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Silence Localization
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Abstract— We present a novel algorithm for non-invasive
localization of regions of ‘silence” in the brain. “Silences”
are sources in the brain without any electrical activity due
to the ischemic conditions or lesions in stroke, traumatic
brain injuries (TBIs) and hemorrhages. We aim to turn the
widely used electroencephalography (EEG) systems into silence
detectors. Our algorithm, in a nutshell, estimates the silence
region by determining the contribution of each source (dipole)
in the recorded signals and detects the sources with a reduced
contribution as silences in the brain. In simulations on real-
head MRI models, our algorithm detects different sizes of
silent regions, ranging from the smallest ones (single-source
silence) to the large ones, and it reduces bias by a factor
of ~4 over classical source localization algorithms such as
multiple signal classification approach (MUSIC) and minimum
norm estimation (MNE), appropriately modified for recovering
silences.

[. INTRODUCTION

In this paper, we introduce a novel method for the detec-
tion of regions of “silence” in the brain, using non-invasive
electroencephalography (EEG) signals, where ‘“silence” is
defined as a source in the brain (dipole) without any electrical
activity. Based on this definition, a region of silence models
an ischemic tissue, a dead part of brain tissue, or a lesion
which can be formed in a wide variety of situations, e.g.,
traumatic brain injuries (TBI), and ischemic stroke. It also
approximately models (for a small time frame of a few tens
of seconds) cortical spreading depolarizations (CSDs), which
are waves of neural silence that travel very slowly on the
brain surface [1], [2], [3], [4]. Commonly, brain silences are
detected using classical imaging techniques such as magnetic
resonance imaging (MRI) or computed tomography (CT) [1],
[5], [6]. However, patients cannot be put under an MRI or
CT scanner when they arrive in emergency situations to the
clinic.

EEG is a non-invasive recording technique which is widely
used, even in intensive care units (ICUs), for continuous
or short-term recordings. It has easy and fast recording
preparation, it is portable, and does not have the limitations
of MRI, such as the inability to record from patients with
emergency situations, or patients with metallic objects in
their body [7]. This motivates us to ask this question: is it
possible to detect and localize brain silences using portable
and non-invasive EEG recordings? EEG signals are noisy
and spatially low-pass filtered representation of electrical
activities in the brain [8], [9]. This makes silence localization
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difficult. In this paper, we aim to find a solution to this
problem.

A. Forward model

Electrical activities of neurons in the brain produce elec-
trical potentials on the scalp. Neurons or groups of neurons
can be modeled as current dipoles [9]. To simulate the
EEG signals on the scalp, we use a linear transformation
to map the electrical activity of brain sources (dipoles) on
to the scalp. This linear transformation is a forward-field
approximation to Maxwell’s equations and is called the
“forward model” [10], which can be written in the form of
a matrix for discretized brain space.

In this paper an open source MRI database (OASIS')
is used to obtain real head models, based on which the
forward model is extracted using Boundary Element Method
(BEM) volume conduction model with conductivity ratios of
1, 0.067, 5, 1 for scalp, skull, cerebrospinal fluid (CSF), and
brain as it is used in [11]. We choose MRI image set of a
healthy subject (OASIS34: 51 years old) and use FreeSurfer?
to process this MRI image and extract different layers of the
head. Next, using FieldTrip [12], a freely available MATLAB
toolbox, we generate the forward matrix, which has the
number of rows equal to the number of EEG sensors on
the scalp, and the number of columns equal to the number
of electrical sources (dipole sources normal to the surface of
tessellated cortex and placed at the vertices [9]) in the brain.
This is called forward matrix (“A” in (1)).

B. Problem statement

The linear forward model can be written as below:
M, :Anxpspxt+£n><t7 (1

where A is the forward matrix, M is the matrix of ob-
servations where each row represents the signal of one
sensor across time, S is the matrix of source signals, € =
[€1,€, -+ ,&] is the measurement noise, ¢ is the number of
time points, p is the number of cortical sources, and n is
the number of EEG sensors placed in a uniform low-density
grid similar to the one used in [3].

Objective: Given M and A, localize the “silence region”
in S.

Source localization algorithms often assume that there is a
source that is persistent across time or trials that has activity
larger than that at other locations. Here, instead, we are
interested in a persistent lack of activity.

We make the following assumptions: (i) Without loss of
generality, we assume that the columns of A are normal-
ized [13]; (ii) A is known, and M has been recorded; (iii) €
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is additive white Gaussian noise whose elements are assumed
to be independent and identically distributed (iid) across
time and space, i.e., at each time, the covariance matrix
is C = 621,x,. We assume that ¢ is known (072); (iv) S
is a random matrix with elements are drawn from an iid
Gaussian distribution, except for the k rows that correspond
to the “silence” region which are rows of all zeros; (v) The
number of active sources, p —k, is greater than the number
of silences, k; (vi) Silent sources are contiguous; and (vii)
t is large enough so that S contains activities in all parts
of the cortex, except in silent regions. Assumption (iv) is
made for simplicity, and might strike as being unrealistic. In
Section IIT we discuss how this can be relaxed.

In Section II we introduce our proposed silence local-
ization algorithm, in addition to the two classical source
localization methods — MUSIC and MNE — which are mod-
ified appropriately for silence localization. In Section III, we
present the results of silence localization using our algorithm
and compare the performance of our proposed algorithm with
the two other algorithms. Finally, we discuss the limitations
of the proposed algorithm and some possible directions for
future work.

II. ALGORITHM

The major challenges in this inverse problem are: (1) this
problem is severely underdetermined, since p > n, which
is a common issue in source localization problems. Existing
algorithms tackle this issue with different approaches such as
regularization methods and exploiting prior knowledge about
sources; (2) the source in this problem is not sparse, i.e.,
the number of active sources is greater than the number of
silences, In the next section it is shown how this results in
the failure of existing source-localization algorithms.

A. Proposed algorithm

In our algorithm, we measure the contribution of each
source (dipole) in the observation data (M) and detect the
sources with lack of such contribution as silences in the
brain. Following are the steps of our algorithm:

1) Cross-correlation: The linear model in (1) can be
rewritten in this form:

i1si+ &, Vi={1,2,-1}, (2)

where sj; is the j™ element of the " column in S,
M= [my, - m] € R, S =[s,---,8] € RF A=
[@i,---,a,] e R and € = [g1,---,&] € R™.

Based on (2), each observation vector m; is a linear
combination of columns of the forward matrix A with
weights equal to the corresponding source values. However,
in the presence of silences, those columns of A at silence
locations will never contribute to this summation. Therefore,
we calculate the cross-correlation coefficient “p,;”, which
measures this contribution, defined as follows:

v q= {132717}’

Wgi=ajm; =¥ aja;s;+aé;, A3)
Vi= {1527"'t}'

2) Variance reduction estimation: In this step, we es-
timate the variance of correlation coefficients which are
calculated in the first step. Based on (3) we have:

Var(pgi) =
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where I; is the indices of silences (I, = {/|s;; =0,V i =
2,---t}). In (4), the equation (a) and (b) hold because of
the independence assumption of noise and sources, (c) holds
because of identical distribution assumptions in S and ¢,
and (d) holds because the columns of A are normalized. On
the other hand, we can estimate these variances numerically
using the time samples of L, as follows:

d
2 2,0} + o,

1 (i), (5)

where ¢ — 1 is used instead of ¢ for unbiasedness of the
estimator. (4) shows how silences cause variance reduction
at each source index. We build our silence detector based
on this variance reduction. However, a normalization step is
required to compare the reduction ratios rather than absolute
reductions corresponding to each source:

Var(uqi) = 21;:1 (aqTaj)ZGSZ + G,%
Jls (6)
*Zp (a a/)zcsz Ljel, (a a,) G +G

AVar(Ug) 5
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where AVar(u,) = Zjels(agaj)z. In (7), the coefficient of
o2 in the second term is a value in the range [0,1], which
captures the percentage of reduction in variance because of
silences. Therefore, 3, is a reasonable measure of silences.

3) Estimation of the number of silences (k): In this step,
we find an approximation of the number of silences based
on the B, values we found in the previous step. First, the
B, values are sorted in the ascending order and normalized
(By). Then, a “knee” point is defined in the curve of (3,) vs.
q, where there is a sudden decrease in the growth rate of Bq
as shown in Fig. la [14], [15]. To find this knee point, the
closest point to the 0r1g1n in the curve of 1 — ﬁq vs. g is found
(g= k+1), where k is an estimation for k (see Fig. 1b).

4) Grouping sources based on their orientations: In this
step, we group the sources based on the orientation of their
corresponding columns in A, i.e., we assign a subset of
source indices to each source with index i, whose corre-
sponding columns a; lie at nearby angles:

= {j‘(aJT'ai)z = COSZ(GZ']') > ’Y}’ i=1,2,-- P (8)

where 7y is a threshold with value in [0, 1] which specifies
how small these angles 6;; should be, for each group. This

— 1
Var(ugi) = 1

Vi e
ﬁq o ar(.uql) [P

Z?:l (aga;)? ' Z‘41,771

(7
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Fig. 1. Estimation of number of silences (k): a) f3,, which is the sorted B, in

an ascending order. This curve shows the variance reduction of correlation
coefficients (L) because of silences. In this curve, a “Knee” point is defined
where there is a sudden decrease in the growth rate of B,,, b) Distance of
points from the origin in the 1 — [3,, vs. ¢ curve. The index of point (k) with
the minimum distance from the origin is an estimation of k.

grouping step helps in reducing the error in silence localiza-
tion because A has highly correlated columns. However, if a
very small ¥ is used, spatial resolution is lowered. Therefore,
there is a trade-off in choosing 7.

5) Scoring Groups based on variance reduction: We use
the f, values in step 2 to assign a score to each group
of sources. This score is simply the average of B, for the

Ié IZlc‘l . Where |G| is the
cardinality of G;). The smaller the score ﬁG,- is, the higher is
the chance that the corresponding group contains silence(s).
Therefore we sort the groups in the ascending order based
on their scores and choose the top k groups, where k is the
estimated number of silences. This gives us more than or
equal to k indices, since each group may have more than
one member.

6) Detecting region of silence: Based on the extracted
source indices in the previous step, we try to exploit the
knowledge that the region of silence is contiguous. To do
so, we calculate the geometric center of the selected source
indices and choose the 2k sources with the shortest distance
to this central point. Now we sort these 2k sources based on
their B, values and choose the k sources with the smallest
By as the detected silences. This last step of our algorithm
guarantees that the selected silences lie close to each other
and form a region of silence and rejects the isolated silences
that are selected in step 4.

members of each group (ﬁc

B. Modified minimum norm estimation (MNE)

In this paper, in order to compare the performance of
our algorithm with classical source localization methods, we
modify some of the commonly used algorithms to adopt
them to the silence localization problem and to be able to
perform the comparison. One of the most commonly used
source localization method is the minimum norm estimation
(MNE). In this algorithm, an estimation of the matrix of
source signals is obtained through a regularization method:

S = argmin |M —AS||2 +A||S|%, 9
S
This has the following closed form solution, where A is
obtained using the L — curve in this paper:

S=AT(AAT + ALx,) " 'M, (10)

Based on this estimated source matrix (S), we localize the
silences as follows: (i) Start with k = Lz’; (ii) Calculate the
square of the elements in S (slj7 Vi={1,2,---p}, V j=
{1,2,---1}) to Compare the source powers; (iii) For each time
pomt J» sort the § s in the ascending order and choose the first
k corresponding sources (Iyng), which are the sources with
the minimum power at time j; (iv) Based on the repetition of
sources in Iyyg calculate a histogram (histyng). Then sort
this histogram in the descending order (the source with the
largest population first); (v) Use a similar method to the one
explained in Section II-A, step 3, to find an estimation of the
number of silences (lAc). The knee point of sorted histyye Vs.
source index curve is used to estimate k; (vi) Repeat step 4
to 6 in Section II-A. The only difference is that we use the
histyyg instead of fB, for this modified MNE algorithm.

C. Modified multiple signal classification approach (MU-
SIC)

In addition to the MNE, multiple signal classification
approach (MUSIC) is another source localization algorithm,
which searches for each source sequential, rather than finding
all sources at the same time based on the whole observation
matrix M, since we can search for inactive sources. The
main idea of MUSIC is using singular value decomposition
(SVD) of observation matrix M (= UZV7) to reconstruct an
orthogonal projection to the noise space of M to check which
sources have minimum contributions in the recordings [10].
We modify this algorithm to adapt it to the silence localiza-
tion problem. We select the left singular vectors (columns of
U) which correspond to the large singular values up to 90%
of the total energy of the matrix (Z 162) These selected
singular vectors (Uy) form a basis for the observation data.
Now, we construct an orthogonal projection matrix to the
noise space as Pt = Iy.y —USUST. Using this matrix the
MUSIC cost function is written as:

_|[Pa3
= 1A
lla;]|3

where a; is the /" columns in A. Now a similar method to
the step 3 in Section II-A is used to estimate the number of
silences (k) based on the knee point in &; vs. i curve, where
@ is the o value sorted in descending order. Finally, Step 4
to 6 in Section II-A are repeated for this modified MUSIC
algorithm to localize the silences, with using « values instead
of B,. The selected sources in this algorithm are considered
as silences since they have the minimum contribution in the
observation matrix M.

(11

III. RESULTS

In this section, we present the results of the proposed
silence localization algorithm. In addition, we compare the
performance of our algorithm with the classical source
localization methods discussed in Section II.

We use the OASIS34 headmodel extracted from the MRI
scan, as explained in Section I-A and simulate the source
signals (S) based on assumptions in Section I-B. We create
the region of silence in S by means of selecting a random
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Fig. 2. Performance of our proposed algorithm in silence localization
in comparison with classical source localization methods, i.e., modified
MUSIC and MNE. Regions of silence (shown in red) are simulated at
different parts of a real brain model, extracted from OASIS34 MRI scan:
a) Single silence (k= 1), b) k=50, ¢) k=100, and d) k = 250.

source location in the brain and assigning silences to the k
nearest neighbors. Observation data matrix (M) is obtained
using (1). Here, we use a forward model with p = 1011, n=
44, and 1 = 10000. The noise variance (c?) is chosen to make
the minimum signal-to-noise-ratio (SNR) of the observation
data equal to 2dB in these simulations. In addition, the
threshold Y= 0.9 is used in (8), which is found heuristically.
This threshold depends on the orientation of column vectors
of the forward matrix and can vary for different headmodels.

In our simulations, different numbers of silences are used
to test the performance of silence localizations for both small
and large regions of silences. Fig. 2 shows the results of
silence localization for single silence source (k = 1), small
regions of silence (k=50 and 100), and a large region of
silence (k = 250). Based on these results, MUSIC fails to
detect small regions of silence, and MNE fails to detect
the region of silence for & < 100. Our proposed algorithm
performs significantly better in the detection of regions of
silence for all values of k, compared to MNE and MUSIC.

In order to compare the performance of our proposed
algorithm with MUSIC and MNE, the spatial bias in the
localization of the region of silence is calculated for k =
1. This spatial bias is the distance between geometrical
central points of detected and actual regions of silence,
averaged over trials. The number of trials is 500 in our
simulations. Results show that the proposed algorithm has the
smallest bias (14 mm), in comparison with the modified MNE
(62 mm) and MUSIC (58 mm). In this paper, a headmodel
with the minimum inter-source distance of 3.4 mm is used.
The proposed algorithm reduces bias by a factor of ~ 4
over classical source localization algorithms, and preliminary
experiments suggest that it has a false alarm rate of < 0.02.
In addition, the square root of the mean squared errors
(MSE) in the estimation of k for the proposed algorithm,

the modified MUSIC and, MNE algorithm are 0.4, 9.5, and
17.8 respectively with k = 1. While these statistics seem
promising, these results are yet to be tested on real EEG
signals.

These preliminary results suggest that EEG has potential
to be used as a non-invasive method for localizing silences
in the brain. However, the proposed algorithm has limita-
tions, e.g., this algorithm fails to correctly detect silences at
locations whose corresponding columns in A have large cor-
relation coefficients with columns of neighbors. To overcome
this issue, we tried using a “successive refinement” approach.
Due to space limitations, we have included the details of this
method in the online version of this paper in [16], where a
full detailed discussion appears.
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