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Figure 1: (a) Aggregation of the force and form diagrams of a truss cellular unit-cell and (b) aggregation of the force and form
diagrams of a shell-based cellular (shellular) unit-cell (similar to the Schwarz P unit-cell) generated in 3DGS.

ABSTRACT
In this paper, we introduce a geometry-based structural design
method as an alternative approach for designing low-density struc-
tures applicable to material science and mechanical engineering.
This method will provide control over internal force-flow, boundary
condition, and applied loads. The methodology starts with an intro-
duction to the principles of geometric equilibrium and continues by
introducing multiple design techniques to generate truss cellular,
polyhedron cellular, and shell cellular (or Shellular) materials by
manipulating the geometry of the equilibrium of force. The research
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concludes by evaluating the mechanical performance of a range of
cellular structures designed by this approach.
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1 INTRODUCTION
1.1 Architecture of low-density materials
Cellular materials are light-weight and porous materials with tun-
able multi-functional properties. They can have a variety of appli-
cations where high load-bearing capacity with a very low density
is desired [Christensen 1986; Eynbeygui et al. 2020; Shi and Ak-
barzadeh 2019]. In the literature, the taxonomy of cellular materials,
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based on the geometric configuration of each unit cell, includes
truss cellular, polyhedron cellular, and shell cellular (or shellular)
materials (Figure 2) [Gibson and Ashby 1999; Han et al. 2015a; Savio
et al. 2018]. These unit cells can either be tessellated in periodic or
stochastic shapes. Each cell’s shape and connectivity to the others
in a periodic cellular material are prescribed uniformly, such as the
regular hexagon honeycomb pattern. While the shape of a stochas-
tic cellular material emerges as a result of an underlying stochastic
function such as Voronoi patterns [Bhate et al. 2019].

1.1.1 Truss cellular materials. The architecture of these structures
comprises a network of slender members similar to the skeleton
of a glass sponge in nature (Figure 2a). Topologically speaking, we
can describe these materials’ geometry as a group of vertices 𝑣𝑖 and
edges 𝑒𝑖 , where each vertex is connected to two or more edges. The
number of edges each vertex is connected to is called the degree or
valence of the vertex. For periodic truss cellular materials, each unit
cell’s geometry and topology, such as the valence of each vertex in
different cells, is consistent, while in the stochastic version, they
might be different [Bhate et al. 2019].

The mechanical properties of periodic truss cellular materials
linearly decreases as the relative density (𝜌) reduces, while in sto-
chastic cellular materials decrease more rapidly (i.e. proportionally
to (𝜌/𝜌𝑠 )2 = (𝜌/𝜌𝑠 )3 ) [Gibson and Ashby 1999; Ma et al. 2001].
Cellular materials can deform under external loading by either
bending or stretching of the cell members. Stretching-dominated
materials are much more weight-efficient for structural applications
[Deshpande et al. 2001]. When periodic truss cellular materials are
subjected to external loading, axial force as tension or compres-
sion act along each strut member, resulting in high strength and
stiffness. Compared to stochastic cellular materials with bending-
dominated deformation, periodic truss cellular materials’ deforma-
tion is stretching-dominated [Han et al. 2015a; Ma et al. 2001].

Abrupt geometric change near the connections of truss cellular
systems causes stress concentration [Torrents et al. 2012], which
may increase the flaws of fabrication and affect the mechanical
performance of the material. Besides, the structural performance of
these materials (in compression) relies on the buckling performance
of the members [Akbari et al. 2019; Meza et al. 2014].

1.1.2 polyhedron cellular materials. The architecture of these ma-
terials composed of closed cells with membranes similar to club
moss in nature (Figure 2b). Topologically, these materials consist of
a group of cells 𝑐𝑖 , faces 𝑓𝑖 , edges 𝑒𝑖 , and vertices 𝑣𝑖 . Each edge in
this typology is connected to more than two faces, called singular
or a non-manifold edge [Bloomenthal and Ferguson 1995].

The Mechanical performance of the structure is proportional
to its relative density (measured density, 𝜌 , divided by the density
of the constituent solid, 𝜌𝑠 ). Concerning other cellular materials,
closed polyhedrons take much material, which makes it challenging
to produce at low-density. Besides, since there is no access to the
cells’ internal space to transfer material, closed cells limit their
applications that require material transformation inside the cells,
except for thermal insulation [Gibson and Ashby 1999; Han et al.
2015a].

1.1.3 Shell cellular materials (Shellulars). The third possible option
to achieve ultra-low density materials is shell cellular materials

or Shellulars. Shellulars are stretching-dominated materials with
simpler architecture than truss cellular materials [Han et al. 2015a].
This typology consists of a group of unit cells, faces 𝑓𝑖 , edges 𝑒𝑖 ,
and vertices 𝑣𝑖 . In this typology, compared to polyhedron cellular
materials, each edge 𝑒𝑖 is adjacent to only two faces, called a regular
or a two-manifold edge [Bloomenthal and Ferguson 1995]. That
is why these materials do not have self-intersections. A group of
these unit cells results in a single continuous smooth-curved shell.
In nature, we can find similar geometries on the surfaces of Urchin
plates (Figure 2c) [Han et al. 2015a]. A typical example of these
surfaces is the triply periodic minimal surface (TPMS), which was
described by H. A. Schwarz in the 19th century [Hyde et al. 1996].

Minimal surfaces are intersection-free smooth surfaces that have
zeromean curvature at every point on the surface (𝐻 = (𝑘1+𝑘2)/2 =
0, 𝑘1 and 𝑘2 are the principal curvatures of the surface at each
point). They are surfaces with the minimum area between given
boundary conditions resulting in the least amount of material and
weight (as observed in soap films formed in rigid frames [Hyde et al.
1996]). The crystalline structure of minimal surfaces allows them
to repeat in three dimensions, resulting in triply periodic minimal
surfaces(TPMS) [Hyde et al. 1996]. If a thin shell takes the form of
a minimal surface, it will demonstrate significant resistance under
external loads, showing the uniform distribution of the stresses in
the shell [Rajagopalan and Robb 2006a]. Recent studies show that
the high surface-to-volume ratio of TPMSs enhances themechanical
performance of the system [Han et al. 2017]. In small scales, the
TPMSs, such as Gyroid, Schwarz P, or Schwarz W are used as
space-filling, rigid micro-structures to produce light-weight and
high-performance materials [Han et al. 2015b; Qin et al. 2017].

1.2 Geometric modeling of cellular
architectures

Geometric modeling of low-density structures can be classified into
two main groups, Implicit and explicit modeling [Rajagopalan and
Robb 2006b]. Implicit modeling is a way to model geometry using
mathematical equations. For instance, for designing a shellular
material, we would be able to model a continuous surface using a
single-valued function of three variables. The resulted surface is
the positions of points for which the function has a constant value.

While with this method, one can model the geometry of a shel-
lular material with a high degree of precision, lack of topology
information (in order to describe the surface as a discrete system in-
cluding faces, edges, and vertices) restricts its application. In order
to explicitly model a cellular geometry, we need to iteratively refine
an initial geometry defined by its boundary [Rajagopalan and Robb
2006b]. First, we need to model a simplified version of the geometry
as a curve skeleton [Thiery et al. 2012] (e.g., for modeling a truss
cellular geometry) or a pin-jointed net (e.g., for modeling a shellu-
lar geometry). Then, in order to visualize the existing network, we
may either use a boundary representation technique (B-rep) or a
volume representation technique (V-rep) [Savio et al. 2018]. The
B-rep method represents a geometry using boundary limits, and
the v-rep method (or solid modeling) represents a complex solid as
a boolean operator (e.g., union) of elementary geometries [Savio
et al. 2018].
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Figure 2: Cellularmaterials in nature; (a) Sponge (an example of truss cellularmaterial); (b) Iris leaf (an instance of polyhedron
cellular material) [Gibson and Ashby 1999]; (c) cross-section through a sea urchin skeletal plate (showing resemblance to
Schwarz P surface, an example of shell cellular (shellular) material) [Lai et al. 2007].

Figure 3: (a) Force and form diagram of a node in equilib-
rium in 2DGS; (b) internal subdivision of the force diagram
results in a frame (2d cell) in equilibrium as a form diagram;
(c),(d) additional subdivision of the force diagram without
changing the external edges results in different 2d struc-
tures in equilibrium.

1.3 Structural modeling of cellular
architectures

The modeling methods represented in section 1.2 only address the
pure geometric configuration of material without considering the
force distribution in the system. Structural modeling methods such
as structural form-finding and topology optimization consist of
various techniques to find efficient structural forms for discrete
networks. [Goldsmith 2016; Sigmund and Maute 2013] Structural
form-finding techniques fall into the following categories; physical,
numerical, and geometric form-finding methods. In the physical
form-finding method, the designer needs to build a physical model
to evaluate its structural performance through material behavior.
Each design iteration in this method requires building a new model,
which is a time-consuming process [Goldsmith 2016]. Numerical
methods were developed to avoid the problems of physical form-
finding techniques. These methods simulate the behavior of the
material subjected to the force. One of the well-known numerical
methods is the force-density, which is based on the force-length
ratios defined for each branch of a net structure [Adriaenssens et al.

2014; Pinkall and Polthier 1993; Schling et al. 2017; Veenendaal and
Block 2012]. These methods work like a black box and will not
let the designer understand or see the effective parameters in the
design process [Akbarzadeh 2016].

Finite element-based optimization, as an example of topology
optimization techniques, optimizes material layout within a given
design space using the finite element method(FEM). This method
receives a volume as an input, and after analyzing the stress dis-
tribution for a given external loading scenario, it tries to optimize
the material using Boolean subtraction. The boolean operation,
rendering, and visualization in this technique requires significant
computational resources and large physical memory. Besides, this
method always works with the form without knowing the system’s
force in the design process and does not control the structure’s
geometry and topology. [Bendsoe and Kikuchi 1988; Huang et al.
2013; Requicha and Voelcker 1977; Sigmund and Maute 2013]

1.4 Geometry-based structural form-finding
As the third category of structural form-finding methods, the geo-
metric form-finding method is an intuitive structural modeling
technique, describing the equilibrium of a structure using visual
geometric relations [Veenendaal and Block 2012]. In this method,
geometrical representation has been used to show the equilibrium
of the forces in a structure. Graphic statics, as a geometry-based
structural form-finding technique, is a powerful method for design-
ing and analyzing complex structures in 2D and 3D [Cremona 1890;
Culmann 1864; Maxwell 1864; Rankine 1864; Van Mele et al. 2012;
Wolfe 1921]. This method started by M. Rankine and J. Maxwell in
the 19th century [Maxwell 1864; Rankine 1864] but continues to
be used and developed even today [Akbarzadeh 2016; Block 2009].
Graphic statics lets us understand the force-flow while designing
the structure. With this method, we can design various structures
with different topology while we have control over their form and
force. This technique generates axially loaded structures in equilib-
rium in which no bending occurs [Akbarzadeh et al. 2015a]. The
strength of this method lies in the clear relation between form
and force diagrams as a pair of reciprocal diagrams linked through
simple geometric constrains (Figure 3 and 4). The form diagram
represents the structure’s geometry combined with reaction forces
and applied loads, and the force diagram represents the equilibrium
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of forces acting on and in the structure. The closeness of the force
polygon (in 2d graphic statics) and force polyhedron (in 3d graphic
statics) tells us that the structure is in equilibrium [Akbarzadeh
et al. 2016; Maxwell 1864; Rankine 1864].

1.4.1 2D Graphic statics (2DGS).

The geometry and topology of reciprocal diagrams in 2DGS. If we
consider a system of co-planar intersecting bars in the plan 𝑃𝐿𝑚 as a
rope with four segments being pulled from all sides (force diagrams
have been marked by Greek letters with † sign ) (Figure 3a, Ξ), to
find the magnitude of forces in each segment (e.g. |fi |), it is enough
to construct the polygon of force or the force diagram (Figure 3a,Ξ†).
Each edge (e.g. 𝑒†

𝑖
) of force diagram is perpendicular to the direction

of each segment (fi) in the bars system or form diagram (Figure 3a,
Ξ) [Maxwell 1864; Rankine 1864]. Closeness of the force polygon
tells us that the ropes are in equilibrium [Akbarzadeh et al. 2016].
Moreover, the length of each edge (e.g. 𝑒†

𝑖
) of the force diagram

(Figure 3a, Ξ†) represents the magnitude of the force (|fi |) in the
reciprocal rope in the form diagram (Figure 3a, Ξ) [Maxwell 1864;
Rankine 1864]. The force polygon as a force diagram corresponds
to a node in equilibrium in 2d as a form diagram. The edges of
the force diagram are perpendicular to the members of the form
diagram (edges and reaction forces) [Maxwell 1864; Rankine 1864].

Effect of subdivision of the force diagram on the topology of the
form diagram in 2DGS. In Figure 3b, Π†, Internal subdivision of the
force polygon from a square to four squares results in a 2d cell in
equilibrium as a form diagram (Figure 3b, Π) [Van Mele et al. 2012].
Additional subdivision of the force diagram without changing the
external edges results in more detailed structures in equilibrium
with the same external loads (Figure 3a). The bidirectional relation
between the force and form diagram throughout the design process
helps the designer intuitively understand the system’s behavior.

1.4.2 3D Graphic statics (3DGS).

The geometry of the reciprocal diagrams in 3DGS. If a polygon
represents the equilibrium of a node in 2D (as a force diagram), a
closed polyhedron in 3D can represent the equilibrium of a three-
dimensional node (Figure 4a, Ξ†). According to the "Divergence
theorem" and the principles of graphic statics [Culmann 1864;
do Carmo 1976; Katz 1979; Wolfe 1921], If the forces (fi) applied to
a node in space (Figure 4a, Ξ) are perpendicular to the faces (𝑓 †

𝑖
) of

a closed polyhedron, the sum of these forces must be zero, leaving
the node in equilibrium. The node and applied forces represent
the form diagram (Figure 4a, Ξ) in 3d, while the closed polyhedron
represents the force diagram (Figure 4a, Ξ†). The magnitude of the
forces (|fi |) in the form diagram is proportional to the areas of the
faces (𝐴𝑓𝑖 ) in the force diagram [Akbarzadeh 2016; Akbarzadeh
et al. 2015b]. Therefore, in order to represent the force-flow in the
form diagram, we can visualize the force distribution via adding
thickness to each member of the form diagram proportional to the
corresponding faces in the force diagram (Figure 4).

The topology of the reciprocal diagrams in 3DGS. Topologically,
reciprocal polyhedral diagrams (form and force diagrams in 3d)
consist of vertices, edges, faces, and cells. These two diagrams are

Figure 4: Different types of force diagram’s subdivisions in
3d result in new form diagrams; (a),(e) a closed cube as a
force diagram represents a node in equilibrium; (a-d) inter-
nal subdivision of a force diagram without subdividing the
global faces; (e-h) subdivision of a force diagram while sub-
dividing the external faces and extruding inside.

reciprocal and they have certain characteristics as mentioned bellow
(Figure 4) [Akbarzadeh et al. 2015b];

• they are dual, which means each edge, vertex, cell, and face
in the form diagram (𝑒𝑖 , 𝑣𝑖 , 𝑐𝑖 , 𝑓𝑖 ) (Figure 4a, Ξ†), respectively,
corresponds to one and only one face, cell, vertex, and edge
(𝑓 †
𝑖
, 𝑐

†
𝑖
, 𝑣

†
𝑖
, 𝑒

†
𝑖
) (Figure 4a, Ξ);

• all faces are planar and all edges are perpendicular to their
dual faces;

• the direction of force f𝑗 in the form diagram is as same as
the normal n𝑗 in the force diagram; and

• a system of forces is in pure tension or compression if their
force polyhedron is convex and is a proper cell decomposi-
tion of space (when every point in space belongs to one cell
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at least, the cells have disjoint interiors, and every face of
one cell is a complete face of another cell).

In reciprocal diagrams (Figure 4a), each cell 𝑐†
𝑗
in the force dia-

gram (force diagram’s topology have been marked by italic letters
with † sign ) corresponds to a single node 𝑣 𝑗 in the form diagram.
In addition, face 𝑓

†
𝑗
, edge 𝑒†

𝑗
, and vertex 𝑣

†
𝑗
in the force diagram

correspond to edge 𝑒 𝑗 , face 𝑓𝑗 , and vertex 𝑣 𝑗 in the form diagram
(in order to simplifying the figure, the form diagrams have been
shown as pin-jointed structures and form diagrams’ cells and faces
have not been shown).

1.5 Problem statement and objectives
Some of these techniques, like mathematical-based methods, are
mostly based on complex equations, and lack of topology informa-
tion may restrict their applications in computer-aided geometric
design. [Rajagopalan and Robb 2006b] Tuning topological elements
let us design new geometries or deform the existing ones to the
desired shape. Moreover, designing cellular materials using any
arbitrary geometric configuration does not give us any informa-
tion about the system’s forces. Therefore, it is preferable to use a
structural form-finding method to understand the behavior of the
cellular structures in the design process, while being able to change
the topology of the pin-jointed system to result in new structures
(section 1.3).

This research proposes a potential application of the geometry-
based structural form-finding technique in the context of material
science and mechanical engineering. It introduces the geometry-
based structural form-finding technique to design cellular materials
and shows the relationship between the structure’s geometry and
flow of force. Moreover, it presents a method to simulate well-
known cellular and shellular materials (e.g., Schwartz P, D, and
Gyroid) using the geometry-based form-finding technique while
controlling the internal force-flow of the structure to achieve dif-
ferent geometrical typologies (i.e., from truss cellulars to shellular
materials).

2 METHODOLOGY
As mentioned in section 1.4.2, according to the principles of 3d
graphic statics, a closed and convex force diagram in 3D can rep-
resent a compression-only or tension-only structural system in
equilibrium. In the design process of a cellular material’s unit-cell,
it is always guaranteed that the force-flow will be in equilibrium
if we start from designing a force diagram in 3d, but the other
way around is not valid. This is the main advantage of designing a
structural system via 3DGS compared to other methods. Besides,
since the magnitude of the force in each member in the form dia-
gram is proportional to the area of the corresponding face in the
force diagram, by designing the force diagram, we would be aware
of the load ratio of the members in the form diagram (Figure 4)
[Akbarzadeh et al. 2015a]. Therefore, to design a unit cell of a peri-
odic cellular material (as a form diagram), we start by designing its
dual (force diagram). Designing the dual needs understanding the
properties of the dual, including the global and nodal equilibrium
and the techniques to change the internal equilibrium without dis-
turbing the global equilibrium. In this process, we use PolyFrame

Figure 5: Specific iterative subdivision of the force diagram
would result discrete synclastic or anticlastic surfaces; (a-d)
the process of subdividing a pyramid as a force diagram to re-
sult a synclastic surface as a form diagram; (e-h) the process
of subdividing a tetrahedon through two axes (labyrinths)
as a force diagram to result a discrete anticlastic surface as
a form diagram.

beta [Nejur and Akbarzadeh 2018] plugin for Rhinoceros software
[McNeel 2014] to generate the form and the force diagrams.

2.1 Nodal equilibrium in 3DGS
A closed and convex polyhedron represents the equilibrium of
a single node (under compression or tension) in 3d (Figure 4a)
[Akbarzadeh et al. 2015b; Baumgart 1975]. The force diagram’s side
faces correspond to the number of forces applied to a node as a
form diagram (in Figure 4a, a cube as a force diagram represents
a node in equilibrium with six external loads as a form diagram).
Each of the six external forces in the form diagram corresponds
to an external face (global face) in the force diagram. Therefore,
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Figure 6: Approximating three unit-cells of well-knownminimal surfaces via 3DGS: (a and d) force and diagrams of a discrete
unit-cell approximating Schwarz w surface (eightfold-coordinated Schwarz W unit-cell), (b and e) force and form diagrams
of a discrete unit cell approximating Schwarz P surface (sixfold-coordinated Shwartz P unit-cell); (c and f) force and form
diagrams of a Gyroid’s patch approximation (threefold-coordinated, part of a Gyroid unit-cell). Notice that pair of labyrinths
for each unit cell have been shown as red and black 3d graphs.

each closed cell in the force diagram corresponds to a single node
in the form diagram, satisfying a local equilibrium in the system.
Subdividing the force diagram (the cube) to six closed cells (Figure
4b, Ξ†) would result a cell with six nodes connected with eight
edges as a form diagram (Figure 4b, Ξ†). Each of the eight edges
in the form diagram corresponds to an internal face (local face) in
the force diagram. Also, the node in the center of the subdivided
force diagram (Figure 4b) corresponds to a cell in the form diagram.
Adding thickness to the edges of the form diagram, proportional
to the area of the reciprocal faces in the force diagram, visualizes
the magnitude of the forces in the form diagram’s edges (Figure 4)
[Akbarzadeh et al. 2015b].

2.2 Global equilibrium in 3DGS
In 3d reciprocal form and force diagrams, the global equilibrium of
a spatial compression-only form is represented by a convex poly-
hedron, which provides the magnitude and the direction of the
reaction forces at the supports (Figure 4a). The external faces of the
force diagram (global faces) correspond to the applied loads and the
reaction forces. Regardless of the internal topology of the force-flow
in the form diagram (Figure 4a-d), the external forces are in equi-
librium if the external faces of the force diagram (corresponding to
the applied loads) establish a closed force polyhedron. For instance,
in Figure 4a-d, the external faces of the force diagram are fixed as a
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cube corresponding to the equilibrium of the six applied loads in
the form diagrams.

2.3 Internal equilibrium (Effect of subdivision
of the force diagram on the topology of the
form diagram)

Subdividing the force diagram’s internal space results in a variety
of topologically-different structural forms for a given boundary
condition and loading scenario [Harboe Nielsen et al. 2017]. There
are twomain approaches to subdivide a force diagram;We can either
subdivide the faces of the global force polyhedron and internal
space of the global force polyhedron (Figure 4e-h) or subdivide the
internal space of the force diagram without disturbing the global
equilibrium of the system (Figure 4a-d). In the first approach, the
quantity and magnitude of the reaction forces have been changed.
For instance, in Figure 4e-h, by subdividing the internal space and
global faces of the force diagram, the form diagramwith six reaction
forces (Figure 4e) is altered to a form diagram with 48 reaction
forces. Therefore, the magnitude of each reaction force is changed
from |fi | to |fi,3 | = |fi |/8. While in Figure 4a-d, by subdividing the
internal space of the force diagram without changing the global
faces, the quantity and magnitude of the reaction forces have not
been changed.

2.4 Cellular funicular geometries
To design a unit cell of a periodic truss cellular material, first, the
applied loads’ location needs to be determined. Then, according
to the section 2.2, the global force diagram corresponding to the
applied forces should be generated as a closed polyhedron with
each face perpendicular to the corresponding applied forces in the
form diagram (Figure 4a). Then the force diagram can be subdivided
in 3D (see section 2.3) in order to result in a form diagram. Different
subdivisions results various form diagrams, enable us to explore
a wide range of possibilities (Figure 4 and 5). The resulted form
diagram, as a pin-jointed network, only represents the force-flow
of a structure. The form diagram is visualized by adding thickness
to the links or faces to result in struts or membranes as structural
members of the cellular material. As mentioned in sections 1.4.1
and 1.4.2, both reciprocal diagrams consist of vertices, edges, faces,
and cells. Therefore, in the visualization process, one can either
add thickness to the edges of the form diagram (Figure 8a,b,c) or to
the faces between the edges (Figure 8d). In order to design a truss
cellular structure, each edge of the form diagram can be translated
to a strut member which its thickness is proportional to the area of
the corresponding face in the reciprocal force diagram(Figure 4h)
[Akbarzadeh et al. 2015b]. The structural performance of truss cel-
lular materials with slender members relies heavily on the buckling
performance of the system. By increasing the number of subdivi-
sions while keeping the volume constant, we would have shorter
edges and distributed external loads in the form diagram (e.g., Fig-
ure 4e-h), which would increase the maximum buckling force in
the structural system [Harboe Nielsen et al. 2017].

2.5 Shellular funicular geometries
Shellular (shell cellular) systems are the third category of cellu-
lar structures discussed in this paper. These structures are ultra-
low density materials in nature composed of a single, continuous,
smooth-curved shell (Figure 2c) [Han et al. 2015a]. Due to their
complex geometry, the modeling process of this type of geometries
is a challenging task. In this section, the authors introduce a novel
approach for generating these structures in 3DGS. This technique
allows us to design shellular materials while understanding the
relationship between form and force and modify or optimize the
structure’s force-flow by changing its reciprocal force diagram. As
mentioned in section 2.3 and 2.4, by increasing the number of inter-
nal subdivisions in the force diagram, we would have shorter edges
and distributed external loads in the form diagram (e.g., Figure
4e-h) In the force diagram, if we repeat specific types of subdivision
iteratively, we can shorten the edges of the form diagram until
their length gets near to zero (Figure 5d,h). Therefore, with this
technique, we can approximate a surface in 3DGS (discrete surface)
[Akbari et al. 2019]. There are specific subdivision rules in 3DGS,
resulting in a polyhedral surface geometry with synclastic or anti-
clastic properties. The figure 5a-d shows a subdivision process that
translates a single node in equilibrium into a discrete synclastic
surface. The global force diagram of a discrete synclastic surface is
a pyramid with a square base (Figure 5a), which is reciprocal to a
node with five forces in equilibrium as a form diagram. Subdividing
the square base (in the force diagram) to four squares and extruding
them to the bottom vertex 𝑣†

𝑗
would result in a square as a form di-

agram with eight forces from the sides and four forces from the top
(Figure 5b). Similar iterative subdivision results a discrete synclastic
surface as a form diagram (Figure 5c,d). Increasing the subdivision
number will improve the geometry’s resolution as a continuous
surface (Figure 5c,d). This iterative subdivision around the vertex
𝑣
†
𝑗
results in a discrete surface with two principal curvatures. We

noticed that the center of curvature of the surface is located on
the vertex 𝑣†

𝑗
, if we relocate the form diagram on top of the force

diagram. Therefore, this point can be considered a control point in
the force diagram to tune the curvature of the discrete synclastic
surface (Figure 5d).

2.5.1 Anticlastic polyhedral geometries in 3DGS. Shellular geome-
tries (e.g., minimal surfaces) consist of an aggregation of anticlastic
patches. Therefore, to design a shellular structure, we need to find
a way to design an anticlastic surface in 3DGS. As mentioned in
section 1.1.3, an anticlastic surface is a surface with centers of cur-
vature on opposing sides. Hence, to design an anticlastic surface,
we need two axes of curvatures as two skew lines in 𝑅3 and the
surface in between (Figure 5e). As mentioned in section 2.5, the cur-
vature center of a surface can be found in the force diagram of the
structure. We used this property to design a global force diagram
for an anticlastic surface between two skew lines (Figure 5e). Global
force diagram of a discrete anticlastic surface is a tetrahedron cor-
responding to a node with four external forces in equilibrium (two
hanging and two standing) as the form diagram (Figure 5e). In order
to translate this node to a continuous shellular geometry, we need
to apply the anticlastic subdivision technique to subdivide the
force diagram into a group of smaller tetrahedrons. In each step of
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Figure 7: Approximating Schwarz’s P surface’s unit-cell in 3DGS; (a) A Cube, as the global force diagram. (b) Two sets of
labyrinths create six tetrahedrons in between, resulting in a truss-based geometry. (c) Applying the anticlastic subdivision
technique. (d) Adding thickness to the surface. (e) Mirroring the surface patch in 𝑥,𝑦, and 𝑧 directions approximate Schwarz’s
P unit-cell. (f) Changing the labyrinths’ geometry results in unit-calls with new geometries.

this technique, two highlighted edges of the global force diagram,
𝑙
†
𝑖
and 𝑙

′†
𝑖
, are divided into an equal number of segments such that

each segment of the former will establish a tetrahedron with its
associated segment in the latter (Figure 5f,g). Further subdivisions
of those edges will result in a smoother surface as a form diagram
(Figure 5h). However, for this subdivision to work, the force dia-
gram cells should only consist of tetrahedrons. This results in each
node (e.g. 𝑣𝑙 ) on the surface (Figure 5f) to be connected only to four
other nodes with two hanging edges and two standing edges which
establishes the negative Gaussian curvature (Figure 5f,g). Moreover,
the resulting anticlastic surface of Figure 5 in the form diagram is
only subjected to the applied loads from sides with no load applied
to the nodes on the surface. As shown in Figure 5h, the curvature
axes in an anticlastic surface (𝑙𝑖 and 𝑙

′
𝑖
) is subdivision axes in the

reciprocal force diagram (𝑙†
𝑖
and 𝑙

′†
𝑖
).

2.5.2 The role of labyrinths in designing anticlastic polyhedral ge-
ometries in 3DGS . Anticlastic surface geometries in 3DGS (similar
to minimal surfaces) subdivide 𝑅3 into two segregated regions,
each of which is connected in space and forms a 3D connectiv-
ity graph named labyrinth (Figure 6a,b,c) [Fischer and Koch 1989,
1990]. Two labyrinths interpenetrate each other with the surface
as their common interface. The geometry of the surface changes
when the angle of these labyrinths changes [Fischer and Koch 1989].
Figure 5h shows two skew labyrinths of 𝑙𝑖 and 𝑙 ′

𝑖
shape an anti-

clastic surface in between. In this technique, in a force diagram,
the angle between the axes (labyrinths) can change the diagram’s
geometry. According to Figure 5f , if we consider 𝑙𝑖 and 𝑙

′
𝑖
as the

labyrinths of the anticlastic surface , we observe that they play

the role of subdivision axes in the force diagram (𝑒†
𝑖
| |𝑙𝑖 and 𝑒†𝑖′ | |𝑙

′
𝑖
)

and the role of labyrinths and the surface’s curvature axes in the
form diagram (Figure 5h). For a specific type of anticlastic surface,
we can identify the topology of a specific surface with anticlastic
curvature based on the geometry of its labyrinths. [Fischer and
Koch 1989] Since the same labyrinths play the role of subdivision
axes in the force diagram of the anticlastic surface, we may use
them as common geometrical elements between the force and the
form diagram of a structure. In this technique, We can use these
labyrinths as control handles in the force diagram to design the
form diagram. This technique enables us to design compression-
only or tension-only unit-cells of shellular materials by designing
their labyrinths’ network.

2.5.3 Designing an anticlastic surface unit-cell in 3DGS . To design
a periodic shellular material in 3DGS, we can start with designing
a periodic unit-cell and then try to aggregate it in three directions.
The main steps for designing a unit-cell of Schwarz’s P surface in
3DGS are explained below (Figure 7). In each step, the force diagram
is designed in the Rhinoceros software’s environment, [McNeel
2014], and the form diagram is created using the PolyFrame-beta
plugin. [Nejur and Akbarzadeh 2018]

(1) A global force diagram’s geometry is defined based on the
external loading scenario. To design a triply periodic cellular
material, a cube is considered as the global force diagram to
aggregate in three directions (Figure 7a).

(2) The next step is to design the geometry of the unit-cells’
labyrinths. According to the literature, Schwarz’s P surface’s
labyrinths consist of two sets of 3D graphs, one as a cubic
wire-frame with 12 edges and the other as 6 intersecting
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Figure 8: Left : four different pairs of reciprocal diagramswith different degrees of subdivision simulating a Schwarz P unit-cell
with different resolution (from a truss-based cellular geometry (a) to a shell-based cellular or shellular geometry (d)). Right :
comparison of normalized Young modulus for cellular materials with different subdivisions in 5 different relative densities.

edges perpendicular to each other (Figure 6b). [Schoen 1970;
Schwarz 1890]

(3) Since the geometry of the Schwarz’s P unit-cell has reflec-
tional symmetry in three main axes (𝑥,𝑦, and 𝑧), the design
process can be simplified by designing 1/8 section of the unit-
cell. Accordingly, 1/8 of the labyrinths’ geometry leaves us
with two labyrinths’ sets, each of which consists of three
edges perpendicular to each other (Figure 7a, b). Each line
from one set neither intersect nor is parallel to a line in the
second set. These lines define three pairs of skew lines (e.g.,
𝑙
†
𝑖
and 𝑙

′†
𝑖
).

(4) In order to create a force diagram based on the labyrinths’
sets, the labyrinths’ 3D graph is translated to a group closed
polyhedron geometries. As mentioned in section 2.5.1, a spe-
cific aggregation of tetrahedrons as a force diagram results
in a discrete anticlastic surface as a form diagram. Here,
each line from the first set produces two tetrahedrons with
corresponding skew lines in the second set, resulting in six
tetrahedrons (Figure 7b).

(5) The form diagram of the designed force diagram is a truss
cellular geometry with extended members (Figure 7b). This
structural form has polyhedral configurations, including ver-
tices, edges, faces, and cells. In order to translate this geom-
etry to a continuous surface-based geometry, each tetrahe-
dron needs to be subdivided with the anticlastic subdivision
technique described in section 2.5.1 (Figure 7c). Increasing
the number of subdivisions in the force diagram results in
smaller edges in the form diagram. Applying the anticlastic
subdivision technique (by dividing each labyrinth’s edge

to 6 segments) subdivides each tetrahedron to 36 tetrahe-
drons, replacing each node in the previous form diagram to
a network of 36 nodes. Presenting this structural form as a
group of connected faces approximates an anticlastic surface
(a patch of Schwarz P surface) in equilibrium for a specific
boundary condition.

(6) Adding thickness to the discrete surface can create a shell,
resulting in a shellular material (Figure 7d). According to
the principles of 3DGS, the magnitude of the force in the
form diagram’s member is proportional to the corresponding
face’s area in the force diagram. In this technique, each group
of four intersecting faces in the force diagram corresponds to
a group of closed edges in the form diagram. Consequently,
each face’s thickness in the form diagram is proportional
to the corresponding faces’ total area in the force diagram.
Therefore, to have constant stress along the surface, the
surface needs to be materialized with a variable offset. In
Figure 7d, the faceswith darker color have a greater thickness
than the others.

(7) Mirroring the geometry of the form diagram in 3 directions
results in an approximation of the Schwarz P’s unit-cell
(Figure 7e).

(8) Changing the labyrinths’ geometry results in a new type of
anticlastic polyhedral surface, designed for a new boundary
condition (Figure 7f).

2.5.4 Generating well-known anticlastic surface geometries using
3DGS. Similarly, we can explore different anticlastic patches’ ag-
gregations to achieve well-known anticlastic surfaces’ typologies
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based on their labyrinths’ geometry. We created three types of an-
ticlastic surface unit cells resembling well-known minimal surfaces
such as Gyroid(G), Schwarz Primitive(P), and Schwarz iWp(W) (Fig-
ure 6). For each surface, for a certain boundary condition in the
force diagram (the cube), the anticlastic surface’s labyrinths have
been located in the global force, and each two skew lines from each
group of labyrinths have been connected together with a tetrahe-
dron (Figure 6a,b,c). These tetrahedrons have been subdivided in
order to increase the resolution of the anticlastic surface as the
form diagram (Figure 6). Different geometries of the labyrinths in
the force diagram result in new surfaces as the form diagram. For
instance, in the process of modeling the resembling unit-cell of
Schwarz iwp(w) (Figure 6a), 𝑙†

𝑖,1 and 𝑙
′†
𝑖,1 are in 54.7 degree angle

while 𝑙†
𝑗,1 and 𝑙

′†
𝑗,1 in Schwarz P (Figure 6b) are in 90 degree angle

and 𝑙†
𝑘,1 and 𝑙

′†
𝑘,1 in Gyroid (Figure 6c) are in 60 degree angle. Besides,

different aggregations of the patches for each surface in the form
diagram (which corresponds to its reciprocal tetrahedron in the
force diagram) can result new types of geometry. Although these
structures follow the geometry of well-knownminimal surfaces, we
can name them minimal surfaces if and only if they are continuous
anticlastic surfaces with zero mean curvature [Schoen 1970].

2.6 Aggregation of cellular units
Suppose we consider each of the form diagrams in Figure 6d,e,f as a
unit cell of a larger system (e.g., a cellular material), by aggregating
the force diagrams and constructing the reciprocal form diagram. In
that case, we can result in a compression-only (or tension-only) shell
cellular material (Figure 1b). The same process can be applied to
the truss-based unit-cells (Figure 1a). Different types of aggregation
can result in new geometries (e.g., mirroring the resembling of
the gyroid unit-cell instead of copying in X, Y, and Z directions).
Furthermore, deforming different parts of the aggregated force
diagram results in a non-homogeneous structure with variable unit
cells in each part.

2.7 Analytical studies
2.7.1 From a truss-cellular unit cell towards Schawrz P surface. As
shown in Figure 5(e-h), increasing the number of subdivisions in
this technique would increase the resolution of the final anticlastic
surface to get closer to a continuous surface. Similarly, for resem-
bling a unit-cell of a Schwarz P surface (Figure 8), increasing the
number of subdivisions would change the resolution of the ge-
ometry and gradually change its character from a truss cellular
geometry towards a shell-based cellular (shellular) geometry.

2.7.2 Effect of anticlastic subdivision on mechanical performance
of the cellular materials. Finally, We compare the structural perfor-
mance of four periodic cellular materials with unit cells resembling
Primitive TPMS. These unit cells have been generated in 3DGS with
the same labyrinths but different degrees of subdivision (see section
2.5.4). To investigate mechanical properties of cellular materials
made out of the designed architectures, standard mechanics homog-
enization is applied on their unit cells under periodic boundary con-
ditions [Hollister and Kikuchi 1992], and their effective Young’s and
shear moduli (𝐸 and 𝐺 respectively), together with their effective
Poisson’s ratios (𝐸) are numerically obtained using ANSYS APDL.

A family of architectures, resembling Primitive TPMS, is selected
to showcase the effect of refining the architecture by increasing
the number of subdivisions in the force diagram and comparing
the mechanical performances of the truss cellular materials with
their shellular counterpart at relative densities from 1 to 5 percent.
Considering the existing symmetries in these architectures (which
result in their orthotropic properties), it is enough to report their
effective mechanical properties along with one of the coordinate
axes only. As shown in Figure 8, refinement of the lattice archi-
tectures brings the effective Young’s moduli 𝐸 closer to those of
the shellular case. The initial considerable difference between the
moduli of the truss cellular and the shellular materials is attributed
to the fact that these truss architectures are originally designed for
triaxial loading, and the ideal design consists of two force members
with frictionless joints, which under the uniaxial or shear loadings,
make them mechanisms with non-zero static and kinetic degrees
of freedom. On the other hand, for the cellular materials at small
relative densities, small joints and slender links make them behave
more like a mechanism rather than a solid material. Therefore, un-
der uniaxial or shear loading, the shellular counterpart exhibits
significantly stiffer load-displacement performance. It is worth not-
ing that because of the specific method that is used for making the
subdivisions, mechanical properties of the discussed family of the
lattice materials will not reach to those of the shellular counterpart,
which provides a wider range of effective mechanical properties and
potentially attracts different applications compared to the shellular
analogue.

3 CONCLUSION AND FUTUREWORKS
Three-dimensional graphic statics (3DGS) as a geometry-based
structural form-finding method can design a variety of cellular
materials with different geometries in 3D. This paper showed that
3DGS enables us to design infinite efficient light-weight cellular
materials for different boundary conditions with various internal
topology and force distribution. In this system, the resulted geom-
etry depends on the external force polyhedron, force diagram’s
internal subdivision, and geometrical degree of freedom of the
pin-jointed system [Hablicsek et al. 2018]). This method lets us
understand the relationship between the internal flow of force,
geometry, and external force-flow with their geometrical relation-
ships. Besides, by designing a structure’s force diagram, we always
guarantee that the force-flow will be in equilibrium. Moreover, We
introduced a novel form-finding method in 3DGS to design shell
cellular (shellular) geometries with different levels of subdivision
based on designing two sets of labyrinths. These labyrinths would
facilitate the design process of shellular geometries and let us design
and control the structure’s geometry without concerning about the
3d subdivision of the force diagram. Many aspects of the proposed
methodology require further exploration to establish a complete
form-finding method for cellular materials. Such explorations could
be concerned with designing cellular materials for a specific bound-
ary condition, effect of changing the geometry of the labyrinths
in curvature, force-flow and structural capacity of the shellular
funicular material, to name but two.
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