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Abstract—We consider the decentralized control of a discrete-
time, linear system subject to exogenous disturbances and
polyhedral constraints on the state and input trajectories. The
underlying system is composed of a finite collection of dynam-
ically coupled subsystems, where each subsystem is assumed
to have a dedicated local controller. The decentralization of
information is expressed according to sparsity constraints on
the state measurements that each local controller has access
to. In this context, we investigate the design of decentralized
controllers that are affinely parameterized in their measure-
ment history. For problems with partially nested information
structures, the optimization over such policy spaces is known
to be convex. Convexity is not, however, guaranteed under
more general (nonclassical) information structures in which the
information available to one local controller can be affected
by control actions that it cannot access or reconstruct. With
the aim of alleviating the nonconvexity that arises in such
problems, we propose an approach to decentralized control
design where the information-coupling states are effectively
treated as disturbances whose trajectories are constrained to
take values in ellipsoidal contract sets whose location, scale,
and orientation are jointly optimized with the underlying affine
decentralized control policy. We establish a natural structural
condition on the space of allowable contracts that facilitates the
joint optimization over the control policy and the contract set
via semidefinite programming.

I. INTRODUCTION

We investigate the design of affine decentralized con-
trol policies for stochastic discrete-time, linear systems that
evolve over a finite horizon, and are subject to polyhedral
constraints on the state and input trajectories. The computa-
tional tractability of such problems depends in part on their
information structures [1], [2]. In particular, a decentralized
control problem is said to have a nonclassical information
structure if the information available to one controller can
be affected by the control actions of another that it cannot
access or reconstruct. Under such information structures, the
calculation of optimal decentralized control policies is known
to be computationally intractable, because of the incentive for
controllers to communicate with each other via the actions
they undertake—the so called signalling incentive [1]–[3].
To complicate matters further, there may be hard constraints
coupling the local actions and states of different controllers
that must be jointly enforced without explicit communication.
In this paper, we address these challenges by relaxing the
requirement that the decentralized controller be optimal with
respect to the broad family of all causal policies, and instead
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search for suboptimal decentralized controllers that can be
efficiently computed via convex programming methods.

Related Literature: There is a related literature that
leverages on techniques derived from tube-based model pre-
dictive control (MPC) to facilitate the design of decentralized
controllers for constrained dynamical systems [4]–[14]. Typi-
cally, these approaches rely on a decomposition of the decen-
tralized control problem into a collection of decoupled local
control problems by treating the coupling states and inputs
associated with each subsystem’s “neighbors” as independent
exogenous disturbances that are assumed to take values in
the given state and input constraint sets. Given the resulting
collection of decoupled local control problems, centralized
MPC methods can be applied to compute local control poli-
cies that are guaranteed to be feasible for each sub-problem.
Although decentralized control policies calculated according
to such decomposition methods are guaranteed to be feasible
for the full problem, they may result in behaviors that are
overly conservative in terms of the cost they incur for a
number of reasons. First, the treatment of the coupling states
and inputs as independent disturbances ignores the potential
dynamical coupling between these variables. Second, the
over approximation of the coupling state and input trajectory
sets by their corresponding state and input constraint sets
will likely be very loose for many problem instances. More
importantly, the over approximation of the coupling state and
input trajectory sets in this manner ignores the fact that these
sets depend on the control policy being used to regulate
the system, and, therefore, neglects the possibility of co-
optimizing their specification with the control policy.

Contribution: We provide a computationally tractable
method to calculate control policies that are guaranteed to
be feasible for constrained decentralized control problems
with nonclassical information structures. Loosely speaking,
the proposed approach seeks to neutralize the nonconvexity
arising from the informational coupling between subsystems
by treating the information-coupling states as disturbances
whose trajectories are “assumed” to take values in a certain
“contract” set. To ensure the satisfaction of this assumption,
we impose a contractual constraint on the control policy
that “guarantees” that the information-coupling states that
it induces indeed belong to said contract set. Naturally,
this approach yields an inner approximation of the original
decentralized control design problem, where the conservatism
of the resulting approximation depends on the specification
of the contract set. To limit the extent of the suboptimality
that may result, we formulate a semi-infinite program to co-
optimize the decentralized control policy with the location,
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scale, and orientation of an ellipsoidal contract set. We
establish a condition on the set of allowable contracts that
facilitates the joint optimization of the control policy and the
contract set via semidefinite programming.

We note that there are several recent papers appearing
in the literature that investigate a similar approach to de-
centralized control design via the co-optimization of control
policies and contract sets [15], [16]. Importantly, the tech-
niques developed in these papers only permit the scaling and
translation of a base contract set when co-optimizing it with
the control policy. To the best of our knowledge, the method
proposed in this paper provides the first systematic approach
to co-optimize the control policy with the location, scale,
and orientation of the contract set, expanding substantially
the family of contracts that can be efficiently optimized over.

Notation: Let R and R+ denote the sets of real and
non-negative real numbers, respectively. Given a collection of
vectors x1, . . . , xN , we let (x1, . . . , xN ) denote their vector
concatenation in ascending order of their indices. Given an
index set J ⊆ {1, . . . , N}, we let xJ denote the vector
concatenation of the vectors xj for j ∈ J in ascending order
of their indices. Given a sequence {x(t)} and time indices
s ≤ t, we let xs:t = (x(s), x(s + 1), . . . , x(t)) denote its
history from time s to time t. Given a block matrix A, we
let [A]ij denote its (i, j)-th block. We denote the trace of a
square matrix A by Tr (A). We denote the Minkowski sum
of two sets S, T ⊆ Rn by S⊕T := {x+y |x ∈ S, y ∈ T }.

II. PROBLEM FORMULATION

A. System Model

Consider a discrete-time, linear time-varying system con-
sisting of N dynamically coupled subsystems whose dynam-
ics are described by

xi(t+ 1) =
N∑
j=1

(Aij(t)xj(t) +Bij(t)uj(t)) + wi(t), (1)

for i = 1, . . . , N . We denote the local state, local input,
and local disturbance associated with each subsystem i at
time t by xi(t) ∈ Rni

x , ui(t) ∈ Rni
u , and wi(t) ∈ Rni

x ,
respectively. The system is assumed to evolve over a finite
time horizon T , and the initial condition is assumed to be
a random vector with known probability distribution. In the
sequel, we will work with a more compact representation of
the full system dynamics given by

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t).

Here, we denote by x(t) := (x1(t), .., xN (t)) ∈ Rnx ,
u(t) := (u1(t), .., uN (t)) ∈ Rnu , and w(t) :=
(w1(t), .., wN (t)) ∈ Rnx the full system state, input, and
disturbance at time t. The dimensions of the system state
and input are given by nx :=

∑N
i=1 n

i
x and nu :=

∑N
i=1 n

i
u,

respectively.
The input and disturbance trajectories are related to the

state trajectory according to

x = Bu+ Lw, (2)

where x, u, and w denote the system state, input, and
disturbance trajectories, respectively.1 They are defined by

x := (x(0), . . . , x(T )) ∈ RNx , Nx := nx(T + 1), (3)

u := (u(0), . . . , u(T − 1)) ∈ RNu , Nu := nuT, (4)

w := (w(−1), w(0), . . . , w(T − 1)) ∈ RNx , (5)

where the initial component w(−1) of the system disturbance
trajectory is given by w(−1) = x(0). This notational con-
vention will help simplify the specification of disturbance-
feedback control policies in the sequel.

B. Disturbance Model

We model the disturbance trajectory w as a zero-mean
random vector whose support is an ellipsoid given by

W :=
{
z ∈ RNx

∣∣ z>Σ−1z ≤ 1
}
, (6)

where the shape parameter Σ ∈ RNx×Nx is assumed to be
symmetric and positive definite. We let M := E[ww>] de-
note the second moment matrix of the disturbance trajectory
w. The matrix M is guaranteed to be positive definite and
finite-valued, as the support of w is assumed to be an ellipsoid
with a non-empty interior.

C. System Constraints

We consider a general family of polyhedral constraints on
the state and input trajectories of the form

Fxx+ Fuu+ Fww ≤ g ∀w ∈ W , (7)

where Fx ∈ Rm×Nx , Fu ∈ Rm×Nu , Fw ∈ Rm×Nx , g ∈
Rm are assumed to be given. Note that such constraints may
couple states and inputs across subsystems and time periods.

D. Information Structure

We consider information structures that are specified ac-
cording to sparsity constraints on the state measurements
that each controller has access to. Specifically, we encode
the pattern according to which information is shared between
subsystems with a directed graph GI = (V,EI), which we
refer to as the information graph of the system. Here, the
vertex set V = {1, . . . , N} assigns a distinct vertex i to
each subsystem i. Additionally, we include the directed edge
(i, j) ∈ EI if and only if subsystem j has access to subsystem
i’s local state at each time t. We let V −I (i) denote the in-
neighborhood of each subsystem i ∈ V in the information
graph GI .

Each subsystem is assumed to have access to the entire
history of its local information up until and including time t.
More formally, we define the local information available to
each subsystem i at time t as

zi(t) := {x0:tj | (j, i) ∈ EI}. (8)

The local control input to each subsystem i is restricted to be
a causal function of its local information. That is, the local
input to subsystem i at time t is of the form

ui(t) = γi(zi(t), t), (9)

1The matrices B and L are specified in Appendix A.
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where γi(·, t) is a measurable function of the local informa-
tion zi(t). We define the local control policy for subsystem
i as γi := (γi(·, 0), . . . , γi(·, T − 1)). We refer to the
collection of local control policies γ := (γ1, . . . , γN ) as the
decentralized control policy, which relates the state trajectory
x to the input trajectory u according to u = γ(x). Finally,
we let Γ denote the set of all decentralized control policies
respecting the information constraints encoded in Eq. (9).

E. Decentralized Control Design

We consider the following family of constrained decentral-
ized control design problems:

minimize E
[
x>Rxx+ u>Ruu

]
subject to γ ∈ Γ

u = γ(x)

x = Bu+ Lw

Fxx+ Fuu+ Fww ≤ g

 ∀w ∈ W .

(10)

Here, the cost matrices Rx ∈ RNx×Nx and Ru ∈ RNu×Nu

are assumed to be symmetric and positive semidefinite.
The tractability of the decentralized control design problem
(10) depends on the nature of the information structure. In
particular, if the information structure is partially nested,
then problem (10) can be equivalently reformulated (via the
Youla parameterization) as a convex program in the space
of disturbance feedback policies [17]. If, on the other hand,
the information structure is nonclassical (i.e., not partially
nested), then problem (10) is known to be computationally
intractable, in general [2], [18], [19].

III. INFORMATION DECOMPOSITION

The primary difficulty in solving decentralized control
design problems stems from the informational coupling that
emerges when a subsystem’s local information is affected
by prior control actions that it cannot access or reconstruct.
With the aim of isolating the effects of these actions on the
information available to each subsystem, we propose an in-
formation decomposition that partitions the local information
available to each subsystem into a partially nested subset (i.e.,
an information subset that is unaffected by control actions
previously applied to the system) and its complement. This
information decomposition enables an equivalent reformula-
tion of the decentralized control design problem where the
control policy is expressed as an explicit function of the
system disturbance and the so called information-coupling
states. This reformulation will serve as the foundation for
the contract-based approach to decentralized control design
proposed in Section IV.

A. Decomposition of Local Information

We decompose the local information available to each
subsystem according to a partition of its in-neighbors in the
information graph GI . More specifically, for each subsystem
i ∈ V , we let

N (i) ⊆ V −I (i)

denote the set of in-neighboring subsystems whose local state
measurements contain information that is unaffected by the
prior control actions of any subsystem. This requirement is
satisfied if the local information of subsystem i is such that
it permits the reconstruction of all states and control actions
directly affecting the local states of all subsystems belonging
to N (i). We denote the complement of this set by C(i) :=
V −I (i) \ N (i) for each subsystem i ∈ V .

With the goal of providing an explicit characterization of
these sets, we first provide a characterization of the physical
coupling between different subsystems as reflected by the
block sparsity patterns of the system matrices A and B. We
describe this coupling in terms of a pair of directed graphs,
GA := (V,EA) and GB := (V,EB), whose edge sets are
defined according to

EA := {(j, i) ∈ V × V | ∃t = 0, . . . , T − 1 s.t. Aij(t) 6= 0},
EB := {(j, i) ∈ V × V | ∃t = 0, . . . , T − 1 s.t. Bij(t) 6= 0}.

We let V −A (i) and V −B (i) denote the in-neighborhoods asso-
ciated with each node i ∈ V in GA and GB , respectively.

Building on these representations, we have the following
definition that formalizes the class of information decompo-
sitions considered in this paper. For each subsystem i ∈ V ,
define the set

N (i) := {j ∈ V −I (i) | (11), (12) are satisfied},

where the above conditions are given by

V −A (j) ⊆ V −I (i) (11)

and ⋃
k∈V −B (j)

V −I (k) ⊆ V −I (i). (12)

Condition (11) requires that subsystem i has access to all
states that directly affect subsystem j’s state through the
system dynamics. Condition (12) requires that subsystem
i has access to the local information of each subsystem
whose control actions directly affect subsystem j’s state. This
ensures that subsystem i is able to reconstruct all control
actions that directly affect subsystem j’s state. Collectively,
conditions (11) and (12) can be interpreted as a requirement
on the local nesting of information, in the sense that if
j ∈ N (i), then subsystem i is assumed to have access to
all states and control actions that directly affect subsystem
j’s state through the state equation. As a result, subsystem
i can explicitly reconstruct the local disturbance wj(t − 1)
acting on any subsystem j ∈ N (i) based only on its local
information zi(t) as follows:

wj(t− 1) = xj(t)−
∑

k∈V −A (j)

Ajk(t− 1)xk(t− 1)

−
∑

k∈V −B (j)

Bjk(t− 1)uk(t− 1).

The local states of subsystems not belonging to N (i),
on the other hand, may contain information that can be
influenced by prior control actions. We refer to these states
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as the information-coupling states associated with subsystem
i at time t, denoting them by xC(i)(t) where

C(i) := V −I (i) \ N (i).

The collection of information-coupling states across all sub-
systems are denoted by the xC(t) ∈ RnCx , where

C :=
⋃
i∈V
C(i). (13)

The trajectory of information-coupling states is denoted by

xC := (xC(0), . . . , xC(T )) ∈ RNCx ,

where NCx := nCx(T + 1). Finally, it will be notationally
convenient to express the mapping from the state trajectory
x to its subvector xC in terms of the projection operator ΠC :
RNx → RNCx , where xC = ΠCx.

Remark 1 (Partially Nested Information). It can be shown
that the given information structure is partially nested if and
only if the set of information coupling states is empty, i.e.,
C = ∅. It is well known that such information structures
permit the equivalent reformulation of problem (10) as a
convex optimization problem in the space of disturbance-
feedback control policies.

B. Control Input Reparameterization

The proposed information decomposition suggests a nat-
ural reparameterization of the control policy in terms of the
following equivalent information set.

Lemma 1 (Equivalence of Information). Define the informa-
tion set ζi(t) according to

ζi(t) := {x0:tj |j ∈ C(i)} ∪ {w−1:t−1j |j ∈ N (i)}.

The sets zi(t) and ζi(t) are functions of each other for each
subsystem i and time t.

The proof of Lemma 1 is omitted, as it mirrors that of
[20, Lemma 1]. Lemma 1 suggests the following equivalent
reparameterization of the local control input:

ui(t) = φi(ζi(t), t), (14)

where φi(·, t) is a measurable function of its arguments. We
let φi := (φi(·, 0), . . . , φi(·, T − 1)) and φ := (φ1, . . . , φN )
denote the reparameterized control policy associated with
each subsystem i ∈ V and the full system, respectively. With
a slight abuse of notation, we express the input trajectory
induced by the reparameterized control policy φ as

u = φ(w, xC).

Finally, we denote by Φ the set of reparameterized decentral-
ized control policies that respect the information constraints
encoded in Eq. (14).

The reparameterization of the control input according to
Eq. (14) results in the following equivalent reformulation of
the original decentralized control problem (10):

minimize E
[
x>Rxx+ u>Ruu

]
subject to φ ∈ Φ

u = φ(w, xC)

x = Bu+ Lw

Fxx+ Fuu+ Fww ≤ g

 ∀w ∈ W .

(15)

Clearly, problem (15) remains nonconvex, in general, if the
set of information-coupling subsystems is nonempty, i.e., C 6=
∅. In Section IV, we construct a convex inner approximation
to problem (15) where the information-coupling states are
assumed to behave as disturbances with bounded support,
and the control policy is constrained in a manner that ensures
the consistency between the assumed and actual behaviors of
the information-coupling states.

IV. DECENTRALIZED CONTROL DESIGN VIA CONTRACTS

In this section, we construct a convex inner approximation
of the decentralized control design problem (15) via the
introduction of an assume-guarantee contractual constraint on
the information-coupling states xC . We do so by introducing
a surrogate information structure in which the information-
coupling states are modeled as fictitious disturbances that are
“assumed” to take values in a “contract” set. To “guarantee”
the satisfaction of this assumption, we impose a contractual
constraint on the control policy requiring that the actual
information-coupling states induced by the control policy
belong to the contract set. Given a fixed contract set, the
resulting problem is a convex disturbance-feedback control
design problem, whose feasible policies are guaranteed to be
feasible for problem (15).

A. Surrogate Information
We associate a fictitious disturbance vi(t) ∈ Rni

x with
each subsystem i ∈ V and time t = 0, . . . , T . We let
v ∈ RNx denote the corresponding fictitious disturbance
trajectory induced by these individual elements, which we
model as a random vector whose support V ⊂ RNx is
assumed to be a convex and compact set. We also assume
that the fictitious disturbance trajectory v is independent of
the system disturbance trajectory w.

Letting the collection of fictitious disturbances serve as
surrogates for the information-coupling states, we define the
surrogate local information for subsystem i as

ζ̃i(t) := {v0:tj |j ∈ C(i)} ∪ {w−1:t−1j |j ∈ N (i)}.

Given a decentralized control policy φ ∈ Φ, the surrogate
local information induces a surrogate control input for each
subsystem i defined according to

ũi(t) := φi(ζ̃i(t), t).

Additionally, the surrogate input trajectory induced by the
surrogate information structure is given by

ũ := φ(w, vC),

where vC := ΠCv.
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B. Surrogate Dynamics

The treatment of the information coupling states as fic-
titious disturbances induces a surrogate system state that
evolves according to the following surrogate state equation:

x̃i(t+ 1) =
∑

j∈V \C(i)

Aij(t)x̃j(t) +
∑
j∈C(i)

Aij(t)vj(t)

+
N∑
j=1

Bij(t)ũj(t) + wi(t), (16)

where x̃i(t) denotes the surrogate state of subsystem i at
time t. We require that the initial condition of the surrogate
system equal that of the true system, i.e., x̃i(0) = xi(0) for
each subsystem i. Moving forward, it will be convenient to
express the surrogate state dynamics in terms of trajectories
as follows:

x̃ = B̃ũ+ L̃w + H̃vC , (17)

where the matrices B̃, L̃, and H̃ are defined in Appendix A.
We close this subsection with a lemma that establishes

conditions for the equivalence between the surrogate and
actual state trajectories. We omit the proof, as it directly
follows from the definition of the surrogate state equation
(17).

Lemma 2. Let u ∈ RNu and w ∈ RNx . It holds that x =
Bu+ Lw if and only if x = B̃u+ L̃w + H̃xC .

C. Assume-Guarantee Contracts

Thus far, we have treated the information-coupling states
as fictitious disturbances that are assumed to take values in
a given set VC . Leveraging on concepts grounded in assume-
guarantee reasoning [21], [22], we guarantee the satisfaction
of this assumption by imposing a contractual constraint on
the control policy, which ensures that it induces information-
coupling states that belong to VC . We formalize the notion
of an assume-guarantee contract in the following definition.

Definition 1 (Assume-Guarantee Contract). A control policy
φ ∈ Φ is said to satisfy the assume-guarantee contract
speficied in terms of the contract set VC ⊆ RNCx if

ΠCx̃ ∈ VC ∀ (w, vC) ∈W × VC ,

where x̃ = B̃φ(w, vC) + L̃w + H̃vC .

Here, the set VC is referred to as a contract set, as it
specifies the set that the information-coupling states are
both assumed and required to belong to. The satisfaction
of the assume-guarantee contract guarantees that the sur-
rogate information-coupling states x̃C := ΠCx̃ belong to
the contract set. In the following lemma, we show that the
actual information-coupling states that result under the policy
u = φ(w, xC) are guaranteed to belong to the contract set if
the assume-guarantee contract is satisfied.

Lemma 3. Let φ ∈ Φ be a control policy that satisfies the
assume-guarantee contract specified in terms of the contract
set VC ⊆ RNCx . It follows that ΠCx ∈ VC for all w ∈ W ,
where x = Bφ(w, xC) + Lw.

The proof of Lemma 3 is omitted due to space constraints.
In the following proposition, we provide an inner approxima-
tion of the decentralized control design problem (15) via the
introduction of an assume-guarnatee contractual constraint.
Its proof is omitted, as it follows directly from Lemma 3.

Proposition 1. Let φ ∈ Φ be a feasible control policy for
the following problem:

minimize E
[
x̃>Rxx̃+ ũ>Ruũ

]
subject to φ ∈ Φ

ũ = φ(w, vC)

ΠCx̃ ∈ VC
x̃ = B̃ũ+ L̃w + H̃vC
Fxx̃+ Fuũ+ Fww ≤ g

 ∀(w, vC) ∈ W × VC ,
(18)

It follows that φ is also feasible for problem (15).

Problem (18) is a convex disturbance feedback control
design problem, given a fixed contract set VC . The choice
of the contract set does, however, play an important role in
determining the performance of the control policies that it
gives rise to. In Section V, we develop a systematic approach
to enable the joint optimization of the contract set with the
control policy via semidefinite programming.

V. POLICY-CONTRACT OPTIMIZATION

In this section, we provide a semidefinite programming-
based method to co-optimize the design of the decentralized
control policy together with the contract set that constrains
its design. As part of the proposed approach, we consider
a restricted family of control policies that are affinely pa-
rameterized in both the disturbance and fictitious disturbance
histories. We also parameterize the fictitious disturbance
process as a causal affine function of a given (primitive)
disturbance process—an approach that is similar in nature
to the class of parameterizations that have been recently
studied in the context of robust optimization with adjustable
uncertainty sets [23]. As one of our primary results in this
section, we identify a structural condition on the family of
allowable contract sets that permits the inner approximation
of the resulting policy-contract optimization problem as a
semidefinite program.

A. Affine Control Policies

We restrict our attention to affine decentralized
disturbance-feedback control policies of the form

ũi(t) = uoi (t) +
∑

j∈N (i)

t−1∑
s=−1

Qwij(t, s+ 1)wj(s)

+
∑
j∈C(i)

t∑
s=0

Qvij(t, s)vj(s), (19)

for t = 0, . . . , T − 1 and i = 1, . . . , N . Here, uoi (t) denotes
the open-loop control input, and the matrices Qwij(t, s + 1)
and Qvij(t, s) denote the feedback control gains. The affine
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control policy specified in Eq. (19) can be expressed in terms
of trajectories as

ũ = uo +Qww +Qvv, (20)

where the gain matrices Qw and Qv are both T × (T + 1)
block matrices, whose (t, s)-th block is defined according to

[Qw(t, s)]ij =

{
Qwij(t, s) if j ∈ N (i) and t ≥ s,
0 otherwise,

(21)

[Qv(t, s)]ij =

{
Qvij(t, s) if j ∈ C(i) and t ≥ s,
0 otherwise.

(22)

for i, j = 1, . . . , N . We let QN and QC denote the matrix
subspaces respecting the block sparsity patterns specified
according to Eqs. (21) and (22), respectively.

B. Affine Parameterization of the Fictitious Disturbance

We focus our analysis on fictitious disturbances that are
expressed according to affine transformations of a primitive
disturbance. Such a parameterization yields contract sets that
have adjustable location, scale, and orientation. Specifically,
we let the random vector ξ denote the primitive disturbance
trajectory, which is assumed to be an i.i.d. copy of the sys-
tem disturbance trajectory w. We parameterize the fictitious
disturbance trajectory affinely in the primitive disturbance as

v := v + Zξ. (23)

Here, the parameters v ∈ RNx and Z ∈ RNx×Nx can be
adjusted to control the shape of the resulting contract set VC ,
which takes the form of

VC = ΠC (v ⊕ ZW) . (24)

Throughout the paper, we will restrict our attention to trans-
formations (23) in which the matrix parameter Z is both
lower triangular and invertible. We denote the set of all such
matrices by Z ⊂ RNx×Nx .

The specification of the fictitious disturbance according to
Eq. (23) induces the following the surrogate control input:

ũ = uo +Qvv +Qww +QvZξ. (25)

We eliminate the bilinear terms in Eq. (25) through the
following the change of variables:

u := uo +Qvv and Qξ := QvZ. (26)

This change of variables gives rise to a reparameterization of
the surrogate input trajectory as

ũ = u+Qww +Qξξ, (27)

where the matrix Qξ ∈ RNu×Nx must satisfy the sparsity
constraint

QξZ−1 ∈ QC

in order to ensure the satisfaction of the original sparsity
constraint that Qv ∈ QC .

The parameterization of the contract set and control policy
in this manner permits their co-optimization as follows:

minimize E
[
x̃>Rxx̃+ ũ>Ruũ

]
subject to Qw ∈ QN , Qξ ∈ RNu×Nx , Z ∈ Z

u ∈ RNu , v ∈ RNx ,

QξZ−1 ∈ QC
v = v + Zξ

ũ = u+Qww +Qξξ

x̃ = B̃ũ+ L̃w + H̃vC
ΠCx̃ ∈ ΠC (v ⊕ ZW)

Fxx̃+ Fuũ+ Fww ≤ g


∀(w, ξ) ∈ W2,

(28)

where W2 := W × W . Problem (28) is a nonconvex
semi-infinite program, where the nonconvexity is due to the
sparsity constraint on the matrix QξZ−1 and the contractual
constraint on the affine control policy. In what follows, we
provide convex inner approximations of these constraints,
which yield an inner approximation of problem (28) as a
semidefinite program.

C. Restricting the Contract Set

In what follows, we introduce an additional restriction on
the set of allowable matrix parameters Z that guarantees the
invariance of the subspace QC under multiplication by such
matrices. This permits the equivalent reformulation of the
bilinear constraint QξZ−1 ∈ QC as Qξ ∈ QC .

Specifically, we require that the matrix Z be of the form

Z = λI − Y, (29)

where λ ≥ 1 is scalar parameter and Y ∈ RNx×Nx is a
(T + 1) × (T + 1) strictly block lower triangular matrix of
the form

Y =


0

Y (1, 0) 0
...

. . . . . .
Y (T, 0) · · · Y (T, T − 1) 0

 . (30)

Furthermore, each block of the matrix Y is an N ×N block
matrix, whose (i, j)-th block is of dimension nix × njx. We
impose an additional restriction on the structure of the matrix
Y in the form of sparsity constraints (that reflect the pattern
of informational coupling between subsystems) on each of
its blocks.

More specifically, we encode the pattern of informational
coupling between subsystems according to a directed graph
GC := (V,EC), whose directed edge set EC is defined as

EC := {(j, i) ∈ EI | j ∈ C(i)}.

We let V +
C (i) denote the out-neighborhood of a node i ∈ V

in the graph GC . Using this graph, we impose a sparsity
constraint on each block of the matrix Y of the form:

[Y (t, s)]ij = 0 if V +
C (i) * V +

C (j) (31)
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for all i, j = 1, . . . , N , and t, s = 0, . . . , T . We let Y(GC)
denote the subspace of all matrices that respect the sparsity
constraints implied by Eqs. (30) and (31).

We have the following result establishing the invariance
of the subspace QC under multiplication by matrices Y ∈
Y(GC).

Lemma 4. If Q ∈ QC and Y ∈ Y(GC), then QY ∈ QC .

Proof: The sparsity constraint QY ∈ QC is satisfied if the
matrix Q(t, s)Y (s, r) satisfies the sparsity constraint

[Q(t, s)Y (s, r)]ij = 0 ∀i /∈ V +
C (j)

for all times r, s, t satisfying 0 ≤ r < s ≤ t ≤ T − 1.
We prove this claim by showing that [Q(t, s)Y (s, r)]ij 6= 0
implies i ∈ V +

C (j). The condition that [Q(t, s)Y (s, r)]ij 6= 0
implies that there exists k ∈ V such that the blocks
[Q(t, s)]ik and [Y (s, r)]kj are both nonzero. The fact that
[Q(t, s)]ik is nonzero implies that i ∈ V +

C (k), as the matrix Q
satisfies Q ∈ QC . The fact that [Y (s, r)]kj is nonzero implies
that V +

C (k) ⊆ V +
C (j), as the matrix Y satisfies Y ∈ Y(GC).

The desired result follows. �
We have the following result as an immediate consequence

of Lemma 4.

Lemma 5. Let Y ∈ Y(GC) and λ ∈ [1,∞). It follows that

QC =
{
Qξ(λI − Y )−1 |Qξ ∈ QC

}
.

It follows from Lemma 5 that the constraint QξZ−1 ∈ QC
is equivalent to Qξ ∈ QC if Z = λI−Y , where Y ∈ Y(GC)
and λ ≥ 1.

D. Semidefinite Programming Approximation
To lighten notation, we write the surrogate state trajectory

x̃ more compactly as

x̃ = x+ Pww + P ξξ,

where x := B̃u + H̃ΠCv, Pw := B̃Qw + L̃, and P ξ :=
B̃Qξ + H̃ΠC(λI − Y ).

We first address the robust linear constraints in prob-
lem (28). The following result provides an equivalent re-
formulation as second-order cone constraints. Its proof is
omitted, as it is an immediate consequence of the identity
supw∈W c>w = ‖Σ1/2c‖2 for all c ∈ RNx .

Lemma 6. The semi-infinite constraint Fxx̃+Fuũ+Fww ≤
g for all (w, ξ) ∈ W2 is satisfied if and only if∥∥∥Σ1/2e>i (FxP

w + FuQ
w + Fw)

∥∥∥
2

+
∥∥∥Σ1/2e>i (FxP

ξ + FuQ
ξ)
∥∥∥
2

≤ e>i (g − Fxx− Fuu), i = 1, . . . ,m, (32)

where ei is the ith standard basis vector in Rm.

We now address the nonconvexity that stems from the
contractual constraint in problem (28). First, notice that
the contractual constraint is equivalent to the following set
containment constraint

ΠC
(
x⊕ PwW ⊕ P ξW

)
⊆ ΠC (v ⊕ ZW) . (33)

The set containment constraint (33) amounts to requiring that
the Minkowski sum of two ellipsoids be contained within
another ellipsoid. It follows from [24][Theorem 4.2] that this
class of set containment constraints can be approximated
from within by a quadratic matrix inequality. Through an
application of Schur’s Lemma, one can approximate the
resulting quadratic matrix inequality from within by a linear
matrix inequality. We summarize the resulting inner approx-
imation in the following lemma.

Lemma 7. The set containment constraint (33) is satisfied if
there exists a scalar β ∈ [0, λ] such that

ΠC (x− v) = 0, (34)ΠCΣ̃Π>C ΠCP
w ΠCP

ξ

Pw>Π>C βΣ−1 0

P ξ
>

Π>C 0 (λ− β)Σ−1

 � 0, (35)

where Σ̃ = λΣ− Y Σ− ΣY >.

By applying Lemmas 5–7, one can approximate the non-
convex semi-infinite program (28) from within as the follow-
ing finite-dimensional semidefinite program.

Proposition 2. Each feasible solution to the following
semidefinite program is feasible for problem (28):

minimize Tr
(
P ξ
>
RxP

ξM + Pw>RxP
wM

)
+ Tr

(
Qw>RuQ

wM +Qξ
>
RuQ

ξM
)

+ x>Rxx+ u>Ruu

subject to Qw ∈ QN , Qξ ∈ QC , Y ∈ Y(GC),

u ∈ RNu , v, x ∈ RNx , λ, β ∈ R+,

Pw, P ξ ∈ RNx×Nx ,

λ ≥ max{1, β},
x = B̃u+ H̃ΠCv

Pw = B̃Qw + L̃

P ξ = B̃Qξ + H̃ΠC(λI − Y )

(32), (34), (35).
(36)

The decision variables for problem (36) are the matrices
Qw, Qξ, Y , Pw, P ξ, the vectors u, v, x, and the scalars
λ and β. Problem (36) is a convex inner approximation
of the reformulated decentralized control design problem
(15), in the sense that each feasible solution of problem
(36) can be mapped to a feasible affine control policy for
problem (15) via the change of variables specified in (26).
The decentralized control policies that this approximation
gives rise to are suboptimal, in general. Bounds on their
suboptimality, however, can be efficiently calculated using
information-based convex relaxations [25].

VI. CONCLUSION

We provide a method to compute feasible control policies
for constrained decentralized control design problems by
leveraging on the concept of assume-guarantee contracts.

923

Authorized licensed use limited to: Cornell University Library. Downloaded on January 13,2021 at 20:07:48 UTC from IEEE Xplore.  Restrictions apply. 



At the heart of this approximation is the treatment of
information-coupling states as fictitious disturbances that are
“assumed” to take values in a contract set. We “guaran-
tee” the inclusion of the information-coupling states in the
contract set by imposing an assume-guarantee contractual
constraint on the control policy. The introduction of such
assume-guarantee contracts gives rise to an inner approxi-
mation of the decentralized control design problem, whose
quality depends on the specification of the contract set. We
provide a method of co-optimizing the decentralized control
policy with the location, scale, and orientation of the contract
set via semidefinite programming.
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APPENDIX A
MATRIX DEFINITIONS

Define the matrices Ã(t) and H̃(t) according to

Ãij(t) =

{
Aij(t) if j ∈ V \ C(i),
0 otherwise,

H̃ij(t) = Aij(t)− Ãij(t),

where i, j ∈ V . The matrices (B,L) in Eq. (2) and the
matrices (B̃, L̃) in Eq. (17) are defined according to

B :=



0

A1
1B(0) 0

A2
1B(0) A2

2B(1) 0
...

. . . . . .
...

. . . 0

AT1 B(0) AT2 B(1) · · · · · · ATTB(T − 1)


,

B̃ :=



0

Ã1
1B(0) 0

Ã2
1B(0) Ã2

2B(1) 0
...

. . . . . .
...

. . . 0

ÃT1 B(0) ÃT2 B(1) · · · · · · ÃTTB(T − 1)


,

L :=


A0

0

A1
0 A1

1
...

. . .
AT0 AT1 · · · ATT

 , L̃ :=


Ã0

0

Ã1
0 Ã1

1
...

. . .
ÃT0 ÃT1 · · · ÃTT

 ,
where Ats :=

∏t−1
r=sA(r) and Ãts :=

∏t−1
r=s Ã(r) for s < t,

and Att = Ãtt = I . Additionally, the matrix H̃ in Eq. (17) is
defined as H̃ := HΠ>C , where

H :=



0

Ã1
1H̃(0) 0

Ã2
1H̃(0) Ã2

2H̃(1) 0
...

. . . . . .
...

. . . 0

ÃT1 H̃(0) ÃT2 H̃(1) · · · · · · ÃTT H̃(T − 1) 0


.
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