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Abstract: Aromatic compounds are one of the most abundant classes of organic molecules and find utility as pre-
cursors for alicyclic hydrocarbon building blocks. While many established dearomatization reactions are excep-
tionally powerful, dearomatization with concurrent introduction of functionality, i.e. dearomative functionalization,
is still a largely underdeveloped field. This review aims to provide an overview of our recent efforts and progress
in the development of dearomative functionalization of simple and nonactivated arenes using arenophile-arene
cycloaddition platform. These cycloadducts, formed via a visible-light-mediated [4+2]-photocycloaddition, can
be elaborated in situ through olefin chemistry or transition-metal-catalyzed ring-opening with carbon-, nitro-
gen-, and oxygen-based nucleophiles, providing access to diverse structures with functional and stereochemical
complexity. Moreover, the dearomatized products are amenable to further elaborations, which effectively install
other functionalities onto the resulting alicyclic carbocycles. The utility of the arenophile-mediated dearomatiza-
tion methods are also highlighted by the facile syntheses of natural products and bioactive compounds through
novel disconnections.
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1. Introduction
Dearomatization of aromatic hydrocarbons is a fundamental
synthetic strategy which provides a direct connection between

readily available aromatic hydrocarbons and valuable alicyclic
motifs in pharmaceuticals, agrochemicals, and natural products.!]
Accordingly, many enabling dearomative transformations have
been developed and applied to the synthesis of complex bioac-
tive compounds.2l Nevertheless, most of the advancements have
focused on the use of more activated arenes, such as phenols,
indoles, and pyridines, and the methods to utilize simple and
nonactivated arenes, such as benzene and naphthalene, are sig-
nificantly limited.[¥) Considering their widespread availability,
the development of novel dearomative methods for nonactivated
arenes would prove synthetically valuable for accessing alicyclic
structures with functional and stereochemical diversity.
Cycloaddition reactions have a long and rich history for induc-
ing dearomatization, as exemplified in UV-light-promoted arene-
alkene photocycloadditions.[*l We became particularly interested
in reactions reported by Sheridan, where unusual para-selective
cycloaddition of benzene and naphthalene with N-methyl-1,2,4-
triazoline-3,5-dione (MTAD, 1) was observed upon visible-
light irradiation, affording arene-MTAD cycloadducts of type 2
(Scheme 1).51 Although these cycloadducts rapidly underwent
cycloreversion at ambient temperature, their stability at lower
temperatures encouraged us to exploit their reactivities toward in
situ functionalization. Thus, we defined such 2r-components as
arenophiles in analogy with thermal cycloaddition processes, and
explored two approaches for further converting the corresponding
arene-arenophile cycloadducts: olefin-like functionalization and
transition-metal-catalyzed aminofunctionalization.6.7]

2. Olefin-like Dearomative Functionalization
Our investigation into an arenophile-mediated dearomative
functionalization began with the development of a dearomative cis-
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Scheme 1. Arenophile-mediated dearomative functionalization.

dihydroxylation strategy,[’! which provided a chemical equivalent
of microbial arene oxidation.[®! In this process, cycloadducts de-
rived from monocyclic arenes were subjected to osmium-catalyzed
dihydroxylation, furnishing diols 3 with exclusive diastereoselec-
tivity, as well as chemoselectively of the dihydroxylation at the less
substituted olefin (Scheme 2A). The bicyclic diols 3, upon aceton-
ide protection, were readily converted to dihydrodiols 4 through
a one-pot arenophile cycloreversion process involving hydrolysis
of urazole moiety and subsequent oxidation of bicyclic hydrazine
to diazene and spontaneous extrusion of nitrogen. Alternatively,
the same intermediates could be transformed into diaminohy-
drodiols § via arenophile fragmentation in a two-step protocol:
one-pot urazole hydrolysis and bis-benzoylation of the resulting
hydrazine, and a reductive N-N cleavage using Sml,. A wide vari-
ety of functional groups were tolerated in both processes, such as
alkyl, benzylic heteroatoms, halogens, protected carbonyl groups,

Scheme 2. Dearomative dihy-

and silyl groups. Importantly, polycyclic arenes, such as naphtha-
lene derivatives, heteroarenes, and phenanthrene, were also viable
substrates for this dearomative dihydroxylation, providing diols 6.
Similarly to the protocol for monocyclic arene-derived products,
subsequent arenophile fragmentation furnished diaminodiols 7. In
all cases, the cycloaddition reaction proceeded with exclusive site-
selectivity at the terminal non-substituted benzenoid ring.

We envisioned application of the dearomative dihydroxyl-
ation protocol with bromobenzene (8) towards the syntheses
of Amaryllidaceae alkaloids lycoricidine (12) and narciclasine
(13).1°1 As shown in Scheme 2B, Narasaka-Sharpless modifica-
tion of the Upjohn protocol provided the dihydroxylated product
9 in a form of boronic ester, which was readily subjected to a
palladium-catalyzed transpositive Suzuki coupling reaction with
the vinyl bromide and the arylboronic ester moiety to construct
the key C—C bond (10).1'%1 Further transformation into the iso-
carbostyril common framework 11 was achieved in a three-step
sequence, and then provided lycoricidine (12) and narciclasine
(13), respectively.

Based on a similar design, a dearomative epoxidation was ach-
ieved through a manganese-catalyzed epoxidation (Scheme 3A).11
This process worked well for both monocyclic and polycyclic
arenes, as well as for heteroarenes, without any formation of the
corresponding N-oxides. The resulting bicyclic epoxides 14 were
key intermediates in accessing arene oxides 15 and oxepines 16.
Such compounds are common metabolites, produced by P450-
based monooxygenases in eukaryotes; however, their chemical
accessibility has been significantly hampered due to their suscep-
tibility towards the NIH-shift.['2) Through arenophile cyclorever-
sion under base-induced conditions and subsequent oxidation, a
range of cycloadducts 14 derived from monocyclic and polycyclic
arenes afforded arene oxides 15 and oxepines 16, respectively.[13]
Naphthalene-derived oxepine 17 could be further elaborated to in-
corporate more functionalities, as exemplified in Scheme 3B.

- MTAD (1 NHBz
droxylation. (A) General scheme A) CHchz) 2,2-DMP  For 4: cycloreversion / o)
and representative scope. (B) /@ visible light; ~OH pTsOH  (NyH, or KOH; then CuCly) Me
; i e » Me
Synt.hesg of lycoricidine (12) and R then: & o For 5: fragmentation R “'Q
narciclasine (13). Os0Oy (cat.) (1. NoH,4 or KOH; then BzCl dihydrodiol (4) NHBz
NMO 3 2.Smlz) diaminohydrodiol (5)
MTAD(1) T NA ) ey
acetone H o
(/Y visible light; (/Y WOH NoHy; P A
7J© then: ~/J:):(j-,,,, then: H, X= N NMe:
R 0s0, (cat), NMO R OH Raney Ni Poow(
6 diaminodiol (7) | ... (.). ......
dihydrodiol (4) diaminohydrodiol (5) diaminodiol (7)
(14%~39% yield over three steps) (13%~32% yield over four steps) (21%~63% yield over two steps)
NHBz Br NH, NH,
A,‘\\O
- e Cl \o w0 Me wOH ~ wOH
eO N ""/o >< |
B "u,o Me “mOH \N -u,,OH
OMe Me Me r
NHBz NHBz NH, NH;
R = OH, NHBz
(B) MTAD (1) MeO,C o wOH
CH,Cly, —78 °C ]ij[ \ Pd(dppfiCly ”
visible light; O3 o (cat.) 0 O “OH 3 steps
B — 7 B —
Br then: OsOy (cat.) ~0 Et;N 0 CO,Me
8 NMO, ArB(OH), o 54% 0
63% Br
OH OH
5 CO,Me E wOH wOH
B(OH), .. : o “1OH
’OH <O “"OH for 12: 2 steps < O
ol NH for13:5steps O NAr’
\/o ArB(OH), | OH O 0
""""""""""""" ()- chor|<:|d|ne (12) (£)-narciclasine (13) 1



SCS LauRrEATES AND AWARDS & FaLL MEeTING 2020

579

CHIMIA 2020, 74, No. 7/8

A) MTAD (1) Scheme 3. Dearomative epoxi-
EtCN - s e dation. (A) General scheme and
R_[{f" visible light; R \@'"’(o KOH; R RT o representative scope. (B) Oxepine
Sy then: Sy " [Cu](cat), O, e TN derivatizations.
[Mn(OTf),/ 14 or Ni;O arene oxide (15) oxepine (16)
picolinic acid] (cat.)
MeCO3zH 43%~75% yield over two steps

OMeo’\O @ (;() @

R=H, 1-COMe, 2-Br, R=Cl, Br
2-CN, 2-Ph, etc.

o
O ~. O

(from phenanthrene)

(B)

1. Rh/AI,03, Hy, 88% ==
0 O
/ 2. NBS, AcOH; =
, then: TMS-acetylene

ZnBr (cat.), BF5+OFEt, 17
62%

In contrast, the reductive conversion of the arene-arenophile
cycloadducts was conducted using in sifu generated diimide to
provide saturated cycloadducts of type 20 (Scheme 4A).l'41 For
example, monocyclic arene-derived products 20 were manipu-
lated into 1,3-cyclohexadienes 21 and diaminocyclohexenes 22
through cycloreversion or fragmentation of urazole moiety. On
the other hand, the polycyclic arenes undergo formal bis-1,4-hy-
droamination via two one-pot sequences: dearomative reduction,
followed by hydrolysis of arenophile moiety and reductive N-N
cleavage (23—24, Scheme 4B). Additionally, naphthalene-de-
rived reduced cycloadduct was readily converted to aminoalcohol
25 and the natural product y-hydroxytetralone 26.

Finally, we recently reported the application of arenophile-
mediated dearomative hydroboration as the key step in the con-
cise synthesis of idarubicinone (33).[15-16] Thus, upon oxidative
conversion of tetracene to tetracenequinone 27, rhodium-cata-
lyzed dearomative hydroboration with catecholborane, and sub-
sequent transesterification provided pinacol boronic ester 28 on
a gram scale (Scheme 5). Zweifel olefination with subsequent
hydrolysis of the resulting enol ether moiety revealed the req-
uisite methyl ketone 29, and subsequent P—elimination of the
urazole (29—30) set the stage for a-oxidation through hydrogen
atom transfer reaction to form hydroxyketone 31. Finally, methyl
ether deprotection (31—32) and redox exchange of the urazole to
the hydroxy group completed the synthesis of (+)-idarubicinone
(33).
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3. Transition-Metal-catalyzed Dearomative
Aminofunctionalization

While olefin functionalizations of arene-arenophile cycload-
ducts proved useful in providing a rapid and controlled access
to a wide variety of highly functionalized alicyclic motifs, we
explored additional reactivities to further extend the utility of
arenophile-based dearomatizations. Specifically, we investigated
if arenophile-arene cycloadducts were amenable to ring-opening
reactions, as similar processes are well known for structurally
related azabenzonorbornadienes.[!7l Indeed, we discovered that
the arene-arenophile bicycles are viable substrates for transition-
metal-catalyzed ring-openings, and the resulting organometallic
intermediates could be captured with various nucleophiles, af-
fording a diverse range of aminofunctionalized products.

One of the first successful approaches discovered in this pro-
cess was Ni-catalyzed carboamination with Grignard reagents
as nucleophiles, delivering products with exclusive trans-1,2-
selectivity (34, Scheme 6A).I81 Aryl and vinyl Grignards were
applied to this procedure, and the reaction delivered carboami-
nated products in high yields as well as high enantioselectivity for
benzene and naphthalene using P,N-bidentate ligand 35.[1801 The
catalytic cycle likely proceeds through an initial t-complexation
and formation of n3-nickel cyclohexadienyl intermediate (I—1II),
which then undergoes transmetalation (II—III), followed by
inner-sphere reductive elimination (III-IV) to deliver trans-1,2-
carboaminated product (Scheme 7).[18a

o O

Scheme 4. Dearomative reduction.
(A) General scheme for mono-
nuclear arenes and representative
scope. (B) General scheme for
polynuclear arenes and represen-
tative scope.
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The Ni-catalyzed dearomative carboamination was applied to-
wards the enantioselective total synthesis of isocarbostyril alka-
loids from benzene, as this process enabled the construction of the
core carbon skeleton in a single step, as well as installed the requi-
site nitrogen- and carbon-based substituents on the aminocyclitol
core with desired stereochemistry. The synthesis of (+)-7-deoxy-
pancratistatin (39) was achieved from the diene 36 through two
oxidation steps (36—37), urazole reduction to amine 38, and sub-
sequent Co-catalyzed carbonylative coupling to form the lactam
(Scheme 6B).[182.191 The direct conversion of (+)-7-deoxypancra-

(+)-lycoricidine (12, R=H)
(+)-narciclasine (13, R = OH)

tistatin (39) to (+)-pancratistatin (40) was also realized in a single
step through formal C—H oxidation. Similarly, the enantioselec-
tive synthesis of (+)-lycoricidine (12) and (+)-narciclasine (13)
was achieved in 6-7 steps from the same diene intermediate 36.11%1

Interestingly, using palladium as a catalyst, we found that the
selectivity of the dearomative carboamination with Grignard re-
agents occurred exclusively with syn-1,4-selectivity.[20] The reac-
tion with benzene proceeded smoothly with a wide variety of aryl,
vinyl, and alkyl Grignard reagents, and the scope of the arenes was
extended to various monocyclic and polycyclic arenes (Scheme
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Scheme 7. Plausible mechanism for Ni-catalyzed dearomative trans-1,2-
carboamination.

8A, conditions A and B). The synthetic utility of this process
was demonstrated by the preparation of Sertraline (47),/2!1 one of
the most prescribed antidepressants, from naphthalene (Scheme

A
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visible light, CH,Cly; visible light, EtCN;
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Sp)-tBu-Phosferrox (43)
Cond. E: [Pd(allyl)Cl], (R)-DTBM-SEGPHOS (44)

8B). Thus, the dearomative syn-1,4-carboamination (naphtha-
lene—45) introduced all the handles with necessary stereochemi-
cal syn-1,4-relationship in a single dearomative transformation.
Upon olefin hydrogenation, urazole hydrolysis, and subsequent
reduction, Sertraline (47) was obtained in four overall opera-
tions. Moreover, we established an enantioselective variant of the
syn-1,4-carboamination using (S)-DIFLUORPHOS, delivering
high enantioselectivity when the reaction was conducted with an
isolated naphthalene-MTAD cycloadduct (48).

In addition to Grignard reagents, ketone- and ester-derived
lithium-enolates were also viable carbon-based nucleophiles
for this type of dearomative syn-1,4-carboamination (Scheme
8A, conditions C-E).22] Notably, more sterically encumbered
o-branched carbonyl nucleophiles had little effect on the reaction
outcome, and an enantioselective variant gave high selectivity in
the case of naphthalene. Mechanistically, these reactions are pre-
sumed to proceed through m-allyl palladium species with outer-
sphere attack of nucleophiles.

We also found that the heteroatom-based nucleophiles are
compatible with Pd-catalyzed dearomative syn-1,4-aminofunc-
tionalizations (49, Scheme 9). For instance, with naphthalene
as a substrate, both primary and secondary amines coupled
smoothly with MTAD-arene cycloadducts (conditions A for pri-
mary amine and B for secondary amine).[23] This transformation
was also efficient for substituted naphthalenes, heteroarenes, and

o) Scheme 8. Pd-catalyzed dearo-
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sentative scope. (B) Synthesis of
Sertraline (47).
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benzene. Moreover, oxygen-based nucleophiles such as benzyl
alcohols and oximes worked well to provide the syn-1,4-oxy-
aminated products (50, conditions D).[24l The enantioselective
version was developed for naphthalene-derived cycloadduct us-
ing both nitrogen- and oxygen-based nucleophiles, and notably
syn-1,4-diaminated and syn-1,4-oxyaminated compounds were
obtained with high enantioselectivity (conditions C and E).
Finally, the dearomative diamination protocol was applied to
the structural elaboration of memantine, an FDA-approved drug
used for the treatment of dementia associated with Alzheimer’s
disease. Successive chemoselective hydrogenation of the olefin
in 52, followed by oxidation of the urazole moiety afforded ami-
noketone 53.

4. Conclusion and Outlook

In conclusion, we have developed dearomative functionaliza-
tion methods for simple arenes, which are conceptually distinct
from other established dearomatizations, providing rapid entry to
a variety of complex alicyclic structures. The salient features of
these transformations are: 1) dearomatization under mild condi-
tions (visible-light irradiation, low temperature), permitting the
use of sensitive functional groups, such as halogens and benzylic
heteroatom functional groups, which are traditionally not toler-
ated during standard dearomative events; 2) a broad scope of ame-
nable arene substrates, including mono- and polycyclic arenes; 3)
complementary site-selectivity for the dearomatization of polycy-
clic arenes and heteroarenes; 4) installation of a wide variety of
functionality with well-defined stereochemistry; 5) high enanti-
oselectivity of dearomatized products; and 6) empowering novel
disconnections towards the facile synthesis of natural products
and bioactive compounds from simple arenes. Importantly, most
of the products obtained through arenophile-based methods are
orthogonal to established dearomative transformations, including
biocatalysis.
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