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We report heat capacity measurements of SrCu2(BO3)2 under high pressure along with simulations of rele-
vant quantum spin models and map out the (P, T ) phase diagram of the material. We find a first-order quantum
phase transition between the low-pressure quantum dimer paramagnet and a phase with signatures of a plaquette-
singlet state below T = 2 K. At higher pressures, we observe a transition into a previously unknown antiferro-
magnetic state below 4 K. Our findings can be explained within the two-dimensional Shastry-Sutherland quan-
tum spin model supplemented by weak inter-layer couplings. The possibility to tune SrCu2(BO3)2 between
the plaquette-singlet and antiferromagnetic states opens opportunities for experimental tests of quantum field
theories and lattice models involving fractionalized excitations, emergent symmetries, and gauge fluctuations.

Theoretical proposals for exotic states in quantum magnets
abound [1–6], but many intriguing quantum phases and tran-
sitions beyond classical descriptions have been difficult to re-
alize experimentally. In one class of hypothetical states, spins
entangle locally and form symmetry-breaking singlet patterns
[2–10]. Signatures of a state with four-spin singlets were re-
cently detected in the two-dimensional (2D) quantum mag-
net SrCu2(BO3)2 under high pressure [11]. This plaquette
singlet (PS) state has remained controversial, however [12],
and a putative phase transition into an antiferromagnet (AF)
at still higher pressure has not been studied. In this Letter,
we report the phase diagram of SrCu2(BO3)2 based on heat
capacity measurements for a wide range of pressures P and
temperatures T down to 0.4 K. Copmparing the results with
calculations for relevant quantum spin models, our results in-
dicate a PS–AF transition between P = 2.5 and 3 GPa, which
is significantly lower than previously anticipated [11].

The unpaired S = 1/2 Cu spins of SrCu2(BO3)2 form
layers of orthogonal dimers [13, 14]. The two dominant
Heisenberg exchange couplings JijSi ·Sj realize the Shastry-
Sutherland (SS) model [15], illustrated in Fig. 1, with intra-
and inter-dimer values J ′ ≈ 75 K and J ≈ 45 K, respectively.
The SS model has an exact dimer-singlet (DS) ground state
for 0 ≤ α = J/J ′ . 0.68 [10, 15, 16] and for α → ∞ it re-
duces to the Heisenberg AF [17]. There is a PS phase between
the DS and AF phases, at α ∈ [0.68, 0.75] [10, 16].

At ambient pressure the properties of SrCu2(BO3)2 agree
well with the SS model in the DS phase [13, 14]. AF order
has been observed at P ≈ 4 GPa [11], close to a tetragonal–
monoclinic structural transition [18–20]. Since the Mermin-
Wagner theorem prohibits T > 0 magnetic order in a 2D
spin-isotropic system, the AF order should be due to weak
inter-layer couplings (and possibly some spin anisotropy). A

2D SS description of the quantum phase transitions is still rel-
evant, and the simplest explanation of the behavior is that α
increases with P [10, 11, 21]. Then it should also be possible
to stabilize the PS phase of the SS model at intermediate P
and low T . Breaking a discrete two-fold Ising (Z2) symmetry,
corresponding to two equivalent plaquette patterns, PS order
can appear at T > 0 already in an isolated layer.

Following indications from NMR of an intermediate phase
with broken spatial symmetry [22, 23], inelastic neutron scat-
tering revealed an excitation attributed to a PS state [11]. The
mode was only detected at P = 2.15 GPa, and recently an al-
ternative scenario with no PS phase was proposed [12]. Here
we argue that the PS phase exists adjacent to a previously not
observed AF phase below 4 K and P = 3 - 4 GPa.

Experiments.—We have performed high-pressure heat ca-
pacity (C) measurements on SrCu2(BO3)2 single crystals.
With support of simulations of quantum spin models, we have
for the first time extracted a (P, T ) phase diagram, Fig. 2(a),
in the range of P and T where the SS model should be rele-
vant. Six different samples were studied, and C(T ) was mea-
sured from room temperature down to 1.5 K or 0.4 K at several
pressures (using two different types of cryostats and pressure
cells; see Supplemental Material, SM [25]). Consistent results
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Figure 1. Schematic T = 0 phase diagram of the SS model [10, 16].
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Figure 2. (a) Phase diagram of SrCu2(BO3)2 (crystal structure
in the inset) from high pressure C(T ) measurements. Examples
of C(T )/T curves are given in (b-e). The green symbols in (a)
mark the C/T hump location Th in several samples and the pur-
ple curve shows results for the 20-spin SS model with couplings
close to those of Ref. [11]; J ′(P ) = [75 − 8.3P/GPa] K and
J(P ) = [46.7 − 3.7P/GPa] K. For P ≈ 1.7 - 2.4 GPa a sec-
ond peak at lower T is exemplified in (c); it indicates the transition
into the PS phase. Upon further compression, the system first enters
a regime where the experiments cannot reach sufficiently low T to
observe the second peak. This peak is again detectable around 3 GPa
(d,e) and becomes more prominent with increasing P , suggesting
[38] AF order due to weak inter-layer couplings. The phase bound-
aries extracted from the second peak are indicated by half-filled red
squares and diamonds (PS phase) and blue filled squares and half-
filled circles (AF phase). The low-T data in (b,c) are fitted (black
curves) to the form C/T = a0 + a1T

2 + (a2/T
3)e−∆/T [24], giv-

ing gaps ∆ shown in Fig. 3(a). In (d,e) fits are shown (red curves)
without gap term; C/T = a0 + a1T

2.

were obtained among all these measurements. In Fig. 2(b-e)
we show typical results for C(T )/T in the different pressure
regions. In SM [25] we discuss data for P > 4 GPa, where
the SS description is no longer valid.

We identify two main low-T features in C(T )/T : There is
always a broad maximum that we will refer to as the hump.

Starting at P ≈ 1.7 GPa, a smaller peak emerges at lower
T and prevails up to 2.4 GPa. We will argue that this peak
signals the PS transition. Upon further increasing P , the small
peak is no longer detected at temperatures accessible in the
experiments. A broader hump appears between 3 and 4 GPa,
below which there is a peak at T ≈ 2 - 3.5 K that we interpret
as an AF transition. AF order was previously detected only
at P > 4 GPa up to T ≈ 120 K [11]. This high-T phase is
different from the new low-T AF phase—see SM [25], where
we also discuss a new transition at T ≈ 8 K for P > 4 GPa.

The C/T hump is known from studies at ambient pressure
[24], where it arises from the correlations leading to the dimer
singlets as T → 0. As shown in Fig. 2(a), the hump temper-
ature Th(P ), including the minimum at P ≈ 2.5 GPa, agrees
remarkably well with exact diagonalization (ED) results for
the SS Hamiltonian on a 20-site lattice (see SM [25]) with P
converted to α by linear forms J(P ), J ′(P ) [11]. The hump
width also agrees well with the SS model [see Fig. S5].

In the 2D Heisenberg model the hump appears at T ≈ J/2
[38] where strong AF correlations build up. In general, the
hump indicates a temperature scale where correlations set in
that remove significant entropy from the system. The Th(P )
minimum can be regarded as the point of highest frustration,
with the energy scale being lowered due to the two competing
couplings (see also Refs. [39, 40]). The peak that we associate
with PS ordering appears in this pressure region, suggesting
singlet formation driven by strong frustration.

If the putative AF ordering below T = 4 K for P ≈ 3 -
4 GPa is the result of weak inter-layer couplings J⊥, the ob-
served hump-peak separation is expected, as the hump present
for an isolated layer is not affected much by a small J⊥ and
TAF → 0 as J⊥ → 0. Moreover, the ordering peak vanishes
as J⊥ → 0, because most of the entropy has been consumed
by 2D correlations before 3D long-range order sets in. Our re-
sults at 3.6 GPa and 4.0 GPa compare favorably with quantum
Monte Carlo (QMC) calculations of weakly coupled Heisen-
berg layers [38] with J⊥/J2D ≈ 0.01 - 0.02. In the SS system
J2D is an effective 2D AF coupling smaller than both J and J ′

(because of frustration). The more prominent low-T peak and
higher TAF at higher P should be a consequence of α increas-
ing, likely in combination with an increase of J⊥. The low-T
peak becomes harder to discern as P is decreased down to 3
GPa, where Tc is lower [38]. Unfortunately, above 2.4 GPa
we are restricted to T ≥ 1.5 K and cannot track the PS and
AF transitions within the white region in Fig. 2(a).

Our identification of the phases partially rely on the low-T
tails in C/T . Up to P = 2.4 GPa we extracted the gap by
fitting C(T )/T to an exponential form plus terms accounting
for the heater, wires, and phonons [Fig. 2(b,c)]. The P depen-
dent gaps [Fig. 3(a)] are in excellent agreement with previous
works using different methods. The gap is suddenly reduced
by a factor of two at 1.7 GPa, showing that the DS–PS transi-
tion is first-order, as in the SS model [10, 16]. In our proposed
AF phase C(T )/T can be fitted [Fig. 2(d,e)] without a gap.

Fig. 3(b) shows examples of the entropy obtained by in-
tegrating C(T )/T in the DS, PS, and AF states. Data sets
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Figure 3. (a) Pressure dependent gaps extracted from low-T fits to
C(T )/T [Fig. 2(c,d)] for six different experimental runs, compared
with the neutron scattering results [11]; the ⊕ mark at P = 2.15
GPa refers to the low-energy excitation in Fig. 1 of Ref. [11]. (b)
Examples of the entropy obtained by integrating C/T over T [using
fits such as those in Fig. 2(c-f) at low T ]. (c) Results from the Toroid-
type cell compared with the 20-spin SS model with couplings given
by the formula used in Fig. 2(b). The results are normalized to the
unit cell containing a Cu dimer; thus S(T →∞) = 2R ln(2) [twice
the dashed line value in (b)].

from experiments with the two different pressure cells exhibit
consistent trends. Comparing the results with the SS model
[Fig. 3(c)] confirms that the features in C/T below T ≈ 8 K
predominantly originate from the Cu S = 1/2 spin network.
The agreement between the experimental and theoretical re-
sults is striking at P = 1.3 and 1.9 GPa, where the system is
gapped. At P = 3.9 GPa the SS model still captures the over-
all magnitude of the entropy, though the AF state can naturally
not be fully reproduced by a small 2D cluster.

Modeling.—Ideally, we would like to compare the exper-
iments with the SS model supplemented by weak 3D cou-
plings. However, calculations at low T > 0 in the PS and
AF phases require much larger lattices than those accessible
to ED, and other numerical techniques are also very challeng-
ing [39, 40]. To investigate generic aspects of the PS and AF
transitions, we instead study a ’J-Q’ model amenable to large-
scale QMC simulations. The model was proposed [41] for
studies of deconfined quantum criticality [2, 4], and recently
a ’checker-board’ variant (CBJQ model) was deviced for real-
izing the PS–AF transition [5].

The Q interactions of the CBJQ model [Fig. 4(a)] com-
pete against AF order and lead to an unusual transition versus
g = J/Q where the scalar (Z2) PS and O(3) AF order pa-
rameters combine into an O(4) vector [5]. Even though the
CBJQ and SS models are different at the lattice level, one
can expect universal large-scale physics. Thus, SrCu2(BO3)2
may also realize emergent O(4) symmetry—if indeed it hosts
a low-T PS–AF transition dominated by 2D quantum fluctua-
tions. Here we do not address the issue of emergent symmetry
directly, but focus on the thermodynamics. The models and
QMC technique are further discussed in SM [25].

Fig. 4(b) shows C/T for different coupling ratios g in the
2D CBJQ model. The peak signaling the PS transition grad-
ually separates from a hump as g increases, at the same time
shrinking as there is less entropy associated with the phase
transition. The short-range correlations signaled by the hump
are predominantly AF in nature but also reflect the formation
of singlets on the plquettes before the collective ordering of
those singlets. The clear hump-peak separation and the small
ordering peak when g ≈ gc are signatures of strong 2D quan-
tum fluctuations of the PS order and are strikingly similar to
our observations in SrCu2(BO3)2 [Fig. 2(c)].

To study AF order at T > 0 we introduce inter-layer cou-
plings J⊥ [Fig. 4(a)]. Fig. 4(c) shows the phase diagram for a
moderately small J⊥ along with scans of C/T . We observe a
hump-peak structure close to the PS–AF transition; in particu-
lar the behavior in the vicinity of the AF transition is similar to
the results for SrCu2(BO3)2, thus supporting our conclusion
of an AF phase in the material at P = 3 - 4 GPa.

Our SS model fit to the experimental hump in Fig. 2(a)
gives α ≈ 0.665 at the DS–PS transition, close to the tran-
sition point in the SS model. In the white region in Fig. 2(a)
we have α ≈ 0.69 − 0.71, which is smaller than α ≈ 0.76
at the PS–AF transition in the SS model. Inter-layer exchange
interactions will enhance the AF correlations and should shift
the boundary of the AF phase in the way observed. An analo-
gous effect of J⊥ on the PS–AF transition in the CBJQ model
is seen in Fig. 4 for J⊥ = 0.1, and even for J⊥ = 0.01 we
still see a shift of gc by ≈ 10%, as shown in SM [25]. We are
not aware of any estimates of J⊥ in SrCu2(BO3)2, but our re-
sults show that the quantitative effects of this coupling on the
phase diagram should not be neglected, even though the low-
T quantum fluctuations remain predominantly 2D in nature.

Discussion.—The singlets in the PS phase of SrCu2(BO3)2
may form on the dimer plaquettes [11], not on the empty pla-
quettes as in the SS model [16]. It was recently proposed
that the state is not even a 2-fold degenerate PS state with
a symmetry-breaking transition, but a state resulting from an
orthorombic distortion [12]. This would be consistent with
NMR results showing two kinds of dimers below 3.6 K at 2.4
GPa [23]. In our experiments, the hump in C(T )/T for P
between 1.7 and 2.4 GPa is close to this NMR splitting tem-
perature, and the hump also some times has a small jump on
its right side, as in Fig. 2(c). Our modeling shows clearly
that the hump is a consequence of short-range correlations
and does not originate from a phase transition, but the jump
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Figure 4. (a) In the CBJQ model the SS J ′ exchange [Fig. 1] is replaced by four-spin interactions −Q(Si · Sj − 1/4)(Sk · Sl − 1/4), where
ij and kl form edges of the plaquettes with red squares [5]. Intra- and inter-layer Heisenberg couplings are denoted by J and J⊥, respectively.
(b) J⊥ = 0 phase diagram with g = J/(J + Q). The PS–AF quantum-critical point is at gc ≈ 0.179 and there is AF order only at T = 0.
The inset shows C/T for lattices up to size 2562 at g < gc. The hump-peak separation increases and the area under the peak decreases as
g → gc. (c) Phase diagram at J⊥/(J +Q) = 0.1 obtained with up to 48× 48× 24 spins. The insets show examples of C(T )/T curves.

could still be due to a weak orthorombic transition (which
might even be driven by the spin correlations). Given over-
all small effects on C(T ), such a transition (if it exists) may
not change the couplings as much as suggested by Boos et
al. [12], who also agree that the PS state can still exist with
a very weak orthorombic distortion [12]. Their alternative
quasi-1D state would not undergo any further phase transition
at lower T , contradicting the clear peaks we find for interme-
diate pressures at T ≈ 2 K. The quasi-1D scenario was in
part motivated by the gap decreasing with P [as we also have
found; Fig. 3(a)] [12] (see also Ref. [44] for SS model ED
results). However, the gap calculations are subject to approx-
imations, and even small interactions beyond the SS model
(e.g., 3D couplings) may play a role as well in the gap evolu-
tion in SrCu2(BO3)2. Recent ESR experiments at P ≈ 2 GPa
were explained with a PS phase surviving in the presence of a
pressure-induced weak distortion [45].

In an alternative scenario, the C/T peak at T ≈ 2 K could
an orthorombic transition, with the NMR splitting brought to
higher T by magnetic-field effects (if the orthorombic tran-
sition is sensitive to spin correlations). However, it has also
been argued from other experiments that there is no structural
transition at P ≈ 2 GPa [21, 45]. It would be useful to repeat
the NMR experiments for a wider range of pressures and study
field effects systematically. It is also not completely clear
whether the singlets in SrCu2(BO3)2 really form on the dimer
plaquettes, as calculations of the spectral signatures have only
been calculated on very small systems [11] or in perturbative
schemes [12] that may not sufficiently account for the com-
plexities of the PS quantum fluctuations.

The simplest scenario is that the phase boundaries of the
low-T PS and AF phases of SrCu2(BO3)2 can be explained by
the 2D SS model with weak 3D interlayer couplings. The ex-
istence of the new low-T AF state argued here resolves a puz-
zling aspect of the phase diagram [11] that had not been em-
phasized previously: a high-T AF transition, with THT ≈ 120

K, is inconsistent with SS couplings J, J ′ � THT and the
frustration that further reduces the effective magnetic energy
scale J2D. The deconfined quantum-criticality scenario for
the PS–AF transition would be unlikely under these circum-
stances. In contrast, TAF < 4 K found here is compatible
with the SS model and J⊥ � J, J ′. Although we were not
able to track the phase boundaries in the region P ≈ 2.4 - 3.1
GPa [Fig. 2(a)], the most natural scenario is a direct PS–AF
transition below T ≈ 1 K. This transition should be weakly
first-order, related to the deconfined quantum-criticality sce-
nario [2, 4, 42] and with an emergent O(4) symmetry of the
two order parameters [5, 43] if the 3D couplings are suffi-
ciently weak. Our study has established the (P, T ) region in
which to further investigate this physics experimentally.

It will be important to confirm the magnetic structure of
the new low-T AF phase by neutron scattering—the previous
experiments in this pressure range did not reach down to the
transition temperatures we found here [11]. A Raman spec-
troscopy study reported after the completion of our work [46]
has already detected correlations compatible with AF ordering
at pressures similar to Fig. 2(a). It would also be interesting
to investigate magnetic field effects. Further model calcula-
tions should test the stability of the emergent O(4) symmetry
[5, 43] and other aspects of the PS–AF transition related to
deconfined quantum criticality beyond the strict 2D limit.
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Here we present additional supporting results for the findings in the main paper. In Sec. 1 we detail the crystal growth
procedures. In Sec. 2 we show complete data sets for all the measurements taken for three different SrCu2(BO3)2 samples with
the two different high-pressure cells. In Sec. 3 we discuss the phase diagram of SrCu2(BO3)2 at higher pressures than considered
in the main text, extending the results to the region P = 4.2 to 4.9 GPa where two phases appear that are not related to the SS
description. In Sec. 4 we discuss finite-size effects in the ED results for the SS model and present C(T )/T curves for several
values of the coupling ratio α. In Sec. 5 we provide details of the QMC results and finite-size scaling analysis for the CBJQ
model in two and three dimensions and provide additional results supporting our conclusions regarding the role of the inter-layer
coupling J⊥.

1. Single crystal growth

High-quality single crystals of SrCu2(BO3)2 were grown
by a traveling floating-zone method similar to what has been
reported in the literature previously [26]. The mixture of
SrCO3, CuO and B2O3 in stoichiometric proportions was
ground and heated at 780 ◦C for 24 hours. After repeating
these procedures at 800 and 820 ◦C, the powders were pressed
hydrostatically into a cylindrical rod with diameter of about 7
mm. The rods were annealed in flowing oxygen at 1000 ◦C
for 12 hours. The crystals were thereafter grown in 4 atm of
oxygen at a speed of 0.5 mm/h, until the single-crystal rods
reached a length of approximately 50mm. From these rods,
small pieces of size on the order of 1 × 1 × 0.2 mm were
chipped off and polished for smoothness.

2. High pressure heat capacity measurements
in two types of pressure cells

In this study, two types of high pressure cells were em-
ployed for the heat capacity measurements due to the restric-
tion of the inner space of our extremely-low temperature sys-
tem. A piston/cylinder-type high pressure cell with Daphne

7373 oil as pressure transmitting medium was used for the
measurements up to 2.4 GPa for temperatures down to 0.4
K. The larger Toroid-type high pressure cell [27] with glyc-
erin/water (3:2) liquid as the pressure transmitting medium
was adopted for the measurements up to ≈ 5 GPa at tempera-
tures down to 1.5 K. The pressure was determined by the pres-
sure dependent superconducting Tc of a piece of Pb that was
placed in the Teflon capsule together with the sample [28].

Single-crystal SrCu2(BO3)2 samples with dimensions of
about 0.9×0.9×0.18 mm3 and 0.8×0.4×0.15 mm3 were used
for the piston/cylinder-type and the Toroid-type high pressure
cell, respectively. Platinum wires of diameter 25 µm were
spot-welded to the ends of the heater and its resistance was
a few Ohms. Constantan was used for the heater. This is
a convenient heater material because its resistivity has only
has a weak temperature dependence. The room temperature
resistance R of the heater was determined by measuring its
length under microscope and using the known resistance per
unit length of our wire measured separately. An (Au0.07Fe)-
chromel thermocouple was glued to the opposite side of the
crystal. A sine wave AC excitation current I at frequency f
was applied to the heater and the resulting temperature oscil-
lations ∆T of the sample temperature at frequency 2f was
detected by the thermocouple amplified by an SR554 pream-
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Figure S1. Temperature dependence of C/T for SrCu2(BO3)2 sam-
ple A measured at different pressures with the piston/cylinder-type
high pressure cell for temperatures down to T = 0.4 K. The arrows
indicate the hump temperature Th and the peak associated with or-
dering into the PS state.

plifier and measured by an SR830 lock-in amplifier. As the
input power P is known (P = I2R) we can calculate the
product (P/f∆T ) which is proportional to the heat capacity
at the optimal measuring frequency [29, 30]. The optimal fre-
quency of the AC-power input was varied on cooling to main-
tain quasi-adiabatic conditions needed for correct calorimetry
measurements.

Difficulties for quantitative high-pressure AC-calorimetry
arise from the presence of the pressure transmitting medium
surrounding the sample, which acts as an effective addenda to-
gether with the heater, glue, and part of the connecting wires
adjacent to the sample. The contribution of the pressure trans-
mitting glycerin-water medium was estimated from the mea-
sured value of the reduction of the specific heat (in µJ/K) at
the glass transition in this liquid upon cooling. Separate ex-
periments with liquid alone in the pressure cell give a map
of C(P, T ) for the glycerin-water mixture and allow us to
estimate its contribution to the total heat capacity measured
by the Toroid-type pressure cell. For the Daphne 7373 liquid
this information is not available. The contribution of Daphne
7373 oil surrounding the sample in the piston/cylinder pres-
sure cell was instead estimated from AC-calorimetry measure-
ments of the sample-heater-thermocouple assembly at ambi-
ent pressure down to 0.4 K in vacuum and the same assembly
in Teflon capsule filled with Daphne 7373 liquid. The results
of these experiments allow us to calibrate our measurements
to the previously published ambient-pressure C(T ) curve for
of SrCu2(BO3)2 [31]. We assume that this calibration is sat-
isfactory up to 2.4 GPa.

Although a major part of the addenda related with heater,
connecting wires and glue is removed by this procedure, there
are still some remaining contributions to C(T ). That is why
in the fits of the low-temperature specific heat in Figs. 2(b,c)
the T linear and cubic terms are present in addition to the ex-

Figure S2. Heat capacity C/T as a function of temperature for sam-
ple B (a) and sample C (b) measured using the Toroid-type high-
pressure cell for temperatures down to T = 1.5 K. In addition to
the PS and AF phase transitions discussed in the main text, we find a
transition (peaks marked UM) into an unknown magnetic state.

ponential term originating from from the dominant magnetic
specific heat of the SrCu2(BO3)2 sample. The gaps obtained
from these fits do not depend significantly on the presence of
residual addenda contributions.

In the main text we presented typical C(T )/T curves in
Figs. 2(b-e). Here we show a larger set of curves obtained
with the two different pressure cells (described in Methods).

Figure S1 shows the high pressure heat capacity measure-
ments obtained by using the piston/cylinder-type high pres-
sure cell for pressures from 0.1 GPa to up to 2.4 GPa and
temperatures ranging from 0.4 K to 12 K. It can been seen
that, at 0.1 GPa, the plot of C/T versus temperature displays
a hump behavior which has been considered to be related to
the formation of dimer single state, in good agreement with
its ambient-pressure behavior reported previously [24]. The
hump is found to shift to lower temperature initially with in-
creasing pressure below 2.0 GPa and then moves to higher
temperature with further compression. Remarkably, upon in-
creasing P to 1.8 GPa (green curve in Fig. S1), a smaller peak
appears at 1.7 K and it systematically shifts to lower temper-
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Figure S3. Extended (P, T ) phase diagram of SrCu2(BO3)2. In (a) the green open symbols stand for the characteristic C/T hump temperature
obtained from independent runs, the half-filled diamonds and squares represent the transition temperature of the PS phase, the blue solid
squares and half-filled circles stand for the onset temperature of the AF state. The brown pentagons represent the onset temperature of the new
UM state. The purple triangles stand for the onset temperature of the previously known [11] high-temperature AFHT state. Examples of the
peaks in C/T associated with the AFHT and UM transitions are shown in (b) and (c), respectively.

ature when P is increased to 2.4 GPa. The hump and peak
temperatures are marked by the open green and half-filled red
diamonds, respectively, in Fig. 2(a) in the main text.

To reveal the behavior of SrCu2(BO3)2 at higher pressure,
we carried out heat capacity measurements in a Toroid-type
pressure cell which allows us to apply pressure up to ≈ 5
GPa. Figures S2(a) and S2(b) display the results from two
independent runs with two different single-crystal samples.
At pressures below 2.7 GPa, the data obtained in the Toroid-
type pressure cell are consistent with the findings observed by
the piston/cylinder-type cell (Fig. S1). The lower-temperature
peak that is considered to be associated with the plaquette-
singlet (PS) state can only be detected completely by the
Toroid-type pressure cell at 1.9 GPa and 2.3 GPa [Fig. S2(b)],
due to the fact that the lowest attainable temperature of the
cryostat used is≈ 1.5 K. At 2.1, 2.4, and 2.5 GPa [Fig. S2(a)]
we can see up-turns at the lowest temperatures but the peak is
missed due to the restriction of the temperature range.

At pressures higher than 3 GPa, a new transition was ob-
served in the temperature range of 1.7− 3.5 K, which is con-
sidered to be related to an antiferromagnetic (AF) transition.
In one case, P = 4.0 GPa in Fig. S2(a), the peak associ-
ated with ordering is very clear, while in other cases the peak
is rather broad or shoulder-like, and, consequently, there is
an uncertainty of order 0.2 K in the transition temperatures
graphed in Fig. 2(a). The small ordering peaks are expected
for weakly coupled spin-isotropic two-dimensional antiferro-
magnets [38]. We found that the transition temperature of the
AF phase shifts to higher temperature with increasing pres-
sure, as also expected within the weakly-coupled SS layer de-

scription (as discussed in the main paper).
Further compression leads to another previously not ob-

served phase transition at T ≈ 8 − 9 K between P = 4.1
GPa and 4.9 GPa; see Fig. S2(b). The previously known AF
phase transition at higher temperature, above 100 K [11, 18],
was also found in our high-pressure heat capacity studies with
the Toroid-stype pressure cell, as we will discuss below.

3. Extended pressure-temperature phase diagram

We summarize our experimental results for the pressure
measurements all the way up to 5 GPa in Fig. S3(a), pre-
senting an extension of the phase diagram in the main paper,
Fig. 2(a), with data above 4 GPa added. Below P ≈ 4 GPa,
we have discussed three phases: the low-T dimer-singlet (DS)
state, which is adiabatically connected to the high-temperature
paramagnetic (PM) state, the PS state, and the AF state. The
PS phase was expected in light of the inelastic neutron scat-
tering study by Zayed et al. [11], who found a new excita-
tion mode argued to show a PS state at T = 0.5 K. How-
ever, the phase boundaries had not been mapped out and re-
cently the very existence of the PS phase in SrCu2(BO3)2 was
questioned [12]. In addition to finding what we argue is the
PS phase, we identified the AF phase that had been expected
based on the SS model but that was previously never observed
in the temperature and pressure regime found here; starting at
P ≈ 3 GPa and extending to P ≈ 4 GPa. The transition tem-
perature TAF of the new AF phase varies from≈ 2 K to≈ 3.5
K increasing with P . This temperature scale of the AF phase
is reasonable within an SS description supplemented by weak
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inter-layer couplings, as discussed and illustrated with ED and
QMC results in the main paper. In contrast, it was previously
believed that the AF phase starts only at 4 GPa and has a tran-
sition temperature around 120 K. This temperature scale is
unreasonably high within a description of weakly coupled SS
layers, where one would expect the transition temperature to
be well below J and J ′, both of which should be of the or-
der tens of K in the relevant pressure range. Thus, our study
resolves a key puzzle of the previously believed facts about
SrCu2(BO3)2—though this glaring mismatch was never em-
phasized as far as we are aware.

As shown in Fig. S3, we also observe a phase transition at
T above 100 K in out high-pressure measurements with the
Toroid-type pressure cell from pressures slightly above 4 GPa
up to the highest pressures studied, P ≈ 5 GPa. As shown
in Fig. S3(a), at P = 4.15 GPa, we observed this transition,
into a phase that we will refer to as AFHT, at T ≈ 125 K,
consistent with the results reported by Zayed et al. [11]. At
the same pressure, we further observe a second phase tran-
sition at T ≈ 8.2 K. Such a transition was not reported by
Zayed et al. [11], who in their Fig. S6 showed an AF order
parameter increasing with decreasing T down to T ≈ 12
K. They also showed the presence of an AF Bragg peak at
T = 4 K. Thus, it appears likely that the new transition we
observe at T ≈ 8 K (somewhat increasing with P ) between
P = 4.2 GPa and 4.9 GPa is also AF in nature. We do
not have any independent evidence for antiferromagnetism in
this state, which we therefore refer to as an unknown mag-
netic state (UM), but the low-temperature behavior of C/T in
Fig. S3 at least indicates a gapless state. It could be an AF
state with some minor difference—perhaps in the magnitude
of the order parameter—from the AFHT state.

It appears most likely that both the AFHT and UM phases
arise from physics beyond the SS model. Given that a struc-
tural transition from tetragonal to monoclinic has been long
known within the pressure and temperature ranges of rele-
vance here [18–20], it is plausible that the AFHT and UM
phases are both associated with the monoclinic crystal struc-
ture, in which the SS model does not provide an appropriate
description. Understanding the physics of this UM state and
the AFHT–UM transition, in particular, deserves further in-
vestigations in the future.

4. Exact diagonalization of the Shastry-Sutherland model

The temperature dependent heat capacity was calculated
by standard numerical diagonalization [32] of the SS Hamil-
tonian in all sectors of fixed total magnetization, Sz =
0,±1, . . . ,±N/2. The largest lattice on which we can fully
diagonalize the SS Hamiltonian is N = 20 spins; an often
used tilted cluster on the square lattice [33]. The same lat-
tice size was previously used for calculations of the uniform
magnetic susceptibility in Ref. [11]. The temperature depen-
dent specific heat was computed directly as the Boltzmann-
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Figure S4. The location of the hump in C(T )/T graphed versus the
coupling ration α = J/J ′ of the SS model on the N = 16 and
N = 20 clusters. The location of the Schottky anomaly in the α
range where it is visible is also shown.

weighted expectation value C = T−2N−1(〈H2〉 − 〈H〉2).
Clearly thw small system cannot be expected to completely

reflect the behavior in the thermodynamic limit, but in the
large-gap DS phase the remaining finite-size effects in C(T )
are small. In the PS phase, the peak corresponding to the
phase transition can not yet be discerned. Based on our work
on the 2D CBJQ model, we know that much larger system
sizes are required before this peak becomes prominent; see
Sec. 5 below. The main hump in C(T )/T , on which our com-
parisons between the SS model and the experiments are fo-
cused, should have much smaller finite-size effects.

In Fig. S4 we plot the hump temperature Th versus the
coupling ratio α = J/J ′ for system sizes N = 16 (4 × 4
cluster) and N = 20. The N = 20 data for Th(α) con-
verted to the pressure dependent Th(P ) is shown in Fig. 2(a)
in the main text. We used P -linear pressure dependent cou-
pling constants J(P ) and J ′(P ) as described in the caption
of Fig. 2. In Fig. S4 we can observe that the differences be-
tween N = 16 and N = 20 are small for α . 0.65, i.e.,
when the system is well inside the DS phase. As the PS phase
is approached the size effects increase and persist inside the
PS phase (α ≈ 0.68 − 0.75 [16]) and the AF phase. The
main feature of a minimum in Th at α in the neighborhood
of the DS–PS transition is present for both system sizes, how-
ever. Finite-temperature properties eventually converge expo-
nentially as a function of the system size, and most likely the
hump temperature does not move substantially away from the
N = 20 curve for larger system sizes. It would still be useful
to study larger clusters in the future, e.g., with methods such
as those discussed in Refs. [39, 40].

In small clusters one can also observe a sharp low-
temperature peak in C/T that is related to the first-order DS–
PS transition. This transition is associated with a level cross-
ing, and therefore a Schottky anomaly will be present in the
heat capacity when the system is close to the phase transition
(when the two crossing levels are close to each other). The lo-
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Figure S5. Temperature dependence of the heat capacity divided by
the temperature of the N = 20 SS cluster at several values of the
coupling ratio α of relevance in the comparisons with experimental
data for SrCu2(BO3)2.

cation of the Schottky peak is also indicated in Fig. S4. Inter-
estingly, for N = 20, this peak temperature approaches zero
at α ≈ 0.68, very close to the location of the DS–PS transi-
tion in the thermodynamic limit [16]. Thus, already this small
cluster can correctly reproduce the correct transition point.
The use of level crossing for accurate estimates of quantum
phase transitions in 2D frustrated quantum spin models has
recently been emphasized in Ref. [34].

For completeness we also present C(T )/T curves for sev-
eral values of α in the N = 20 cluster in Fig. S5. In addition
to the hump present for all α values shown, for α = 0.68 the
prominent Schottky anomaly can also be seen at very low tem-
perature. The other cases are already sufficiently away from
the phase transition for the two relevant levels to be far from
each other and no anomaly can be observed.

5. Checker-board J-Q models

In this section we provide additional information on the
QMC simulations and finite-size scaling procedures underly-
ing the phase diagrams and C/T curves of the 2D and 3D
checker-board JQ (CBJQ) models in Fig. 4(a) in the main text.

As mentioned in the main text, the 3D CBJQ model is an
extension of its 2D counterpart studied in Ref. [5]. The models
are defined using singlet projector operators,

Pij = (1/4− Si · Sj), (S1)

for nearest-neighbor S = 1/2 spins. The 2D model is defined
by the Hamiltonian

H2D = −J
∑
〈ij〉

Pij −Q
∑

ijkl∈�′

(PijPkl + PikPjl), (S2)

where J is equivalent to the standard Heisenberg interaction
andQ is the four-spin interaction present on every second pla-
quette (denoted by �′ above) in a staggered pattern as illus-

trated in Fig. 4(a). A small AF interlayer coupling J⊥ is intro-
duced in the 3D model between identical 2D CBJQ systems
with layer index l = 1, . . . , Lz ,

H3D =

Lz∑
l=1

H2D(l)− J⊥
∑
〈ij〉⊥

Pij , (S3)

as also depicted in the schematic model illustration in Fig. 4(a)
of the main text. We set J + Q = 1 as the energy unit and
define the ratio g = J/(J +Q) as our tuning parameter.

To simulate the models without approximations beyond sta-
tistical errors, we employ the SSE QMC method [32]. In 2D
we study L × L square lattices with periodic boundary con-
ditions, and in 3D we choose the size in the third direction as
L/2, reflecting the weak values of J⊥ considered.

With the SSE method, the most direct way to compute the
specific heat is from the fluctuations of the sampled expansion
order n [32];

C =
1

N
(〈n2〉 − 〈n〉2 − 〈n〉), (S4)

where we normalize by the number of spins N . Alternatively,
one can compute the internal energy E(T ) on a dense grid of
T points and take the derivative C(T ) = dE/dT numerically.
We have used both methods and find good agreement where
they both work well—for low T the derivative method is of-
ten preferrable as the statistical errors of the direct method
increase rapidly as T is lowered (more so than derivative esti-
mators based on two or more temperatures).

A. 2D CBJQ model

The 2D CBJQ model was already discussed in detail in
Ref. [5]; it exhibits a first-order quantum phase transition at
g ≈ 0.18 between the PS and AF ground states [note that a dif-
ferent definition of the tuning parameter was used, g = J/Q,
and we have rescaled to the definition g = J/(J + Q) used
in the present work]. Reflecting the unusual emergent O(4)
symmetry found at this transition, the T > 0 2D Ising-type
phase transition into the PS state for g < gc has the form
Tc ∝ 1/| ln(gc − g)| of the critical temperature, based on the
analogy with a uniaxially deformed O(4) model [35].

Here, in Fig. S6 we present results for the heat capacity for
a series of different lattice sizes at g ≈ 0.09 in order to sys-
tematically observe how the peak associated with PS ordering
gradually emerges with increasing system size; results for our
largest system sizes were shown in Fig. 4(b) in the main text.
No ordering peak can be discerned at all for L = 16. Thus,
the absence of ordering peak in the ED results for the N = 20
SS model in the PS range of α values on much smaller lattices
[Fig. S5] is not surprising.

Note that the 2D model does not exhibit any AF order at
T > 0, only exactly at T = 0, as a consequence of the
Mermin-Wagner theorem according to which a continuous
symmery, here O(3) spin-rotation symmetry, cannot be broken
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Figure S6. Heat capacity of the 2D CBJQ model with g ≈ 0.091
(J/Q = 0.1) in the neighborhood of its PS ordering transition. Re-
sults for several lattice sizes are shown in order to illustrate the size
dependence of the peak associated with PS ordering. The transition
is in the 2D Ising universality class, for which the specific-heat ex-
ponent α = 0 and there is a logarithmic divergence of the peak value
with the system size. The area under the peak should converge to a
finite value that vanishes as g → gc, Tc → 0.

at T > 0 in two dimensions. We therefore use the 2D model
only to elucidate the PS state and transition in SrCu2(BO3)2.

B. 3D CBJQ model

In the 3D case the CBJQ model can undergo AF ordering
also at T > 0. If the relative intra-layer coupling J⊥/(Q+J)
is small, we expect a separation in temperature between a
hump in C(T )/T and the peak associated with the phase tran-
sition, as was previously studied with SSE QMC simulations
in the Heisenberg case (Q = 0) [38]. We will demonstrate
this seperation of temperature scales here. In addition, we
investigate the sensitivity of the location of the PM–PS and
PM–AF phase boundaries, as well as the direct PS–AF bound-
ary, to variations on J⊥. We have performed simulations for
J⊥ = 0.1 and 0.01 (with J +Q = 1).

To capture the finite-temperature phase transitions from the
PM phase into the PS and AF phases, we calculate the Binder
cumulants of the respective order parameters, defined as

Uz =
5

2

(
1− 〈m4

z〉
3〈m2

z〉2

)
(S5)

Up =
3

2

(
1−

〈m4
p〉

3〈m2
p〉2

)
, (S6)

where mz and mp are the order parameters for AF and PS
phases. The AF order parameter mz is taken as the z-
component of the O(3) staggered magnetization vector,

mz =
1

N

∑
i

(−1)xi+yi+ziSz(i), (S7)

where Sz(i) is the spin at site i with coordinates (xi, yi, zi)
on the 3D cubic lattice. As for the plaquette order parameter,
we first definte its l:th layer value as

mp(l) =
2

L2

∑
i∈�′

φ(i)Πz(i), (S8)

where the sum is over the Q-plaquettes �′ and φ(i) = ±1
for even and odd rows of plaquettes. The plaquette quantity
Πz(i) is defined as

Πz(i) = Sz(i)Sz(i+ x̂)Sz(i+ ŷ)Sz(i+ x̂+ ŷ), (S9)

where the site i stands for the low-left corner site in a given
Q plaquette. The full 3D order parameter used in the Binder
cumulant in Eq. (S6) is defined as the average of mp(l) over
the layers,

mp =
1

Lz

Lz∑
l

mp(l), (S10)

with Lz = L/2. Note that the 3D PS order parameter defined
in Eq. (S10) corresponds to in-phase ordering of the plaque-
ttes within the different layers, which is what we find in this
version of the 3D CBJQ model. Out-of-phase ordering could
be achieved by modifying the inter-layer coupling.

The phase transitions are located by the common method of
Binder cumulant crossings; scanning over T or g, the cumu-
lants for two different system sizes cross at some point close
to the phase transition, where in the thermodynamic limit the
cumulant for a given order parameter exhibits a step function,
jumping from 0 in the phase with no order of the type con-
sidered to 1 when there is such order. The crossing points for
different pairs of system sizes will flow to the location of the
step as the system size is increased.

At a conventional first-order transition, the cumulant de-
velops a negative divergent peak at a location that also flows
toward the transition point. No negative peaks were found
at the T = 0 PS–AF transition in the 2D CBJQ model [5],
even though other first-order signatures are clearly visible.
This anomalous behavior, in combination with other consid-
erations, led to the conclusion of a first-order transition with
emergent O(4) symmetry. In a forthcoming paper we will in-
vestigate the fate of the emergent symmetry in the 3D CBJQ
model with weakly coupled layers [36]. Here we focus on the
phase diagram and the behavior of the specific heat, comple-
menting the results that allowed us to connect to the experi-
ments on SrCu2(BO3)2 in the main paper.

At each fixed g, we perform simulations scanning the T -
axis for various system sizes. The finite-size analysis can be
used to determine the critical temperature Tc and the diver-
gence/singularities of thermodynamical quantities. Figures S7
and S8 show representative results for J⊥ = 0.1 and 0.01, re-
spectively. In Fig. S7(a), at g = 0.02 the system is inside the
PS phase at low temperature. The PM–PS phase transition is
manifested as the crossings of Up curves for different system
sizes. With three different system sizes, L = 32, 40, 48, the
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Figure S7. Temperature dependence of the plaquette and spin Binder
cumulants, Up and Us (upper panels), and the heat capacity C/T
(lower panels) of the 3D CBJQ model with J⊥ = 0.1, calculated
on lattice sizes L = 32, 40, and 48. The in-plane coupling ratio is
g = 0.02 in (a) and 0.06 in (b), corresponding, respectively, to the
ordered PS and AF phases at low temperatures. The orange dashed
lines mark the common location of the crossing points of the Binder
cumulants and the peak in C/T , i.e., the transition temperature Tc.
The humps located above Tc are seen more clearly on the wider tem-
perature scale used in Fig. 4(c) in the main paper.
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Figure S8. Results analogous to those in Fig. S7 for a much weaker
inter-layer coupling; J⊥ = 0.01. Here the coupling ratio g = 0.04
in (a), corresponding to the PS phase at low T , and the system sizes
are L = 32, 40, 48, and 64. The inset shows the L = 48 data on
a wider T scale. In (b), at g = 0.24 the system is in the AF phase
at low T and the lattice sizes are L = 32, 40, and 48. At the AF
transition the ordering peak is very small and not clearly discernible
where it should appear at the orange line. Here the hump at higher T
is not seen because of the lack of data, but it should be located at T
above 0.2 as in Fig. 4(c) in the main paper.
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Figure S9. Phase diagram of the 3D CBJQ model with inter-layer
coupling J⊥ = 0.01. The PM, PS, and AF phases are the same as
those in the Fig. 4(c) of the main text at J⊥ = 0.1. The dashed lines
nark continuous phase transition and the solid line indicates a first
order transtion. The phase boundaries were obtained by interpolating
among transition points extracted from Binder cumulant crossings,
such as those in Fig. S8 and additional scans vs g at fied T .

crossing can be determined at Tc ≈ 0.187, as denoted by the
orange dashed line. At the same temperature, C/T develops
a weak divergence, as seen in the lower panel of Fig. S7(a).
This behavior is expected at a 3D Ising critical point, where
the specific-heat exponent α is close to 0 but positive. The
hump above the C/T peak is more clearly observable on the
wider T range shown in Fig. 4(c). The hump exhibits only a
weak size dependence, reflecting the short correlation length
at these temperatures. The same kind of peak-hump structure
is also observed in the 2D case [Fig. 4(b) in the main paper
and Fig. S6 above] and in the experiments on SrCu2(BO3)2
[Fig. 2(c)], suggesting that these features are largely devel-
oping due to correlations and interactions within the 2D lay-
ers. The 3D couplings still play an important role quantita-
tively, especially in the significant shrinking of the PS phase
relative to the purely 2D case—the same mechanism reduces
the critical coupling ratio α of the PS–AF transition in the SS
model when the J⊥ interactions are tunrned on, as discussed
in the context of fitting to experimental SrCu2(BO3)2 data in
the main paper.

Increasing the value of g to 0.06, in the AF regime, we can
see in Fig. S7(b) that the Us curves cross at Tc ∼ 0.191. At
the same temperature, C(T )/T also develops a peak, corre-
sponding to a continuous transition into the AF phase. In this

case we do not expect a divergent peak as L increases, only a
cusp singularity corresponding to the small negative value of
the exponent α in the 3D O(3) universality class. Indeed, the
peak shape does not change significantly with the system size
in this case. The broad hump slightly above the peak, signi-
fying the onset of 2D magnetic fluctuations, is also observed.
In the AF phase the 3D couplings clearly play a crucial role
in determining the shape of the C/T curve, as the ordering
transition is completely absent for an isolated 2D layer.

In Fig. S8 we show results similar to those above for J⊥ =
0.01. Figure S8(a) corresponds to the PM–PS transition at
g = 0.04, where the crossings of Up curves give the transition
temperature Tc ≈ 0.187; almost the same as in the J⊥ =
0.1 case. This confirms again the minimal impact of a weak
inter-plane coupling in the PS phase relatively far away from
the 2D quantum-critical point. The AF ordering temperature,
analyzed in Fig. S8(a), is much more affected, being reduced
from Tc ≈ 0.19 to ≈ 0.14 when J⊥ is decreased from 0.1 to
0.01. The still very high critical temperature in units of J⊥
reflects the expected form Tc ∝ 1/| ln(g − gc)| [35].

Finally, in Fig. S9 we present the phase diagram of the 3D
model at J⊥ = 0.01, complementing the phase diagram at
J⊥ = 0.1 in Fig. 4(c) of the main paper. The phase bound-
aries were drawn based on several scans of the type shown
in Fig. S8, and additional scans at fixed T and carying g. The
quantum phase transition between the PS and AF phases takes
place at g = 0.162, roughly 10% smaller than the gc value in
the J⊥ = 0 case, demonstrating that even a very weak inter-
layer coupling can noticably affect the location of the quan-
tum phase transition, as we have argued in the case of the SS
model in the main paper based on the results for the 3D CBJQ
model presented here.

The T > 0 bicritical point at which the first-order AF–PS
transition terminates is at (g, T ) ≈ (0.162, 0.11), marked with
the red circle in the phase diagram Fig. S9. This can be com-
pared with the point (g, T ) ≈ (0.041, 0.168) for J⊥ = 0.1.
The bicritical point should fall within the symmetry classifica-
tion discussed in the context of classical models with O(N1)
and O(N2) transitions, where here N1 = 1 (the PS order pa-
rameter) and N2 = 3 (the AF order parameter), but we have
not yet confirmed the scenario proposed for these particular
values of N1 and N2 [37].
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