequence, we get two significantly different solutions
for the geometry of this face. The updated (self-intersecting) face
corresponding to q = −4.974 is shown in Fig. 9.
ci
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.5. Computing the polyhedral geometry for target areas

In this process, a user would select multiple internal/external
aces and edges of a polyhedral system and would assign target
reas for each face and edge lengths for each edge to compute the
ew geometry of the polyhedron. Computing the geometry of a
ystem of polyhedral cells with pre-assigned areas and fixed edge
engths in one step is a complex task. We propose a multi-step,
nductive process to tackle this problem.

.5.1. Prescribed area for one face
In each step, we compute the geometry of a single face fi with

he assigned area as described in Section 2.4. Then we update
he polyhedron with the new edge lengths using Moore–Penrose
nverse (MPI) Method [43,47,48] and move to the next face and
epeat this process until there is no face left to change.

First, we identify the fixed edges from the list efix which lie on
he face fi with prescribed edge lengths, and use RREF method to
olve the quadratic area Eq. (18) described in Section 2.4.
In the next step, to preserve the new geometry of the face

i, we consider all the newly generated edges of the face as
ixed edges for the entire polyhedral system, i.e., we update the
ist of fixed edges efix for the entire polyhedron with the newly
omputed edge lengths of fi.

.5.2. Non-homogeneous equation system for a polyhedron
Similarly to Section 2.4, Eq. (22), the linear constraint equa-

tions for a polyhedral system can be described by two different
kinds of linear equations. First, we have the equilibrium equa-
tion system, Eq. (3) describing the topology of the polyhedral
system. Second, we have the linear constraints coming from the
prescribed edge lengths.

As a result, we obtain an equation system that describes the
equilibrium of the polyhedron with the prescribed edge lengths
of the fixed edges:

Bpq = bp (29)

where the constraint matrix

Bp =

(
Ep
Lp

)
is built from the equilibrium matrix of the polyhedron Ep (see
Eq. (3)) and the constraint equations Lpq = lp coming from the
fixed edges (see Eq. (21)). Similarly, the vector

bp =

(
0
lp

)
is obtained from the edge vector of the fixed edges lp.

2.5.3. Solving non-homogeneous equation systems using MPI
Now, we propose to solve Eq. (29) using the Moore–Penrose

Inverse (MPI) method. The MPI method is a technique to solve a
general non-homogeneous equation system of the matrix form

Bpq = bp (30)

where the matrix Bp and the vector bp are given.
We represent MPI of the matrix Bp by B+p that satisfies the

following matrix equations

BpB+p Bp = Bp and B+p BpB+p = B+p .

Assume that the vector bp is of the form Bpq for some vector
q. Multiplying the first equality by q, we have

BpB+p Bpq = Bpq.

As a consequence, we obtain

B B+b = b . (31)
p p p p
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Therefore, if a solution to Eq. (30) exists, then Eq. (31) has to be
satisfied. Similarly, if Eq. (31) is satisfied, then the vector B+p bp
is a solution to Eq. (30) This provides an effective tool to check
whether Eq. (30) has a solution or not.

From now on, we assume that Eq. (31) holds, in other words,
we assume that Eq. (30) has a solution. In this case, any vector q
of the form

q = B+p bp + (Id− B+p Bp)ν (32)

solves the linear equation system Eq. (30) where Id is the identity
matrix and ν is any column vector of the right dimension. In fact,
these are all the solutions to Eq. (30). Summarizing the above
discussion, we have at least one solution to Eq. (30) if and only if
Eq. (31) holds for bp. Moreover, if there is a solution to Eq. (30),
then all solutions have the form of Eq. (32) [47,48].

In Eq. (32), the parameter ν is freely chosen by the user
to control the solution. In our examples, we take ν to be the
initial edge lengths of the polyhedron, resulting in a solution to
Eq. (32) which is the new geometry for the initial polyhedron
with the prescribed area for face fi. In this case, the new edge
lengths are the best fit (least squares) to the initial edge lengths.
Also, in many cases, only certain parts of the polyhedron change
significantly (see Figs. 11 and 14).

Another approach could be to take ν to be the vector whose
entries are all 1, in this case, we get a solution with well-
distributed edge lengths.

2.5.4. Updating the polyhedral geometry with multiple prescribed
face areas

The previously discussed method can compute the geometry
of a polyhedral system with multiple faces with prescribed areas
in an inductive process. In each step, we update the geometry
of the polyhedron using Eq. (32) with the newly computed face
whose edge lengths are added to the list of fixed edges. The
new edge lengths change the constraints equations Lpq = lp to
compute the polyhedral geometry.

We summarize the process in Algorithm 3.

2.6. Updating the internal forces in the dual diagram

Let us call the starting diagram the primal, Γ , and the recipro-
cal perpendicular polyhedron dual, Γ † (Fig. 12a, b). The vertices,
edges, faces, and cells of the primal are denoted by v, e, f , and c
respectively, and the ones of the dual are super-scripted with a
dagger (†) symbol (Fig. 12a,b).

Since the face fi† is a closed polygon, the sum of the edge
vectors ej† should be zero. Hence, we obtain a vector equation
similar to Eq. (1)∑
fj

uj
†q†

j = 0

where the sum runs over the attached faces fj of the edge ei of the
primal Γ ; u†

j denotes the unit directional vector corresponding to
the edge vector e†

j ; and q†
j denotes the edge length of e†

j in the
dual Γ †.

Similarly, as before, each vector equation for the face of the
dual diagram yields three linear equations for the edge lengths,
and we obtain a linear equation system for the edge length vector
q† which can be described by a [3e × f ] matrix that we call the
equilibrium matrix of the dual diagram, E†,

E†q†
= 0. (33)

In [43], three different methods were described to generate
the dual diagram from Eq. (33). In this paper, we choose to use
the Moore–Penrose Inverse (MPI) method to initially construct
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Fig. 11. (a), (d), (g), (j), (m) Multiple polyhedral geometries with selected faces (orange) and user-assigned fixed edges; (b), (e), (h), (k), (n) the face area computation
nd visualization in multiple steps (for visualization purposes only); and (c), (f), (i), (l), and (o) the resulting polyhedral geometries with zero areas for the selected
aces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
he dual diagram before we apply any changes to the force and
ts face areas. The MPI method of this section is as same as the
ethod described in Section 2.5.3 with b being the zero vector.
p
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As a result, the solutions to Eq. (33) can be described as

q†
=
(
Id− (E†)+E†) ξ .
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Fig. 12. (a) An input force polyhedron as primal and its corresponding (b)
funicular polyhedron as the dual; (c) going around each edge of the primal
with its attached faces (c) provides the direction of the edge vectors of the
corresponding face (e) in the reciprocal diagram where the sum of the edge
vectors must be zero.

Here (E†)+ denotes the MPI of the equilibrium matrix E†. For the
arameter ξ , we choose the vector whose entries are all 1 to

obtain a dual diagram with well-distributed edge lengths.

The direction of the internal forces
The initial direction of the internal force as compression or

ension is stored and altered after the computation of the force
ith prescribed areas. The tensile force members are updated in
he form if the normal of a face in the force diagram flips after
he computation. As shown, the geometry of a face can become
elf-intersecting in some cases. On such occasions, if the area of
he region with the initial normal direction is bigger than the area
ith the flipped normal, then the direction of the initial internal

orce does not change; otherwise, the direction of the internal
orce will flip. If the face is a zero area face, the member will carry
o force and can disappear in the form diagram (Fig. 14).

. Implementation

In this section, we explain the computational setup for the
ethods described in Section 2. The input for this framework is

a polyhedral system with planar faces and is considered as the
force diagram for the methods of 3D graphic statics. we com-
pute the dual geometry of the updated primal diagram according
to Hablicsek et al. [43].

The user can initially select certain edges in the system and
assign a target length per selected edge. Similarly, s/he can select
multiple faces and assign an area per face. Our method is a
sequential computational setup that updates the geometry of the
polyhedral system for each user-selected face at each step. For
instance, let us assume that the user selects three faces with
a target area per face. We start from a face, compute the new

geometry of the face with the target area, update the geometry f

14
of the polyhedral system based on the new geometry of the face,
and move on to the next face and continue the computation until
there is no face left.

Accordingly, in each step of the computation, we construct
the area matrix and the equilibrium matrix for the user-selected
face. We then add the user-defined edge constraints as non-
homogeneous linear equations and compute the Constrained
Geometric Degrees of Freedom, CDGoF using RREF method ex-
plained in Section 2.4. In the next step, we compute the geometry
of the face, and then we update the geometry of the polyhedral
system using MPI method described in Section 2.5.

After the multi-step computation process is completed, we
update the direction and the magnitude of the forces in the
members of the dual that was initially constructed.

The above description can be summarized into three main
sections as shown in the flowchart of Fig. 13. These sections are
as follows:

• computing the new geometry for a face with constrained
edges and areas;
• updating the new geometry of the polyhedral system based

on the newly-computed face geometry and the fixed edges;
and,
• updating the internal forces in the members of the dual

based on the new force magnitudes.

Sections 3.1, 3.2, and 3.3 provide additional details of the
lgorithms used in this process. These algorithms include: com-
uting the area matrix for a face; face reconstruction with con-
trained edges and target area; and updating the geometry of the
olyhedron with constrained areas of faces and edge lengths.

.1. Constructing the area matrix

Algorithm 1 receives a face fi with an ordered list of vertices
v0, . . . , vk−1] as an input and outputs a symmetric matrix Mfi
hich is used in the quadratic form, Eq. (18), to compute the area
f the face.
First, we choose an (arbitrary) normal vector for the face, by

aking the unit cross product of the first two consecutive edge
ectors. Then, we construct the matrix Mfi row by row as follows:
tarting from each vertex vn, we create an ordered list of directed
dges ei, and compute the scalars ηi,j as explained in Eq. (9).
Once the whole matrix Mfi is constructed, the algorithm out-

uts a symmetric matrix (see Eq. (19)) to be used in the quadratic
orm for computing the area of the face fi.

.2. Updating the geometry of a face with constrained edges and a
arget area

Algorithm 2 updates the geometry of a face with constrained
dges and a target area. The input of this algorithm is a user-
elected face fi with a target area Afi and (user-selected) edges
f efix with prescribed edge lengths.
First, we compute the linear constraint equations, Eq. (22),

where the equilibrium equations describe the geometry of the
face and the constraint equations come from the (user-selected)
edge constraints.

Once, the constraint equation system, Eq. (22), is created, we
compute the Constrained Geometric Degrees of Freedom of fi,
DGoFfi , of the face using RREF method. If CDGoFfi = −∞, the
lgorithm stops, i.e., the constrained equation system, Eq. (22),
annot be solved. In this case, the user may modify the input by
electing less constrained edges or by selecting different edges.
If CDGoFfi is at least zero, the algorithm classifies the edges of
into ci, nci, fix and nfd edges. Next, the we construct the area
i
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a

Fig. 13. The flowchart expanding multiple steps in computing the primal
geometry/force diagram with preassigned edge lengths and face areas, and the
updated dual geometry as the form diagram.

matrix Mfi using Algorithm 1. Using the area equation, Eq. (18),
nd Eq. (27), we compute the edge length q of the edge e . If
ci ci

15
Algorithm 1: Computing the area matrix Mfi

Input: fi : [v0, vn, ..., vk−1] the ordered list of vertices around
fi

Output: Mfi the area matrix of the face fi.
Function Mrow(vrow , nf ):

vrow : [vj, vj+1, ..., vj−1] # ordered list of vertices starting
from vj
for vn ∈ vrow do

e←− ei[vn, vn+1] # ordered edges
for ei ∈ e do

ei ←− ⟨xn+1 − xn, yn+1 − yn, zn+1 − zn⟩ # direction
vector from vn to vn+1
|ei|←− li # length of the vector ei

for ei ∈ E do
n0,i = e0 × ei # cross product of e0 and ei
if xnf ̸= 0 # the x coordinate of nf then

ηi = xn0,i/(xnf ∗ |ei|∗|e0|)
else

if ynf ̸= 0 # the y coordinate of nf then
ηi = yn0,i/(ynf ∗ |ei|∗|e0|)

if znf ̸= 0 # the z coordinate of nf then
ηi = zn0,i/(znf ∗ |ei|∗|e0|)

Mei = (k− 1 ∗ i− 1) ∗ ηi # matrix coefficient for edge ei
where k is the length of Vrow
Mrow ←− Mei

return Mrow

begin
e0 ←− # vector from v0 to v1
nfi ←− e0 × e1 # the cross product of the first two edges
of fi
for vi ∈ {v0, ..., vk−1} do

vvi ←− [vi, vi+1, ..., vi−1] # ordered list of vertices
starting at vi
Mvi = Mrow(vvi ,nfi )

Mfi ←− Mvi # matrix whose rows are the Mvi

Mfi =
1
2

(
Mfi +MT

fi

)
# output is a symmetric matrix

Eq. (27) has no solution, the algorithm may ask the user to modify
the target area. Eq. (27) often has two solutions, the user may
choose from those particular solutions (see Fig. 8).

Once a solution is chosen for qci, the algorithm updates the
lengths of the enfd (see Section 2.4.1) and outputs the updated
lengths of the edges of fi.

3.3. Updating the geometry of the polyhedron

The last algorithm updates the geometry of a polyhedron after
the new geometry of each face is computed. In fact, this is a
multi-step process, in each step, we update the geometry of the
polyhedron after updating the geometry of a face. Note that, in
each step, the list of fixed edges is updated after computing the
geometry of each face, in other words, we solve for the geometry
of the polyhedron with more and more constraints.

Algorithm 3 describes the computation of the new geometry
of a polyhedron with a given list of constrained edges, efix. It
computes the linear constraint equation system, Eq. (29). This is
a non-homogeneous linear equation system which can be solved
using MPI method. The parameter ν in the MPI method can be



M. Akbarzadeh and M. Hablicsek Computer-Aided Design 141 (2021) 103068

a
a
s
i
c

b
b

i
t
i
i
t
a
i
f
c
F
i
F
t
t
o
t
p
f
s
a
f

s
F
t
t
t
t
f
a
r
a
t
t
t
o
t
e
t
t
b
b
p
o
t
e

b
A
i
T
a
a
f
c
o
z
s
p
d
a
t

Algorithm 2: Updating the geometry of the face (UF)

Input:

⎧⎨⎩
fi : [v0, ..., vk−1] face with ordered list of vertices
Afi target area for the face
efix : [em, ..., eq] list of constrained edges

Output: Q : [q0, ..., qk−1] list of edge lengths of fi with area Afi .
begin

e←− [e0, ..., ek−1] # ordered list of edges
for ei ∈ e do

ei ←− ⟨xn+1 − xn, yn+1 − yn, zn+1 − zn⟩ # direction
vector from vn to vn+1
|ei|←− li # length of the vector ei
ui = ei/|ei| # unit direction vector of ei
Ex ←− xui # row vector of the x-coordinates of ui
Ey ←− yui # row vector of the y-coordinates of ui

Efi ←− Ex, Ey # the [2× e] equilibrium matrix of the face fi
for ei ∈ efix do

li, qi # the row vector of the constraint equation for a
fixed edge Eq. (20)

Bfi , bfi # create the constraint equation system Eq. (22)
RREF ((Bfi |bf )) # compute the RREF of the constraint
equation system
CGDoFfi # compute the CGDoF of the system
if CGDoFfi = −∞ then

no solution H⇒ end program or ask user to modify the
input.

else
qnci # identify the nci edges
D, d, g # coefficients of Eq. 2.4

D′, d′ ←− D, d # coefficients of Eq. (25)
Mfi : # output of Algorithm 1
a, b, c # coefficients of Eq. (27) using Mfi
qci ←− a, b, c # compute the solution(s) of Eq. (27)
qnfd ←− qci, qnci, qfix # update the edge lengths
Q = [q0, ..., qk−1] # the list of updated edge lengths

chosen by the user or can be the vector of the initial values of
the edge lengths of the polyhedron.

Algorithm 3: Updating the geometry of the polyhedron
Input: efix : [em, en, ..., eq] : list of fixed edges
Output: Qp : [q1, ..., qe] the updated list of edge lengths of the

polyhedron
begin

for ei ∈ efix do
li, qi # the row vector of the constraint equation for a
fixed edge (Eq. (20))

Bp, bp # create the constraint equation system (Eq. (29))
B+p ←−MPI(Bp)
Qp # update the edge lengths of the polyhedron using MPI
method with a fixed parameter ν (Eq. (29))

4. Applications/results

Figs. 11, 14, 15, and 16 illustrate the potential of using this
pproach in polyhedral transformation with target areas of faces
nd constrained (selected) edge lengths, and their corresponding
tructural forms. In the examples shown in Fig. 11, the intention
s to highlight certain properties of the constrained polyhedral
omputation. In all the examples, the chosen face is highlighted
 c

16
y an orange shade and the constrained edges are highlighted by
lue color.
For instance, in Fig. 11a, the target area for the chosen face

s zero and an edge has been chosen that does not belong to
he selected face. Fig. 11b shows an animated drawing for clar-
fication purposes. As shown in Fig. 11c, the selected face turns
nto a self-intersecting face. In the next example, in Fig. 11d, the
op face is set to be zero with the same constrained edge. As
result of this computation, the face collapses to a line due to

ts rectangular geometry. Also, the normal of the side faces, nf0 ,
lips which means that the magnitude of the internal force in the
orresponding form will change (Fig. 11h, i). In the Example of
ig. 11g, one of the vertical side faces with a constrained top edge
s chosen and the target area is also set to zero. As illustrated in
igs. 11h and 11i, the rest of the vertical faces will disappear after
he polyhedral computation. This method can certainly be applied
o more than one face in the polyhedral system. In Fig. 11j,
ne external and one internal face are chosen with a zero area
arget and as illustrated in Figs. 11k–o, the computation process
roceeds sequentially by first, computing the geometry of the face
0 in Fig. 11l and then recomputing the polyhedral geometry to
olve for the new face f1. In this process, multiple other faces will
lso turn into a self-intersecting face as shown in Fig. 11l. In the
inal geometry, the face f1 will collapse to an edge e1 (Fig. 11o).

In most of these examples, the target areas were intentionally
et to be zero to highlight its resulting reciprocal structural form.
ig. 14a shows the same polyhedron of Fig. 11j. In this figure, cer-
ain faces in the force diagram and their corresponding edges in
he form diagram are highlighted to show the effect of changing
he areas on the magnitude of the internal forces. Starting from
he force polyhedron of Fig. 14a (top) and its compression-only
orm (bottom), faces f1 and f0 are emphasized in Fig. 14b (top)
nd their corresponding compression-only edges in the form. The
esult of the zero area computation results in face f0 to turn into
self-intersecting face together with other similar faces attached
o the edges of the face f1. Besides, face f1 is flipped as well as
he direction of its normal vector. Note that as a result of this
ransformation, the internal force in the corresponding member
f the face f0 is decreased to zero. This is a fascinating effect in
he equilibrium of polyhedral frames, as it describes the internal
quilibrium of forces in a polyhedral system where the edges or
he members can be removed from the system without disturbing
he internal and external equilibrium. The zero-force edges have
een previously observed in some polyhedral reciprocal diagrams
y McRobie [7], but there was no method to compute them,
articularly in self-intersecting faces as described in the method-
logy section. Also, the change in the direction of the normal of
he face f1 results in a reversal of the internal force in the edge
1 of the form diagram.
Fig. 14d emphasizes the faces f2, f3, and f4 and faces that will

e affected as a result of the second step of the computation.
s shown in Fig. 14e, the normal of the faces f3 and f4 will
nvert the direction of the internal forces in the form diagram.
his transformation also removes the applied load in the system
s the area of the face f2 is zero. In another example, the zero
rea faces are used to completely remove the external horizontal
orces in the system. Fig. 15 shows a force diagram and its
orresponding form in another transformation. In this example,
ne of the vertical faces is chosen and the target area is set to
ero. Note that as animated in the drawings of Fig. 15b, all the
ide faces collapse into a line and the top and bottom faces of the
olyhedron become coplanar. This transformation results in the
isappearance of all the horizontal applied loads in the system
s shown in Fig. 15f. The most interesting geometric outcome of
his process is the transformation of the internal face f1. Face f1

hanges its direction and so does its corresponding edge at the
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Fig. 14. (a) Initial force polyhedron of Fig. 11j (top) and its reciprocal form (bottom) as a compression-only system; (b) highlighted internal faces of the polyhedron
before transformation (top) and the corresponding members in the form (bottom); (c) zero area faces and their updated normal directions and the resulting zero-force
members in the form; (d), (e) and (f) highlighted faces in the second step of the transformation and the updated form with new internal force distribution.
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boundary of the form diagram. The resulting structure shows a
funnel shape compression-only structure with tensile members
on the top.

Fig. 16 illustrates another example of using this approach
in structural form-finding of a funicular spatial structural form
with both tensile and compressive forces in equilibrium. Fig. 16a
shows the force diagram consisting of groups of polyhedral cells
with planar faces. These faces establish groups of convex polyhe-
dral cells as a force diagram Γ that corresponds to a compression-
only form Γ † [13]. Using the algorithm explained in this paper,
a designer chooses f1 and f2 of the global (external) force poly-
hedron and assigns zero for their target areas (Fig. 16b). Fig. 16c
17
shows the first step of the computation where the area of the face
f1 becomes zero and consequently its corresponding force in the
form diagram Γ † disappears.

Fig. 16d shows the second step of the computation that makes
the area of the face f2 zero. Together with faces f1 and f2 all
urrounding faces will also become zero and consequently all the
orizontal forces in the system will disappear (Fig. 16d). Note
hat in all steps of the computation the rest of the faces of the
olyhedral system will be updated to match the coordinates of
he newly created zero-area faces. As a result the faces corre-
ponding to the top and bottom members flip that reverses the
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Fig. 15. (a) A force polyhedron and a selected face with zero area target, and two fixed edges on the top; (b) the transformation animation (for visualization purposes
nly); (c) the resulting force polyhedron where the selected face and all other side faces collapse to a line; (d), (e), and (f) the force and form diagrams and their
ransformation after changing the areas.
irection of the internal force into tension. The resulting struc-
ural form is a funicular form with both tensile and compressive
orces with no horizontal reactions at the support (Fig. 16f) (see
igs. 17 and 18).

4.1. Edge lengths of the force diagram vs. form diagram’s static
indeterminacy

Graphic statics allows for an easy understanding and expla-
ation of the concept of indeterminacy in the form diagram. The
eometric Degrees of Freedom (GDoF) of the force diagram are
qual to the degrees of indeterminacy (states of self-stress) of the
orm [43,49]. As discussed extensively in this paper, the GDoF of
single polygon with e number of edges is equal to e− 2. If the
DoF of a force polygon is e − 2 > 0, then its corresponding
18
form is statically indeterminate. For a force diagram consisting
of multiple faces, the GDoF can be found algebraically by solving
all the equilibrium equations of the closed polygons of the faces
(see [44]). The number of independent edges in the mentioned
equation system is equal to the GDoF of the force diagram, which
is equivalent to the states of self-stress of the form. Interest-
ingly, the Geometric Degrees of Freedom (GDoF) of the force
polyhedron’s external faces correspond to the external degrees
of static indeterminacy (states of self-stress) of the form. This
is the number of independent edge lengths that can be chosen
to construct the external force polyhedron faces with various
areas. The external static indeterminacy of the form also means
that there are multiple solutions for the geometry and magnitude
of the faces belonging to the reaction forces if the areas of the
applied loads stay intact. The GDoF of the internal faces of the
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Fig. 16. (a) The force Γ and form Γ † diagrams of a compression-only funicular polyhedral structural form; (b) changing the areas of the chosen faces of the force
polyhedron to zero; (c) the first step of the computation; (d) the second step of the computation; (e) the tensile members; and (f) the entire updated polyhedron
and its corresponding structural form.
force diagram also correspond to the internal degrees of static
indeterminacy that can be found numerically using the methods
suggested by [50].

5. Computational sensitivity and limitations

The proposed method of this paper is a sequential process, i.e.,
the algorithm runs as many times as the number of chosen faces
with an assigned target area. For instance, if three faces with spe-
cific target areas are selected, the algorithm will run three times
to change the areas. It starts with the first face area, then goes
to the second, and finally to the third. The computation speed
19
has not been a matter of concern since the quadratic equations
in this approach are turned into a linear equation system and can
be solved using matrix multiplication. The computational speed
of the main examples of this paper (Figs. 14, 15, 16) is provided
in Table 2. The computational implementation can certainly be
improved in the future to include user experience features.

It is worth mentioning that after finding the target area and
the new geometry of the face in each step, the edges of the face
will be fixed to prevent the area change in the following step.
This approach might cause a problem in some cases since a new
face’s target area may not be achievable given the constraints
of the fixed edges of the previously calculated faces. The reason
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Fig. 17. The built structure designed using the methods of this paper as part of the Spatial Efficiency Exhibition at the Center for Architecture and Design in
hiladelphia in January 2020.
Fig. 18. The force and the form diagram of the built structure with the
liminated horizontal forces in the top and bottom of the structure.

able 2
omputation time for the examples of the paper for further comparisons.
Input geometry Number of faces Running time [s]

Fig. 14 32 0.24
Fig. 15 72 0.13
Fig. 16 232 0.94

behind such problems is twofold. Firstly, if the number of fixed
edges in a single face exceeds its GDoF, then the new geometry
of the face with the target area cannot be calculated. Secondly,
the calculation limitation might be due to some natural geometric
20
restrictions of specific polygons. For instance, the area of a tri-
angle cannot be switched to its opposite value by changing the
length of its edges. Similarly, a rectangular face area cannot have
a non-zero value if one of its edge lengths is zero.

6. Conclusion and discussion

This paper provides an algebraic formulation alongside algo-
rithms and numerical methods, to geometrically control the areas
of the faces of general polyhedrons of the reciprocal diagrams of
3D/polyhedral graphic statics. The presented methods bridge the
gap between the previously developed algebraic methods for the
construction of the reciprocal polyhedral diagrams and control-
ling the magnitude of internal and external forces by changing the
areas of the faces. This method for the first time allows the user
to manipulate both convex and complex faces and explore the
compression and tension combined features in structural form-
finding using 3DGS. Controlling the areas of complex faces has
never been addressed in the literature prior to this research, as
the previous approaches mainly dealt with convex polyhedrons.
Thus, this research opens a new horizon to the understanding of
the equilibrium of both tension and compression forces beyond
the existing compression-only polyhedral funicular forms.

The paper explains the process of turning geometric con-
straints such as edge lengths and target face areas of the recipro-
cal polyhedral diagrams into algebraic formulations compatible
with the previously developed method by Hablicsek et al. [43].
This research describes a quadratic formulation to compute the
geometry of a face with a target area and provides a linear
formulation to consider the edge lengths as constraints. Solving
an equation system including both linear and quadratic equations
is a highly complex task. The key idea in our proposed method is
to reduce the number of unknowns in the (quadratic) equation
system of a face using the Reduced Row Echelon (RREF) method.
Computing the updated geometry of the polyhedral diagrams is
achieved by Moore–Penrose Inverse (MPI) method. In this ap-
proach, multiple faces and edges can be selected as constraints,
and the new geometry of the polyhedral system is computed in
a sequential process.

The paper also describes the Constrained Geometric Degrees of
Freedom (CGDoF) of the linearly constrained polyhedral systems
and opens up an exploration of a wide variety of interesting ge-
ometries satisfying the initial equilibrium equations with selected
edge lengths. The algorithms and numerical methods provide an
interactive tool for the user to study and manipulate large-scale
general polyhedral diagrams by assigning face areas and edge
lengths.



M. Akbarzadeh and M. Hablicsek Computer-Aided Design 141 (2021) 103068

F

a
o
o
e
g
b
t
p

e
t
n
c
w
u
r

D

c
t

A

(

R

uture work

The existing algorithm deals with each face at each step and
dds the newly computed edge lengths to the initial constraints
f the polyhedral system. As a consequence there is no control
ver the number of constraints generated in each step and the
ventual number of constraints to compute the entire polyhedral
roup. Therefore, in certain cases, depending on the chosen edge
y the user, or the geometric degrees of freedom of the entire sys-
em, the polyhedral computation becomes over-constrained. This
roperty proposes an interesting problem for future research.
Another interesting future direction is the study of the differ-

nt solutions of the same initial, constrained problem. As men-
ioned in Section 2.4, for a single face there can be two, sig-
ificantly different polygons satisfying the linear and quadratic
onstraint equations. As a consequence, for a polyhedral system
ith n assigned face areas, there can be 2n significantly different
pdated polyhedral systems that can also be explored in future
esearch.
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