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We discuss the effects of exponential fragmentation of the Hilbert space on phase transitions in
the context of coupled ferromagnetic Ising models in arbitrary dimension with special emphasis
on the one dimensional case. We show that the dynamics generated by quantum fluctuations is
bounded within spatial partitions of the system and weak mixing of these partitions caused by
global transverse fields leads to a zero temperature phase with ordering in the local product of both
Ising copies but no long range order in either species. This leads to a natural connection with the
Ashkin-Teller universality class for general lattices. We confirm this for the periodic chain using
quantum Monte Carlo simulations. We also point out that our treatment provides an explanation
for pseudo-first order behavior seen in the Binder cumulants of the classical frustrated Ji; — J2 Ising

model and the ¢ = 4 Potts model in 2D.

I. INTRODUCTION

The nature of quantum phase transitions has generated
a large amount of interest in the context of magnetic sys-
tems. Some of the important fields in which the physics
at a quantum phase transition plays an essential role are
order to order transitions with exotic emergent symme-
tries [1-4], determining the ability of quantum anneal-
ing to solve computational problems [5-7], and the un-
derstanding of field theoretic frameworks to describe low
energy physics of discrete models [8-10]. Crucial to these
topics is the structure of low energy excitations at criti-
cal points, especially those which have spatial restrictions
such as fractons [11, 12]. Recently these restricted dy-
namics have been seen as a consequence of spatial “frag-
mentation” of the Hilbert space [13, 14]. Fragmentation
describes the consequence of block diagonalization of a
Hilbert space into an exponentially large number of sec-
tors, with spatial structure corresponding to the states
making up a sector. A similar phenomenon has been ob-
served in quantum dimer models as well [15], although
a spatial pattern corresponding to sectors has not been
identified in this case.

In this article, we address another more general mani-
festation of the phenomenon of Hilbert space fragmenta-
tion by introducing a simple model whose Hilbert space
breaks into an exponentially large number of sectors, each
of which has interesting spatial patterns which limit the
growth of the correlation length. We draw connections
between the nature of this fragmentation and the parti-
tions of natural numbers, and discuss in the context of
this model the effects of the underlying lattice it is set on
in terms of its percolation properties and the structure of
excitations they lead to. We study the nature of eigen-
states and energies for the 1D case and briefly discuss
our expectations from this model when it is placed in
contact with a thermal bath. We then turn to the effects
of adding symmetry breaking quantum perturbations at
zero temperature, where we find behavior suggestive of

a phase with partial ordering. We draw a comparison
with the Ashkin-Teller model [16], where a similar phase
is seen, and argue for a complete mapping between our
model and the Ashkin-Teller model. We quantitatively
check this mapping for the 1D case using quantum Monte
Carlo simulation, and find consistency with the range of
continuously varying exponents already known to exist
for the Ashkin-Teller universality class [17, 18]. We also
point out that the partially ordered phase provides an
explanation for pseudo-first order behavior observed in
the Binder cumulants at some continuous phase transi-
tions, e.g. 2D ¢ = 4 Potts and J; — J, frustrated Ising
models [19].

The outline of the paper is as follows: In Sec. II, we
present the model, describe the fragmented Hilbert space
structure, and point out the few general constraints re-
quired to get this feature. We also present a detailed
study of the energy spectrum for a periodic chain. In
Sec. 111, we incorporate the perturbation which takes the
systems away from the fragmented Hilbert space struc-
ture and briefly discuss the expected effect on dynamics.
This is followed by a description of the Ashkin-Teller uni-
versality class along with a general mapping to our sys-
tem, which we check in detail for the 1D system through
numerical results. In Sec. IV, we describe pseudo-first or-
der behavior and the role of the partially ordered phase
in generating a behavior similar to the 4-state Potts and
other related models. In Sec. V, we conclude with a brief
summary and discussion.

II. FLUCTUATION COUPLED ISING MODELS
AND FRAGMENTATION

We will introduce the fragmentation of the Hilbert
space and its consequences in the context of a coupled
Ising model made out of two Ising species, o and 7, with



the following Hamiltonian:

H= _g <Z> (0702 +7777) — (1 — 5) Zofrﬁ (1)
(2¥] ?

Here, (i, j) refers to nearest neighbors and s is the tuning
parameter used to drive the ground state from a param-
agnet (s = 0) to a ferromagnet (s = 1). This model
can also be written using just a single species (o) which
lives on a larger lattice and comprises of two copies of
the original lattice connected in a bilayer fashion.

The Hamiltonian described in Eq. (1) possesses a local
conserved quantity, o777, associated with each site of the
lattice. This is due to the particular form of the quantum
fluctuation, of7, which commutes with o777. As o777
is a conserved quantity, it takes well defined values, which
are +1 and —1 in this case. For a lattice with NN sites,
the set {0777}, can take 2%V values, implying that the
Hamiltonian can be broken into 2V blocks. An example
of one such block is shown in Fig. 1 for a square lattice,
where +/— denote the value of o777 at each site. In
terms of the individual ¢ and 7 spins, we shall use 0 to
denote the state 0%(7%) = —1 and 1 to denote o*(7%) =
+1. Now the four possible states in the z-basis on a single
site are {00,01,10,11} where the first number denotes
the state of the o spin (0 or 1) and the second denotes
the 7 spin. The constraint of a particular value for o777
reduces the number of basis states at site ¢ to two. This
implies each block is a 2V x 2V matrix.

For the rest of our analysis, we will assume that we
have block diagonalized the Hamiltonian in Eq. (1), and
that any quantum state of the system belongs only to
one of these blocks. In addition to the block structure
due to the conserved quantities described above, there
is a further fragmentation within each block. This is
developed below for the cases of an arbitrary lattice and
a periodic chain.

A. Arbitrary Lattice

We begin by considering a system which lives on an ar-
bitrary lattice or dimensionality and examine the spin de-
grees of freedom. We show below that for nearest neigh-
boring sites ¢ and j, if the state of the system belongs to
a block such that o777 # o777, then this pair of sites can
be considered to be non-interacting.

First consider o777 = o777 = 41, with the state 00 on
site ¢ and the state 11 on site j. The energy cost of such
an arrangement due to the classical term — (o705 +7777)
is -2 (in units of the ferromagnetic coupling). This can be
maximized by switching 11 — 00 on site j, which is al-
lowed by o777 = +1. If the constraint on site j is instead
chosen to be o377 = —1, then site j hosts either 01 or 10,
and the energy associated with the arrangement of states
on ¢ and j will always be 0, as one of the bonds (either oo
or 77) is always broken while the other is always satisfied.

This implies that, from energy considerations, states 01

FIG. 1. A fragment arrangement for the square lattice with
interacting sites connected by dotted lines. The +’s and -’s
denote the value of o7 7 at each site.

and 10 are equivalent if site ¢ hosts 00. It follows that, if

o;7f = o377, then they have an Ising bond of strength

s between them, else, they are non-interacting. If we
now consider a typical set of values of {777}, (corre-

sponding to a block) as shown in Fig. 1 for a 2D lattice,
we see that the system has essentially broken into sev-
eral smaller Ising models which co-exist on the lattice.
We call each of these smaller Ising models a fragment.
For simple regular lattices, such as a 1D chain, square
or cubic lattice with periodic conditions, the fragment
arrangements can be related to the partitions of natural
numbers [21, 22]. This connection will be later illustrated
using a periodic chain. It is worth noting here that this
argument applies also for a more general classical term of
the form f(o§,7¢,...,0%, 7k ), which is symmetric under
the exchange of the Ising species, 0 — 7. As this func-
tion must be symmetric for all spin configurations, the
constraint would need to be satisfied for each bond, and
the above argument would be valid. There may be other
convoluted ways to satisfy the symmetry requirement for
certain complicated functions.

The phenomenon described above is similar to the frag-
mentation discussed in recent work in the context of
the eigenstate thermalization hypothesis (ETH) [13, 14]
and has also been studied in disordered Floquet circuits
composed of Clifford gates [20]. This phenomenon has
also been observed numerically in quantum dimer models
with restricted dynamics, but a similar real space geomet-
ric way to understand the same has not been identified
in that context [15].

One of the key features of the fragmentation of real
space into components is that the correlation length in a
particular block is bounded by the spatial extent of the
largest clusters in the corresponding fragment arrange-
ment. This feature depends crucially on the restricted
dynamics generated by o7 and the classical term al-
lowing a degeneracy in energies. If the classical term
were to be augmented by adding an interaction of the
form —o7 77 which breaks the o — 7 symmetry, the non-
interacting nature would be lost as the state 00 on site
i would now prefer 10 on site j over 01. Due to this
term, each spin species has a global pattern specific to
which block the state belongs to, and fluctuations would
occur around this pattern in the large s limit. The maxi-
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FIG. 2. Fragment arrangements sorted by energy with refer-
ence blocks making up the lowest energy region and energy
increasing bottom to top.

mal correlation length in every block grows to the system
size in the presence of such a term, although the details
of this growth depend on the structure of the particu-
lar block. These arguments illustrate that, although the
quantum term determines the block structure, interact-
ing units within a block may be controlled by the choice of
classical terms. Careful choice of tuning parameters can
also create a scenario where there are two length scales,
one associated with the growth of correlation within a
component and the other with the growth across com-
ponents. If we were to require that the symmetry in
o — 7 be maintained, an additional term would have to
be added to ensure that the state 00 does not favor one
of 01 or 10, and the physics would again be the same as
the Hamiltonian in Eq. (1).

As a particular block in the Hamiltonian can be
thought of as a configuration where each site is assigned
either +1 or —1 with probability 1/2, it can also be writ-
ten in terms of a percolation problem where a particular
site is occupied or left empty. If the percolation threshold
for the particular lattice is below 1/2, most blocks will
have a giant fragment and this may have consequences on
the correlation length as far above the percolation thresh-
old, almost all blocks will have diverging length scales,
leading to a continuous transition. The universality class
for the transition may relate to those of diluted Ising
models above the percolation threshold, which have been
studied in the context of thermal and quantum phase
transitions [23-25]. We are unable to study this aspect
of the problem in the context of the periodic chain as the
percolation threshold in 1D is unity, which means none
of the fragment arrangements percolate except the two
blocks which correspond to all sites having the same value
for o777. It is also noteworthy that, due to this frag-
mentation, the dynamics generated by of 7" reduces to
the dynamics within the fragments and no inter-fragment
correlations are introduced. In 2D and higher, the frag-
ments would in general represent non-integrable systems
which thermalize within their boundaries but not with
the entire system. This implies that the system would
not reach a thermal distribution and would not exhibit
characteristics such as volume law entanglement entropy
which would be expected of thermalizing systems.

B. Periodic Chain

Now we specialize to the case of a periodic chain with
L sites and consider the eigenstates and eigenenergies
for various s. In the ferromagnetic limit (s = 1), the
lowest energy belongs to two blocks, one with o777 =
+1 for all 4, and the other o777 = —1 for all i. We
shall refer to these two blocks as the reference blocks for
this model, as they are the easiest to analyze and map
exactly to the simple transverse field Ising chain. These
blocks have L activated bonds, whereas all other blocks
have at least one pair of nearest neighbor sites which
are non-interacting, leading to loss of the energy which
could potentially be gained from that Ising bond. The
first excited level in the ferromagnetic limit is made out
of all blocks which have two fragments each, one with all
o777 = +1 and the other with all 0777 = —1, as these
arrangements have L — 2 activated bonds. In the limit
of s = 0, all the Ising bonds are switched off and all 2%
blocks are degenerate. The fragment arrangement of any
block can be seen as a sum of independent Ising chains
of various lengths. As the energy density of a longer
Ising chain is always larger in magnitude than a shorter
chain for all s other than s = 0 and s = 1, the reference
blocks, which comprise a single periodic chain of length
L, always form the lowest energy manifold. A schematic
energy spectrum classification for general s can be seen
in Fig 2.

As each block can be made up of many smaller chains,
the energy spectrum of this Hamiltonian hosts a large
amount of degeneracy. This can be understood by rec-
ognizing that many blocks share the same number and
sizes of chains, and each block carries a different ordering
of the chains. As the energy of a block is simply the sum
of the energies of individual chains, the arrangement of
chains that makes up a particular block does not play
any role in calculating the energy; only the number and
sizes of chains control the energy. Following this line of
thought, we can now map our energy spectrum to the
partitions of the natural number L, where each partition
is defined as a set of smaller pieces whose lengths sum to
L. For example the partitions for L = 4 are:

4=3+1=2+2=2+1+1=1+1+1+1 (2

It was shown [26] that the number of partitions p(L) of a
natural number L asymptotically behaves as logp(L) =~
CVL with C = 71/2/3. Due to periodic boundary con-
ditions, the only allowed partitions for the chain arrange-
ments are those which have an even number of chains. It
follows that the number of energy levels in addition to
the reference level are the number of even partitions of
the number L. We observe that this number quickly ap-
proaches half the asymptotic value for L > 10. If we now
consider a particular block and study the growth of its
correlation length as we change s from the paramagnetic
regime to the ferromagnetic regime, we would find that
the correlation length grows until it reaches an upper
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FIG. 3. Average size of the largest fragment in a block plotted
as a function of the system size L for a periodic chain and fit
to the form (n) ~ a + blog(L) with b = 1.32(1). Inset: The
probability distribution of the size of the largest fragment,
which shows an exponential tail.

bound which must be smaller than the largest chain in
the partition corresponding to that block. If the largest
chain is much smaller than system size the ground state
of this block can never develop long range order. The
statistics of different blocks along with their energies now
control how much they contribute to the ground state of
the total system in the presence of a temperature or sym-
metry breaking quantum fluctuation which allows them
to mix.

An added level of complexity is brought in by observ-
ing that each partition of the number L corresponds to a
different number of chain arrangements, i.e, blocks. The
combinatorial factor related to this can be calculated us-
ing the following arguments. A particular arrangement
of the chains in a partition can correspond to only two ar-
rangements for the signs of o777, as the moment a value
is chosen for a chain, all others must be chosen in ac-
cordance with it to ensure the condition that the pieces
are non-interacting. Taking this into account along with
all the permutations of a particular partition and the
translation invariance of the system, we conclude that the
number of blocks b(p) that correspond to that particular
partition p of the system size L with an even number of
chains NV, is

(N —1)!

—or Y T
o) Ty egl ke (3)

where there k; is the number of pieces of length ¢, and
we use 0! = 1. For example, the partition of system size
L=20givenby 4+3+3+24+2+2+1+1+1+1
has N = 10 with ky = 4, ks = 3, ks = 2, k4, = 1, and
k; = 0 for all other i = 5, ..., 20. We have checked Eq. (3)
against exact enumeration. Although the average size of
the largest chain in a partition where all partitions are
sampled with equal weight goes as O(v/Llog(L)) [26],
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FIG. 4. Energy levels for the Hamiltonian defined in Eq. (1)
for system size L = 10, as a function of tuning parameter s,
seen to converge in s = 0 limit and approach the spectrum of
the classical Ising chain in s = 1 limit. Inset: The minimum
gap at s = 0.5 as a function of 1/L; extrapolating to 1/L = 0
gives a minimum gap of 0.31835(2).

we find numerically (Fig. 3) that the added suppression
caused by the factor in Eq. (3) reduces this to O(log(L)).

We find numerically that the average size, (n), of the
largest chain in the fragment arrangement corresponding
to a random block follows the relation (n) = a+blog(L),
as seen in Fig 3 for L = 20,..,60. We also study the
probability distribution of the size of the largest chain in
a random block chosen with uniform probability and find
exponential tails for p(n) for n > (n) (shown in inset of
Fig 3 for a 60 site chain). This suggests that, if the system
is allowed to choose a block at random, the largest chain
in the chosen block will be much smaller than system size
with a probability — 1, thus leading to a severe limitation
on the growth of correlation length.

The probability distribution with which the system
samples different blocks depends on the terms connect-
ing different blocks and the relative ground state ener-
gies of different blocks. As discussed above, the ground
state of the entire system is always made out of the two
blocks which have the same value of o777 on all sites.
The opposite limit is again made up of just two blocks,
which are the blocks where all odd sites have the same
value of o777, and the even sites have the opposite value
(Fig 2). Each of these breaks into L disconnected spins,
as no nearest neighbor spins have a ferromagnetic bond
between them. This implies that every spin is polarized
in the +x-direction due to the 6*77 term with an energy
of —s, making the total energy of the state —Ls. We can
assume that the ground state energy for the reference
blocks can be written as —Le(L, s) where €(L, s) is the
energy density for a periodic chain of length L at tuning
parameter value s. These two extremes set the range of
energies which can be occupied by all other blocks. An-
other general trend to be expected from the lowering of
the energy due to larger system size would be to have par-



titions with the largest chains having ground states which
occupy lower energy levels (Fig. 2). As we have seen from
the distribution of partitions, these levels would contain
a relatively small number of ground states as the parent
blocks must contain long chains. Also, all the energies
must converge in the s = 0 limit, as the ferromagnetic
term switches off, leaving all blocks equivalent in energy.

The above arguments give us a fair idea of the energy
level diagram for the ground states in all the blocks. We
present a detailed study of the L = 10 case in Fig. 4,
obtained using Lanczos diagonalization, which captures
the essential features. An important region of the energy
level diagram is s ~ 0.5, as the simple Ising chain un-
dergoes a continuous quantum phase transition at this
point. In an Ising chain, the correlation length grows
continuously with increasing s for s < 0.5 and at the
transition the correlation length reaches the system size.
If the gap to a large number of blocks vanishes at this
point, the correlation length would acquire large contri-
butions from the other blocks in the presence of arbitrar-
ily small coupling across blocks, which would lead to a
capping on the correlation length. As the gap must once
again open in the ferromagnetic regime, the system will
drop back into the fully polarized state with large cor-
relation length. This mechanism can create a jump in
the correlation length, which is a hallmark of a first or-
der phase transition. This is a heuristic argument which
does not take into account the nature of the coupling to
other blocks. Using the Jordan Wigner transformation
to map the Ising chains to non-interacting fermions [27],
we find that the gap at s = 0.5 indeed converges to a
non-zero value with increasing size. This is shown in the
inset of Fig 4 for system sizes up to L = 512, along with
a finite size extrapolation, leading to a gap of 0.31835(2)
in the thermodynamic limit. This is expected for higher
dimensions as well, as the lowest block above the ground
state block must necessarily have at least one missing
ferromagnetic bond which contributes a finite amount to
the energy. Our analysis also showed that the first state
above the ground state of the reference blocks belongs to
a block which breaks into a fragment which has a single
site and a fragment which has L — 1 sites. At s = 0.5,
blocks with this type of structure have the minimum en-
ergy amongst all blocks with only two fragments.

C. Fluctuations between blocks and block mixing

Here we discuss the effects of block mixing for arbi-
trary lattices with N sites. One of the easier ways to
allow the system to access all possible blocks would be
to couple it to a thermal bath which provides an inverse
temperature 8. Assuming that the ground state energies
of all the blocks is O(N) (an example of which we see in
the energy level diagram in Fig. 4), the contribution of
the blocks with relatively small fragments or “restricted”
blocks (Z,) in the partition function is Z, = e #¥D,.,
where D, is the degeneracy of the blocks. As we have

seen that this degeneracy— 2% and F « N, a finite § will
not necessarily suppress these levels, and there can exist
a range of temperatures where these levels can mediate a
transition with limited correlation length, i.e, a first or-
der transition. Finite temperature would allow thermal
fluctuations which can jump across blocks and in this
way wash out the block structure as well. This cannot
be studied in our analysis of the 1D chain as it is known
that any non-zero temperature leads to disorder in the
Ising chain and the phase transition is thus completely
washed out. For higher dimensional systems this mech-
anism can lead to interesting crossover physics between
the continuous quantum phase transition and the thermal
phase transition of the classical system expected at any
finite temperature. A coupling across blocks can also be
achieved by a weak global transverse field or other more
complicated quantum fluctuations. Non-perturbative nu-
merical results, which layout the entire phase diagram in
the presence of a transverse field, are presented in the
following section.

III. PERTURBATIONS AND ASHKIN-TELLER
CRITICALITY

We now connect the different blocks using a weak per-
turbation which breaks the conservation of ¢777. In spin
language this corresponds to a global transverse field,
leading to a Hamiltonian of the form

H :_78 Z (o70; +7777)
(4,4) (4)
—(1=5)>_ [pofry + (1 =p)(of +77)].

i

Here, the o”(7%) operator switches 00 — 10 (00 — 01),
effectively mixing blocks. In the weak perturbative limit
of (1 — p) < 1, this can be seen as connecting blocks
which have differing values for o777 for only a few sites,
i.e those which have similarly sized chains in a similar
arrangement. For smaller p, blocks which have chains
of substantially different sizes would begin to couple as
well, which would imply that the bound on the correla-
tion length would weaken as the system can now build in
longer correlations through a combination of blocks for
the same value of s. In the opposite limit of p — 0, blocks
are strongly coupled, and the system can also be seen as
two copies of transverse field Ising models. This suggests
that the system would undergo a continuous transition,
which would be in the Ising universality class of the ap-
propriate dimension.

For p = 1, the ground state sector is exactly a trans-
verse field Ising model on the appropriate lattice, as
discussed in the previous section. In this limit, for all
s € [0,1], Mp = %Y, 0777 = £1 as all o777 are ei-
ther +1 or -1 for the reference blocks. Here P signifies
polarization order, a term which is used in literature dis-
cussing the Ashkin-Teller (AT) model [16, 18], which is



the higher dimensional classical equivalent of our model.
This will be discussed in more detail later in this sec-
tion. For s — 1, 0% and 7% are each disordered and with
reducing s, they undergo an Ising transition where they
develop long range order. For p < 1, at s = 0 the param-
agnet phase has no long range order in fragment arrange-
ments or either of the spin species as the perturbation
allows complete access to Hilbert space. The conditions
describe three phases, 1) complete paramagnetic phase
with (M3) = (M?2) = (M2) = 0, 2) polarization ordering
with (M32) # 0,(M2) = (M2) = 0, and 3) ferromagnet
with (M%) 0, (M2 = (M2} 0.

These three phases can also be understood in terms of
the well-studied AT model[18]. Our model of fluctuation-
coupled Ising systems can be mapped onto this classi-
cal model using the d-dimensional quantum to d + 1-
dimensional classical mapping based on the path integral
formalism. For a quantum system, the partition function,
given by Tr[e™#], can be expanded in imaginary time
using 8 = nAr7. This leads to a partition function of a
classical model in a higher dimension [28], where o} in
the quantum model is replaced by a bond o707, {, in the
imaginary time direction. This substitution to Eq. (4)
leads to an anisotropic version of the AT model in d + 1
dimensions. The isotropic AT Hamiltonian is as follows:

H——JZO' —JZ 7 KZO’ZTZUZTZ (5)

(4,9)

For spin systems where there is no explicit coupling to the
lattice, the anisotropy is expected to be irrelevant (this
equivalence is well-known for the simple transverse field
Ising model). The phase diagram of the above Hamilto-
nian in 2D as a function of % and % contains the three
phases shown by the 1D quantum Hamiltonian. The ar-
guments presented until this point in this section are valid
for general lattices in all dimensions.

In 2D, the AT model is fairly well studied from a the-
oretical viewpoint [18]. It was found that for K > J
and J > 0, the system passes through two phase transi-
tions; from the paramagnet to the polarized phase and
from the polarized phase to the ferromagnet. Both these
transitions are Ising-like as a Z5 symmetry is broken each
time. At K = J, the polarized phase vanishes, and we
have a direct transition from the paramagnet to the fer-
romagnet. The universality class at this point is that
of the ¢ = 4 Potts model in 2D. For 0 < K < J, the
system interpolates smoothly between two disconnected
Ising models (K = 0) and the ¢ = 4 Potts model. Along
this interpolation, some of the critical exponents, such as
the scaling dimensions of the polarization operator and
the energy density, vary smoothly [17]. This is expected
as the energy density coupling between the two species
caused by the four spin term is marginal in 2D and allows
a smooth flow under a conformal field theory descrip-
tion [29]. We check for a similar behavior in the coupled
quantum Ising model on a periodic chain, using stochas-
tic series (SSE) expansion quantum Monte Carlo (QMC)
[30] as it is a powerful and unbiased method of extracting
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FIG. 5. Binder cumulant as a function of s with crossing
points for a pair of sizes showing approximate locations of the
two transitions at p = 0.95. (Inset) Extrapolation of crossing
points of (L, 2L) for Uy as a function of 1/L fit to the form
f(x) = a+ bx gives s = 0.497(1).

thermodynamic expectation values for such systems.
The p = 0 limit corresponds to the K = 0 limit
of the AT model and describes decoupled Ising mod-
els. The p = 1 limit has no paramagnetic phase and
at some intermediate p potts , we would expect ¢ = 4
Potts criticality. For p < p potts, the system would trace
out the line of continuously varying exponents and for
1 > p > p potts, it would host all three phases along with
two Ising transitions; one between the paramagnetic and
polarized phases and the other between the polarized and
ferromagnetic phases. To investigate these phase transi-
tions, we define a Binder cumulant [31] with coefficients
corresponding to Zs symmetry breaking, as

3/, 1 (MY
UM2<13<M2>2)’ ©

where M can denote either Mp, M, or M. In the regime
where we have two Ising phase transitions, the Binder
cumulant is by this definition zero in the paramagnetic
phase and unity in the ordered phase, for whichever or-
der parameter is considered. There is a sharp transi-
tion in Ups at the phase transition for large sizes and
we need to study only one of M, or M, as they are
identical. By tracking Up (corresponding to Mp) and
Upsr (corresponding to M, ), we notice two transitions for
p = 0.95 at distinct values of s. This is seen in Fig. 5
through crossing points of the Binder cumulant, and the
inset shows an extrapolation of the crossing points of
Uys as a function of inverse size, which leads to a criti-
cal s of 0.497(1) separating phases 2 and 3. These two
transitions are expected for values of p close to 1 un-
til a point at which the ¢ = 4 Potts point is realized.
The scaling dimension of the spin operator is fixed at
A, = 1/8 (which is the 2D Ising value) along the critical
line joining the p = 0 and p = p potts, Whereas the po-
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FIG. 6. Phase diagram of the model described by Eq. (4)
with phases I. paramagnet, II. polarization ordered and III.
ferromagnet with the AT line of continuously varying expo-
nents from p = 0 to p =~ 0.75. Inset: Polarization exponent
Ap(1/L) for p = 0.5 extrapolated to Ap(0) = 0.20(1).

larization operator has Ap = A, + A, at the decoupled
point and Ap = A, = A, at the Potts point. The criti-
cal exponent v varies from 1 (Ising value) to 3/2 (Potts
value) along this line. From our simulations and finite
size scaling analysis following the method presented in
Ref. 32, we observe that, at p = 0.75, v = 1.41(5) and
Ap = 0.13(1), indicating that this point is quite close
to the Potts point (as can be seen in our approximate
phase diagram, Fig. 6). The value of v may be some-
what affected by logarithmic corrections expected in the
exponents at the Potts point. The same extrapolation at
p = 0.50 gives us v = 1.21(1) and Ap = 0.20(1) (the ex-
trapolation for Ap is shown in the inset of Fig. 6), which
are values between the two extremes. This analysis shows
us in a conclusive manner that the system flows to the
AT universality class in the thermodynamic limit.

IV. RELATION TO PSEUDO-FIRST ORDER
BEHAVIOR

The Binder cumulant is used in general to identify the
nature of a phase transition and the critical exponent
v for the correlation length (extracted from the slope).
Non-monotonic behavior in the Binder cumulant involv-
ing a minimum is usually taken as a signature of a first-
order transition, although this can only be confirmed by
checking that the value of this negative peak diverges as
L% [31]. A dip in the Binder cumulant had been misinter-
preted to signal a first order transition [33] for the frus-
trated Ji-Jo classical Ising model on the square lattice
where nearest neighbors interact with a ferromagnetic
bond of strength J; and next nearest neighbors with an
antiferromagnetic bond of strength Jy [19].In this model
there exists a phase transition between a Z; symmetric
striped phase and a paramagnetic phase with increasing
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FIG. 7. The minimum value of U,, for 1D coupled Ising
chains, with Hamiltonian given by Eq. (4), at p = 0.95 as
a function of length L fit to the form a + bL™° converges to
1.02(3). Inset: Uxs as a function of tuning parameter s for var-
ious system sizes. The thermodynamic from of Uy is shown
by the dashed line with transitions at 0.44(1) and 0.497(1).

temperature. The dip was taken to represent a first or-
der transition until a detailed numerical study by Jin et
al. [19] showed that the cumulant dip mapped onto the
2D q = 4 classical Potts model, which also shows non-
monotonicity with a negative dip which does not diverge.
The reason for this behavior was traced to the shape of
the distribution at the critical point for these models [34]
and it was noticed that phase coexistence was not seen,
which would be a characteristic of a first order transition.

Here we present the same kind of analysis for our model
of coupled Ising systems (Eq. (1)) in 1D and argue that
the negative peak arises from an inappropriate definition
of the Binder cumulant when investigating multiple phase
transitions. The Binder cumulant may evaluate to differ-
ent values in different phases and if the phases are not
well understood, this behavior can be interpreted as aris-
ing from a first order transition. Even at special points
such as the Potts point (K = 1 point in the AT model),
which is known to harbor a continuous phase transition
between trivial paramagnetic and ferromagnetic phases,
remnants of the polarization ordered phase cause non-
monotonic behavior in the Binder cumulant. We will
first show the non-monotonic behavior for the coupled
Ising chains, and will follow it up by explicitly showing
the remnant at the Potts point.
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If we consider the p = 0.95 phase transitions presented
in the previous sections, we see that in the paramagnetic
phase, the Binder cumulant can be defined as

M4
Un =2 — <—>2 (7)
(M?)

instead of the definition used in Eq. (6), because the mag-
netization can now be defined as a vector M=M,Z +
M, 4, where M, (M,) is the magnetization for the subset
of spins with o777 = +1(—1). This definition leads to
Uy = 0 for the paramagnetic phase and Uy, = 1 for
the ferromagnetic phase and is used for decoupled Ising
systems as well as systems with XY symmetry. Impor-
tantly, however, this definition of Uy, evaluates to —1
in the polarization ordered phase as a global value of

o777 is chosen and only constrained Ising like fluctua-

tions are allowed along this axis forcing (M?) /(M 2>2:3,
which can be calculated assuming Gaussian probability
distributions arising from the central limit theorem. If
we use Eq. (7) for the entire range of s at p = 0.95,
in the thermodynamic limit, we would expect a region
where Up; = 0, a region with Uy, = —1 and a region
with Ups = 1. A schematic of this is shown in the inset
of Fig. 7. For small sizes Uy; changes gradually and these
values are not reached exactly.

From Fig. 5 and extrapolations similar to the one
shown in its inset, we note that the paramagnetic to po-
larization ordered transition occurs at s = 0.44(1) and
the polarization ordered to ferromagnetic one occurs at
s = 0.497(1). Following the behavior of Uy; as defined
above, we find a non-monotonicity in the polarized phase
where the dip extrapolates to —1 (Fig. 7). We also study
the histograms of the order parameter M and clearly

see the aligning of the polarization in Fig. 8, where we
present order parameter histograms for a 50-site system.
We observe that the (M, M,) histograms look substan-
tially different from a continuous transition as the tails
develop a large distributed weight as we cross into the
ferromagnetic phase, even though the peak of the his-
togram is still at (0,0), which represents the disordered
phase. This can be seen better in the marginal distri-
bution of M, in the lower panels of Fig. 8, where we
see that at s ~ 0.49, the histogram shows a spread in
weight outside of the disordered region, without a strong
peak at the order parameter value for the ordered phase.
This behavior is at odds with both a continuous phase
transition, where one must have a narrow peak which
smoothly moves to | M, | = 1, and a first order transition,
where one must see two narrow peaks in the distribution
but is consistent with three phases. In the paramagnetic
phase, the fluctuations are Gaussian distributed in a ra-
dial pattern, whereas in the polarization ordered phase,
they are restricted to one dimensional distributions. In
the ferromagnetic phase, the system orders at one of the
four peaks.

These histograms are similar to those seen at the Potts
point in the J;-J5 model. We have checked this in the
more natural formulation of the classical ¢ = 4 Potts
model on a 2D square lattice, with a Hamiltonian given

by
H==3% 044 =—y cos(ti —0;), (8)
(

i) (4,9)

where ¢; € {0,1,2,3} are the possible states and which
can be represented as unit vectors forming a regular
tetrahedron, implying the equivalence of the two terms
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FIG. 9. Binder ratio for the 2D ¢ = 4 Potts model shows a
peak at the transition, as shown here for a 256256 system.
Inset: Value of the peak as a function of inverse linear size
1/L, fit to a function of the from f(z) = 3 — az®.

in Eq. (8) up to a global shift in the baseline for en-
ergy. As mentioned above, if the fluctuations in the
thermodynamic magnetization are Ising like then r =
(M%) /(M?)* = 3 and if they are completely paramag-
netic 7 = 5/3, which can be seen by evaluating Gaussian
integrals over the unit vectors chosen from a tetrahedron
and which lie in 3D space. In the ordered phase the
fluctuations are small compared to the mean and r = 1.
In the case of a typical continuous transition, » would
vary monotonically from 1 to 5/3 from the ordered to
paramagnetic phases. This is not the case for the Potts
model, as seen from our simulations in Fig. 9, and we
find a peak which grows for larger sizes. The peak ap-
pears to diverge logarithmically in the range which we
have studied, but we would expect this value to con-
verge eventually (perhaps at r = 3, as shown in the inset
of Fig. 9) as we are studying a continuous phase transi-
tion. This implies remnant effects of a polarization phase
which cannot be explicitly realized in this formulation of
the Potts model. These effects persist up to the largest
lattice sizes (3072x3072) we were able to study and may
be suppressed at even larger scales, in which case the
origin of the new length scale would be of interest.

V. CONCLUSIONS

The coupled Ising model discussed here is a tractable
system which can source interesting dynamical behav-
ior with excitations showing a restricted extent in space.
Due to the intricate structure of non-interacting blocks
which this system breaks into, curious features may be
manifest in the crossover between quantum and thermal
phase transitions, and we intend to study this in future
work. Upon the addition of perturbations it is expected
that the system regains ergodicity in a manner which de-
pends on the particular perturbation used. There has
been a recent numerical study [35] which suggests that
long time scales persist even in the case of a 1D version
of our model in the limit of weak global transverse fields
creating a coupling across blocks. In the presence of the
same term, we have verified here that the system encodes
a quantum realization of the AT model in a Hamiltonian
made out of only two body terms explicitly for 1D and
expect the same in higher dimensions.

We have also identified a reason for pseudo-first or-
der behavior which is seen in the ¢ = 4 Potts model in
2D which corresponds to a tricritical point with ¢ < 4
corresponding to continuous transitions and ¢ > 4 being
first order transitions. This could help explain the mi-
croscopic origin of the weak first order transitions in the
1D quantum or 2D classical Potts model, which has been
studied from the perspective of complex conformal field
theories [29]. By switching off the matrix element of the
transverse field in the Potts model which connects odd
and even colors, all even color Potts models can be driven
to exactly the limit described here. The classical Potts
model has also been independently studied in terms of
restricted partitions [36]. Spin liquids with restricted dy-
namics have already been found to have similar features
[15], and we plan to develop a better understanding for
this in analogy with our model in future work.
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