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ABSTRACT: Snow aggregate shapes and orientations have long been known to exhibit substantial variability. Despite this
observed variability, most weather and climate prediction models use fixed power-law functions that deterministically map
particle size to mass and fall speed. As such, integrated quantities like precipitation and self-aggregation rates currently
ignore nonlinear effects resulting from variation in shape and orientation for aggregates of the same size. This study
therefore develops an analytic framework that couples an empirically based bivariate distribution of ellipsoid shapes to
classical hydrodynamic theory so as to capture an appropriate dispersion of masses, projected areas, and fall speeds for an
assumed size distribution. For a fixed aggregate size, shape variations produce approximately +0.13ms ™' standard devi-
ation of fall speed which increases the mass flux fall speed dispersion by more than 100% over traditional microphysics
models. This increased fall speed dispersion results predominantly from shape-induced mass dispersion whereas orientation
and drag dispersion play a lesser role. Shape variations can increase mass- and reflectivity-weighted fall speeds by up to 60%
of traditional models whereas self-aggregation rates can increase by a factor of 100 for very small slope parameters. This
implies that aggregate shape variations effectively forestall the theorized onset of fall speed distribution narrowing and
subsequent quenching of the aggregation process. As a result, it is likely that secondary ice formation is necessary to prevent
an ever decreasing slope parameter. The mathematical theory presented in this study is used to develop simple correction
factors for snow forecast and climate models.

KEYWORDS: Atmosphere; Snow; Winter/cool season; Cloud microphysics; Spectral analysis/models/distribution; Cloud
parameterizations

1. Introduction size to mass and fall speed using one-to-one power-law rela-
tions. While environmental corrective factors are often used in
conjunction with these power-law functions, integral moments
of the particle size distribution (PSD) are heavily weighted by
both the chosen fall speed-size (v~D) and mass-size (M-D)
power-law parameters. Therefore, predicted integrated quan-
tities that depend upon both mass and fall speed (e.g., pre-
cipitation rates) are accurate only if correlation terms between
both microphysical quantities are relatively small. There is
however some evidence that these nonlinear correlation terms
can produce profound effects on bulk quantities. For example,
Passarelli and Srivastava (1979) used an assumed rectangular
probability distribution of fall speed dispersion about mean
particle mass and density to examine the potential effects
on the snow self-aggregation kernel. They found that this in-
troduction of fall speed variation dramatically increased the
collection kernel for the larger end of the size spectrum. A later
study by Bohm (1992) reiterated these results but provided the
following sober account on its validity: ““These highly idealiz-
ing assumptions were suitable for a first investigation of the
significance of these effects, but they obviously are not very
accurate.” Multiple studies (e.g., Passarelli and Srivastava
1979; Sasyo and Matsuo 1980; Bohm 1992; Schmitt et al. 2019)
ﬁSupplemental information related to this paper is available at prescribe a fixed probability distribution of aggregate fall
the Journals Online website: https://doi.org/10.1175/JAS-D-20- speeds about size (mass). Assuming a strictly one-to-one mass
0128.s1. and fall speed relationship permits analytical treatment within
the collection integrals but does not take into account the
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A delicate balance of gravitational and drag forces governs
the terminal fall speed of snowflake aggregates. The resulting
distribution of aggregate fall speeds and masses are particu-
larly important for predicting surface precipitation rates and
cloud longevity. However, the variety of aggregate shapes
complicates this balance because they affect both forces
simultaneously: particle masses directly dictate the gravi-
tational force whereas the spatial distribution of this mass
(often characterized by a quantity called the area ratio)
dictates the aggregate’s drag. That snow aggregate shapes
affect both these quantities suggests potentially substantial
nonlinearities in terminal fall speed calculations which,
in turn, affects the growth processes themselves. Various
aggregate orientations resulting from fall behavior such as
oscillations, tumbling, or swirling (Kajikawa 1982) com-
pound these nonlinear relationships between shape and
fall speed by further altering drag.

Most current numerical weather prediction (NWP) and cli-
mate models characterize this balance by relating aggregate
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area, and fall speed necessarily eliminates potentially impor-
tant nonlinear terms that influence particle fluxes and collec-
tion rates. Radar studies have generally shown that nonlinear
microphysical relationships between correlated variables are
important for predicting snowfall rates (Wood et al. 2015).
However, there is currently no encompassing mathematical
theory capable of incorporating an appropriate dispersion of
particle properties so as to capture their correct correlations,
variations, and nonlinear relationships while maintaining an
analytic framework.

In theory, the semiempirical methodology of B6hm (1989)
and others can be used to mathematically and synergistically
connect particle properties such as size, shape, and density to
fall speed. However, the sheer variety of different aggregate
forms complicates the notion of shape and density for a given
aggregate and how these factors should influence fall speed.
For microphysical quantities such as snow precipitation rates
and radar quantities such as Doppler velocity, mass directly
appears in the integration kernels as well as in the charac-
terization of fall speed, thereby further increasing nonlinear
complexity. Although various semiempirical studies employ
the same general drag parameterization approach, the
specifics of each study give slightly different forms and
parameters that dictate the fall speed—dimensional power-law
parameters.

Recently, ground-based observations have provided a much
better understanding of snow aggregate shape and orientation
distributions. For instance, the Multi-Angle Snowflake Camera
(MASC) imager (Garrett et al. 2015) permits multiple viewing
angles of the same particle. This can help mitigate orientation
uncertainties that obfuscate shape estimation. Garrett et al.
(2015) used the MASC to develop distributions of aggregate
shapes, sizes, fall speeds, and orientations. They discovered
that orientations, in particular, exhibit a much broader distri-
bution that becomes even broader with increasing turbulence
than previously thought. More recently, Jiang et al. (2019) used
machine learning techniques to estimate aggregate shapes and
orientations from the MASC multiple viewing angles. To do
this, Jiang et al. (2019) used triaxial ellipsoids as proxies for
aggregate shapes and found that a bivariate beta distribution of
ellipsoid aspect ratios could capture the full observed distri-
bution. This distribution presents a very different conception
of aggregate shapes than the spherical (e.g., Brandes et al. 2007)
and oblate (e.g., Hogan et al. 2012) assumptions given in pre-
vious observational studies. Dunnavan et al. (2019) extended
the work of Jiang et al. (2019) so as to provide ellipsoid fits to
Monte Carlo simulated aggregates and discovered that these
simulated aggregates also assume the same type of bivariate
beta distribution form as estimated from the MASC observa-
tions. Through a series of Monte Carlo simulations, Dunnavan
et al. (2019) were able to explore ellipsoidal and fractal sensi-
tivities of generated aggregates to the shape of their various
constituent particles.

Traditional power-law approaches assume that particle
size (often maximum dimension or sphere equivalent-volume
diameter) follows an inverse-exponential or gamma distribu-
tion. Properties such as shape, mass, and fall speed are dictated
in terms of a power law according to this size. A simple
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substitution of variables in the assumed size distribution using
these power-law functions rescales the distribution in the form
of a Weibull distribution for inverse-exponential size distri-
butions or the Amoroso or generalized gamma distribution for
gamma size distributions. As a result, traditional approaches
either explicitly or implicitly incorporate ice particle shape
in calculations by representing aspect ratios as power-law
functions of size and the power-law transformation into other
variables (e.g., mass or fall speed) leads to a more general
distribution function within the gamma family. However, the
ground-based observations shown in Jiang et al. (2019) and
Dunnavan et al. (2019) suggest that snow aggregate shapes
are only a weak function of size and that a separate distri-
bution function, the bivariate beta distribution, can appropri-
ately capture its functional form. A fundamental question is,
therefore, What would be the distribution form for a variable
like mass or fall speed with gamma distributed size and bivariate
beta distributed shape? Furthermore, how would distribution
moments change accordingly, and would these moments affect
highly nonlinear bulk properties such as snow precipitation
rates (i.e., mass-weighted fall speed) or self-aggregation of the
second mass moment (reflectivity)?

This study answers these questions by establishing a
mathematical foundation for convolving size and shape
when describing snow aggregate properties. These additional
mathematical tools generalize the conventional gamma dis-
tribution power-law transformations with the use of Mellin
integral transforms. While the mathematical basis for these
integral transforms is well established, the resulting general
distribution function, Fox’s H function, appears to be rather
esoteric even within the mathematics community. Moreover,
H-function behavior, properties, and various notations will
undoubtably appear alien and confusing to those unfamiliar
with its use. Therefore, the mathematical details of the H
function are presented in the online supplementary materials
section. This deep mathematical analysis can, in theory, be
used in conjunction with observed distributions from instru-
ments such as the MASC (e.g., Garrett et al. 2015), thus giving
an additional level of comparison between observations and
microphysical models. This new mathematical framework
also provides a vehicle for connecting various particle
properties together when developing microphysical pa-
rameterizations. While these transforms can lead to more
complicated expressions for distribution functions of par-
ticular variables, the underlying moments of an H-function
distribution are still given in terms of gamma function ratios as
with the gamma distribution. Therefore, the moments them-
selves still exist within the conventional microphysics frame-
work and would not severely complicate implementation into
microphysics models.

2. Theory and methodology

a. Distribution convolutions and product moments

The gamma distribution as presented within cloud micro-
physics literature is often shown in one of two different forms:

n(D) = N,D* exp(—AD), (1a)
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where Eq. (1a) often describes observed size distributions (e.g.,
Heymsfield et al. 2002a; McFarquhar et al. 2007) and Eq. (1b)
often describes microphysical model size distributions (e.g.,
Walko et al. 1995; Harrington et al. 2013). The term A is
commonly referred to as the ‘‘slope’’ parameter whereas D,
is sometimes called the ‘“‘characteristic diameter” (all var-
iables used throughout this paper are also defined in the
appendix). Observations often use Eq. (1a) when deter-
mining parameters Ny and A and sometimes u through the
use of nonlinear least squares fitting or method-of-moment
fitting (see McFarquhar et al. 2007). This means that
the total number mixing ratio of ice particles, V;, is a free
parameter that is dictated by the combination of fitted
parameters Ny, A, and u. Microphysics models, on the
other hand, often use predictive equations for this number
mixing ratio. Therefore, the scaled form of Eq. (1b) permits
simpler expressions for the various moments of the size
distribution. These moments relate to fundamental quan-
tities such as ice water content (IWC), precipitation rates
(mass flux), or reflectivity (assuming Rayleigh scattering).
Throughout this study u = 0 as a way to simplify the analysis
and sensitivity tests. u = 0 is often observed in nature but can
deviate from this value (e.g., Brandes et al. 2007) which can
influence how mass is distributed across the size spectrum.
Further studies would be required to fully investigate these
other factors.

For this work, triaxial ellipsoids represent ice particle ag-
gregates where the ellipsoid semimajor dimension a follows a
gamma distribution and the ellipsoid aspect ratios, ¢,, = b/a
and ¢., = c/a, follow a bivariate beta distribution where
a = b = c. The bivariate beta distribution is given in
Dunnavan et al. (2019) as

B 1 a,, +By,—1
Py Pry) = Pei’ "
bar Tea B(aba’Bba)B(aba +Bba’Bcb) ¢
-1 =By, B, -1
X (@ = @) g (L= ) (2)

where ay,, Bra, and B, are distribution parameters and B(x, y)
is the beta function. The MASC data from Dunnavan et al.
(2019) suggest that ap, = 6.9793, By, = 43502, and B., =
5.3437 for ground-based snow. These values will be used
throughout this work to represent such snowfall. Product mo-
ments of this bivariate distribution are

<(pm (pn > — B(m +tn+t aba’Bba)B(n + aba + Bba’Bcb)
ba e B(aha"Bba)B(aba +Bba’lgcb) .

©)

The general form for an algebraic combination of micro-
physical variables is given by

£=a,ab gyl i | (4)
where ¢ is a microphysical quantity that depends on a, ¢,, and
.- For example, aggregate ellipsoid volumes can be described
as Vo = (413)7a>ppapeas Where £, = 3 and {py = Leq = 1.
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Distribution moments of n(¢) are a product of Eq. (3) and the
traditional gamma distribution moments of n(a). The general
convolved distributions for £ can be expressed in terms of
Fox’s H function (Fox 1961) where each form is derived and
explained in detail within the supplementary materials section.
Equation (4) can be used in the same way as traditional M-D
and v~D relationships. The following section derives new el-
lipsoid power-law parameters in Eq. (4) that incorporate a
dispersion of shape and orientation. It is important to realize
that ellipsoids only represent a mathematically convenient
proxy for aggregate shapes and densities which permit an
already established semiempirical methodology. Additional
details and uncertainties associated with the impact of mor-
phology, turbulence, and other factors on fall speed require
a special study and is therefore outside the scope of the
current paper.

b. Fall speed

Much of the theory and mathematical treatment of hydro-
meteor fall speed can be attributed to a series of papers by
Hannes B6hm (Bohm 1989, 1992). In these papers, hydrome-
teors are imagined as reduced-density spheroids with terminal
fall speeds that are governed by the balance of gravitational
and drag forces. The theory itself is semiempirical with the drag
force component based off of the theory and experiments of
spheres conducted by Abraham (1970). Further modification
of Bohm’s work has been developed by Mitchell (1996),
Heymsfield et al. (2002a), Khvorostyanov and Curry (2002),
Mitchell and Heymsfield (2005), Khvorostyanov and Curry
(2005), and Heymsfield and Westbrook (2010). These addi-
tional studies generalized the original equations of B6hm
(1989) such that particles were not necessarily treated
as spheroids. This allowed Mitchell (1996), Mitchell and
Heymsfield (2005), and Heymsfield and Westbrook (2010)
to parameterize fall speed using in situ or laboratory derived
power-law relations for the particle projected area Apay.
The following is a further extension of these works but with
the introduction of a bivariate ellipsoid shape distribution
based on observed aggregates (Dunnavan et al. 2019; Jiang
et al. 2019).

The general terminal fall speed equation is given in Bohm
(1989) as

1n T
Y =§_ﬂ A NRe’ ®)
pn proj

where Ny, is the Reynolds number, 7, is the dynamic viscosity,
P, is the air density, and A, is the ellipsoidal shell projected
area onto the horizontal x—y plane (see Fig. 1 from Béhm
1989). For this comparison study, aggregates are imagined as
spheres and ellipsoids where the effective density decreases
as a function of size. A common interpretation of a reduced-
density sphere is that of a fractal object where the chosen
length scale is the sphere’s maximum dimension D or radius R
(cf. Heymsfield et al. 2002a,b). This interpretation, for in-
stance, is described in Blumenfeld and Mandelbrot (1997)
where the fractal object is envisioned to be enclosed by a
sphere with the same maximum dimension as that of the object
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F1G. 1. Geometry for projecting ellipsoid area and area ratios. (a) General Euler angle rotation convention

following Z-Y-Z rotations. (b) Top-down x—y plane projection for the general case of projected particle area Ay
(gray area), projected circle Ay, (blue circle), and projected ellipse area A (green ellipse). Area ratios are
defined by the ratio of A, to each projected areas as shown. Notice that A, is defined in terms of the particle

maximum dimension D rather than the projected maximum dimension. (¢) Minimum A, = wbc = T PpaPea

case. (d) Maximum Ay = wab =

Westbrook et al. (2008).

itself. The fractal dimension B, then describes how the par-
ticle mass scales according to D or R assuming that the fractal
object is self-similar at various scales, 0 < r = R. These dual
views of aggregates as either fractals or reduced-density
spheres are used interchangeably throughout this study
with these perspectives in mind where the subscript s rep-
resents ‘‘sphere.” The concept of reduced-density ellip-
soids, as denoted by the subscript e, therefore extends
current approaches by taking the reduced-density sphere
parameterizations for aggregate mass and projected area
and simply introduces additional aspect ratio terms as
correction factors.

For general triaxial ellipsoid shapes, both Ng. and Ap;
must be reformulated because shape and orientation implicitly
alter these parameters. To calculate Ay, the ellipsoid is first
aligned with its two semiminor axes, b and c, along the x—y
plane (Fig. 1c) where a, b, and c are initially along the z, y, and
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ma* gy, case. Aggregate image in all four panels adapted from Fig. 12 in

x axes, respectively. Then, three Euler angles: ¢, 6, and
are used to specify any particular orientation according
to the Z-Y-Z Euler angle rotation convention (Fig. 1a). These
rotations permit a simple expression for the projected area of
an ellipsoid (cf. Vickers 1996):

A = W\/azbz cos2ifsin®0 + a2c? sin®rsin®0 + b2c2 cos26

= ma’ \/ @3, cos2irsin’g + 2, sin’sin®0 + 2, @2, cos2d

= 7a*¥ (6)

proj

where a = b = c. Notice that only the last two Euler angles
0 and ¢ change the projected area whereas the first rotation
¢ changes the angle of the projected ellipse maximum di-
mension from the x axis. The minimum value of Wy, i @pa@ca
(6 = 0°and ¢ = ¢; as shown in Fig. 1c) whereas the maximum
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value is ¢p, (6 = 90° and ¢ = 0°; as shown in Fig. 1d). It is often
thought that ¥y, = ¢, (€.g., Magono and Nakamura 1965;
Szyrmer and Zawadzki 2010), yet the correct distribution of
orientations is still largely uncertain. The projected area geo-
metric factor W, can be approximated as power-law combi-
nations of ¢, and ¢

~ ~ Vb Yea
\Pproj <q’proj> Ppa Pea > (7)

where ¥, and ¥, are exponents that represent the contri-
bution of each ellipsoid aspect ratio toward the average pro-
jection for an assumed orientation distribution and brackets
represent an orientation average. A power-law fit for random
orientations is given by ¥, = 0.9 and ¥, = 0.5. Figure 2 shows
that the absolute error between the power-law approximation
and a Monte Carlo estimate of the actual average quantity
for (W) is very close to zero right where the MASC bivariate
beta distribution reaches a peak. Throughout this paper,
Aproj = {Aproj) so that Eq. (7) can be used with Eq. (4) to in-
corporate the effects of random and horizontal orientations
into fall speed and self-aggregation calculations.

Calculating Ng, for triaxial ellipsoids is based on the ana-
lytical power-law approach of Khvorostyanov and Curry
(2005), where

Ny, =a, X", (8)

Re

and the coefficients @,, and b,, are determined using the
method of Khvorostyanov and Curry (2002), Mitchell and
Heymsfield (2005), Khvorostyanov and Curry (2005), and
Heymsfield and Westbrook (2010) for the number-weighted
mean Best number X. The use of a number-weighted Best
number to diagnose @, and b,, is somewhat arbitrary; other
bulk weightings (e.g., mass or area) of X could also be used
since the ratio of mass to projected area is the critical param-
eter that determines the overall behavior of the Best number.
Despite these more involved bulk weightings, the tests in this
study instead use the number-weighted Best number so as to be
consistent with a newer microphysics scheme: the Ice-Spheroids
Habit Model with Aspect-Ratio Evolution (ISHMAEL; Jensen
et al. 2017). This average Best number approximation can then
be used to develop a general form for all drag parameterization
schemes:

5 cVX
2( 1+c1\/?—1> 1+CvVX
ab X
- — 4 (9a)
cz( 1+c1\/,?—1)
_— 2 [
cz( 1+C1x/)?—1) —a, X"
a, =1, — , (9b)

XPw

where C, = 85/4 and C, = (C(,Cz)_l/z. For the approach of
Mitchell and Heymsfield (2005), a, = 1.7 X 10~> and b, = 0.8
represents a turbulence correction whereas a, = b, = 0 for all
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FIG. 2. (filled) Absolute error in (V) between power-law
parameterization (fit) where ¥,, = 0.9 and ¥, = 0.5 and the
Monte Carlo estimate (actual). Black contours show the bivariate
beta probability distribution function [Eq. (2)] given in incre-
ments of 2.

other approaches. For Heymsfield and Westbrook (2010),
C, =0.35and §, = 0.8 whereas all other schemes have C, = 0.6
and 8, = 5.83; A, and ¥, are turbulence correction terms for
the approach of Khvorostyanov and Curry (2005) that can be
found in their paper. For all other methods, A, = 0 and , = 1.
Figure 3 shows how these different parameterization schemes
influence the resulting fall speed parameters for assumed
reduced-density sphere/fractal aggregates. The majority of the
differences between these various schemes occurs at larger
sizes where turbulence is expected to increase drag. These
drag parameterization schemes are used in section 3 to thor-
oughly test the sensitivity of the proposed ellipsoid method-
ology compared to the traditional sphere (fractal) approach of
previous studies.

The Best number can be represented in a general form
(cf. Bohm 1989; Heymsfield and Westbrook 2010):

X = 8mgp, —k,
- 2 r|ellip
7T’na
_8mgp, |_kc kWh, (pkcq,m (10)
- 2 sph ¥ba ca k]
s TP

where A,/ is the ellipse area ratio representing the projected
particle area, Ay, to the ellipsoid projected area, Ay, and A, |spn
is the analogous area ratio quantity for spheres' (see Fig. 1b).
Notice that the form of Eq. (10) is the same as the semiempirical
relationship inferred by Heymsfield and Westbrook (2010) but

! Often derived from in situ observations in terms of the maxi-
mum projected span L rather than the maximum particle dimension
D with the assumption that L ~ D. This provides an obvious in-
consistency in Fig. 1b, where Acirc # (7/4)L%. For simplicity, this
inconsistency is ignored in Fig. 1 in order to maintain the mathe-
matical relationship between A, |cpi, and A,|sp, based on the size
and shape of the aggregate itself rather than its projection.



56 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 78
2.0 ————— e ——
101 —— M96/KC02 | 1
~ - B
%) [~ - MHO05 i
E 1.5 [=-=-KC05 ]
Na)) [rareenes HW10 ]
) e, L ]
m 10? D 1.0k
5} L
2
N [
— 05
=
10° =
N 3
'1 t t 1 HHH—H | ""”I HHHY H
50.0 F ) 4 5
r C s ]
B ° ¥ b -
E /3 G 3
E 7 E E‘-_‘ -
E Pyl E r ]
Pl - ey
dg 1.0k -, /\, ......... . ]
E ] - 7
- AL
E et 3 L - d p
001 [ PRTTTT BRI M RTTT B RTTT T S RTTTT IR B ||||||- 0 . Lol Ll A EEET
10t 102 10% 10* 105 10 107 108 0.01 0.1 1.0 10

Best Number (X)

D [cm]

FIG. 3. Comparison of aggregate fall speed properties following Mitchell [1996 (M96); solid], Khvorostyanov
and Curry [2002 (KCO02); solid], Mitchell and Heymsfield [2005 (MHO5); dashed], Heymsfield and Westbrook
[2010 (HW10); dotted], and Khvorostyanov and Curry [2005 (KC05); dash—dotted]. Subplots show (a) X vs
R., (b) X vs by, (c) X vs a,,, (d) D vs v, (e) D vs B,, and (f) D vs a,. D represents the maximum
aggregate dimension whereas a,, and B, are the spherical/fractal aggregate v—~D power-law prefactor and

exponent, respectively.

with A, |epip instead of A,|sp, where k. = 1 for the approaches
of Mitchell (1996), Mitchell and Heymsfield (2005), and
Khvorostyanov and Curry (2005), k. = 0.5 for the approach
of Heymsfield and Westbrook (2010), and k. = 0.25 for the
oblate spheroid approach of Bohm (1989, 1992). For the
current paper, it is not clear which of these exponents would
be most appropriate. Therefore, this study uses k. = 1.0 for
the approaches of Mitchell (1996), Mitchell and Heymsfield
(2005), and Khvorostyanov and Curry (2005) and k. = 0.5 for
the approach of Heymsfield and Westbrook (2010). The ap-
proximation of Bohm (1989, 1992) where k. = 0.25 is not
appropriate for assumed triaxial ellipsoids because the vast
majority of these ellipsoids are not oblate (see Jiang et al.
2019; Dunnavan et al. 2019).
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The area ratio can be determined by combining Eq. (6)
and the Ay, parameterization provided in Table 1 of
Mitchell (1996):

A part = oD’

(11)

where this study uses the parameterization from Mitchell (1996)
where o0 = 0.2285 and s = 1.88 (cgs units). Other parameteri-
zations exist for the projected particle area for aggregates (cf.
Heymsfield and Miloshevich 2003). However, as pointed out by
Heymsfield and Miloshevich (2003), these different parameter-
izations are rather close in value to ones from Mitchell (1996).
Therefore, the tests in this study use only this set of values.
Dividing Eq. (11) by Eq. (6) gives the ellipse area ratio

=2%0a’,
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where A,|sph = Apan/(mzz) (see Fig. 1b).

Figure 4 shows the area ratio distributions that result from
the above parameterization method for different values of A.
The A,|spn distribution becomes more sharply peaked and has
its mode shifted to smaller values for smaller A. The additional
aspect ratio factors in the formulation of A,|.;, act to spread
out the A,/ distribution to larger area ratios. Horizontally
and randomly oriented ellipsoids both have nonzero proba-
bility for A,|cuip > 1.0. This is the result of using the above
inverse procedure to specify area ratio whereby ellipsoid
shapes and orientations necessarily increase area ratios. It is
important to note that these large area ratio values can be con-
sidered unphysical according to the interpretation of Bohm
(1989). This issue with unphysical area ratio values becomes
more pronounced when ellipsoids are randomly oriented be-
cause horizontal orientations maximize Ap;. These unphysical
values result from using the in situ derived parameters of Mitchell
(1996) which are strictly appropriate only for a truncated range of
projected maximum dimensions that are consistent within probe
limits. Using this same truncated range for ellipsoid projected areas
results in a more realistic distribution, at least for horizontally
oriented ellipsoids. Throughout this study, the full area ratio dis-
tributions will be used when characterizing fall speed. Although
the unrealistic area ratio values provide a limitation for this study,
the use of these area ratios will provide a set of sensitivity tests for
shape and orientation in the resulting calculations.

The effective aggregate sphere density is assumed to follow
the empirical hybrid parameterization given by Table 1 of
Heymsfield et al. (2002a):
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py@) = 2 KA "

= apsaﬁf‘x ; (13)
where k, n, and « are parameters developed from in situ da-
tasets such as Heymsfield et al. (2002a) and @, and B, are
given in the appendix. In this study, n = 1.5 which is consistent
with all parameterizations. Additionally, three sets of k and
« are used to test the sensitivity of fall speed and self-aggregation
to various M—D exponents of spherical aggregates (8,, ). These
values are from Heymsfield et al. (2002a) where k£ = 0.015 and
a = —1 (B, ~1.8) and from Heymsfield et al. (2002b) where
k=0.054anda = 0.8 (B,,, ~2.0),and k = 0.078 and @ = —0.6
(B, =2.2). All values are given in terms of cgs units. With this
parameterization, the aggregate mass for spheres can be ex-
pressed as
m=a, aPn. (14)
Values of «,, range from 0.000544 to 0.00403 gem P
which yield mean aggregate mass values 72 = g;/N; that range
from 3.85 X 107> to 13.6 mg for A = 100cm™ ' to A = 2cm ™,
respectively. This hybrid approach therefore corresponds to a
wide variety of rimed and unrimed aggregates (cf. Locatelli
and Hobbs 1974; Kajikawa and Heymsfield 1989; Mitchell
1996; Heymsfield et al. 2002a,b; Field and Heymsfield 2003;
Schmitt and Heymsfield 2010) and are not necessarily repre-
sentative of any particular type. The mass of an ellipsoidal
aggregate is given as
4 3
M=3T0E Py, (15)
The variable p, here refers to the effective ellipsoid density
of the aggregates. If ellipsoidal aggregates exhibit the same
spherical effective density as Eq. (13), then
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This implies that using the typical constraint of a spherical
effective density negates the influence of aspect ratio disper-
sion on mass. In this case, the mass distribution is the same for
ellipsoids as for spheres. Tests using this assumption can
therefore be thought of as a microphysical model constraint in
absence of an assumed ellipsoid effective density parameteri-
zation. Alternatively, ellipsoidal aggregates can also exhibit a
similar power-law like relation with size such that

—— 3+Bn
3 'n'apya ¢ (pbaqoca

= amaﬁm (pba gDca ’ (17)
where «,, and B, are effective ellipsoid density parameters.
For consistency, both assumptions are used in the sensitivity
tests presented in section 3. Tests with the same M-D relation-
ships between typical power-law relations and for ellipsoidal
particles use Eq. (16). This assumption would be consistent for
bulk microphysics models where bulk quantities like IWC or
reflectivity are predicted. Tests using Eq. (17) on the other hand
maintain a shape-induced mass dispersion. Unfortunately, there
are not many datasets of projected ellipse area ratios that could
be used to infer the parameters in p.. In addition, the 3D
asymmetry of triaxial ellipsoids makes such a parameteriza-
tion rather involved if projected aspect ratios are used to in-
form p,. Instead, this study fixes the first two mass moments of
both the spherical and ellipsoid distributions so as to diagnose
@, and B,. Such a constraint is especially useful because
observational estimates of both IWC and reflectivity are as-
sumed proportional to the first and second mass distribution
moments of the particle distribution function. Therefore,
using the same two moments between the spherical and el-
lipsoidal cases necessarily constrains both cases as identical
from an observational standpoint.

The Best number can now be expressed using Egs. (10),
(12), and (15):

— X X,
X= aXaBX Ppa P’

(18)
where xpq = kW, and xoq = kY, if Eq. (14) is used and yp, =
kVp, + 1and xo, = k¥, + 1if Eq. (15) is used. ey and By are
the Best number power-law parameters given in the appendix.
Combining Egs. (5), (12), (15), and (18) yields

N,— b B =1 XpgPy =2 Xob —tr 12
v, = p_aama maﬁx ' (/’bZ“ m~ Yba @lea”m™Vea
a

N =

(19)

_ vy,
- avaﬁv gohg” (/)ctclu .

c. Self-aggregation

The equations for mass, projected area, and fall speed given
in the previous section can be used to calculate aggregation
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self-aggregation rates. The governing equation for collection
(aggregation) is called the stochastic collection equation
(SCE) which is given by

on(x,t) 1

ar EL=0K(X ~y.y)n(x = y,0n(y, 0 dy

- j KCxynteon(y.o)dy. (20)

where x and y are masses of two aggregating particles, K(x, y) is
the collection kernel which describes the physics of the ag-
gregation process, and n(x, t) is the number distribution func-
tion for all particles at time 7. It is common to write Eq. (20) in
terms of distribution moments by integrating both sides of

Eq. (20) [ie., [._,x'f(x, ) dx]. A transformation of this new
equation (see Bleck 1970) gives

dM S
c=2f | ey -0 -y K@ onG dx .
0Jy=0

. 2),.-
(21)

where M, denotes the value of the rth moment of the number
distribution function (for more details, see Thompson 1968).
Throughout this study, the number distribution function is
represented in terms of mass such that the zeroth, first, and
second moments can be considered proportional to total
number, mass, and reflectivity (assuming Rayleigh scattering),
respectively. By convention, the first moment does not change
(i.e., mass is conserved during aggregation). However, the
zeroth and second moments can be expressed in terms of the
simplified form?

dM +1(*
L= (—1)”+1 p_lJ J xXPy1K (x, y)n(x, t)n(y, r) dx dy,
dt 2 x=0Jy=0

22)

whenr =0(p = g =0)andr = 2(p = g = 1). Partial moments
such as the conversion of mass from one category to another
(i.e., Verlinde et al. 1990) can be expressed for r = 1 when
p = 1 and g = 0. For self-aggregation, g = p.

Typically, the collection kernel for aggregation K(x, y) is
represented in terms of a hydrodynamic kernel given by (cf.
Connolly et al. 2012)

K(x,y)= EZlgg (23)

2
(\/ Aprojar T V AP"’j~Y) ’
where the subscripts x and y represent each collecting species
and E,4, represents the aggregation efficiency. It is often the
case that the fall speed term in Eq. (23) complicates evaluation
of Eq. (22) because of the discontinuity provided by the ab-
solute value function. This has led to the use of either analytical
approximations (Wisner et al. 1972; Seifert et al. 2014) or
computationally expensive general solutions (Passarelli 1978;

v, TV
8 1,

% Note: This form is only appropriate for » = 0 and r = 2. Other
integer moments can also simplify by using a binomial coefficient
expansion. See Drake (1972) for details.
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FIG. 5. Comparison between spheres and a bivariate distribution of ellipsoids when calculating fall speed for different drag
parameterization methods, « values, and A values. Red lines correspond to calculations assuming spheres whereas blue lines
represent calculations using ellipsoids. Line style denotes the chosen fall speed parameterization following Mitchell (1996),
Khvorostyanov and Curry (2002) (solid), Mitchell and Heymsfield (2005) (dashed), Heymsfield and Westbrook (2010) (dotted), and
Khvorostyanov and Curry (2005) (dash—dotted). Notice that the axis limits are different for various panels to highlight changes in

the fall speed distribution.

Verlinde et al. 1990) expressed in terms of hypergeometric
functions.

Normally, Eq. (22) is a double integral. However, the use of
the bivariate beta distribution for ellipsoidal shape complicates
the evaluation of this integral by increasing the dimensionality
to six for self-aggregation. It is simple to analytically integrate
Eq. (22) using any of the fall speed difference approximations
for bivariate beta distributed ellipsoid aspect ratios. However,
the use of the full hydrodynamic kernel becomes quite com-
plicated due to the size and shape influence on the integral
limits when splitting the absolute value function into two terms
(cf. Verlinde et al. 1990). Therefore, the self-aggregation
rates in this study are estimated using a Monte Carlo ap-
proach for evaluating Eq. (22) with Eq. (23) where the

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 01/13/21 01:25 AM UTC

gamma and bivariate beta distributions are discretized and
sampled 10 000 times. Each sampled set of m, v, and A then
is used to estimate the integrated collection kernel for number
and reflectivity. For simplicity, E,,, and N; are both normalized
to unity.

For all tests, 2 = A = 100 cm ™ L. This range is consistent with
the observations from Heymsfield et al. (2002a) and Lawson
et al. (1998) although the lower end of A is almost always closer
to 10 cm ™! rather than 2 cm ™! (Lo and Passarelli 1982; Mitchell
1988). Many studies (e.g., Heymsfield et al. 2002a) show that
A values of 2cm™! or below are unlikely. Therefore, the
sensitivity test results in the next section should be viewed as en-
compassing the beginning stages of aggregation (A ~ 100cm '),
late stages of aggregation (A ~ 10cm ™), and the rare case of
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FIG. 6. As in Fig. 5, but with ellipsoids that exhibit the same area ratio as spheres.

extremely large aggregates (A ~ 2cm™'; e.g., Lawson et al.
1998). This last case is specifically designed to investigate how
aggregate shapes and orientations are expected to impact the
limiting behavior of the fall speed distribution and self-
aggregation rates in the absence of secondary ice production
processes such as collisional breakup.

3. Results
a. Fall speed
1) AGGREGATE SHAPE EFFECT

Figure 5 compares the fall speed distributions (see supple-
mentary materials) between the traditional power-law ap-
proaches when assuming spheres (fractals) and when assuming
ellipsoids with aspect ratios governed by Eq. (2) for different
slope parameters (A) and B, [as dictated by the a exponent in
Eq. (13), the area ratio-density parameterization]. For this
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series of subplots, both mass and projected area exhibit dis-
persion for the same maximum dimension and aggregates are
assumed to fall such that their projected areas maximize (i.e.,
¥y, = 1.0 and ¥, = 0). For large slope parameters (small
mean maximum dimensions), the introduction of shape dis-
persion does not significantly alter the fall speed distribution.
However, smaller values of A (ie., A =10cm 'and A =2cm ™)
lead to a narrowing of the sphere fall speed distribution
which become more pronounced when the density exponent
a equals —1. Importantly, ellipsoids do not narrow regardless of
slope parameter. In fact, aggregate shapes appear to spread out
the fall speed distribution as A decreases. The increased el-
lipsoid fall speed dispersion consequently extends the tail of
the fall speed distribution more than spheres. This extended
tail suggests that bulk quantities which depend upon fall speed,
such as mass-weighted fall speed, are perhaps underestimated
when assuming spherical or fractal aggregates. For very small
values of A = 2.0cm ™, the fall speed distribution for spheres
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FIG. 7. As in Fig. 5, but with ellipsoids that exhibit the same mass distribution as spheres.

becomes very narrow whereas ellipsoids maintain a disperse
fall speed distribution regardless of a(8,, ).

Because aggregate shapes impact both mass and projected
area, it is not initially clear which component contributes to
the consistent disperse nature of n(v,) for ellipsoids. To in-
vestigate the underlying cause, Fig. 5 was reproduced with
the exception that the same area ratio or the same mass
distribution was used for both spheres and ellipsoids. When
controlling for area ratio (Fig. 6), the distributions for ellip-
soids appear visually similar to that in Fig. 5. The primary
difference between both figures is that Fig. 6 for ellipsoids has
its mode shifted more toward smaller fall speeds. Besides this
change, both distributions are visually identical. When con-
trolling for mass (Fig. 7), the ellipsoid distribution appears
closer to that of spheres. As in Fig. 6, large values of A for
ellipsoids lead to a fall speed peak at smaller values com-
pared to spheres. However, small values of A in Fig. 7 lead
to a pronounced narrowing of the fall speed distribution for
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ellipsoids. Therefore, it is clear that the major contribution of
shape dispersion on fall speed comes from the increased
dispersion of aggregate mass at a particular size rather than a
decrease in projected area.

The effects of aggregate shape on bulk fall speed quantities
(number-, mass-, and reflectivity-weighted fall speeds) can
be seen in Fig. 8 for ellipsoids that exhibit shape-induced
mass and projected area dispersions for the same maximum
dimension. In general, ellipsoids exhibit larger mean fall
speeds than spheres where the difference between spheres
and ellipsoids becomes larger for smaller values of « (larger
values of B,,) and for higher-ordered mass fall speed mo-
ments (i.e., mass-weighted and reflectivity-weighted fall
speed). The largest differences between spheres and ellip-
soids also occur at higher values of A and become closer to
one another for smaller values of A. Smaller values of A act
to decrease results using Mitchell and Heymsfield (2005) as
compared to the other drag parameterizations. Much of the
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FIG. 8. Comparison of (top) number-weighted, (middle) mass-weighted, and (bottom) reflectivity-weighted distribution mean fall
speeds as a function of slope parameter A for different values of «. Ellipsoids of the same size exhibit shape-induced dispersion of both

mass and projected area.

influence of @ on number-weighted fall speed quantities exists
between a = —1 (8, ~1.8) and « = —0.8 (8,,, = 2.0) for both
spheres and ellipsoids. However, mass- and reflectivity-weighted
fall speed are strongly affected by decreases in « even for various
drag parameterization schemes. As stated before, the extended
tail of the fall speed distribution for ellipsoids leads to their
higher mean fall speed values. Overall, Fig. 8 shows that high
mass and fall speed moments can increase by almost 60% due to
shape and orientation alone.

2) ORIENTATION EFFECTS

Figure 9 compares the horizontally oriented mean ellipsoid
bulk fall speed quantities from Fig. 8 to randomly oriented
ellipsoids. The change in orientation produces about 10%
difference where the largest differences occur at larger A for
all drag parameterization schemes except for Heymsfield
and Westbrook (2010) which has k. = 0.5. For the other drag
parameterizations, randomly oriented ellipsoids have smaller
mean fall speeds than horizontally oriented ellipsoids. Higher-
order fall speed quantities yield smaller differences between
horizontally and randomly oriented ellipsoids. This can be ex-
plained by how mass impacts the fall speed more than projected
area as illustrated in Figs. 5 and 6. Therefore, orientations
produce a relatively mild effect on fall speed even when
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considering the unphysical behavior of the ellipsoidal area
ratio distribution produced by the Mitchell (1996) particle area
parameterization.

b. Self-aggregation
1) AGGREGATE SHAPE EFFECT

Figure 10 shows the absolute value of self-aggregation rates
for number and reflectivity for the distributions from Figs. 5
and 8. Self-aggregation rates generally increase as a power-law
with decreasing A where the horizontally oriented ellipsoids
yield smaller self-aggregation rates than spheres of the same
size. This, in general, results from ellipsoids exhibiting a smaller
projected area in Eq. (23) than spheres. Ellipsoids therefore
produce two competing self-aggregation effects. As shown in
Fig. 5, the introduction of ellipsoid shape dispersion for a given
size acts to increase the fall speed distribution standard deviation
which, in turn, increases the fall speed term in Eq. (23). At the
same time, however, the use of ellipsoids acts to decrease the
projected area for aggregates of a particular size which directly
decreases the area term in Eq. (23). Despite the nonlinearities
due to shape and orientation, self-aggregation rates for the
majority of A values are rather similar between spheres and el-
lipsoids where ellipsoids exhibit slightly larger self-aggregation
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scheme.

rates for small values of A. An important exception is when the
drag parameterization of Mitchell and Heymsfield (2005) is
employed. For this drag scheme, sphere self-aggregation rates
drop precipitously as A approaches 2 cm ™!, This sharp transition
occurs because of the rapid narrowing of the fall speed distri-
bution when 8, — 0 (Fig. 5). As a result, the ratio of ellipsoid to
sphere number and reflectivity self-aggregation explodes to a
factor greater than 100. The value of « affects self-aggregation
rates primarily for small A such that ellipsoids yield smaller self-
aggregation rates than spheres when a = —0.6 but greater rates
for ellipsoids when a = —1. Greater values of a(f,,,) therefore
yield consistently smaller self-aggregation rates than spheres
where the ratio is approximately 0.6 for number.

The same fall speed sensitivity tests were also conducted for
self-aggregation. This can be seen in Figs. 11 and 12 which
represent a comparison of rates between ellipsoidal and sphere
aggregates with the same area ratio and the same mass distri-
bution, respectively. Like Fig. 6, ellipsoids with the same area
ratio as spheres yield results that are visually similar to ellip-
soids where mass and area ratio are disperse for aggregates of
the same size (Fig. 5). The main differences between Figs. 10
and 11 occur with large values of A where the dispersion in area
ratio in Fig. 10 acts to decrease self-aggregation rates com-
pared to Fig. 11. This can be explained by the increased area
term in Eq. (23) due to constraining the area distribution to be
the same as spheres. The impact of mass dispersion therefore
primarily affects self-aggregation rates for smaller values of A.
Increasing «(B,,) mitigates this difference between ellipsoids
and spheres. Overall, Fig. 11 shows very little if any difference
in self-aggregation rates for both number and reflectivity ex-
cept for very small values of A for the drag parameterization of
Mitchell and Heymsfield (2005) and when @ = —1. Ellipsoids
with the same mass distribution as spheres (Fig. 12) show
similar differences for number as Fig. 10. The main difference
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between Figs. 10 and 12 is that Fig. 12 shows little variation of
the difference in self-aggregation rates between ellipsoids and
spheres whereas this difference monotonically increases in
Fig. 10. Comparing all three figures suggests that the area term
dominates at large values of A whereas the fall speed term
dominates for small A values.

2) AGGREGATE ORIENTATION EFFECT

Figure 13 shows sensitivity tests for the self-aggregation
rates when assuming horizontally oriented ellipsoids from
Fig. 12 and randomly oriented ellipsoids when using the
power-law parameterization from Fig. 2. The use of this
parameterization for randomly oriented ellipsoids further de-
creases the projected area of ellipsoids by about 45% com-
pared to horizontal orientations. The difference between these
two tests can be explained by the projected area term in the
collection kernel which is weighted by W,;. The fall speed
term, as shown in Figs. 5-7, is primarily affected by particle
mass which does not depend upon orientation. Therefore, the
self-aggregation rates decrease based on factors that corre-
spond to projected ellipse area: W,oj =~ 0.6 for horizontally
oriented aggregates and W,; ~ 0.4 for randomly oriented
aggregates. The ability to expand the area term in the self-
aggregation equations suggests that there are little to no
nonlinear effects associated with orientation and self-
aggregation rates.

4. An analytical correction parameterization for
microphysics models

This section derives corrections to sedimentation and ag-
gregation calculations that incorporate the effects of aggregate
shapes while maintaining conventional power-law methodology.
This allows for any microphysics model that prescribes assumed
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FIG. 10. Magnitude comparison of self-aggregation rates for (a)—(c) number and (d)—(f) reflectivity for spheres (red lines) and ellipsoids
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(ellipsoids/spheres) for number (black) and reflectivity (gray). Calculations were performed by sampling each probability distribution

10000 times. Ellipsoids of a particular size exhibit dispersion in both mass and projected area.

M-D and v,~D relationships to exhibit a spread of masses and
fall speeds while conserving mass. IWC consistency between
the traditional (spherical/fractal) and the new (ellipsoidal)
parameterizations is important because some in situ derived
M-D relationships use IWC to constrain the parameteriza-
tions; using such relationships for a dispersion of aggregate
shapes must necessarily yield the same IWC as that used for
the relation. Here, the first two mass moments are constrained
to be identical like in the previous sections. This allows for a
single, nonlinear equation that relates the M—D sphere/fractal
exponent 8, to the ellipsoidal M-D exponent ,,,. This means
that only 8, is necessary to find the corresponding B,,, for an
assumed bivariate ellipsoid distribution. For the ellipsoid dis-
tribution used in this paper and for horizontal orientations (i.e.,
V¥, = 1.0and ¥, = 0), the resulting 3,, is almost exactly linear
from14=g, =2.6 (R? = 1). This equation is given by
B,= 1.016Bms —0.1955. 24)

A new prefactor can be derived by using Eq. (24) in the
equation for mass mixing ratio g; and a new characteristic
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semimajor dimension a,, can be derived by assuming a volume-
weighted ellipsoidal density p,. The primary difference be-
tween Eq. (24) and that used in the results section is that the
results section numerically solved for B,, whereas Eq. (24)
provides an accurate and convenient linear fit.

Now, the new f3,, can be used to find the corresponding
power-law relationship for fall speed for an assumed B, . As
an example, the general assumption made by Mitchell (1996)
and Mitchell and Heymsfield (2005) that k. = 1.0 is assumed
although k. = 0.5 as used by Heymsfield and Westbrook (2010)
could also be used. It is common for microphysics models
to use M-D and v~D developed from different datasets.
Therefore, to maintain generality, new fall speed relations are
solved assuming that

_ B, _ _ Vo U\ _ 2b,—12 b
v, =a,a’ = (vt>%‘wrﬂ_auaﬁ.,<%’; (/,Cg.>_avaﬁ”<(phnm o).
(25)

B, can be solved by assuming b,, = by, ~b,,, and Bag =
Bar, =~ Bag, so that
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F1G. 11. As in Fig. 10, but with the same area ratio distribution between ellipsoids and spheres.

b 76” ! 6
= s , 2

" Bms ~Bar (262)

B,=(B, — BAR)Em -1. (26b)

Finally, &, can be solved by putting B, in Eq. (25) and
specitying a reference size, D,., based on the size interval used
to derive the v~D relation. Equations (24)—(26) allow for the
transformation of «, and B, without the need for any explicit
drag parameterization scheme. A summary of all these con-
versions is given in Table 1 as well as relevant bulk quantities
and closed-form expressions for aggregate self-aggregation
rates using the variance fall speed approximation from Seifert
et al. (2014). Notice that the extra gamma functions in Table 1
can generally be evaluated as time-independent constants for an
assumed set of bivariate beta distribution parameters, a4, Bpas
and B.p. Other bivariate distribution parameter sets would
modify Eqs. (24)—(26).

An example of this procedure is shown in Fig. 14 where the
fall speed relation from Fig. 1 in Zawadzki et al. (2010) is used
to specify v,.. As shown in Fig. 1b from Zawadzki et al. (2010)
and Fig. 3 from Brandes et al. (2008), the standard deviation of
fall speeds for all sizes is approximately o = 0.2 ms~'. The new
rescaled relation introduces approximately o = =0.13ms™"
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about the mean based on the dispersion of aggregate shapes
alone. This suggests that a dispersion of aggregate densities is
necessary to capture the full range of fall speed variation.
Interestingly enough, this estimate of o happens to be quite
close to older estimates provided by Sasyo and Matsuo
(1980), who found that o ~ 0.12ms ! regardless of mass.
Normally, the shape-induced spread of fall speed has
been ignored in the calculations for in situ observations.
This has led to claims about a supposed lack of significant
mass flux fall speed dispersion which, in turn, has histori-
cally served as the justification for Lagrangian spiral in situ
cloud probe sampling of snow. This sampling technique
assumes that the snow mass flux is contained within a nar-
row range of fall speeds, thus permitting a direct compari-
son of observed measurements from a slowly descending
aircraft to a presumed population of steadily falling snow-
flakes. The justification for this approach appears to have
stemmed from the theoretical analysis of Lo and Passarelli
(1982), who provided an equation [their Eq. (4)] that de-
scribes the relative mass flux fall speed standard deviation
(0,) for various values of B, . For 8, = 0.3 [an assumption
Lo and Passarelli (1982) use based on observational esti-
mates at that time], their equation yields approximately
Ty = 0.15ms™ L. However, there are at least three major
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FIG. 12. As in Fig. 10, but with the same mass distribution between ellipsoids and spheres.

limitations of this equation. First, Lo and Passarelli (1982)
assumes aggregates are homogeneous spheres with masses
and fall speeds that are given in terms of melted diameters.
Having such a large B, skews their calculation of mass flux
dispersion because higher values of B, artificially weights
mass flux to larger sizes. This is consistent with the results
from Fig. 8 which shows that bulk fall speed quantities are
significantly affected by B,,, for both spheres and ellipsoids.
More accurate estimates of 8, ~ 2.0 will therefore allow for
the fall speed dispersion to produce a more profound effect
on the mass flux dispersion. Second, their equation neces-
sarily ignores the fall speed and mass dispersion for particles
of the same size. In contrast, the equations provided in this
work introduce an additional set of gamma functions in
Eq. (4) from Lo and Passarelli (1982) that they do not in-
clude. Without these additional factors, Eq. (4) in Lo and
Passarelli (1982) represents an underestimate of the true
mass flux dispersion even if the M-D and v~D relationships
are accurate. Finally, more recent estimates of B8, (e.g.,
Zawadzki et al. 2010) seem to suggest that 3, is lower in
value than what Lo and Passarelli (1982) had originally as-
sumed. The traditional power-law framework suggests that
the fall speed distribution should narrow for smaller values
of B, even though the variation of aggregate shapes negates
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this narrowing as demonstrated in Figs. 5 and 6. The ques-
tion then becomes, How much does the mass flux fall speed
dispersion change when using the above shape parameteri-
zation correction?

Figure 15 shows a comparison of o, using Eq. (4) from Lo
and Passarelli (1982) and using the analytical correction
parameterization from Egs. (24)-(26). B, is varied for
reasonable values of B, as well as for B,, = 3.0 as assumed
by Lo and Passarelli (1982). Ellipsoidal aggregates univer-
sally produce larger mass flux fall speed dispersion for the
same B, and B, values. The difference between the ellip-
soid and sphere mass flux dispersion increases dramatically
as B, decreases. For the assumed value of 8, = 0.3 used by
Lo and Passarelli (1982), the introduction of ellipsoidal
shapes increases the mass flux fall speed dispersion by ap-
proximately 25% from o, ~ 0.15ms ™' to 0, ~ 0.19ms ™",
Decreasing B,,, further exacerbates this discrepancy to more
than 50% of that estimated by Lo and Passarelli (1982)
where o, is between approximately 0.25 and 0.28 ms™'. Lo
and Passarelli (1982) provided an example calculation
where the mean mass flux fall speed equals 1.05 m s~ !, In this
case, their estimate of o7, ~0.15m s ™! would yield a range of
mass flux fall speeds between 0.74 and 1.37ms ™" (*20,,)
which they claimed contained the vast majority of mass flux.
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FIG. 13. Asin Fig. 12, but with horizontally oriented ellipsoidal aggregates (blue) and randomly oriented ellipsoidal aggregates (purple).
(g)-(i) Horizontally oriented ellipsoids over randomly oriented ellipsoids. Only Mitchell (1996) (solid) and Mitchell and Heymsfield

(2005) (dashed) drag parameters are shown.

However, the estimate of the present work suggests that o,
would be at least 0.25ms™! for B,, = 0.3. Therefore, the full
range of mass flux fall speeds (as estimated by =2¢,,) would
span approximately 1.0ms™!. As a result, the variation of
fall speeds responsible for the mass flux would approxi-
mately equal the mean mass flux fall speed itself. Moreover,
the mass flux dispersion difference between ellipsoids and
spheres increases dramatically as B, decreases. For g, ~0.15,
as observe by Zawadzki et al. (2010), ellipsoids yield o, that
is more than 100% larger than that predicted by Lo and
Passarelli (1982).

5. Conclusions

Some authors (e.g., Zawadzki et al. 2010; Szyrmer and
Zawadzki 2010) have emphasized that fall speed should be
parameterized according to a measure of size that decreases
the observed spread. However, this study suggests that future
efforts should embrace rather than skirt the inherent fall
speed variability. Ignoring this variability leads to incorrect
estimates of sedimentation and aggregation where the fall
speed distribution unphysically narrows for larger sizes (smaller
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slope parameters) which would further influence the subsequent
growth of the aggregates themselves. As a result, the conven-
tional power-law framework has obfuscated the physical un-
derstanding of fall speed dispersion. For instance, much of
what is known about aggregates and their evolution has re-
sulted from studies that attempt to observe a population of
these particles as they fall. However, incorporation of shape
dispersion increases the mean relative mass flux fall speed
dispersion by more than 100%. The result of this increase in fall
speed dispersion suggests that the mass flux contribution from
each particle is not restricted to a narrow range of fall speeds
as stated by Lo and Passarelli (1982). The increase in relative
fall speed distribution dispersion from ellipsoids also negates
the hypothesized distribution narrowing proposed by Mitchell
and Heymsfield (2005). This suggests that self-aggregation
rates remain large and even increase with decreasing values
of A. As a result, other ice mechanisms such as collisional
breakup or rime splintering must take place in order to prevent
A from continuously decreasing.

Nonlinearities among microphysical parameters complicate
the use of static M-D and v~D relationships because these
relationships are derived without consideration of shape and
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climate models to overcome mathematical limitations imposed
by singular power laws.
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APPENDIX

List of Symbols

a-axis semilength of ellipsoidal ice particle

Best number—weighted Reynolds number power-
law coefficient [Eq. (9b)]

Characteristic a-axis length for size spectrum

Drag parameter in Egs. (9a) and (9b)

Sphere/fractal projected circle area (see Fig. 1)

Projected particle area (see Fig. 1)

Projected ellipse area (see Fig. 1)

Ellipsoid projected ellipse area ratio, A, |y, =
Apard Actip = Ayl 03, 02" (see Fig. 1)

Sphere/fractal projected area ratio, A,|pn =
Aparl/Acirc (See Flg 1)

Sphere/fractal effective density exponent parame-
ter from Heymsfield et al. (2002b) [Eq. (13)]

Area ratio power-law coefficient, a g = 2°/7

Bivariate beta distribution parameter

Mass—dimensional power-law prefactor coeffi-
cient for ellipsoid aggregates

Mass—dimensional power-law prefactor coef-
ficient for sphere/fractal aggregates where
U, = (43)7a,,

Mass—dimensional power-law prefactor coef-
ficient for sphere/fractal aggregates where
a, = 2P0 ko™

Ellipsoid fall speed—dimensional power-law co-
efficient where a, = (1/2)(n,/p,)ana’y’

Sphere fall speed—-dimensional power-law coefficient

Ellipsoid Best number power-law coefficient
where ay = [8gp,/(7n%) | ama ks

b-axis semilength of ellipsoidal ice particle

Number-weighted Best number Reynolds number
power-law exponent [Eq. (9a)]

Drag parameter in Egs. (9a) and (9b)

Beta function, B(a, b) = [[(a)T'(b))/[T'(a + b)]

Area ratio power-law exponent, Bagr = s — 2

Bivariate beta distribution parameter

Bivariate beta distribution parameter

Ellipsoid mass—dimensional power-law exponent
where B, =3+,

Mass—dimensional power-law exponent for spheres
or equivalently described as a “fractal dimension”
where B, =B, +3

Ellipsoid effective-density power-law exponent

Sphere effective-density power-law exponent
where B, =n(s—2)+a

Ellipsoid fall speed—dimensional power-law ex-
ponent where 8, =Bxb,, — 1

Sphere fall speed—dimensional power-law exponent

Ellipsoid Best number power-law exponent
[Eq (18)] where BX = Bm - kc,BAR

Binomial coefficients

c-axis semilength of ellipsoidal ice particle
Drag parameterization constant [Egs. (9a) and (9b)]
Drag parameterization constant [Egs. (9a) and (9b)]
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Drag parameterization constant [Egs. (9a) and (9b)]
Particle maximum dimension, D = 2a
Characteristic maximum dimension

Drag parameterization constant [Egs. (9a) and (9b)]

Khvorostyanov and Curry (2005) turbulence
correction term [Egs. (9a) and (9b)]

Number-weighted fall speed difference approx-
imation for |v, — v, | following Seifert et al.
(2014) (see Table 1)

Reflectivity-weighted fall speed difference ap-
proximation for |v, —v,| following Seifert
et al. (2014) (see Table 1)

Aggregation efficiency

Dynamic viscosity for air

The gamma function

Area ratio coefficient in Eq. (13)

Area ratio correction exponent Eq. (10)

Aggregation collection kernel

Maximum span of aggregate projection

PSD slope parameter

Ice particle mass

PSD shape parameter, u = v — 1

rth moment of the particle mass distribution
n(x, 1)

Area ratio exponent parameter in Eq. (13)
where n = 1.5

Size distribution intercept parameter

Ice particle number mixing ratio

Reynolds number

Particle size distribution or particle mass
distribution

Bivariate beta ellipsoid aspect ratio probability
distribution

First Euler angle rotation

Ellipsoid aspect ratio b/c

Ellipsoid aspect ratio b/a

Third Euler angle rotation

Khvorostyanov and Curry (2005) turbulence
correction term [Eqgs. (9a) and (9b)]

Projected ellipse area geometric factor

Projected ellipse area geometric factor power-
law exponent

Projected ellipse area geometric factor power-
law exponent

PSD shape parameter, v = pu + 1

Ice particle mass mixing ratio

Particle sphere radius, R = a

Air density

Effective ellipsoid aggregate density

Effective sphere aggregate density

Apare power-law coefficient from Mitchell (1996)
(Eq. (11)]

Aggregate relative mass flux fall speed dispersion

Apare power-law exponent from Mitchell (1996)
[Eq. (11)]

Second Euler angle rotation

Ellipsoid fall speed ¢, exponent: vy, = Xp,bm —
l//ba/ 2
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Vea Ellipsoid fall speed ¢, exponent: ve, = X .bm —
Yeal2

Ve Ice ellipsoid volume

v Terminal particle fall speed

X Best or Davies number

X Number-weighted Best number

Xba Best number ¢, exponent: xp, = k. V), if using
Eq. (14) and xp, = k¥, + 1if using Eq. (15)
Xca Best number ¢, exponent: ., = k. V., if using
Eq. (14) and x., = k¥, + 1 if using Eq. (15)
& A general microphysical quantity, e.g., mass ()
4 A general power-law exponent
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