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We have used the Stochastic Series Expansion quantum Monte Carlo method to study interacting
hard-core bosons on the square lattice, with pair-hopping processes supplementing the standard
single-particle hopping. Such pair hopping arises in effective models for frustrated quantum magnets.
Our goal is to investigate the effects of the pair hopping process on the commonly observed superfluid,
insulating (Mott), and super-solid ground-state phases in the standard hard-core boson model with
various interaction terms. The model is specifically motivated by the observation of finite dispersion
of 2-magnon bound states in neutron diffraction experiments SrCuz(BOs3)2. Our results show that
the pair hopping has different effects on Mott phases at different filling fractions, ”melting” them at
different critical pair-hopping amplitudes. Thus, it appears that pair hopping may have an important
role in determining which out of a potentially large number of Mott phases (stabilized by details of
the charge-diagonal interaction terms) actually survive the totality of quantum fluctuations present.

I. INTRODUCTION

The interplay between competing interactions, en-
hanced quantum fluctuations due to reduced dimension-
ality and external fields in interacting lattice bosons re-
sult in a rich array of novel quantum states of matter that
have been intensely studied over the past several decades
[1-11]. In recent years, experimental advances have al-
lowed the realization of these bosonic phases, such as
the superfluid (SF), Bose-Einstein condensation (BEC),
Mott insulator (MI) and density modulated crystalline
phases with different ordering wave vectors, in a variety
of physical systems such as optical lattices with ultracold
atoms [12-15], quantum magnets and excitons and po-
laritons [16, 17] in semiconductor quantum wells. These
systems are now opening up new frontiers in the study
of strongly-correlated quantum many-body systems.

Quantum magnets, in particular, have long served
as a versatile testbed for interacting lattice bosons in
a controllable manner. The low-lying magnetic ex-
citations, magnons, obey Bose-Einstein statistics and
are an almost ideal realization of lattice bosons [18].
The discovery of Bose-Einstein condensation in insu-
lating magnets such as TICuCl; [19, 20], BaCuSizOg
[21-23] and NiCly-4SC(NHj)s [24, 25] heralded the
search for novel quantum phases of interacting bosons
in quantum magnets.Often, in quantum magnets, geo-
metrical frustration induces quantum phases and phe-
nomena that are not observed in their non-frustrated
counterparts, e.g., dimensional reduction at a quan-
tum critical point in BaCuSizOg [23] and magnetization
plateaus in SrCus(BO3)2 on the geometrically frustrated
Shastry-Sutherland lattice [26-28]. Understanding the
nature and mechanism of formation of the plateaus in
SrCusy(BOs3)2 has been the subject of intense experimen-

tal and theoretical studies during the past two decades
[29-31]. The ground state of the compound is comprised
of orthogonal dimer singlets within the weakly coupled
two-dimensional planes. In an external magnetic field,
field-induced triplons constitute the lowest magnetic ex-
citations. Theoretical modeling and neutron scattering
experiments show that strong geometric frustration sig-
nificantly suppresses the delocalization of triplons [32]
and prevents the onset of field-induced BEC of triplons
that is commonly observed in other dimer quantum mag-
nets such as TICuCls. The magnetization plateaus are
understood as periodic arrangements of the triplons in
regular patterns at commensurate fillings. However, the
mechanism of triplon rearrangement into crystal order-
ings remain an open question.

Several different models have been proposed in the past
to describe the magnetization profile of SrCus(BO3)a,
treating the field-induced triplons as hard-core bosons,
with varying degrees of success. These include long range
interactions and correlated nearest neighbor hopping of
triplons, among others [29, 33-35]. In Ref. [32], neu-
tron scattering experiments performed by Kageyama et
al. on SrCuz(BOs3), showed that while isolated triplons
are localized, bound pairs of triplons exhibit pronounced
dispersion, although the cost of pair formation is high.
This may provide a potential mechanism for the rear-
rangement of the triplons into periodic patterns observed
at the magnetization plateaus and has motivated us to
explore the role of dynamically generated triplon pairs
in modifying the field driven properties of interacting
triplons. Our goal is not to derive an exact microscopic
model of SrCuz(BO3)2 and provide a quantitative expla-
nation for the magnetization plateau formation therein.
Instead, we want to isolate the effects of dispersive bound
pairs of triplons in a generic quantum magnet with multi-



ple competing interactions through the introduction of a
new effective Hamiltonian, and investigate the dynamics
that arise from such a lattice model.

In this paper, we study a system of interacting hard-
core bosons with single and pair hopping with nearest-
neighbor (nn) and next-nearest-neighbor (nnn) repul-
sions on a square lattice. Field-induced triplons on the
dimers can be faithfully mapped on to hard-core bosons
through the Matsubara-Matsuda transformation [36] and
the dispersion of bound pairs of triplons translate to pair-
hopping processes in the bosonic model, where a pair of
hard-core bosons on nn sites hop together to the neigh-
boring sites. While such processes occur within the stan-
dard framework of the canonical hard-core boson model
with single-particle hopping, the amplitude of the effec-
tive process is small. Motivated by the experimental ob-
servation in SrCus(BO3)s (suppressed single triplon dis-
persion and pronounced triplon pair dispersion), the rel-
ative magnitude of the pair hopping process is chosen to
be large and considered as an independent term in the
Hamiltonian. Our goal here is to explore the effects of
finite pair hopping on the various ground state phases
of the hard-core boson model, and to investigate if new
many-body phases are engineered by the pair hopping
process.

The paper is organized as follows. In Sec. II, we intro-
duce our model and define the relevant parameters in the
Hamiltonian. Section IIT describes how the pair hopping
process can be incorporated into the Stochastic Series Ex-
pansion Quantum Monte Carlo scheme, which involves
a straightforward generalization from 2-site bond oper-
ators to 4-site plaquette operators. Section IV defines
the observables that are measured from the Monte Carlo
simulation. Section V presents the main results of our nu-
merical simulations, where we include illustrative phase
diagrams for a wide range of Hamiltonian parameters as
well as more detailed observable plots and accompanying
analyses. Finally, in Sec. VI we discuss the significance
of our results; namely how pair hopping modifies the for-
mation and stability of the various Mott phases and its
implications to our understanding of SrCuz(BO3)s.

II. MODEL

The Hamiltonian for the model described above is
given by

H=-1 Z(agaj + h.c.)—t, Z(ala;akal + h.c.)
(4,4) O
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where ag and a; are the creation and annihilation opera-
tors respectively on sites ¢ and j. The O denotes a four-
site plaquette on which our Hamiltonian parameters are
defined, with sites we label i, j, k, [, as shown in Fig. 1.
n; = aIai is the number operator at site ¢. ¢ and ¢, are
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FIG. 1. Hllustration of the Hamiltonian parameters of Eq. (1)
on the unit plaquette. (a) Single-particle hopping parame-
ter ¢, (b) nn repulsion V' and nnn repulsion Vg, and (c) the
pair-hopping parameter ¢,. Filled circles represent the bosons
while empty circles represent sites that a boson can hop onto.

the single and pair hopping amplitudes, respectively. V'
and V; are the nn and nnn repulsion, respectively, and
1 is the chemical potential. We work in the hard-core
boson limit, i.e., the possible local occupancies are re-
stricted to n; € {0,1}. A square lattice with periodic
boundary conditions of N = L x L sites is assumed. We
set t = 1 henceforth.

The nnn repulsion term Vy in Eq. (1) is necessary for
promoting pair formation. In Fig. 1(b), bosons on diago-
nal sites (¢, k) incur an energy cost +Vj, which increases
the likelihood of nearest-neighbour pairs occuring ({4, 5)
in Fig. 1(c)). The nn bosons are subsequently able to
hop as pairs in proportion to the magnitude of ¢,.

III. STOCHASTIC SERIES EXPANSION
METHOD

We have used the Stochastic Series Expansion (SSE)
Quantum Monte Carlo (QMC) [37, 38] method to sim-
ulate the Hamiltonian (Eq. (1)) on finite-size systems.
The SSE is a finite-temperature algorithm based on the
stochastic evaluation of the diagonal matrix elements of
the density matrix, exp(—SH), in a Taylor series expan-
sion.

The SSE method employs the operator loop update
method in sampling the configuration state space for the
ground state configuration. The loop update involves the
construction of a linked vertex list, where lattice sites
are propagated in imaginary time, with diagonal and off-
diagonal operators acting between the propagation levels
according to a stored operator string. Sites connected
by an operator between propagation levels are known as
vertices. Configuration updates are achieved by the in-
troduction of a ‘defect’ - a boson occupation inversion in
the hard-core limit - into a random leg of a vertex. The
defect is then propagated throughout the linked list, un-
til the defect meets its initial introduction site and the
loop is closed. The propagation of the defect is stochasti-
cally sampled in a manner proportional to the weights of
the resulting vertices. After closing the loop, the lattice
configuration and operator string are updated to reflect
the changes made.

On 2D square lattices, the SSE loop update algorithm
considers operators acting on 2-site bonds, such that ver-
tices are 4-legged: 2 sites before and 2 sites after the
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FIG. 2. An illustration of the creation of a pair hopping oper-
ator through a loop update. The operator string propagation
level propagates downwards in this figure. (a) The left shows
a single hop operator in real space as the lattice is propagated
in imaginary time. The right shows the 3D representation of
a 8-legged vertex, with a single hop operator represented by
a blue rectangle. Filled circles represent a boson and empty
circles represent empty sites. The red arrows indicate the in-
troduction of a defect into and out of the vertex as part of the
loop update. Propagation of defects cause a boson occupancy
inversion. (b) The left shows the resulting pair hop operator
acting in real space. The right shows the pair hop operator as
a result of the loop update, represented by a green rectangle.
Note that to obtain the pair hop operator, we simply flip the
boson occupancy of the two sites indicated by red arrows in
(a), which was initially a single-hop operator. This occupancy
flip resulted in the conversion from a single-hop operator to a
pair-hop operator.

action of an operator. To incorporate the pair hopping
procedure, one needs to consider operators beyond 2-site
bond operators. In particular, we consider operators that
act on the 4-site plaquette mentioned in Fig. 1. This
means that vertices in the linked list are now 8-legged:
4 sites before and 4 sites after the action of the opera-
tor. Conventional diagonal and single particle hopping
operators carry over easily to the plaquette case. Our fo-
cus of the discussion will be on the incorporation of pair
hopping operators in the loop update procedure.

We note that only slight modifications are required to
achieve pair hopping in the SSE framework in the context
of plaquette operators. Similar to the case of the hard-
core boson model with ‘pair rotation’ of two bosons occu-
pying diagonally opposite corners of a plaquette [39], the
pair hop operators are introduced to the operator string
with the same linked list loop update procedure that is
conventional in a 2-site bond operator SSE scheme. An
illustration of the procedure is shown in Fig. 2. The cru-
cial insight comes from the fact that pair hop operators
are created only from single hop operators in the loop up-
date. Figure 2 shows one way in which an existing single
hopping operator in the operator string can be converted
to a pair hopping operator through propagation of a sin-
gle defect. Consequently, this implies that in our SSE
framework, a non-zero ¢ in the Hamiltonian of Eq. (1)
is necessary for the simulation to incorporate pair boson
propagation.

IV. OBSERVABLES

In this section, we define the observables measured in
our simulations that will be the basis of our analysis in
Sec. V. The average boson density is defined as

)= ¢

The total superfluid density (stiffness) is given by

_*f(9)
Ps= g4z

3)

where f(¢) is the free-energy (or ground-state energy at
T = 0) density in the presence of a phase twist ¢. It is
evaluated in SSE simulations as

ps = (wy +wj)/B, (4)
where w is the winding number in the x or y directions,
defined as

we = (N — N.)/L,

e}

(a:x’y)' (5)

N is the total number of particle hops in the arbitrarily
chosen positive direction of the lattice. This implies a
pair particle hop in the positive direction increments N
by 2. On a conventional Bose-Hubbard model without
pair hopping, it is identical to the total number of oper-
ators aia;» in the QMC operator string, if site j is in the
positive direction of site 1.

To quantify the magnitudes of single and pair particle
hopping separately, we define the single and pair particle
stiffness, p; and pyp, respectively, as

Pt = (wt2,:c + wf,y)/ﬁﬂ (6)

and

Ptp = (thp,x + w?p,y)/ﬁ' (7)

wt o and wyp o are the net sum of the single and pair
particle hops, respectively, for &« = x,y. Concretely, we
define them as

Wt = (Nt-i,—a - thoc)/Ly

_ (8)
Wip,a = (Nt—ig_),oc - th,a)/L7

where N{f‘a is the total number of single particle hops in
the positive direction, and N{;a is the total number of
pair hops in the positive direction. A pair hop in the
positive direction increments N;{,}a by 2, and vice-versa.
From our definitions in Eq. (8),

(a=,y) (9)

i.e., the total winding number is the sum of the single
and pair winding numbers. Note that due to the way the
various stiffness are defined,

ps 7 Pt + Prp- (10)

Wa = Wt o + Wtp,as
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FIG. 3. Ground-state phase diagram of Eq. (1) at ¢t/V =
1/4,/V = 5. Lines are guide to the eyes. The dotted line
indicates the boundary where p; = pip. The orange intensity
represents the magnitude of the ratio ptp/pe, which increases
with ¢,. A S(m,0) solid is stabilized at larger p/V and is not
shown in this phase diagram.

It should be noted that p; and py, serve as useful quanti-
ties in measuring the relative contributions of single and
pair currents in the system, but do not constitute exper-
imentally measurable observables such as the total stiff-
ness ps defined in Eq. (3).

In order to identify the presence of density modulation,
or equivalently crystal ordering, we compute the static
structure factor

S() = 3 3¢ F7C ), (11)

where 7 is the vector representing the separation of sites
(i,7), and k= (k1, ko) is the wave vector, where k1, ko €
[0,27]. C(i,7) is the density-density correlation function
[40], defined as

C(i,j) = (ninj). (12)

Simulations in this study are done at § = L to extract
ground-state properties, with simulated annealing [41]
carried out at the equilibration step of the operator string
to ensure convergence of the QMC simulation.

V. RESULTS

A representative ground-state phase diagram of the
model, Eq. (1), in the parameter space of the pair-
hopping amplitude, t,, and the strength of next-nearest
neighbor interaction, Vg, at fixed ¢ (single-particle hop-
ping amplitude) and p (the chemical potential) is shown
in Fig. 3. The nearest neighbor interaction strength,
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FIG. 4. (a) Ground-state phase diagram of Eq. (1) with
t/V =1/6 and V4/V = 5/3. Three distinct Mott insulating
lobes are present with their densities indicated, as well as
supersolid and superfluid phases. Illustrations of the ground
state configuration of the (b) 1, (c) £ and (d) 2 solids on a
L = 4 lattice.

V', is chosen as the unit of energy and the Hamiltonian
parameters are expressed in units of V. In the limit of
t, =0 ="V, Eq. (1) reduces to the canonical Bose Hub-
bard model where the ground state for the chosen values
of t and p is a checkerboard solid, with an ordering wave
vector k = (m, 7). The density of particles is constant
at (n) =  and there is a gap to adding or removing a
boson. As the strength of the next-nearest neighbor in-
teraction is increased (at ¢, = 0), there is a transition to
the superfluid phase at an intermediate value of Vy/V,
where competing nn and nnn interactions suppress any
crystallization of the bosons into a density wave. Even-
tually, for sufficiently strong nnn neighbor repulsion, the
ground state enters a supersolid (SS) phase. The wave
vector of the underlying solid order (density modulation
of the bosons) changes to (7, 0), reflecting a striped solid.
The density of particles deviates from (n) = 3 and the
additional particles form a superfluid that co-exists with
the solid ordering, resulting in a SS ground state. The
pair-hopping process enhances the extent of superfluid
phase at the cost of the solid orders, suppressing both
the checkerboard solid and SS phases completely for suf-
ficiently strong t,. The SF phase has contributions from
both single particle and pair currents — this is confirmed
by finite values of the stiffness for both currents, viz.,
pt and pyp. The pair current contribution is finite for
any non-zero t,, with the relative contribution increas-
ing monotonically with ¢, (as shown by the color density
profile in the phase diagram) [42].

In our model, the transitions between various density
wave phases are modified by the appearance of interven-



ing supersolid phases. This is aptly demonstrated in the
ground-state phase diagram in the parameter space of the
pair-hopping amplitude, ¢,, and the chemical potential,
i, at fixed ¢, V = 6¢ (the nn repulsion) and Vg = 5/3V
(the nnn repulsion), shown in Fig. 4(a). The pair hop-
ping and chemical potential are expressed in units of V.
Three distinct Mott insulating lobes are present, corre-
sponding to different filling factors, as the chemical po-
tential p is varied. The solid phases are destabilized with
an increasing t,, as the large pair-hopping amplitude sup-
presses any crystallization of the bosons into a density
wave. This is manifested by the predominantly SF char-
acter of the ground state at large ¢,. At sufficiently low
t, and p, the system is in a gapless SF phase, with zero
energy cost to the addition of a boson. With increas-
ing u, there is a transition into a i solid phase, which is
characterized by a vanishing stiffness and finite gap. The
bosons form a density wave with a pattern schematically
shown in Fig. 4(b). Increasing u, the system undergoes
a transition to a SS phase, which is characterized by a
finite solid order and co-existing superfluid density. Due
to Vg >V, the wave vector of the underlying solid order
is (m,0), reflecting a striped solid. With further increase
in p, a discontinuous transition drives the ground state to
a % solid, where the nnn repulsion crystallizes the bosons
into alternating stripes, as shown in Fig. 4(c). Finally,
another SS phase with (7,0) ordering separates the %
solid and the % solid at large values of u. The boson

ordering of the 2 solid is shown in Fig. 4(d).
Significantly, no new phases — such as additional den-
sity wave phases — are stabilized by the introduction of
the pair-hopping process. The boson ordering of the solid
phases remain unchanged by pair-hopping as well. This
is in contrast to the case of the hard-core boson model
with ’pair rotation’, which flips two bosons residing on
opposite diagonal corners of a plaquette to the other di-
agonal on the same plaquette. In the mentioned model,
even without any diagonal interaction terms, the two-
body kinetic term can induce new solid phases [39, 43].
A key observation from Fig. 4 is that the different Mott
lobes are modified differently by the pair hopping process
from their counterparts when only ¢ is present. This is

nicely illustrated by the observation that the (n) = % lobe

is significantly larger than the % and % lobes, and persists
in a larger range of ¢, and p. This has important impli-
cations in realistic models with long range interactions.
While the t-only model may exhibit several plateaus,
their extent will be heavily modified by any pair-hopping
process, including the possible suppression of some of
them. Another interesting feature is that all the tran-
sitions into and out of the Mott phases are discontinuous
in nature. This is analogous to meta-magnetism in spin
models [44, 45] and we plan to investigate this further in
future studies.

Magnetization plateaus in spin models manifest as bo-
son density plateaus in the boson model. To demonstrate
the dynamics of pair hopping on the density plateaus, we
plot the full range of observables in Fig. 5, with parame-
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FIG. 5. (a) Plot of boson density (n), (b) plot of total stiffness
ps, single stiffness p; and pair stiffness p¢p, (c) plot of S(m, )
and S(m,0). Parameters for this simulation are t, = 4,V =
6,Vq =10 for a L = 12 system.

ters equivalent to taking a slice of constant ¢, = 4 in the
phase diagram of Fig. 4(a). For the parameters chosen,
we observe the existence of the aforementioned (n) = 1,
% and % density plateaus in Fig. 5(a). We note that the
(n) = %, 3 plateaus correspond to the m/m, = % and 1
plateaus proposed by other studies [31]. Discontinuities
in the first derivative of the density and total stiffness,
ps, indicate discontinuous phase transitions into and out
of the three solid phases.

To study the solid ordering in the various plateaus, we
plot the structure factor S(m,n) and S(w,0) as a func-
tion of (n) in Fig. 5(c). A finite S(m,m) corresponds
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FIG. 6. Finite-size scaling of p; and py, as a function of the
inverse system size 1/L. The chemical potential is fixed as
1 = 28 for all data points such that the system is in the SF
phase. Other Hamiltonian parameters are identical to Fig. 5.

to a checkerboard boson ordering, while a finite S(,0)
corresponds to striped boson ordering. As we have set
V4 > V in this simulation, the striped ordering out com-
petes the checkerboard ordering and we observe a striped
solid at $-filling, characterized by a peaked S(,0). The
total stiffness vanishes in this phase, demonstrating the
gapped nature of the striped solid, where it is energeti-
cally prohibitive to add another boson.

Compared to the (n) L solid, the situation is
markedly different for (n) = 1 and 3. The 1 solid is
stabilized by bosons avoiding both nn (V') and nnn (V)
repulsive interactions [46], which is obvious in Fig. 4(b).
The i solid is then gapped as the addition of one boson
incurs energy costs of either 2V — u or 4V; — i, depend-
ing on the neighborhood configuration of the site chosen.
On the other hand, the % solid manifests as a sequence
of alternating fully-filled and half-filled stripes, as shown
in Fig. 4(d). It is clear from the figures that the two
phases are related by a particle-hole symmetry. Again,
the gapped nature of the % solid is obvious, as the addi-
tion of a boson incurs an energy cost of 4V + 4V, — p.
The gapped nature of both phases is also evident by the
vanishing stiffness shown in Fig. 5.

PNV

To characterize the relative magnitudes of single and
pair particle flow, we plot p; and p, separately in Fig.
5(b). We note that single and pair particle flow co-exist
at all values of ;1 for non-zero ¢ and t,,. The two currents
reinforce each other in the SF phase, resulting in a total
stiffness which is greater than the individual contribu-
tions from the single particle and pair currents. One
could also have counter-propagation that would cause
partial cancellation of the currents and a smaller p; than
pt and py,. Here, we observe this effect in the % striped
solid, where p; = py, are non-zero, yet p, vanishes. The
origin of this counter-propagation is due to trivial local
fluctuations in the single and pair currents, such that in
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FIG. 7. The boson density (a) and the various stiffness con-
stants (b) as functions of u. The inset of (a) illustrates the
geometry of bosons at the (n) = % checkerboard plateau. The
inset of (b) plots S(m, ) as a function of boson density. Pa-
rameters for this simulation are ¢, = 4,V = 6,V; = 0 for an
L = 8 system.

the solid phase, two single boson hop fluctuations that
break the staggered density pattern is exactly cancelled
by a pair boson hop in the opposite direction, and vice-
versa. This effectively conserves a vanishing ps in the
solid, even while p; and py, are non-zero.

The stiffness plots exhibit a reflection symmetry about
the % solid. At small and large filling factors, p; is larger
than py,, despite the fact that ¢, = 4¢. This is explained
as at low fillings, boson occupancy is sparse, making it
unlikely for bosons to meet as nn pairs. At large fill-
ing factors, the lattice becomes crowded and the pres-
ence of pairs of holes, such that boson pairs can hop to
fill the holes, become unlikely. This results in a larger
pt than py,, despite the significantly larger pair hopping
amplitude t,. It is at intermediate filling factors where
Ptp > pt, in a phase we call "pair superfluidity’. Interme-
diate filling factors satisfy the conditions that the lattice
is neither too sparse or too crowded, thus being conducive
for pair boson hopping. A finite-size scaling analysis of
ptp in Fig. 6 shows that pair superfluidity is not merely
a finite-size effect, and the phase extends to the thermo-
dynamic limit. Additionally, we find that by varying the
Hamiltonian parameters for a large range of values (not
shown), pair superfluidity is achieved only when we tune
t, 2 4t.



A parameter set that stabilizes a checkerboard solid at
filling is shown in Fig. 7. The absence of the i and
plateaus in the density plot are a result of the lack of
simultaneous nn and nnn repulsion, which as mentioned
are necessary in the formation of these solid phases. How-
ever, a checkerboard solid at % filling is still stabilized,
characterized by a strongly peaked S(m, 7).

In this simulation, we notice that despite having ¢, /¢t =
4, as with the simulation in Fig. 5, py, is significantly
smaller than p, in the SF phases. Importantly, in the
SF phase, p;, < p; for all p points, even at intermediate
SF filling factors where it was mentioned to be the most
favorable for boson pair hopping. This observation is due
to the difference in boson ordering for parameters that
stabilize a checkerboard and striped solid at half filling.
In the SF phase of the former case, bosons will still satisfy
a checkerboard ordering as far as possible to minimize nn
repulsions. In a checkerboard-like configuration, bosons
are largely not occupying nn sites and pair-hopping of
bosons then becomes impossible, despite a large ¢,,. This
results in py, being significantly suppressed. In the latter
case, a striped-like ordering in the SF phase implies that
bosons are largely paired up, allowing pair hopping of
bosons to occur more frequently. This results in more
dispersive pair hopping of bosons, and subsequently a
larger pt,. Therefore, a dispersive pair hopping of bosons
is stabilized by large ¢, and V in the Hamiltonian of Eq.
1. Incidentally, we observe the same effects of currents
counter-propagation in the % checkerboard solid as we
did in the striped solid in Fig. 5, as evident by p; = p,.
The mechanism by which counter-propagation manifests
in the checkerboard solid is identical to that of the striped
solid.
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VI. DISCUSSION AND CONCLUSION

Our results provide useful insight into the role of pair
hopping process on the ground state phases of a sys-
tem of interacting hard-core bosons. As discussed ear-
lier, the microscopic origin of magnetization plateaus in
the frustrated quantum magnet SrCuz(BO3)2 remains in-
completely understood. Neutron scattering experiments
show that single magnon excitations are almost com-
pletely dispersionless. Naively, one might expect this to
result in a glassy dynamics in the presence of a magnetic
field. Interestingly, the same neutron scattering exper-
iments reveal that bound states of two magnons have
pronounced dispersion, although the cost of formation of
such pairs is high. This provides a potential mechanism
for the delocalization of field-induced triplons necessary
for the long ranged ordering of the triplons at the mag-
netization plateaus. However, important questions re-
main: does the dispersion of bound pairs retain the sta-

bility of the plateaus? Do they result in new processes
that are inconsistent with experimental observations in
SrCus(BO3)2? While this is observed experimentally,
such a pair hopping term has never been incorporated
into any model hamiltonian describing SrCus(BO3)s. As
such, a rigorous microscopic simulation such as ours
studying the effects of such a process is valuable. Our
Hamiltonian, Eq. (1), mimics the dispersion of bound
pairs as a pair-hopping process. In keeping with the ex-
perimental observations, the amplitude of the pair hop-
ping process is chosen to be much greater than the single
particle hopping process. The high energy of formation
is reflected in the finite near-neighbor repulsion, V. Our
results demonstrate conclusively that highly dispersive
magnon bound pairs are compatible with the formation
of magnetization plateaus. However, the exact sequence
of plateaus observed in SrCuz(BOj3)y is different from
the results obtained here. It is highly plausible that
one needs to introduce longer-range interactions, beyond
what a 4-site plaquette QMC scheme can accommodate,
to fully obtain the plateaus observed in SrCus(BOsj)s.
Hence, while our results do not provide a comprehen-
sive understanding of all plateaus in the experimental
system, it provides a plausible explanation for their for-
mation mechanism in the absence of any significant single
magnon dispersion. We have also demonstrated that t,, is
important in governing which plateaus actually survive.
In principle one might have a huge number of plateaus
for realistic interactions with only ¢, but ¢, has different
effects on different Mott phases and some of them will be
destroyed by t,, even though they survive in the presence
of ¢ only.

In summary, we have investigated the role of a pair
hopping process on the ground state phases of interact-
ing hard core-bosons on a 2D square lattice. Our re-
sults may provide useful insight into the mechanism of
delocalization of field-induced triplons in the frustrated
magnet, StCuy(BO3)2, necessary for the formation of pe-
riodic patterns observed in the magnetization plateaus.
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