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Abstract— We present a novel algorithm for non-invasive
localization of regions of “silence” in the brain. “Silences”
are sources in the brain without any electrical activity due
to the ischemic conditions or lesions in stroke, traumatic
brain injuries (TBIs) and hemorrhages. We aim to turn the
widely used electroencephalography (EEG) systems into silence
detectors. Our algorithm, in a nutshell, estimates the silence
region by determining the contribution of each source (dipole)
in the recorded signals and detects the sources with a reduced
contribution as silences in the brain. In simulations on real-
head MRI models, our algorithm detects different sizes of
silent regions, ranging from the smallest ones (single-source
silence) to the large ones, and it reduces bias by a factor
of ∼4 over classical source localization algorithms such as
multiple signal classification approach (MUSIC) and minimum
norm estimation (MNE), appropriately modified for recovering
silences.

I. INTRODUCTION

In this paper, we introduce a novel method for the detec-

tion of regions of “silence” in the brain, using non-invasive

electroencephalography (EEG) signals, where “silence” is

defined as a source in the brain (dipole) without any electrical

activity. Based on this definition, a region of silence models

an ischemic tissue, a dead part of brain tissue, or a lesion

which can be formed in a wide variety of situations, e.g.,

traumatic brain injuries (TBI), and ischemic stroke. It also

approximately models (for a small time frame of a few tens

of seconds) cortical spreading depolarizations (CSDs), which

are waves of neural silence that travel very slowly on the

brain surface [1], [2], [3], [4]. Commonly, brain silences are

detected using classical imaging techniques such as magnetic

resonance imaging (MRI) or computed tomography (CT) [1],

[5], [6]. However, patients cannot be put under an MRI or

CT scanner when they arrive in emergency situations to the

clinic.

EEG is a non-invasive recording technique which is widely

used, even in intensive care units (ICUs), for continuous

or short-term recordings. It has easy and fast recording

preparation, it is portable, and does not have the limitations

of MRI, such as the inability to record from patients with

emergency situations, or patients with metallic objects in

their body [7]. This motivates us to ask this question: is it

possible to detect and localize brain silences using portable

and non-invasive EEG recordings? EEG signals are noisy

and spatially low-pass filtered representation of electrical

activities in the brain [8], [9]. This makes silence localization
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difficult. In this paper, we aim to find a solution to this

problem.

A. Forward model

Electrical activities of neurons in the brain produce elec-

trical potentials on the scalp. Neurons or groups of neurons

can be modeled as current dipoles [9]. To simulate the

EEG signals on the scalp, we use a linear transformation

to map the electrical activity of brain sources (dipoles) on

to the scalp. This linear transformation is a forward-field

approximation to Maxwell’s equations and is called the

“forward model” [10], which can be written in the form of

a matrix for discretized brain space.

In this paper an open source MRI database (OASIS1)

is used to obtain real head models, based on which the

forward model is extracted using Boundary Element Method

(BEM) volume conduction model with conductivity ratios of

1, 0.067, 5, 1 for scalp, skull, cerebrospinal fluid (CSF), and

brain as it is used in [11]. We choose MRI image set of a

healthy subject (OASIS34: 51 years old) and use FreeSurfer2

to process this MRI image and extract different layers of the

head. Next, using FieldTrip [12], a freely available MATLAB

toolbox, we generate the forward matrix, which has the

number of rows equal to the number of EEG sensors on

the scalp, and the number of columns equal to the number

of electrical sources (dipole sources normal to the surface of

tessellated cortex and placed at the vertices [9]) in the brain.

This is called forward matrix (“A” in (1)).

B. Problem statement

The linear forward model can be written as below:

Mn×t = An×pSp×t + εεεn×t , (1)

where A is the forward matrix, M is the matrix of ob-

servations where each row represents the signal of one

sensor across time, S is the matrix of source signals, εεε =
[ε1,ε2, · · · ,εt ] is the measurement noise, t is the number of

time points, p is the number of cortical sources, and n is

the number of EEG sensors placed in a uniform low-density

grid similar to the one used in [3].

Objective: Given M and A, localize the “silence region”

in S.

Source localization algorithms often assume that there is a

source that is persistent across time or trials that has activity

larger than that at other locations. Here, instead, we are

interested in a persistent lack of activity.

We make the following assumptions: (i) Without loss of

generality, we assume that the columns of A are normal-

ized [13]; (ii) A is known, and M has been recorded; (iii) εεε
1http://www.oasis-brains.org
2https://surfer.nmr.mgh.harvard.edu
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is additive white Gaussian noise whose elements are assumed

to be independent and identically distributed (iid) across

time and space, i.e., at each time, the covariance matrix

is C = σ2
n In×n. We assume that σ2

n is known (σ2
n ); (iv) S

is a random matrix with elements are drawn from an iid
Gaussian distribution, except for the k rows that correspond

to the “silence” region which are rows of all zeros; (v) The

number of active sources, p− k, is greater than the number

of silences, k; (vi) Silent sources are contiguous; and (vii)

t is large enough so that S contains activities in all parts

of the cortex, except in silent regions. Assumption (iv) is

made for simplicity, and might strike as being unrealistic. In

Section III we discuss how this can be relaxed.

In Section II we introduce our proposed silence local-

ization algorithm, in addition to the two classical source

localization methods – MUSIC and MNE – which are mod-

ified appropriately for silence localization. In Section III, we

present the results of silence localization using our algorithm

and compare the performance of our proposed algorithm with

the two other algorithms. Finally, we discuss the limitations

of the proposed algorithm and some possible directions for

future work.

II. ALGORITHM

The major challenges in this inverse problem are: (1) this

problem is severely underdetermined, since p � n, which

is a common issue in source localization problems. Existing

algorithms tackle this issue with different approaches such as

regularization methods and exploiting prior knowledge about

sources; (2) the source in this problem is not sparse, i.e.,

the number of active sources is greater than the number of

silences, In the next section it is shown how this results in

the failure of existing source-localization algorithms.

A. Proposed algorithm

In our algorithm, we measure the contribution of each

source (dipole) in the observation data (M) and detect the

sources with lack of such contribution as silences in the

brain. Following are the steps of our algorithm:

1) Cross-correlation: The linear model in (1) can be

rewritten in this form:

mi = Σp
j=1a js ji + εεε i, ∀ i = {1,2, · · · t}, (2)

where s ji is the jth element of the ith column in S,

M = [m1, · · · ,mt ] ∈ R
n×t , S = [s1, · · · ,st ] ∈ R

p×t , A =
[a1, · · · ,ap] ∈ R

n×p, and εεε = [εεε1, · · · ,εεε t ] ∈ R
n×t .

Based on (2), each observation vector mi is a linear

combination of columns of the forward matrix A with

weights equal to the corresponding source values. However,

in the presence of silences, those columns of A at silence

locations will never contribute to this summation. Therefore,

we calculate the cross-correlation coefficient “μqi”, which

measures this contribution, defined as follows:

μqi = aT
q mi = Σp

j=1aT
q a js ji +aT

q εεε i, ∀ q = {1,2, · · · p},
∀ i = {1,2, · · · t}. (3)

2) Variance reduction estimation: In this step, we es-

timate the variance of correlation coefficients which are

calculated in the first step. Based on (3) we have:

Var(μqi) =Var(Σp
j=1aT

q a js ji +aT
q εεε i)

(a)
= Var(Σp

j=1aT
q a js ji)+Var(aT

q εεε i)

(b)
= Σp

j=1Var(aT
q a js ji)+Var(aT

q εεε i)

(c)
= Σp

j=1

j �∈Is

(aT
q a j)

2σ2
s +(‖aq‖2

2σ2
n )

(d)
= Σp

j=1

j �∈Is

(aT
q a j)

2σ2
s +σ2

n ,

(4)

where Is is the indices of silences (Is = { j|s ji = 0,∀ i =
1,2, · · · t}). In (4), the equation (a) and (b) hold because of

the independence assumption of noise and sources, (c) holds

because of identical distribution assumptions in S and ε ,

and (d) holds because the columns of A are normalized. On

the other hand, we can estimate these variances numerically

using the time samples of μqi, as follows:

̂Var(μqi) =
1

t −1
Σt

i=1(μqi)
2, (5)

where t − 1 is used instead of t for unbiasedness of the

estimator. (4) shows how silences cause variance reduction

at each source index. We build our silence detector based

on this variance reduction. However, a normalization step is

required to compare the reduction ratios rather than absolute

reductions corresponding to each source:

Var(μqi) = Σp
j=1

j �∈Is

(aT
q a j)

2σ2
s +σ2

n

= Σp
j=1(a

T
q a j)

2σ2
s −Σ j∈Is(a

T
q a j)

2σ2
s +σ2

n ,
(6)

βq =
̂Var(μqi)−σ2

n

Σp
j=1(aT

q a j)2
≈ σ2

s −
ΔVar(μqi)

Σp
j=1(aT

q a j)2
σ2

s , (7)

where ΔVar(μqi) = Σ j∈Is(aT
q a j)

2. In (7), the coefficient of

σ2
s in the second term is a value in the range [0,1], which

captures the percentage of reduction in variance because of

silences. Therefore, βq is a reasonable measure of silences.
3) Estimation of the number of silences (k): In this step,

we find an approximation of the number of silences based

on the βq values we found in the previous step. First, the

βq values are sorted in the ascending order and normalized

(β̃q). Then, a “knee” point is defined in the curve of (β̃q) vs.

q, where there is a sudden decrease in the growth rate of β̃q
as shown in Fig. 1a [14], [15]. To find this knee point, the

closest point to the origin in the curve of 1− β̃q vs. q is found

(q = k̂+1), where k̂ is an estimation for k (see Fig. 1b).
4) Grouping sources based on their orientations: In this

step, we group the sources based on the orientation of their

corresponding columns in A, i.e., we assign a subset of

source indices to each source with index i, whose corre-

sponding columns ai lie at nearby angles:

Gi = { j|(aT
j ai)

2 = cos2(θi j)≥ γ}, i = 1,2, · · · p (8)

where γ is a threshold with value in [0,1] which specifies

how small these angles θi j should be, for each group. This
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Fig. 1. Estimation of number of silences (k): a) β̃q, which is the sorted βq in
an ascending order. This curve shows the variance reduction of correlation
coefficients (μqi) because of silences. In this curve, a “Knee” point is defined

where there is a sudden decrease in the growth rate of β̃q; b) Distance of

points from the origin in the 1− β̃q vs. q curve. The index of point (k̂) with
the minimum distance from the origin is an estimation of k.

grouping step helps in reducing the error in silence localiza-

tion because A has highly correlated columns. However, if a

very small γ is used, spatial resolution is lowered. Therefore,

there is a trade-off in choosing γ .

5) Scoring Groups based on variance reduction: We use

the βq values in step 2 to assign a score to each group

of sources. This score is simply the average of βq for the

members of each group (β̄Gi =
1

|Gi|Σ
|Gi|
q=1βq, where |Gi| is the

cardinality of Gi). The smaller the score β̄Gi is, the higher is

the chance that the corresponding group contains silence(s).

Therefore we sort the groups in the ascending order based

on their scores and choose the top k̂ groups, where k̂ is the

estimated number of silences. This gives us more than or

equal to k̂ indices, since each group may have more than

one member.

6) Detecting region of silence: Based on the extracted

source indices in the previous step, we try to exploit the

knowledge that the region of silence is contiguous. To do

so, we calculate the geometric center of the selected source

indices and choose the 2k̂ sources with the shortest distance

to this central point. Now we sort these 2k̂ sources based on

their βq values and choose the k̂ sources with the smallest

βq as the detected silences. This last step of our algorithm

guarantees that the selected silences lie close to each other

and form a region of silence and rejects the isolated silences

that are selected in step 4.

B. Modified minimum norm estimation (MNE)

In this paper, in order to compare the performance of

our algorithm with classical source localization methods, we

modify some of the commonly used algorithms to adopt

them to the silence localization problem and to be able to

perform the comparison. One of the most commonly used

source localization method is the minimum norm estimation

(MNE). In this algorithm, an estimation of the matrix of

source signals is obtained through a regularization method:

Ŝ = argmin
S

‖M−AS‖2
F +λ‖S‖2

F , (9)

This has the following closed form solution, where λ is

obtained using the L− curve in this paper:

Ŝ = AT (AAT +λ In×n)
−1M, (10)

Based on this estimated source matrix (Ŝ), we localize the

silences as follows: (i) Start with k̂ = p
2 ; (ii) Calculate the

square of the elements in Ŝ (ŝ2
i j, ∀ i = {1,2, · · · p}, ∀ j =

{1,2, · · · t}) to compare the source powers; (iii) For each time

point j, sort the ŝ2
i j in the ascending order and choose the first

k̂ corresponding sources (IMNE ), which are the sources with

the minimum power at time j; (iv) Based on the repetition of

sources in IMNE calculate a histogram (histMNE ). Then sort

this histogram in the descending order (the source with the

largest population first); (v) Use a similar method to the one

explained in Section II-A, step 3, to find an estimation of the

number of silences (k̂). The knee point of sorted histMNE vs.

source index curve is used to estimate k; (vi) Repeat step 4

to 6 in Section II-A. The only difference is that we use the

histMNE instead of βq for this modified MNE algorithm.

C. Modified multiple signal classification approach (MU-
SIC)

In addition to the MNE, multiple signal classification

approach (MUSIC) is another source localization algorithm,

which searches for each source sequential, rather than finding

all sources at the same time based on the whole observation

matrix M, since we can search for inactive sources. The

main idea of MUSIC is using singular value decomposition

(SVD) of observation matrix M (= UΣVT ) to reconstruct an

orthogonal projection to the noise space of M to check which

sources have minimum contributions in the recordings [10].

We modify this algorithm to adapt it to the silence localiza-

tion problem. We select the left singular vectors (columns of

U) which correspond to the large singular values up to 90%

of the total energy of the matrix (ΣN
i=1σ2

i ). These selected

singular vectors (Us) form a basis for the observation data.

Now, we construct an orthogonal projection matrix to the

noise space as P⊥ = IN×N −UsUT
s . Using this matrix the

MUSIC cost function is written as:

αi =
‖P⊥ai‖2

2

‖ai‖2
2

, (11)

where ai is the ith columns in A. Now a similar method to

the step 3 in Section II-A is used to estimate the number of

silences (k̂) based on the knee point in α̃i vs. i curve, where

α̃ is the α value sorted in descending order. Finally, Step 4

to 6 in Section II-A are repeated for this modified MUSIC

algorithm to localize the silences, with using α values instead

of βq. The selected sources in this algorithm are considered

as silences since they have the minimum contribution in the

observation matrix M.

III. RESULTS

In this section, we present the results of the proposed

silence localization algorithm. In addition, we compare the

performance of our algorithm with the classical source

localization methods discussed in Section II.

We use the OASIS34 headmodel extracted from the MRI

scan, as explained in Section I-A and simulate the source

signals (S) based on assumptions in Section I-B. We create

the region of silence in S by means of selecting a random
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Fig. 2. Performance of our proposed algorithm in silence localization
in comparison with classical source localization methods, i.e., modified
MUSIC and MNE. Regions of silence (shown in red) are simulated at
different parts of a real brain model, extracted from OASIS34 MRI scan:
a) Single silence (k = 1), b) k = 50, c) k = 100, and d) k = 250.

source location in the brain and assigning silences to the k
nearest neighbors. Observation data matrix (M) is obtained

using (1). Here, we use a forward model with p = 1011, n =
44, and t = 10000. The noise variance (σ2

n ) is chosen to make

the minimum signal-to-noise-ratio (SNR) of the observation

data equal to 2dB in these simulations. In addition, the

threshold γ = 0.9 is used in (8), which is found heuristically.

This threshold depends on the orientation of column vectors

of the forward matrix and can vary for different headmodels.

In our simulations, different numbers of silences are used

to test the performance of silence localizations for both small

and large regions of silences. Fig. 2 shows the results of

silence localization for single silence source (k = 1), small

regions of silence (k = 50 and 100), and a large region of

silence (k = 250). Based on these results, MUSIC fails to

detect small regions of silence, and MNE fails to detect

the region of silence for k ≤ 100. Our proposed algorithm

performs significantly better in the detection of regions of

silence for all values of k, compared to MNE and MUSIC.

In order to compare the performance of our proposed

algorithm with MUSIC and MNE, the spatial bias in the

localization of the region of silence is calculated for k =
1. This spatial bias is the distance between geometrical

central points of detected and actual regions of silence,

averaged over trials. The number of trials is 500 in our

simulations. Results show that the proposed algorithm has the

smallest bias (14 mm), in comparison with the modified MNE

(62 mm) and MUSIC (58 mm). In this paper, a headmodel

with the minimum inter-source distance of 3.4 mm is used.

The proposed algorithm reduces bias by a factor of ∼ 4

over classical source localization algorithms, and preliminary

experiments suggest that it has a false alarm rate of < 0.02.

In addition, the square root of the mean squared errors

(MSE) in the estimation of k for the proposed algorithm,

the modified MUSIC and, MNE algorithm are 0.4, 9.5, and

17.8 respectively with k = 1. While these statistics seem

promising, these results are yet to be tested on real EEG

signals.

These preliminary results suggest that EEG has potential

to be used as a non-invasive method for localizing silences

in the brain. However, the proposed algorithm has limita-

tions, e.g., this algorithm fails to correctly detect silences at

locations whose corresponding columns in A have large cor-

relation coefficients with columns of neighbors. To overcome

this issue, we tried using a “successive refinement” approach.

Due to space limitations, we have included the details of this

method in the online version of this paper in [16], where a

full detailed discussion appears.
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