2001.10045v1 [cond-mat.str-el] 27 Jan 2020

arxiv

Valence-bond solids, vestigial order, and emergent SO(5) symmetry
in a two-dimensional quantum magnet

Jun Takahashil'2>* and Anders W. Sandvik® 1t

! Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

2 Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215,

(Dated: January 29, 2020)

We introduce a quantum spin-1/2 model with many-body correlated Heisenberg-type interactions
on the two-dimensional square lattice, designed so that the system can host a four-fold degenerate
plaquette valence-bond solid (PVBS) ground state that spontaneously breaks Zs symmetry. The
system is sign-problem free and amenable to large-scale quantum Monte Carlo simulations, thus
allowing us to carry out a detailed study of the quantum phase transition between the standard
Néel antiferromagnetic (AFM) and PVBS states. We find a first-order transition, in contrast to
previously studied continuous transitions from the AFM phase into a columnar valence-bond solid
(CVBS) phase. The theory of deconfined quantum criticality predicts generic continuous AFM—
CVBS and AFM—-PVBS transitions, and, in one version of the theory, the two critical order param-
eters transform under SO(5) symmetry. Emergent SO(5) symmetry has indeed been observed in
studies of the AFM—-CVBS transition, and here we show that the first-order AFM—-PVBS transition
also is associated with SO(5) symmetry. Such unexpected symmetry of the coexistence state, which
implies a lack of energy barriers between the coexisting phases, has recently been observed at other
first-order transitions, but the case presented here is the first example with SO(5) symmetry. The
extended symmetry may indicate that the transition is connected to a deconfined critical point. We
also discuss the first-order transition in the context of a recent proposal of spinons with fracton
properties in the PVBS state, concluding that the fracton scenario is unlikely. Furthermore, we
discover a novel type of eight-fold degenerate VBS phase, arising when the PVBS state breaks a
remaining Zo symmetry. This second phase transition, which is continuous, implies that the PVBS
phase can be regarded as an intermediate “vestigial” phase, a concept recently introduced to describe
multi-stage phase transitions involving a continuous symmetry. Here we construct a six-dimensional
order parameter and also introduce a general graph-theoretic approach to describe the two-stage
discrete symmetry breaking. We discuss different ways of breaking the symmetries in one or two
stages at zero and finite temperatures. In the latter case we observe fluctuation-induced first-order
transitions, which are hallmarks of vestigial phase transitions. We also mention possible connections
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of the AFM-PVBS transition to the SO(5) theory of high-T¢. superconductivity.

I. INTRODUCTION

Competing interactions in a quantum antiferromagnet
with spin-rotationally invariant interactions can lead to
the destruction of the conventional Néel antiferromag-
netic (AFM) O(3) symmetry-broken ground state in two
or higher dimensions. The most well studied transition
into a gapped quantum paramagnet is in dimerized spin-
1/2 systems (two spins per unit cell), where the ground
state is non-degenerate and can be approximated as a
product of singlets on the dimers. This quantum phase
transition has an experimental realization in T1CuCls un-
der pressure [1]. For a uniform system with one spin per
unit cell, a uniform non-degenerate paramagnetic ground
state is possible only under special conditions [2, 3]. With
a half-integer spin per unit cell (e.g., a single spin-1/2)
a more complex state must necessarily obtain which has
either non-local entanglement and topological order (a
spin liquid [4]) or strong local entanglement leading to
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a degenerate symmetry-breaking pattern of singlets (a
valence-bond solid, VBS, sometimes also called valence-
bond crystal) [5-11].

While experimental searches for spin liquids have been
a dominant theme in quantum materials science for more
than a decade [12], comparatively less efforts have been
devoted to quantum magnets with VBS states. A dimer
VBS in the quasi-one-dimensional material GeCuQO3 was
exhaustively studied in the 1990s [13]. More recently,
signs of a VBS with singlets forming on four-spin plaque-
ttes were detected in the quasi-two-dimensional system
SrCuy(BOs3)2 under high pressure [14]. This material
also hosts an adjacent AFM phase at still higher pres-
sures [15], thus for the first time opening prospects for
detailed experimental studies of a direct transition be-
tween AFM and VBS states in two dimensions.

The AFM state has an obvious classical counterpart,
and its low-energy properties, including its quantum
phase transition into the dimer paramagnet, can be un-
derstood within essentially classical field theories in one
higher dimension (imaginary time, to account for quan-
tum fluctuations) [16, 17]. In contrast, spin liquids and
VBSs are exotic from the classical standpoint, and low-
energy descriptions of them and their quantum phase
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FIG. 1. Depiction of the different types of VBS states dis-
cussed in this work; (a) four-fold degenerate CVBS, (b) four-
fold degenerate PVBS, and (c) eight-fold degenerate AVBS.
Long ovals in (a) and (c) represent spontaneously “frozen”
singlets and the ovals forming squares in (b) represent pla-
quette singlets, which can be expressed as resonating pairs of
horizontal and vertical singlet pairs.

transitions require more drastic deviations from the con-
ventional field theories of statistical physics [18, 19]. The
mathematical complexity of the quantum-field theories
used to described exotic states of quantum magnets is
formidable, and direct computational studies of the low-
energy properties of lattice models are indispensable for
testing and guiding analytical approaches, and can also
open new research directions [20].

In this article we introduce a two-dimensional (2D)
quantum spin model in which the AFM ground state
successively transitions into two different types of VBS
states; a four-fold degenerate plaquette VBS (PVBS) fol-
lowed by an eight-fold degenerate state we name the al-
ternating VBS (AVBS). These states are schematically
depicted in Fig. 1, along with the more commonly stud-
ied columnar VBS (CVBS) state. In the idealized PVBS
state illustrated in Fig. 1(b), a plaquette is a resonating
pair of valence bonds, with equal amplitude for horizon-
tal and vertical orientation. Such a singlet state also
goes under other names, e.g., plaquette-singlet solid or
valence-plaquette solid. Here we adopt the name VBS
as a generic term for non-magnetic states breaking lat-
tice symmetries, forming ordered unit cells with either
static or resonating valence bond descriptions. In gen-
eral, quantum and/or thermal fluctuations perturb the
completely ideal singlet product states in Fig. 1, but the
depicted patterns survive in actual ground states by hav-
ing finite valued order parameters. The pattern can also
be explicitly visualized by observing the singlet-density
maps, as we will do later.

Using quantum Monte Carlo (QMC) simulations of the
J-Q¢ model illustrated in Fig. 2, we find an unusual first-
order AFM-PVBS quantum phase transition with emer-
gent SO(5) symmetry of the five-component combined
AFM (three components) and PVBS (two components)
order parameters. To analyze the second transition, a
continuous PVBS—AVBS transition, we introduce a new
unified generic graph-theoretic description of multi-stage
discrete symmetry breaking transitions, which we use
here to analyze the PVBS and AVBS order parameters
and their possible symmetry breaking paths.

The AFM-PVBS transition is an interesting analogy
to the AFM-superconducting transition within the SO(5)
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FIG. 2. The J-Q¢ model in which PVBS and AVBS ground
states (Fig. 1) are realized. The two types of interactions
between the spins on the square lattice are defined using
two-spin singlet projectors, here depicted with ovals. The
standard Heisenberg exchange of strength J between nearest
neighbor spins is equivalent to projectors on the horizontal
and vertical links, while the interaction of strength @ intro-
duced here is expressed with products of six projectors, ar-
ranged in four different ways. The site labels are used in the
formal definition of the Hamiltonian.

theory of the cuprates [21, 22]. Overall our results con-
nect to several of the major concepts currently under de-
bate from the field-theory perspective; deconfined quan-
tum critical (DQC) points [23], spinons with fracton
properties [24], and vestigial phase transitions [25]. In
the remainder of this introductory section we provide
further background on these notions and summarize our
aims and findings.

A. Valence-bond solid states and deconfined
quantum criticality

VBSs are often regarded as less exotic and interest-
ing than spin liquids, because they have local order pa-
rameters. However, the objects that form the long-range
order in a VBS—the singlets—are not the elementary
microscopic degrees of freedom of the model but emer-
gent entangled composites with no direct counterparts
in conventional classical spin models. It was realized in
1980s and 1990s that continuum field-theory descriptions
of one-dimensional (1D) [26-28] and 2D [8, 29, 30] VBS
states require careful consideration of topological defects
and their quantum interference, which is still an active
field of research [24, 31-33]. While the early field-theory
studies already indicated that 2D AFM-VBS transitions
may be unusual, it was only after intriguing numerical
results were found [34, 35] that it was recognized that di-
rect quantum phase transitions between AFM and VBS
ground states may fall outside the standard Landau-
Ginzburg-Wilson (LGW) paradigm [36, 37] (as was al-
ready known to be the case with many transitions in
1D systems). Concurrently, some other exotic non-LGW
2D transitions related to VBSs were also proposed in
quantum-dimer systems [38].

Within the LGW framework, direct transitions be-
tween two ordered phases with unrelated symmetries are



generically first-order. However, the two order parame-
ters at the AFM—-VBS transition are not independently
fluctuating but represent different manifestations of the
confinement of more fundamental objects—spinons—
which deconfine at the phase transition (the DQC point).
The expected first-order transition may then be sup-
planted by a generically continuous transition.

Although the DQC scenario predicts fascinating con-
nections between the AFM and VBS states, it relies
on theoretical assumptions such as the conservation of
skyrmion numbers at the transition point [35-37]. Some
of the assumptions are hard to justify rigorously, and,
thus, unbiased computational research plays a crucial role
in this developing field. Numerical confirmations of the
DQC phenomenon face several challenges, however. To
begin with, it is difficult to distinguish a continuous tran-
sition from a weak first-order transition in general. In
order to deal with this issue in a reliable manner, one
needs to utilize a method which can reach large lattice
sizes while still being free from systematic errors. QMC
methods serve such purposes, but in many cases they
suffer from the sign problem [39, 40] and are not useful.

The conditions for DQC transitions are at first sight
most naturally realized in geometrically frustrated SU(2)
symmetric quantum spin systems, which is one of the
model classes for which the QMC sign-problem is most
severe [41, 42]. The lattices accessible with exact numer-
ical diagonalization methods are too small to even allow
definite characterization of the non-magnetic states in
these systems [10, 11, 43]. While in principle the density-
matrix renormalization (DMRG) method or variational
states based on tensor networks can be used, and some
results for potential DQC systems have been reported
[44-47], these techniques have not yet reached the length
scales and reliability of modern QMC techniques.

The invention of the J-@ class of Hamiltonians [48, 49]
has been a solution to the challenge of QMC simulations
of the DQC transition in quantum spin systems. In these
models the Heisenberg interaction J is supplemented by
multi-spin correlated singlet projectors @, which open
possibilities of designing sign-problem free Hamiltonians
with the desired phase diagrams containing AFM and
VBS phases. A large number of QMC studies with differ-
ent variants of 2D J-Q models have been reported [48—
65]. Concurrently, various discrete versions of the pro-
posed DQC action have also been studied numerically
[66—68], and three-dimensional classical loop [69, 70] and
dimer [71, 72] models with arguably the same low-energy
fixed points have also been studied extensively. Although
the observed quantum phase transitions in many of these
models appear to be continuous, there are puzzling scal-
ing anomalies that have been interpreted either as signs
of an eventual weakly first-order transition (with discon-
tinuities presumably developing on larger lattices than
currently reachable) [23, 68, 73, 74], or as manifesta-
tions of new physics associated with the DQC scenario—
novel finite-size and finite-temperature scaling behaviors
related to the presence of two divergent length scales [59].

While the ultimate continuous or first-order nature of
the AFM-VBS transition is a question of fundamental
interest, it should be noted that the DQC scenario does
not stand or fall with it—what matters is whether spinon
deconfinement takes place on large length scales, and this
is now beyond doubt. The critical or near-critical state
is at the very least a good approximation to a particular
case of a gapless Dirac spin liquid [60, 63, 64], as ex-
pected at the DQC transition. Experimental realizations
of spinon deconfinement [75, 76] and DQC transitions are
plausible [14, 15, 77], though no conclusive observations
have been reported as of yet.

The broader interest in the DQC point and related
phenomena, such as emergent symmetries and anomalous
scaling, lies in the many unresolved puzzles in quantum
matter where “beyond-LGW” physics may be at play.
For instance, some of the unusual metallic properties of
the high-T, cuprates may arise from doping the DQC
point [78, 79]. Being accessible to large-scale QMC sim-
ulations, the DQC phenomenon and other exotic aspects
of VBS states and transitions offer unique opportunities
to study important cases of beyond-LGW physics in de-
tail. With a suitable sign-free “designer Hamiltonian”
[20], definite numerical results can be obtained and com-
pared with approximate and often speculative predictions
of field theories, and unique insights can be gleaned from
the simulations in their own right.

B. J-Qs model and main findings

Stimulated by the success of designer Hamiltonians
suitable for QMC studies of the DQC phase transitions
and VBS physics, many other sign-free quantum spin
models have recently been constructed for studies of a
wide range of exotic quantum phases and quantum phase
transitions, e.g., symmetry-enhanced first-order transi-
tions [65], Zs spin liquids [80], and Haldane nematics [81].
In this article we introduce a new type of J-Q Hamilto-
nian that exhibits a host of fascinating phenomena within
a single phase diagram. Our variant of the J-Qg model
(where the subscript denotes the number of singlet pro-
jectors) contains 12-spin interactions (see Fig. 2) and may
appear contrived from the standpoint of experimental re-
alizations. However, in the spirit of designer Hamiltoni-
ans [20], it opens access to studies of quantum states and
quantum phase transitions which can likely be realizable
also with other microscopic interactions (e.g., frustrated
exchange interactions) and whose quantum field-theory
descriptions are of great current interest.

Being sign free, the J-Qg model illustrated in Fig. 2
(and define in detail in Sec. III) is amenable to QMC
simulations on lattices with thousands of spins. We will
construct the ground-state phase diagram as a function
of the ratio Q/J of the twelve-spin and Heisenberg cou-
plings. On increasing @Q/J, we first find a direct quan-
tum phase transition between the standard Heisenberg
AFM ground state and a four-fold degenerate PVBS



state [Fig. 1(b)]. When further increasing the control pa-
rameter, the Z, symmetry breaking PVBS state under-
goes a Zo-breaking continuous quantum phase transition
into another state, the eight-fold degenerate AVBS state
[Fig. 1(c)]. The initial aim of our study was to design
a model hosting an AFM-PVBS transition as a possible
realization of a DQC transition. The J-Qg model was
the first and so far only successful sign-free Hamiltonian
realizing a four-fold degenerate PVBS state, and in the
course of studying it we also discovered the unexpected
AVBS state.

Previous QMC studies of DQC transitions have fo-
cused on the CVBS state [1(a)], but the likewise four-
fold degenerate PVBS is also a possible DQC candidate
on equal footing with the CVBS state according to the-
ory [18, 36]. However, the AFM-PVBS transition found
here is clearly first-order though it exhibits the emergent
SO(5) symmetry which was proposed in one variant of
the DQC theory [82]. Emergent symmetry would not in
general be expected at a first-order transition [70, 83],
but recently other examples have been found [65, 84, 85]
where the coexistence state appears to be described by
a vector or pseudo-vector combining all the components
of the two different order parameters and transforming
under a spherical symmetry. In the case at hand here the
combined order parameter comprises three AFM compo-
nents and two VBS components.

The emergent SO(5) symmetry may indicate the prox-
imity of a continuous DQC transition with this sym-
metry. We will also discuss possible relevance of the
first-order transition to a recently proposed alternative
fracton theory [24] of the PVBS state and AFM-PVBS
transition. Furthermore, we demonstrate that the two-
stage breaking of the symmetries of the PVBS and AVBS
phases fits into the framework of “vestigial” phase tran-
sitions [25, 86], where our case is the first example where
both phases break discrete symmetries—the previous
cases involved the breaking of a discrete symmetry fol-
lowed by the breaking of a continuous symmetry. We
describe the double-discrete ground-state vestigial tran-
sition using a six-dimensional order parameter and also
by a novel graph-theoretic approach. The first-order na-
ture of the transitions at finite (non-zero) temperature
from a paramagnet into either the PVBS or AVBS state
lends further support to the vestigial phase scenario.

C. Article outline

The remainder of the article is structured as follows:
In Sec. IT we provide further background on VBS states
and numerical studies of the AFM-VBS transition, set-
ting the stage for our new developments related to PVBS
ordering, emergent symmetries, and vestigial phase tran-
sitions. In Sec. III we define our J-Qg model in detail and
briefly describe the QMC method we use to study it. In
Sec. IV we discuss results for the AFM-PVBS ground-
state transition and contrast it with the often studied

AFM-CVBS transition. In Sec. V we present results
for the second phase transition into the AVBS state. In
Sec. VI we construct an order parameter that captures
both the PVBS and AVBS phases, and also present our
graph-theoretic approach (the “order graph”) for classi-
fying the two-stage symmetry breaking. We present re-
sults for finite temperature in Sec. VII and explain them
based on the graph approach and the scenario of vesti-
gial phase transitions. Finally, in Sec. VIII we discuss
implications of our results to existing theories, including
the fracton scenario and the analogy of the AFM-PVBS
transition to the cuprate SO(5) theory [21]. In Appendix
A we provide a detailed discussion on the subtle issue of
exactly what symmetries are broken in the CVBS and
PVBS phases. In Appendix B we further discuss the mo-
tivations behind the concept of the order graph, and also
describe its symmetry properties in more detail.

II. VALENCE-BOND SOLIDS AND EMERGENT
SYMMETRIES

The square-lattice CVBS depicted in Fig.1(a) is the
most well-studied non-magnetic state in the context of
the DQC transition. In addition to pointing to a contin-
uous quantum phase transition between the CVBS and
AFM states, numerical studies of J-Q and related mod-
els have revealed that the fluctuations among the four
degenerate dimer patterns develop emergent U(1) sym-
metry as the critical point is approached [48-50, 70, 87].
This emergent symmetry confirms an important aspect
of the DQC scenario, where the ordered CVBS patterns
can be assigned angles ¢ = nn/2, n = 0,1,2,3, and
tunneling between these discrete angles corresponds to
n traversing a range of continuous values (alternatively,
the order parameter is a complex scalar) in an effective
potential o cos(4¢) [88]. The emergent U(1) symmetry
corresponds to a flat distribution of the coarse-grained
CVBS angle ¢ at the critical point.

The proposal of emergent U(1) symmetry, which is also
directly related to the conjectured absence of topological
defects at the DQC transition [36, 37], was partially mo-
tivated by an analogy between the VBS order parameter
and the magnetization vector of a classical 3D XY model
with a four-fold symmetric (¢ = 4) potential o« cos(q6;)
for the microscopic spin angles ;. In these clock models,
when ¢ > 4 the cosine perturbation of the U(1) sym-
metric XY model is “dangerously irrelevant”, i.e., it re-
duces the symmetry in the ordered state but not at the
critical point (in the thermodynamic limit when the or-
der parameter is coarse-grained over large regions), and
the universality class of the phase transition remains to
be that of the 3D XY model [89-95]. In analogy, at
the AFM-VBS transition the effective low-energy inter-
actions responsible for locking the dimerization to one of
the four static patterns may be dangerously irrelevant, so
that the coarse-grained VBS order parameter can take
any angle between 0 and 27 when the critical point is



approached from the VBS side.

If there indeed is emergent U(1) symmetry, then the
field theory describing the AFM-VBS critical point does
not need to include the ingredients causing the four-fold
degeneracy—quadrupled monopole instanton events in
the path integral [8, 30]. In the originally proposed DQC
field theory, the CP! model [36, 37], this aspect can be
taken into account by not including any topological de-
fects in the U(1) gauge field corresponding to the contin-
uously fluctuating VBS order parameter; hence the pro-
posal that the transition is described by the non-compact
CP! model. Here it should be noted that the analogy
with the clock model is not precise, because the critical
points are different, and it has not been demonstrated
within the field theory that the quadrupled monopoles
really are dangerously irrelevant.

Numerically, emergent U(1) symmetry has been estab-
lished up to the largest length scales reachable in simula-
tions of the J-Q model [48-50, 87] and in related classical
3D loop models [69]. Moreover, there are also indications
of an SO(5) symmetry of the combined O(3) AFM and
emergent U(1) VBS order parameters [60, 69]. While
the original DQC scenario did not involve any such sym-
metry, only O(3)xU(1), and allowed for different expo-
nents na and ny of the critical AFM and VBS correla-
tion functions, a later proposal was explicitly formulated
with na = nv. In this alternative (perhaps dual) theory
the three components of the AFM order parameter and
the two VBS components are treated on equal footing
as a five-component vector transforming as SO(5) [82].
This treatment is possible only with SU(2) spins, and
the SU(N) generalizations of the CPY~! theory do not
appear to allow such a higher symmetry. Numerically,
na ~ nv has been observed for SU(2) spins [48, 55, 87]
and in the loop model [69], while generalizations of the J-
@ model and other related models to SU(N) spins show
clearly na # mv, with the values of both exponents in
remarkably good agreement with 1/N expansions of the
SU(N) theory for large N [48, 55, 96]. Whether or not
the observed SO(5) symmetry for SU(2) spins is exact
or only approximate (i.e., breaking down on some large
length scale) is still an open question, especially in light
of the fact that the numerical values of the exponents 7
and 7y of the lattice models do not satisfy a bound ob-
tained from conformal bootstrap calculations with SO(5)
symmetry [97].

Although the DQC scenario has been probed in de-
tail with models hosting CVBS ground states, the PVBS
state depicted in Fig. 1(b) still remains to be studied
thoroughly, mainly due to the lack of microscopic mod-
els realizing it without QMC sign problem. Models in
which a PVBS has been proposed include the Heisen-
berg model with first- and third-neighbor AFM interac-
tions [98], which has a severe QMC sign problem that
has prohibited detailed studies of the putative AFM-
PVBS transition. Resonating VBS states which spon-
taneously breaks the lattice symmetry similarly to the
square-lattice PVBS state have also been studied on the

honeycomb lattice, with frustrated Heisenberg Hamilto-
nians with sign problems [100, 101] and J-Q models with-
out [32, 56] sign-problem. While it is apparently easier
to construct sign-free J-@Q type Hamiltonians with PVBS
ground states on the honeycomb lattice, the symmetry
broken in that case is Zs instead of Z, on the square
lattice. The smaller number of degenerate states has an
additional complication in whether it allows for emer-
gent U(1) symmetry or not [61]. We will only discuss the
square lattice here.

The DQC scenario does not distinguish in any crucial
manner between the CVBS and PVBS states, as they
both are four-fold degenerate and subject to the same
mechanism of emergent U(1) symmetry—essentially the
difference is in the sign of the effective cosine potential
experienced by the coarse-grained VBS order parameter.
Contrary to the expectation of a DQC transition, there is
a recent suggestion that spinons in the PVBS states will
be immobile fractons [24], thus prohibiting the decon-
finement mechanism underlying the emergent U(1) sym-
metry and the continuous quantum phase transition into
the AFM state. In the simulations of the J-Qg model
presented here, we indeed find a first-order AFM-PVBS
transition. Nevertheless, we will argue that the absence
of spinon deconfinement is not necessarily confirming the
fracton picture, and that the fracton mechanism is not
universal for PVBS states and may only be realized under
very particular conditions.

Moving deeper into the PVBS phase, the J-Qg model
exhibits another phase transition out of the PVBS phase
into the eight-fold degenerate AVBS state illustrated in
Fig. 1(c). This previously not anticipated transition
breaks an additional Zs symmetry, and, thus the four-
fold degenerate PVBS phase can be regarded as an in-
termediate phase that only partially breaks the D, sym-
metry of the square lattice. This two-stage symmetry
breaking fits into the scheme of “vestigial” transitions
[25, 86], although previous examples of such multi-stage
transitions have involved the breaking of a discrete (nor-
mally Zs) symmetry followed by the breaking of a con-
tinuous symmetry, in contrast to both transitions break-
ing discrete symmetries in our case. We will introduce
a general systematic way of describing such multi-stage
discrete symmetry breaking using a graph-theoretic ap-
proach.

In addition to serving as important testing grounds for
the theory of quantum magnetism and quantum phase
transitions, PVBS states are important also considering
potential realization of DQC transitions in real materi-
als. So far, the most promising candidate is the quasi-
2D quantum magnet SrCus(BO3)s under high pressure
[14, 15], which appears to realize a certain type of PVBS
state (though there are also views opposing this notion
[102]). The 2D magnetic interactions in SrCus(BO3)2 re-
alize the Shastry-Sutherland model [103], and the ratio
of the inter- and intra-dimer coupling constants change
with pressure in such a way that the three phases of the
model are realized within the accessible pressure range;



first a non-degenerate dimer singlet state, then a PVBS
followed by an AFM state, with the latter further stabi-
lized by inter-layer couplings [15]. However, the Shastry-
Sutherland PVBS state is only two-fold degenerate owing
to the structure of the lattice, while the original DQC
scenario applies to a four-fold degenerate PVBS such as
the one illustrated in Fig. 1(b). Nevertheless, there are
theoretical proposals suggesting that also a two-fold de-
generate VBS state may give rise to a DQC point or
DQC-like physics [77, 104].

Beyond the sign-problematic (in the most interesting
parameter regimes) Shastry-Sutherland model and ex-
tensions of it [99], sign-free 2D J-Q models with two-fold
degenerate PVBS ground states can also be designed. In
a “checker-board” J-Q (CBJQ) model, an unusual first-
order transition between the AFM state and a Zsy break-
ing PVBS ground state was found [65]. Surprisingly, an
emergent O(4) symmetry of the combined O(3) AFM and
scalar PVBS order parameters in the coexistence state
of the system was observed, despite the clear presence
of discontinuities at the transition. While until recently
emergent symmetries had only been expected at contin-
uous transitions [70, 83|, subsequently a first-order tran-
sition with enhanced symmetry was also found in a Z,
deformed classical 3D loop model [84]. It is currently not
clear whether the enhanced symmetry is only manifested
up to some large length scale or truly asymptotically ex-
act, but a theory in a different context of boson-fermion
supersymmetry does suggest that first-order transitions
can be associated with exact emergent symmetry [85].
Here we will demonstrate SO(5) symmetry at the first-
order AFM-PVBS transition of the J-Qg model, thus
providing yet another example of the emergence of en-
hanced symmetries under unexpected conditions.

III. MODEL AND METHOD

The J-Q¢ model we consider here is defined with S =
1/2 spins on a 2D square lattice. As illustrated in Fig. 2,
the model combines the standard Heisenberg exchange of
strength J with a 12-body interaction of strength @ in
the Hamiltonian

6
H=-7Y P6,5)-Q>_ []Plrje), (1)
(i,4) H k=1

were, P(i,7) denotes a bond operator; a singlet projector
on the pair of sites ¢ and j,

P(i,j) =1/4=8;-8;. (2)

Thus, a single J-term —JP(i, j) is equivalent to an AFM
Heisenberg coupling, up to an additive constant. The
sum over (7, j) runs over all nearest-neighbor bonds. The
Q¢ terms act on twelve spins specified by the set H of
groups of twelve sites i1,...,1,J1,- .-, J6, with their rel-
ative positions and pairings into bonds with singlet pro-

jectors illustrated in Fig. 2. In order to preserve all sym-
metries of the square lattice, H includes all possible trans-
lations of the four bond arrangements shown. Note that
two of the four patterns correspond to a /2 rotation of
the other two, preserving the four-fold rotational sym-
metry of the lattice. We use L x L(= N) square lattices
with periodic boundary condition, yielding 2N J-terms
and 4N Q-terms. In some cases we will also consider
open boundary conditions, in which case we remove all
operators acting on sites beyond the L x L edge.

Previously studied J-@ models have Q-terms with two
or three bond operators and were occasionally referred
to as J-Q2 or J-Q3 models, respectively [48]. Differ-
ent J-Q) models are further distinguished by the rela-
tive arrangement of the bond operators of the @ terms,
with columnar and stair-case arrangement considered in
the past—the former leading to DQC transitions, as dis-
cussed in the previous section, and the latter type of Q3
interaction causing a strongly first-order transition be-
tween the AFM state and a staggered VBS [53] (and a
stair-case (0o interaction does not destroy the AFM or-
der). The combination of vertical and horizontal singlet
projectors in the new Qg terms introduced here is the
feature that promotes the formation of a PVBS instead
of the CVBS obtaining if all projectors are stacked in
columns. For comparison, we will also present some re-
sults for the case of a columnar (g interaction, in which
case we find a strongly first-order transition into a CVBS
phase. We also note that we have not been able to realize
a PVBS state with less than six bond operators.

For all calculations reported here we used the stochas-
tic series expansion (SSE) method [105], a QMC method
without discretization errors that incorporates efficient
loop updates [106, 107]. In order to search the entire
sign-free ground state phase diagram (positive J and @),
we vary @ € [0, 1] in Eq. (1) while keeping J+@Q = 1 fixed
to serve as the unit of energy in the simulations. Unless
otherwise noted, the inverse temperature is set to 8 = L,
which is sufficient for studying ground state ordering and
scaling properties of quantum phase transitions with dy-
namic critical exponent z = 1, which is the expected
z at both the DQC point and a quantum Ising critical
point (which corresponds to the symmetry-breaking at
the PVBS-AVBS transition). The choice of 5(L) is also
suitable for detecting a first-order phase transition.

IV. DIRECT AFM-TO-PVBS TRANSITION

The J-Qg model exhibits a direct quantum phase tran-
sition from the standard AFM phase to the PVBS phase
at a point Q. ~ 0.2758, making this transition a candi-
date for the DQC mechanism. However, we here instead
find a first-order transition with clearly finite coexist-
ing order parameters at the transition point. This is in
sharp contrast to previously studied variants of the J-@Q
model, which host apparently continuous AFM-CVBS
transitions, or possibly very weak first-order transitions
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FIG. 3. (a) Squared order parameters in the neighborhood of the AFM-PVBS transition point. Results for three different

system sizes, L = 8,16, and 48, are shown in each case (note that, for L = 48 we have results only very close to the transition
point). (b) Binder cumulants of the order parameters for the two phases, shown for system sizes L = 8,12,16,24,32,48. (c)
Finite-size transition points extracted using crossing points defined with several different quantities. The green curve is a fit to
the estimates obtained from the same-size crossings between the AFM and PVBS cumulants and gives Q. = 0.2758(5) for the
infinite-size transition point, where the number in parenthesis here and elsewhere indicates the statistical error (one standard
deviation of the mean) of the preceding digit. The other lines connecting points are only guides to the eye. When not visible,

error bars are smaller than the graph symbols.

with coexisting order parameters too small to be detected
currently. Here we will first present our numerical simu-
lation results in detail and leave discussion of implication
of our result to the DQC and fracton theories mostly to
Sec. VIII.

A. Order parameter definitions

Let us first define the two components Il and II; of
the PVBS order parameter II = (Ily, II;) as

2 x pz
Ha:N Z (_1) Pm,y’ (3)

T+yY=a

where a = 0,1 is a sublattice label corresponding to a
checker-board pattern of the lattice coordinates (z,y),
ie, a=x+ymod2 P; isa projection operator to
zero z-magnetization of the four spins on the plaquette
with its low-left corner at (x,y), i.e.,

Pz — ]-7 lf S;,y + S;+1,y + S;,erl + S;+1,y+1 = 0
Y 0, otherwise.
(4)

Eq. (3) is just one out of many possible order parameters
capable of detecting the PVBS state. Ideally, one might
prefer a spin-rotation invariant definition, e.g., some di-
rect measure of the singlet density. Evaluating such off-
diagonal operations involving more than two spins is very
time consuming, however [108]. Though the condition for
Py, = lis anecessary but not sufficient condition for the
four sites to form a singlet, the order parameter II still
detects a modulation of the mean singlet density.

It is useful to compare the plaquette order parameter
with the frequently used dimer order parameter D =
(Dg, Dy), where, to conform with the plaquette order
parameter in Eq. (3), we also use a diagonal definition

(instead of the rotationally invariant definition that can
also be evaluated efficiently [108]):

D, = Z(_l)x ;y ;+17y’
Dy = Z(_l)yS;7yS;7y+1' (5)

For a CVBS or PVBS ordered state, the plaquette order
parameter (Ily,II;) essentially behaves as a 7/2 rotated
columnar order parameter (D,,D,), and both squared
order parameters are non-vanishing. This is a conse-
quence of the fact that the CVBS and PVBS states both
break the Dy lattice symmetry into Z,. To be more pre-
cise, when we regard symmetry transformations of the
model that do not change the order parameter, they will
naturally form the eight-component dihedral group Dy,
which breaks into Zs in both the CVBS phase and the
PVBS phase. The two remaining Z, symmetries are iso-
morphic via an automorphism of the D4 group. This
point is explained in detail in Appendix A. For the dis-
cussion in this section, it suffices to recognize that IT and
D are both valid order parameters for detecting CVBS
and PVBS order, and these orders can be distinguished
by examining the 2D distribution of either of the order
parameters; here we will analyze both of them.

B. First-order transition

Examples of SSE results used in order to locate
the AFM-PVBS transition point are shown in Fig. 3.
Fig. 3(a) shows the squared order parameters for three
system sizes versus (). It is apparent that the point where
the AFM order dies out is also where the PVBS order
emerges, implying a direct transition. To precisely an-
alyze the transition, we show in Fig. 3(b) the Binder
cumulants U,,, and Uy of the order parameters, defined
such that Ux — 1 with increasing system size if there is



long-range order of the X kind (X = m or X =1II) and
Ux — 0 otherwise. The Binder cumulant of the AFM
order parameter is given by

5 1 {(m?)
Un==-(1--"—%%5]), 6
: (- 307 ©
where the factors are chosen for a single component of
the three-component AFM order parameter,

me = (1S, (7)

(z,y)

For the two-component plaquette order we have

4
UH2<<§2>>2, (8)

where II = (IIg,I1;), with the components defined in
Eq. (3). The crossing value @ = Q* between Ux (Q, L)
and Ux (Q,2L) as the control parameter @ is varied (for
any order parameter X ), is known to have much smaller
finite-size drifts compared to other quantities defining
finite-size transition points. L-2L crossing values Q*(L)
obtained from data such as those in Fig. 3(b) are graphed
versus the inverse system size in Fig. 3(c). The estimated
transition point Q. = Q*(L — oo) in the thermodynamic
limit agrees well between different order parameters. An-
other quantity, which serves even better as the Q. esti-
mator for this system, is the crossing between the two
different Binder cumulants computed with the same lat-
tice size, thus providing a larger number of L points with
the available data sets. We also show this estimate in
Fig. 3(c). It is well described by a single power law cor-
rection for L > 16, and we use it for the most precise
extrapolation of the transition point in the thermody-
namic limit; Q. = 0.2758(5).

With the estimated transition point at hand, the na-
ture of the AFM—-PVBS transition can be further studied.
We find that both order parameters approach finite val-
ues with increasing system size at the estimated Q. value,
as shown in Fig. 4. Here we also show another quantity
characterizing the AFM state; the spin stiffness pg. In
SSE calculations it is obtained using the simple formula
[105]

pszﬁiN«n:—n;)%, (9)

where nf denotes the number of Sinj 41,y operators
in the SSE operator string. The stiffness also clearly
extrapolates to a finite value.

Finite values of both the AFM and PVBS order pa-
rameters at a single point implies phase coexistence and a
first-order transition. However, even though the extrapo-
lated order parameters are substantial, the Binder cumu-
lants of these quantities [Fig. 3(b)] did not show the nega-
tive peaks that are typically present at first-order transi-
tions. A negative peak in a cumulant originates from the
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FIG. 4. Order parameters characterizing the AFM and

PVBS states graphed vs the inverse system size at the esti-
mated transition point, Q. = 0.27581. The curves show poly-
nomial fits based on which infinite-size extrapolated values
are obtained (the yellow squares shown at 1/L = 0). When
not visible, error bars are smaller than the graph symbols.

double-peaked distribution of the squared order param-
eter; one peak at 0 reflecting the disordered phase and
a second peak at a non-zero value reflecting the ordered
phase. In the conventional classical case [109, 110], the
volume increase in free-energy barriers between the two
degenerate phases implies that the negative peak grows
linearly with the system volume, and in the quantum case
a corresponding behavior is expected on account of the
increasing tunneling barrier with the system size (and
this has been observed at the phase transition in a stag-
gered J-Q3 model [53]). The tunneling barrier is absent
if the order parameters form an enlarged spherical sym-
metry at the transition point, so that moving from one
phase to the other corresponds to rotating the order pa-
rameter without energy cost. Such an unexpected mech-
anism at play at a first-order quantum phase transition
was recently proposed to explain results for the transi-
tion between the AFM state and a two-fold degenerate
PVBS in the CBJQ model [65], and subsequently other
potential cases were also identified [84, 85].

C. Emergent symmetry

Anticipating an emergent symmetry also in the present
case, we proceed to examine the symmetry properties of
the order parameters at the AFM—VBS transition. Fig. 5
shows the probability distribution of the PVBS order pa-
rameter P(Ilg,II;) near the transition point and deeper
inside the PVBS phase. Since we here focus on quali-
tative aspects of the angular dependence of the distri-
butions, the (linear) color scales in the histograms are
unimportant and not shown for simplicity. The fact that
the histogram has four peaks on the horizontal and ver-
tical axes once the system is sufficiently far inside the



FIG. 5. PVBS order-parameter distribution P(Ilo,II;), with
the components defined according to Eq. (3), accumulated in
SSE simulations of L = 48 lattices. (a) At @ = 0.273, close
to the AFM-PVBS transition, slightly inside the AFM phase.
(b) At the AFM-PVBS transition point, Q. = 0.2758, (c) At
Q = 0.28, slightly inside the PVBS phase. (d) Further inside
the PVBS phase at @ = 0.3.

VBS phase, seen clearly in Fig. 5(d), implies that this
phase is indeed a PVBS and not a CVBS. Furthermore,
an emergent U(1) symmetry in the histogram at the crit-
ical point is clearly visible in Fig. 5(b). In Fig. 5(c) the
distribution takes an approximate ring shape, with max-
imum weight away from the center, indicating a large
magnitude of the order parameter. The distribution is
still nearly U(1) symmetric.

Figure 6 shows the probability distribution of the
dimer order parameter P(D,, D,). In the VBS phase the
four peaks of D are located at the diagonal angles, also
indicating PVBS order (which implies coexisting D, and
D, dimer order). The near-U(1) symmetry of the distri-
bution P(D,, D,) is similar to that seen in P(IIy, II;).

Emergent U(1) symmetry is a characteristic feature of
the DQC phenomenon [49, 88|, and there is a divergent
(on approach to the critical point) length-scale associ-
ated with the break-down of the symmetry inside the
VBS phase. This length scale is reflected in an increas-
ing sharpness of the four peaks of the order-parameter
distribution when the system size is increased inside the
VBS phase, which can be used to extract the exponent
governing the relevant length scale [48] (in a way which
has recently been further refined in the context of classi-
cal clock models [95]). However, as we showed in Fig. 4,
in the present case the transition is clearly first-order,
and the associated L dependence of the histogram fea-
tures inside the PVBS phase should then be dictated by
an exponent analogous to the dimensionality of a classical
system [65]. We have not studied the L dependence inside
the PVBS systematically in the present case, but qual-
itatively the four peaks become sharper as L increases

02 01 0 01 02

02 01 0 01 02

FIG. 6. Distribution of the dimer order parameter
P(D., D), with the components defined according to Eq. (5),
accumulated in the same simulations as the plaquette order
distributions in Figs. 5(c,d); (¢’) and (d’) are for Q@ = 0.28
and @ = 0.3, respectively.

(approaching d-functions as L — co0). We will next show
that the emergent U(1) symmetry at the transition point
actually reflects an even higher SO(5) symmetry, thus es-
tablishing the AFM-PVBS transition in the J-Qg model
as another example of a symmetry-enhanced first-order
transition. The spherical symmetry allows the AFM and
VBS order parameters to continuously rotate into each
other at fixed energy, which explains the absence of neg-
ative peaks in the Binder cumulants.

In the case of the CBJQ model, the O(3) symmetric
AFM order and scalar (two-fold degenerate) PVBS order
combine into an O(4) vector or SO(4) pseudo-vector. The
methods used could not distinguish between the two pos-
sible cases [65] as physical reflections are not accessible
in the simulations (while the meandering of the order pa-
rameter vector on the sphere is easily accessible). In the
J-Q¢ model, we similarly expect O(5) or SO(5) symme-
try of the components (Iy, Iy, mg, my, m;). This kind
of emergent SO(5) symmetry was previously proposed
within the the DQC scenario [70, 82].

To demonstrate the unexpected enlarged symmetry at
the first-order transition, we show the joint probabil-
ity distribution of m, and Il at and near the AFM-
PVBS transition point in Fig. 7. Inside the AFM phase,
Fig. 7(a), long-range order with O(3) symmetry implies
a line segment when the five-dimensional distribution is
projected down to the plane (m,,Ily). Since we are near
the transition, where the finite-size fluctuations of the
amplitude of the order parameter are significant, the line
is broadened. In the VBS phase, Figs. 7(c,d), the fluctu-
ation of Iy among two non-zero values (one positive and
one negative) results in two blobs on the vertical axis.
The central probability maximum visible in Fig. 7(d)
corresponds to IIp being small when |II;| is large, and
the significant probability density remaining between the
maximas show that tunneling between the four PVBS
patterns is still rather prominent at this @ value for this
system size. At the transition point, Fig. 7(b), we ob-
serve an U(1) symmetric histogram between m, and Il
after simple rescaling. Along with the exact SO(3) sym-
metry of the AFM order parameter and the numerically
observed O(2) symmetry of the PVBS order parameter,
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FIG. 7. Joint probability distribution P(m.,Ily) of the AFM
and VBS order parameters for system size L = 48. The @
values are the same as in Fig. 5; (a) slightly inside the AFM
phase at Q = 0.273, (b) at the transition point Q. = 0.2758,
(c) slightly inside the PVBS phase at @ = 0.28, and (d) well
inside the PVBS phase at Q = 0.3.

this implies O(5) or SO(5) symmetry of the combined
order parameter.

Note that, in constructing Fig. 7, we had to account
for the fact that the definitions of the two different order
parameters are associated with essentially arbitrary fac-
tors. The spherical symmetry at the transition point is
apparent only if one of the order parameters is suitably
rescaled by the ratio of the standard deviations of the
two order parameters. Away from the transition point,
no such rescaling results in a rotationally symmetric his-
togram. The features away from the transition point are
most clearly visible if the scale factor is held fixed at its
value calculated at the transition point, which is what we
have done in Fig. 7.

We have carried out numerous tests of the angular
uniformity of the histograms near the transition point,
including those discussed in Ref. [65], for different sys-
tem sizes. Here we present a different method, analyz-
ing conditional probabilities to test the expected form of
the radial distribution and to quantify some aspects of
the angular distribution. We use the accumulated data
points (m,Iy) for which m, = 0 to collect the condi-
tional probability P(Ilg|m, = 0), and similarly accumu-
late P(m,|Ilp = 0) and P(\/IIZ + m2|m, = Ily). Here
we point out that the computed equal-time values of m,
and Il in a given SSE sampled configuration are integer-
based, and the above conditional probabilities are unam-
biguously defined. Related to this issue, note that the
m, = Il case does not correspond exactly to a diago-
nal cut in histograms such as Fig. 7(b), because of the
different factors needed to scale from an elliptical to a
circular-symmetric histogram. The required scale factor
is not too far from unity, and m, = Il without rescal-
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ing (which we consider for this analysis) corresponds to
a radial line cut at an angle of about ~ 70° in Fig. 7(b).

The first-order transition with higher symmetry corre-
sponds to the order parameter vector living on the surface
on an O(5) sphere, in contrast to the case of a spher-
ical symmetry at a critical point, where the radial dis-
tribution reflects critical fluctuations and are centrally
peaked. The finite radius of the sphere reflects the non-
zero magnitude of the coexisting order parameters in the
thermodynamic limit. The radius of the sphere observed
in simulations (defined using the sum of squared order
parameters, including the scale factor discussed above)
will not be constant because of finite-size effects, but will
exhibit relative fluctuations that vanish when L — oo.

Without fluctuations, the conditional probabilities de-
fined above would be semi-circles if there is SO(5) sym-
metry. To take into account the radial fluctuations,
we average the semi-circular distributions over Gaussian
distributions of their radia. In practice, this is a one-
parameter fit, because we can fix the resulting standard
deviation of the distribution to that of the SSE com-
puted histogram. We carry out this matching procedure
only for one out of the three computed distributions, and
rescale to the other two by a factor fixed by the standard
deviations of those distributions. As shown in Fig. 8,
the distributions obtained in this way for our largest sys-
tem size, L = 48, agrees essentially perfectly with all the
SSE computed conditional probabilities. As a contrast,
we also show a Gaussian distribution, which has signifi-
cantly fatter tails than the broadened semi-circle.

The conclusion drawn based on the results presented
in this section is that the AFM-PVBS transition in the
J-Qg model is first-order and associated with emergent
O(5) or SO(5) symmetry, thus apparently similar to the
first-order transition with emergent O(4) or SO(4) sym-
metry observed in the CBJQ model [65]. Numerically, if
no deviations from the symmetric distribution (or if the
measures of symmetry continue to improve with increas-
ing system size, as is expected for an emergent symmetry
[65]) it is not possible to prove positively that the symme-
try survives asymptotically as the system size increases,
only that any perturbation that may eventually break
the symmetry is weak and does not affect the system up
to the largest sizes studied so far.

V. THE ALTERNATING VBS PHASE

When @ is further increased beyond the AFM-PVBS
transition point, there is a second phase transition at
Qac ~ 0.934 into the eight-fold degenerate AVBS phase
illustrated in Fig. 1(c). This phase transition can be de-
scribed as a continuous freezing of the resonating pla-
quette singlets into either horizontal or vertical valence
bond pairs in a checker-board pattern. The formation of
the checker-board pattern involves the breaking of a Zq
symmetry. In the AVBS phase, the plaquette order pa-
rameter IT does not change appreciably from its value in
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FIG. 8. Three conditional probability distributions of the
PVBS and AFM order parameters; P(Ilg|m. = 0) (blue),
P(\/II2 + m2|m. = Ilp) (purple), and P(m|Ilp = 0) (red).
The latter two histograms are shifted to the left for clarity.
Fitting functions in black dotted lines are computed under
the assumption of a uniform distribution over a 5-dimensional
spherical surface with Gaussian fluctuation of its radius. By
fixing the second moment of the resulting function to match
the SSE data, we conducted a one-parameter fitting with the
relative width of the Gaussian to match P(y/II2 + m2|m. =
IIp). The resulting distribution was rescaled by the stan-
dard deviations of the other two histograms P(Ilo|m. = 0)
and P(m.|Ilp = 0), without any other adjustments. A sim-
ple Gaussian distribution with the same second moment as
P(m.|IIp = 0) is drawn as the light blue dashed curve. The
inset shows the same distributions on a log scale.

the PVBS phase prior to the transition, and we are un-
able to detect this Zs symmetry breaking in II (though
potentially there could be a higher-order singularity).
To analyze the PVBS—-AFBS transition we define the
following four-component “alternation order parameter”

A = (Ao, Ao,1,A11, A1) with

4 x
Aup = DIDRNCE A ) (10)
(@y)=(a.b)

where the notation (z,y) = (a,b) stands for coordinates
for which x = a@ mod 2 and y = b mod 2 for one out
of the four possible combinations of the subscripts a €
{0,1} and b € {0,1}. These combinations correspond to
the four different plaquette patterns in the PVBS phase.
The “plaquette orientation” operator ¥, , in Eq. (10) is
defined as

1
\Ilw,y = Z(S;,y - S;+1,y+1>(S;+1,y - S;,erl)? (11)

and, thus, it can detect the dominant direction of the
valence-bond pairs in the plaquette with lower-left corner
at (z,y). Note that, while the order parameter A can
detect the Z, breaking associated with the AVBS phase
(where one out of the four components A, ; takes a non-
zero value when the symmetry is broken), it remains zero
through the AFM—PVBS phase transition.
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open boundaries close to the PVBS—AVBS transition. Ao is
the component in Eq. (10) that is favored by the boundaries.
The values have been rescaled to test the expected critical
scaling form (A2 ,) = L™2#/V (L"), where § = Q/Qac — 1
and § and v are 3D Ising exponents (8 ~ 0.607, v = 0.630
[113]). The scaling function f is exhibited by the data collapse
for sufficiently large L. The inset shows the corresponding
Binder cumulant U§" = (3 — (A3 0)/(AZ0)?)/2, from which
the critical point Q4. ~ 0.934 is obtained as the asymptotic
location of the crossing points of data for different system
sizes.

Since the system is already in a PVBS phase before the
second phase transition takes place, in a large system,
where the Z, symmetry in practice is broken in QMC
simulations (i.e., the tunneling time between the differ-
ent pattern is much longer than feasible simulation times
[111]), it is possible to only consider the single compo-
nent of A corresponding to the specific plaquette pattern
realized. We will later, in Sec. VI, discuss the order pa-
rameter and symmetry breaking in more detail, but for
now focus on the simplest way to detect and characterize
the second transition.

The best way we found to study the PVBS—-AVBS tran-
sition is to use open boundary conditions on L x L lattices
with even length L, in which case the PVBS plaquette
pattern is non-degenerate, i.e., the boundaries themselves
induce a specific plaquette pattern that is stable in the
limit L — oo if @ is above the critical value Q. for
the AFM-PVBS transition (while for @ < Q4. the pat-
tern only remains at the boundaries and decays to zero
in the bulk with increasing L). This setup allows us to
monitor only the corresponding single component of the
four-component operator A, in Eq. (10). The choice
of boundary condition does not change the universality
class or any other essential physics. We can also observe
the transition in systems with periodic boundary condi-
tions, though with considerably larger fluctuations that
make it harder to study the critical behavior. We only
discuss open-boundary SSE results in this section.

Since this phase transition involves an additional Z,
symmetry breaking in the (2 + 1)-dimensional quantum



system, we expect the criticality to be that of the 3D
Ising universality class. Fig. 9 shows the squared order
parameter rescaled with the expected powers of the sys-
tem size, with the estimated critical point @ 4. = 0.934
obtained using the Binder crossing method (shown in the
inset of Fig. 9). Except for the smallest system size, the
data points collapse well onto a single curve (the scal-
ing function), thus supporting the expected Ising nature
of the PVBS—-AVBS transition. Thus, we have demon-
strated that the PVBS state, which is a well established
ground state of a quantum magnet even though it has
previously not been found in sign-free models, can be
unstable to a continuous freezing of the resonating pla-
quettes into static dimers with a checker-board pattern
on the already formed plaquette pattern. The D, sym-
metry of the square lattice is then fully broken in two
stages, first with Z4 broken in the PVBS phase and then
another Z, breaking in the AVBS phase.

A state similar to our AVBS state was previously dis-
cussed in the context of a quantum dimer model with
multiple potential and kinetic terms in the Hamiltonian
[112]. Perhaps because the dimers lack the intrinsic
singlet nature and are restricted to connecting nearest-
neighbor sites (while there are no analogous constraints
in a spin model, where the dimers of a VBS are emergent
objects), this dimer model only exhibited first-order tran-
sitions of the AVBS-like state, and there was no discus-
sion of multi-stage symmetry breaking of the kind found
here. We next discuss how to formally describe the two-
stage breaking of the lattice Dy symmetry.

VI. SYMMETRY BREAKING AND UNIFIED
VBS ORDER PARAMETER

We here construct a unified framework for describing
the two stages of discrete symmetry breaking and, within
that scheme, interpret the PVBS phase as an intermedi-
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FIG. 10. An order graph depicting the relation-
ships between the eight degenerate AVBS states,

+g'8 represented as the yellow circles. The thick black
+0.6 bonds connect states that can most easily fluc-
0 tuate between each other, while the thinner grey
0 bonds correspond to the second-strongest fluctu-
0 ations, with all being equal due to symmetries.
States not connected by any bond have the small-
est probability of fluctuating into each other. The
PVBS phase forms when the tunneling barriers
between states connected by the thinner bonds
vanish and the system locks into one of the four
0 groups of two strongly-connected states. Subse-
78'8 quently AVBS order forms when also the thick
0 bonds vanish and the system locks into one of the
0 two states in the previously chosen PVBS pair.
+0.6 The vectors displayed close to the circles show an
example of a faithful Euclidean embedding of the
graph in six dimension (the minimal dimensional-

ity of the combined order parameter).
ate phase. The first step is to construct an adequate

order parameter for detecting both of the phase transi-
tions in some way, unlike the previously discussed order
parameters D, II, and A, which capture only one of the
transitions. In order to do that in a systematic and com-
pact way, we introduce the concept of an order graph,
which we will outline in the following and explain in more
detail in Appendix B.

A. The order graph

The eight-fold degenerate ordered states in the AVBS
phase have relative fluctuations depicted in Fig. 10, which
is what we will call the order graph. In the thermody-
namic limit, such fluctuations do not occur inside the
AVBS phase, but they are manifested on any finite sys-
tem and become more prominent as a quantum phase
transition is approached. The thick black bonds repre-
sent fluctuations among states which are separated by the
smallest tunneling barriers, and two states which have
no bonds between them have the smallest probability of
fluctuations among each other.

The states connected by thin bonds all have equiv-
alent relations although they may not have the exact
same symmetry transformations connecting them. For
example, starting from the state marked by A in Fig. 10,
transforming to state B or B’ corresponds to lattice trans-
lations in the +x and —x direction, respectively. These
transformations are different, but since the parity sym-
metry between 4z directions is not broken, these pairs
of states should have equal tunneling barriers separating
them. The fluctuations between primed and unprimed
states with the same letter are the easiest, because they
do not involve changing the plaquettes on which the bond
pairs form, only the orientation of the bond pairs within
the plaquettes. The tunneling barriers between these
state pairs vanish at the AVBS-PVBS transition.



In the PVBS phase the accessible subspace of the
Hilbert space corresponding to one out of the four possi-
ble plaquette patterns is much larger than just the com-
bined space of the two states represented by a pair of
strongly connected yellow circles in Fig. 10, as the bond
pairs on different plaquettes fluctuate essentially inde-
pendently of each other (with some correlations that van-
ish with increasing distance between plaquettes) and con-
necting the two states by tunneling involves the creation
of domain walls. The physical interpretation of the thick
bond thus changes from representing the largest tunnel-
ing probability between the eight states in the AVBS
phase on a finite lattice (which vanishes when the sys-
tem size is taken to infinity) to an enlarged “basin” in
the Hilbert space in the PVBS phase, roughly compris-
ing all the states on what was previously the tunneling
path. In the AFM phase the fraction of the Hilbert space
involved in the unique ground state is further enlarged to
encompass equivalently all the points in the graph—the
AFM phase of course has completely different symmetry
structure and fluctuations that are not described by the
order graph for the PVBS and AVBS states. Some rem-
nants of the graph structure may still be manifested in
the short-distance fluctuations and plaquette and dimer
correlation functions, at least close to the AFM-PVBS
transition.

Any symmetry transformation that preserves the
Hamiltonian will correspond to an automorphism of the
order graph. Therefore, the order parameter is required
to have the same transformation properties as that au-
tomorphism group. One way to construct such an order
parameter is to embed the order graph into an Euclidean
space in a faithful way, i.e., where all pair of vertices
have equal distance if and only if they have the same
type of bond in the order graph. This is possible in six
dimension (or more) in our case, which is exemplified in
Fig. 10 with possible coordinates shown as vectors. From
the embedding, a useful six-dimensional order parameter
can be constructed naturally, which we will explain in
detail in Appendix B. The idea is to construct an or-
der parameter that has eight peaks at those points em-
bedded in six-dimensional space. The projection of the
six-dimensional order parameter into lower dimensions
corresponds to the 2D PVBS order parameter II (and/or
alternatively D) and the four-dimensional AVBS order
parameter A.

B. Classification of broken symmetries

The order graph also provides us with a convenient
way to correctly classify what symmetry is broken at a
given transition. As we discussed in Sec. IV and further
in Appendix A, the CVBS and PVBS phases both can
be regarded as realizing a Z, symmetry breaking of the
square lattice Dy symmetry [88]. The usual prescription
for such symmetry breakings is to consider the symme-
try group G the system originally transforms under to-
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gether with the remaining symmetry group H that it still
transforms with after a symmetry-breaking transition has
taken place. Then the quotient G/H corresponds to rel-
evant symmetry group of the order parameter. This can
be translated into the automorphism group of the order
graph G’, and the relevant subgroup H’ of that graph,
which is the automorphism of the order graph when we
distinguish some vertices. The distinction of vertices into
two kinds corresponds to the state(s) the system gets
stuck into and the remaining ones. This point of view is
equivalent to classifying symmetry transformations into
equivalent classes under their operations on the order pa-
rameters, as we discuss further in Appendix B.

The automorphism group of the order graph in Fig. 10
is Dy x Z3, corresponding to the rotations and reflec-
tions of the over-all graph (D4) and 4 independent swaps
(e.g. A <> A') possible at each corner (Z3). The auto-
morphism group becomes Z3 when two pairs of vertices
(connected with thick black bonds) in the order graph are
chosen in the PVBS phase. More precisely, the individual
swaps in the corners remain, and D, breaks down to Zsg
because we are only left with one reflection that leaves
the chosen pair invariant. Therefore, the broken sym-
metry is expressed by the coset Dy/Zy. This is exactly
the same as the broken symmetry of the four-state clock
model, which is frequently, somewhat inaccurately (in a
way explained in Appendix A), referred to as Z, symme-
try breaking [36, 88]. When the system is in the AVBS
phase, it corresponds to a single vertex being selected in
the order graph, and now the remaining symmetry is Zj.
Therefore, the symmetry breaking at the PVBS-AVBS
transition is Z3/Z3 = Zs (as also naively expected).

In the case of a direct transition into the AVBS phase,
the order graph symmetry reduces from D, x Zj to
Zo x 73, and the broken symmetry becomes Dy. This
could also be intuitively understood in the following way.
In the PVBS phase, all rotations around a lattice site
does not conserve the macroscopic state anymore, but
there is always a remaining spacial reflection with an axis
going through a lattice site diagonally (whether +45° de-
pends on which of the four PVBS states). This is the re-
maining Z, symmetry of the original square lattice point
group symmetry Dy, but also breaks when the system
becomes AVBS, thus the entire D, symmetry is broken
now. While D, is not a direct product Z4 X Zs, it still is
the semidirect product Z4 x Z.

From the above symmetry considerations, it is clear
that, as long as the individual AFM-PVBS and PVBS-
AVBS phase transitions are considered, a 2D clock order
parameter and a scalar order parameter, respectively, are
sufficient. Note that in the latter case, we assume that
the system is already completely locked into one of the
four degenerate PVBS patterns, as is the case in an infi-
nite or, in practice, in a very large system in QMC sim-
ulations [111], or when using open boundary conditions
as we did in Sec. V. Otherwise, a four-dimensional order
parameter, e.g., as defined in Eq. (10), would be nec-
essary for studying a transition between the PVBS and
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FIG. 11. Examples of constant-T', Q-dependent PVBS order

parameters (inset) and the corresponding Binder cumulants
(main graph) for L = 32 systems. The negative peaks in the
cumulants indicate first-order transitions.

AVBS phases. To study a direct transition from a disor-
dered state into AFVBS, a six-dimensional order param-
eter is preferable; we will consider that in Sec. VIIC in
the context of a finite-temperature paramagnetic-AVBS
transition.

VII. FINITE-TEMPERATURE TRANSITION

AND TRANSITION PATHS

Since the PVBS and AVBS phases break discrete sym-
metries they extend to finite temperature T > 0. We
here discuss the nature of the finite-temperature transi-
tion and also summarize all the possible ways in which
the symmetries can be broken simultaneously or in mul-
tiple stages leading to the AVBS phase, not just in the
case of the J-Qg model but generically based on the order
graph.

A. Transitions at T'> 0

Figure 11 shows SSE results for the PVBS order pa-
rameter and the corresponding Binder cumulant versus
Q@ at several different temperatures 7. Here we can see
clearer signs of first-order transitions as 7' is increased.
Not only does the order parameter grow more acutely
for higher T, but the Binder cumulant develops an in-
creasingly prominent negative dip in the neighborhood
of the transition point at higher T—such a dip is a sign
of conventional phase coexistence, i.e., with no emergent
higher spherical symmetry.

In this case, we indeed observe histograms of the PVBS
order parameter with five peaks (see Fig. 12); four of
them corresponding to the ordered PVBS patterns and
the one at the origin corresponding to the absence of
PVBS order in the paramagnetic state. We can con-
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Probability distributions of the plaquette order
parameter P(Ilp,II;) in (a) and the dimer order parameter
P(Dgz, Dy) in (b) at the transition value of @ (defined here as
the position of the negative peak in the Binder cumulant—see
Fig. 11). The system size is L = 32.
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FIG. 13. Estimated T-Q phase diagram of the J-Qs model

(with J = 1 —Q, and T given in units of J + Q = 1).
The dotted lines are guide to the eye, connecting several
paramagnetic-PVBS transition points (red + symbols) and
PVBS-AVBS points (green x symbols), all computed for
L = 32 systems (for which remaining finite-size effects on
the phase boundaries are small). The diagrams in shaded
boxes illustrate the nature of the phases with bond corre-
lation strengths —(S7S7) on a piece of the lattice in each
phase, obtained from actual SSE simulations. White, yellow
and dark red lines correspond to the weakest, intermediate
and strongest correlations, respectively.

clude that no emergent symmetry of the PVBS order
parameter is present at T > 0, and the transition is first-
order with a conventional coexistence state with free-
energy barriers. This is in contrast to the CVBS case,
where the T' > 0 transition stays continuous, with expo-
nents varying according to one of the critical branches of
the Ashkin-Teller model, becoming increasingly similar
to a Berizinsky-Kosterliz-Thouless transition as T, — 0
when the quantum-critical point is approached (e.g., the
correlation-length exponent v grows as T, — 07 and is
different from the DQC exponent exactly at T' = 0) [114].

We provide the full T-Q phase diagram of the model
in Fig. 13, which is based on several transition points
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FIG. 14. All 16 possible order graphs that satisfy the symmetry of the AVBS phase. The numbers 1, 2, and 3 correspond,
respectively, to the strongest (black), second strongest (grey), and absent fluctuation paths in Fig. 10. Those fluctuations that
survive in the thermodynamic limit are coded according to their relative strengths by the order of the numbers within (), with
strongest to weakest fluctuations from left to right. In the corresponding order graphs, the fluctuation paths are drawn in
black (strongest), gray (second-strongest), and dotted gray (weakest). In order to avoid cluttering, only a few of the weakest
bonds are shown in the cases where they are present (in the six outermost order graphs). Symmetry breaking corresponds
to the order graph becoming disconnected because of vanishing fluctuations, i.e., the graph breaks into equivalent clusters of
connected yellow vertices (states), and the system is trapped in one of the equivalent clusters. These are shown in blue (one
out of two clusters), red (one out of four clusters), or green (one out of eight vertices). The thick bonds connect order graphs
that only differ by a single swap of adjacent fluctuation strength or by the disappearance of the weakest fluctuation.

on the paramagnetic-PVBS phase boundary, extracted
using fixed-T scans such as those shown in Fig. 11. To
determine points on the PVBS—-AVBS boundary we used
open-lattice calculations, as described in Sec. V. An im-
portant aspect of the phase diagram is that the AVBS
phase is completely inside the PVBS phase. A direct
paramagnetic—AVBS transition takes place upon lower-
ing the temperature for @ very close to 1.

The fact that the T > 0 transitions become more
strongly first-order as the transition temperatures in-
crease may seem counterintuitive at first sight, but such
behavior has been observed and analyzed in the context
of fluctuation-induced first-order transitions of vestigial
phases [25, 86, 115]. We next provide another perspective

on this phenomenon, utilizing the order graph introduced
in the previous section.

B. Multi-stage symmetry breaking

We now discuss how transition paths between different
states can be described systematically, which will pro-
vide generic insights into multi-stage discrete symmetry
breaking also beyond the specific J-Qg model and Dy
symmetry considered here.

Figure 14 shows all possible order graphs which re-
spect the final symmetry of the AVBS state. This figure
shows connections (thick lines) between order graphs if



and only if continuously varying the fluctuation strengths
in the system can cause the order graph to change from
one to another. The fluctuations can change by vary-
ing parameters in the Hamiltonian or by changing the
temperature. We require these changes to not affect the
symmetries, i.e., the three sets of fluctuation bonds intro-
duced in Fig. 10 are maintained. The only changes that
are allowed in general in the order graph are either (a) a
swap of ranking of two adjacent fluctuation strengths, or
(b) removal of the weakest fluctuation or emergence of a
new weakest fluctuation.

This kind of map, although conceptually simple, can
restrict the topology of the phase diagram. The two as-
sumptions (a) and (b) may appear to imply that we are
considering only continuous transitions, where the evo-
lution of the non-vanishing fluctuation strengths upon
varying a parameter is smooth. Clearly, there can be
first-order transitions where this assumption is not valid,
but if a transition is weakly first-order, such that the cor-
relation length of an order parameter is rather large even
before the transition, and the transition itself is related
to these fluctuations, we also expect the transition to
respect the connectivity of Fig. 14. A transition that
does not respect this connectivity, jumping directly be-
tween order graphs without direct connection, should be
expected to be strongly first-order.

The sequence of symmetry breakings involved in the J-
Qs model when it transitions first into the PVBS phase
(either from the AFM phase at T'= 0 or from the para-
magnet at T > 0) and then into the AVBS corresponds
to starting in Fig. 14 from the box marked (12) to the
one marked (1), and then finally to (&) at the center. If
we add some (unknown) term in the Hamiltonian that in
the notation of Fig. 10 enhances the fluctuations A <> B,
A + B/, etc., the order graph should eventually change
from (12) in Fig. 14 to (21). When the order graph is al-
tered in this way, all eight states are still connected even
when the second strongest fluctuation bonds have died
out in the case (2), and, therefore, a phase transition will
take place directly into the AVBS if the fluctuations rep-
resented by the strongest bonds are brought to zero and
the graph (@) is reached. This transition breaks the Dy
symmetry in a single step.

It is generally considered that breaking a symmetry
which has a reducible representation, such as Dy =
Z4 X Zso, should only happen by way of a strongly first-
order transition [116]. As we have seen, our arguments
based on the natural connectivity of the order graphs
suggest that the direct Dy-breaking transition can also
be continuous in principle and not just by fine-tuning.
However, it is physically not a very likely scenario, be-
cause of the requirement that all the fluctuation paths
in the graph (2) in Fig. 14 must be of equal strength,
with the other ones vanishing. If we imagine embed-
ding the order graph in a higher dimensional space such
that the eight points are equidistant, a minimum of six
dimensions is required (as discussed further in VIIC).
In naturally occurring systems we would not expect this
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FIG. 15. Two phase diagrams containing AFM, PVBS, and
AVBS phases, together with a possible Zs symmetry broken
phase. By analyzing the order graphs in Fig. 14, we can infer

that case (a) is impossible without fine tuning or altering the
symmetry, while (b) is generically possible.

fluctuation map to be easily realized, and a more likely
scenario (which is realized in the J-Qg model), is a first-
order transition corresponding to a direct jump from the
graph (12) to (2) in Fig. 14.

In contrast to the path in Fig. 14 where Dy = Z4 % Zo
is broken in a single step, the previously considered
(12) — (1) — (@) path (non-VBS to PVBS and then to
AVBS) corresponds to a sequential breaking of the Dy
symmetry; first Z, and then Zs. At first sight, it may
seem that the Z, symmetry breaking line and the Zq
symmetry breaking line could cross each other, forming
a purely Zo symmetry breaking phase as exemplified in
Fig. 15(a), similar to a nematic phase. In fact, this is
what happens in the vicinity of a tetracritical point [117]
where four critical phase boundaries meet at one point.
Also, the order graphs (13), (31), and (3) in Fig. 14 all
correspond to a purely Zs broken phase. However, this
does not imply that such phase diagrams with a tetra-
critical point are possible. To the contrary, the order
graph analysis tells us that, in general, it is impossible
to have such a tetracritical point when the AVBS phase
is set as the final phase. This is because it is necessary
that the order graph relations form a minimal loop that
contains order graphs corresponding to all of the differ-
ent phases surrounding a multicritical point, in this case
paramagnetic, PVBS, AVBS and the Zy symmetry break-
ing phase. None of the minimal loops in Fig. 14, square
or pentagon, has all of those four phases. Nevertheless,
we have minimal loops that contain three phases, thus
tricritical points such as those in Fig. 15(b) are possible.

It is of course possible in general to have a tetracritical
point as in Fig. 15(a) with Zy and Z,4 symmetry breaking
if we consider systems with less than the full Dy symme-
try considered so far. More specifically, if we allow order
graphs such as those drawn in Fig. 16, a minimal pen-
tagon loop contains four phases and we can have a phase
diagram like Fig. 15(a). However, in order to have these
order graph relations, we would need to specify eight of
the type 2 bonds to be stronger than the rest, explicitly
breaking the symmetry the system had when we were
considering the AVBS phase and original D, symmetry.
Note that all the eight states of the less symmetric 8-fold
degenerate phase are still equivalent (i.e. vertex transi-



FIG. 16. Relationships between order graphs such as in
Fig. 14, but for an eight-fold degenerate final phase arising
in a model with lower symmetry than the J-Qs model. Only
those order graphs are shown that are needed to demonstrate
the possibility of a tetracritical point such as in Fig. 15(a).

tive, as we will explain in Appendix B), but they need
not correspond to the AVBS patterns that we have con-
sidered explicitly in the J-Qg model.

To demonstrate explicitly that we cannot achieve the
phase diagram in Fig. 15(a) with the current symmetry
of the AVBS phase, let us look back again on Fig. 10.
Consider, e.g., the spatial reflection along the x axis that
conserves the states of A, A’, B, and B’ but inverts C and
C’ (and also D with D’). This is an automorphism of the
original order graph Fig. 10, but not for the order graph
shown in Fig. 16 (12). Thus, while the order graph anal-
ysis rules out the possibility of such tetracritical points
when considering the AVBS phase with current symme-
try, in models with different symmetry, they are possible
in general. A trivial example would be a ferromagnetic
model with both Ising degrees of freedom {o;} and 4-
state clock degrees of freedom {6;}, with a Hamiltonian
such as

H = _JIsing Z 0,05 — Jclock Z COS(@i — Gj). (12)
(i,9) (4,9)

In this case, the Z, and Z, symmetry breakings are de-
coupled and by tuning Jising/Jelock, We can trivially ob-
tain a phase diagram with a tetracritical point. Note that
now the type 2 fluctuations in Fig. 16 connect a vertex
to only two neighbors, namely states with the same Ising
order but with +m/2 rotated clock order. The z axis re-
flection we considered above would correspond to some
simultaneous transformation in the spins {o;} and {6;}
for this model, which would not conserve the total en-
ergy. This shows that the naive effective Hamiltonian
Eq. (12) with both Z4 and Zs symmetry breakings does
not explain the physics of the J-Qg model, and we would
need an effective Hamiltonian that correctly captures the
symmetry of the order graphs in Fig. 14 instead.

Even with strongly first-order transitions that do not
have to obey the above rules for the adjacency of order
graphs, we can still rule out generic phase diagrams such
as Fig. 15(a), since it will require fine-tuning so that all
four first-order transition lines come across at one sin-
gle point. We can also predict that first-order transi-
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tions connecting order graphs that are farther away are
usually stronger. This is because in general they would
correspond to farther minima of the free energy.

Consider now again the J-Qg model. Ruling out a
tetracritical point purely from the connectivity of order
graphs is not the only aspect of the Q-1 phase diagram
that can be deduced with this tool before empirically run-
ning simulations. From Fig. 14, we see that if we want a
purely Zo symmetry broken phase as in Fig. 15(b), then
we would need to enhance the fluctuation of type 3, the
weakest one in Fig. 10. However, even when we consider
finite temperature, there is no reason to expect such fluc-
tuations to become stronger. On the other hand, if we
consider having large enough ) and gradually lowering
the temperature, the fluctuations of type 1 should be-
come relatively weaker, because they are quantum fluctu-
ations of singlets induced by the J-term (remember that
we set J + @ = 1 now). Therefore, if this relative weak-
ening of the type 1 bonds continues enough so that the
fluctuation strength ranking actually is reversed to (21),
we would have a direct transition to the AVBS phase as
explained earlier. As we argued before, the order graph
(2) is unlikely to occur naturally in the J-Qg model, and
it is more likely that there would be a direct transition
from (21) to (@) in such case, which should be strongly
first-order.

Even if the effect of small J is not strong enough to
cause such reversals in the fluctuation strength, it will
definitely drag the symmetry breaking path to the left
side of Fig. 14 rather than the right side where the purely
Zs broken phase is. If there is a direct transition from
(12) to (@), this also must be strongly first-order since
they are not connected. We will see in the following sec-
tion that this is indeed the case, by observing the six-
dimensional order parameter we construct from the order
graph.

In either cases, it is expected that larger () with ther-
mal fluctuations will result in a direct paramagnetic—
AVBS transition. Since the region where there is a
direct paramagnetic-AVBS phase transition must be
strongly first-order (because the transition is between
nonconnected order graphs in Fig. 14), the nature of the
paramagnet—PVBS phase transition should also become
more and more strongly first-order as we approach closer
to the paramagnetic-AVBS region, i.e., when we increase
temperature. This would be the order graph perspective
of understanding the so-called fluctuation induced first-
order transitions, where it has been argued previously
that increasing temperature makes such transitions more
strongly first-order [25, 86, 115].

We should note here that we have also assumed that
intermediate phases always preserve symmetries that are
remaining in the final phase i.e., no reentrant transitions
are considered. We argue that this assumption, along
with other requirements discussed above, are natural for
analyzing the J-Qg model, and other models satisfying
the above criteria may have an even richer set of phases
and symmetry breaking paths according to Fig. 14. The



order graph provides us with a compact way of enumer-
ating all the possibilities, restricting the possible topol-
ogy of the phase diagram with multicritical points. Fur-
thermore, we can know that phase transitions connecting
faraway order graphs will always be strongly first-order,
and vice-versa: it provides good reasons to expect weak
first-order transitions to respect the paths discussed here.

C. Unified order parameter for direct D,
symmetry breaking and other transitions

Here, we further analyze the phase diagram of the J-
Q¢ model by looking into the unified order parameter for
PVBS and AVBS phases. As we mentioned in Sec. VI A
and further explain in Appendix B, the order graph can
be used to construct a unified order parameter that cap-
tures both PVBS and AVBS order. The unified order
parameter, which we name V, is a six-dimensional vector
and takes nonzero values in both the PVBS and AVBS
phases, but in a different way. In the two phases, the his-
togram of the order parameter will have 4 and 8 peaks,
according to the degeneracy of the phases. The unified
order parameter is essentially the direct sum of the pla-
quette order parameter II and the alternating order pa-
rameter A, defined in Eq. (3) and (10), respectively;

V = (81_10/77 8H1/7, 2A0’0, 2A0’1, 2A111, 2A170). (13)

Here the factors 8/7 and 2 are chosen to normalize all
the components to become 1 in an ideal AVBS state that
is perfectly dimerized.

For visualization, we project V into two dimensions in
a way that clearly shows the eight-fold degeneracy. The
following projection results in a histogram similar to the
depiction of the order graph in Fig. 10:

X\ (1010

Y/ \0101
Fig. 17 shows the distribution P(X,Y’), where in panels
(a) and (b) we can observe the coexistence of thermal
paramagnetic and VBS states and distinguish the type
of VBS the system transitions into from the number of
peaks. The fact that Fig. 17(a) has five peaks, simi-
lar to Fig. 12(a), shows that the phase coexistence at
@ = 0.9 is indeed between the paramagnetic phase (cen-
ter peak) and the PVBS phase (four surrounding peaks).
In contrast, in Fig. 17(b) there are nine peaks in total
at @ = 0.95, implying a phase coexistence between the
paramagnetic phase and the eight-fold degenerate AVBS
phase. We can also see that the quantum fluctuation in-
duced by decreasing ) is connecting the domains into
four pairs in the order parameter space. Because of this,
the four peaks of Fig. 17(a) have a rather extended shape
in the radial direction as opposed to Fig. 12(a). Fig. 17(c)
shows emergent U(1) symmetry at very low temperature
(essentially in the ground state; 7= 1/L) in the vicinity
of the AFM-PVBS transition, just as in Fig. 5(c) and

é (1)) VT (14)
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FIG. 17. Probability distributions of the unified order pa-
rameter V defined in Eq. (13), projected into P(X,Y’), with
the components X and Y defined in Eq. (14). The system
size is L = 32. (a) At the first-order transition point @ = 0.9,
T = 0.75 into the PVBS phase (b) At the first-order transition
point @ = 0.95, T' = 0.74 into the AVBS phase. (c) Slightly
within the PVBS phase after the DQC point Q = 0.28, 8 = L.
(d) Slightly within the AVBS phase @ = 0.94, 8 = L.

Fig. 6(c’) but with the distribution projected in a dif-
ferent way. In Fig. 17(d) we can see that the strongest
fluctuation path inside the AVBS phase are still within
the four groups of two states.

By observing histograms of the unified order parameter
we can also confirm the corresponding order graphs at
each point in the phase diagram. For example, the phase
coexistence in Fig. 17(a) suggests a transition between
the order graphs (12) and (1) of Fig. 14. As we argued
in the previous section, in principle it is possible that the
transition between these two order graphs is continuous,
but it turns out that it is actually first-order in this case.
Fig. 17(b) corresponds to a transition between (12) and
(@), and we have argued in the previous section that this
must be a strong first-order transition since the two order
graphs are not directly connected in Fig. 14.

Finally, in Fiig. 18, we can see that the Binder cumulant
of the unified order parameter, Uy = 4 — 3(V*)/(V?)2,
behaves far better than the cumulant of just the AVBS
order parameter, Uﬁf) =3 — 2(A%)/(A?)2, when investi-
gating the paramagnetic-AVBS transition with periodic
boundary condition. These cumulants are again nor-
malized so that they must necessarily converge to 1 as
L — oo in the ordered phase (since both order param-
eters have a nonzero value with a fixed absolute value).
However, even for L = 32 we have a completely negative

Uﬁ{l) in the ordered phase, while we see a more rapid con-
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FIG. 18. Temperature dependance of the Binder cumulants
of the unified order parameter, Uy, and the alternating order
parameter, Ugl), at @ = 0.95 for different system sizes.

vergence of the final value of Uy respect to the system
size (though still not reaching very close to 1).

We close this section by noting that the construction
of the unified order parameter and the analysis of the
symmetry breaking paths with order graphs should be in
principle possible with standard Landau theory. However
our approach with the order graph based on strengths of
fluctuation paths (combined with symmetries) provides a
more intuitive and compact way of understanding multi-
stage discrete symmetry breaking. We expect it to be a
useful approach in many other cases beyond the eight-
fold degenerate AVBS paths analyzed here.

VIII. DISCUSSION

In summary, the J-Q quantum spin Hamiltonian in-
troduced here exhibits several interesting physical phe-
nomena. To begin with, it is, to our knowledge, the first
sign-problem free 2D model hosting a four-fold degen-
erate PVBS ground state, thus enabling detailed QMC
studies of the AFM-PVBS transition—a DQC candidate
alongside the often studied AFM—CVBS transition. In-
stead of a continuous transition, we here found a clearly
first-order transition, the coexistence state of which hosts
an enlarged symmetry of the order parameter, with the
combined three-component AFM order parameter and
the two-component PVBS order parameter forming an
SO(5) symmetric psudo-vector. We further discovered
that the PVBS phase can be considered as a vestigial
phase; an intermediate phase on the way to an eight-fold
degenerate AVBS state which breaks a Zo symmetry in
the already Z4-symmetry broken PVBS phase. The two-
stage breaking of two discrete symmetries stimulated us
to introduce the order graph as an intuitive tool for ana-
lyzing such phase transitions.

We here further discuss some of the most intriguing as-
pects of our findings. In Sec. VIIT A we discuss the nature
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FIG. 19. Depictions of spinons forming at the nexus of do-

main walls in a PVBS state in two possible ways; with dimers
perpendicular and parallel to the walls in (a) and (b), respec-
tively. Extreme cases of the thinnest domain walls are shown
to the left, and to the right the walls are widened by additional
dimers. Dimer pairs can dynamically convert into resonating
plaquettes, and vice versa, thus allowing the domain wall to
fluctuate. We have here drawn plaquettes closest to the un-
paired spin in order to clearly show that all four phases meet
at the spinon. Fluctuations leading to changes in the spinon
location are illustrated in Fig. 20. In both (a) and (b), the
relative relations of the domain colors are the same, e.g., red
and blue differ by a y direction shift in the PVBS pattern.

of spinons in the PVBS state. At variance with the frac-
ton scenario [24], we argue that the spinons are mobile
and similar to those in a CVBS state. In Sec. VIIIB we
further discuss possible reasons for the first-order nature
of the AFM-PVBS transition, using a different model
with a first-order AFM—-CVBS transition for compari-
son; the columnar J-Qg model. In Sec. VIII C we discuss
the intriguing analogy between the symmetry-enhanced
AFM-PVBS transition and the superconducting transi-
tion in the SO(5) theory of the high-T, cuprates. We
discuss future prospects in Sec. VIIID.

A. Domain-wall structure and spinons

As we discuss in detail in Appendix A, in terms of the
effective symmetry being broken the CVBS and PVBS
states are dual and equivalent. There is still a possibil-
ity that the domain wall structure and types of spinons
emerging as a defects in these two states may be dif-
ferent, and this could be the reason for the first-order
transition found here. Recently, it was argued that the
AFM-PVBS transition should in general be first-order
and not a continuous DQC transition [24], as a conse-
quence of the spinons in the PVBS phase being immobile
fractons. At first sight, this conjecture appears to be con-
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FIG. 20. Illustration of quantum fluctuations allowing a
spinon to move in two different cases, corresponding to (a)
and (b) in Fig. 19. Colors were changed to reflect the final
domain wall configuration, while the grayed singlets reflect
the initial domain wall position.

firmed by our results. However, we do not believe that
the spinons in the PVBS considered here are fractons,
and we will argue that the fracton scenario in general is
very unlikely in quantum magnets.

In Ref. [24] the singlet plaquettes of the PVBS state
were treated as rigid objects, and it was pointed out that
a spinon (a site not belonging to any plaquette) forming
at the nexus of four domain walls in such a state cannot
move because the constraints prohibit local fluctuations
that gradually shift the spinon together with some of
the plaquettes. Our primary objection to this scenario
is that the singlet plaquettes in an actual PVBS state
in a quantum spin system are not rigid objects, except
perhaps in some extreme case that is not likely to be
realized in practice with a naturally-arising spin Hamil-
tonian. The PVBS state hosts various quantum fluctu-
ations, and when viewed in the valence-bond basis the
singlet plaquettes are resonating pairs of horizontal and
vertical valence bonds on 2 x 2 sites on the square lattice.
There are also longer valence bonds, though they likely
are less important for capturing the essential physics. In
a minimal effective description, the PVBS state should
be viewed as a mixture of rigid plaquettes and dimers,
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and there must be processes converting a plaquette into
a pair of dimers and vice versa. There are then two pos-
sible types of domain walls, and, therefore, two kinds
of spinons. We illustrate these in Fig. 19. As in the
DQC scenario [36, 88], in the same way as a domain wall
between CVBS phases can be regarded as consisting of
plaquette singlets in a PVBS pattern, a domain wall be-
tween PVBS states should be primarily made up out of
dimer singlets in CVBS pattern. Whichever type of do-
main wall is realized in a given system should depend on
the details of the Hamiltonian.

In either type of domain wall, in the presence of dimers
the spinon can also move locally inside the domain wall
through processes where a dimer and a spinon are shifted
together as depicted in Fig. 20. In both cases, the first
step only involves the spinon itself moving as a conse-
quence of the action of a single J-term (singlet projec-
tor) P(i,j). Note that, with a bipartite Hamiltonian, the
spinon is constrained to move only within a given sublat-
tice. The second step exemplifies how the domain walls
around the unpaired spin can adapt in order to form
the configuration shown in Fig. 19 again with the new
spinon position. All the changes in this second step are
plaquette-dimer conversions, or a pair of dimers resonat-
ing to point in the other direction. The dimer resonance
is easily induced by a single J-term, and plaquette-dimer
conversions happen even more easily because of the large
overlap between the two states. Considering these pro-
cesses, the domain wall itself can fluctuate, and, thus,
the collective object (the spinon) consisting of the meet-
ing point of the domain walls and the unpaired spin can
move through the lattice and should not be regarded as
a fracton.

B. First-order transitions and emergent symmetry

The arguments in the preceding section make the frac-
ton scenario unlikely as an explanation for the first-order
AFM-PVBS transition, and we therefore discuss other
possible reasons here. First, we note that the DQC sce-
nario itself does not guarantee that the AFM—VBS tran-
sition is necessarily continuous (with the VBS being ei-
ther a CVBS or a PVBS); the claim is that the transition
is generic and not a fine-tuned multi-critical point, but
first-order transitions for some Hamiltonians can never
be excluded [36]. Second, the presence of an emergent
SO(5) symmetry observed here at the transition point
may suggest that the system is close to a DQC point
with such a higher symmetry [23], so that expected per-
turbations destroying that symmetry is weak and only
observable on large lattices. Another possibility is that
the DQC phenomenon is connected to first-order tran-
sitions with asymptotically exact emergent symmetries.
Both of these scenarios were discussed in the context of
first-order transitions with apparent O(4) symmetry in
systems with AFM—PVBS transitions where the PVBS
state is only two-fold degenerate [65, 84]. While an ex-



act emergent symmetry at a first-order transition would
be outside previous expectations, this scenario has some
support also in a recent work claiming exact emergent su-
persymmetry at certain phase transitions with fermionic
and bosonic degrees of freedom [85]. Here we do not pro-
vide any definite conclusions on the root causes of these
unusual first-order transitions, but we address a related
issue using illuminating computational results.

The first issue concerns the possibility of first-order
transitions into the columnar CVBS state. So far, first-
order transitions have been observed in spin-anisotropic
J-QQ models in which the AFM order parameter is
O(2) symmetric, where the discontinuities weaken as
the anisotropy is decreased and there may be a change
to a continuous transition at some critical value of the
anisotropy [62, 64]. In spin-isotropic systems such as
the J-Q2 and J-Q3 models with a columnar arrange-
ment of the singlet projectors, no clear-cut signs of first-
order transitions have been observed, though there are
unusual scaling corrections [52, 59] that have also been
interpreted as a consequence of a weak first-order tran-
sition [23, 50, 57, 73, 74]. By introducing other types of
@ interactions in a J-Q)3 model with columnar @3 inter-
actions, it was recently found that the DQC point can
evolve to a clearly first-order transition [122]. It is also
interesting to study columnar J-@Q,, models with ) terms
containing more than n = 3 singlet projectors. Here we
consider the n = 6 case, i.e., the same number of projec-
tors as in the model studied previously in this paper but
with a different spatial arrangement of the projectors.

As shown in Fig. 21, the columnar J-Qg model ex-
hibits CVBS order for large @, but, unlike the columnar
J-Q9 and J-Q3 models, the AFM—CVBS transition here
is strongly first-order. Evidence for this type of transition
is seen in the CVBS Binder cumulant, which in Fig. 21
develops increasingly negative peaks as the system size
increases. We also observe (not shown here) coexisting
finite AFM and VBS order parameters similar to Fig. 4.
We believe that the first-order transition here is caused
by the large number of coupled spins in the Qg terms,
which may cause the system to nucleate PVBS order lo-
cally on large enough “droplets” to cause an instability
of the AFM state.

Having identified a first-order AFM-CVBS transition,
we can now address the issue of the generality of emer-
gent symmetry at first-order transitions at AFM-VBS
transitions. Since the Binder cumulants in Fig. 21 ex-
hibit the tell-tale signs of conventional phase coexistence,
we do not expect any emergent spherical symmetry. In-
deed, there are no signs of emergent higher symmetries
in order-parameter distributions. Fig. 22 shows the dis-
tribution of the CVBS dimer order parameter P(D, D,)
at four () values close to the transition point. Here we see
how the distribution evolves from a central peak in the
AFM phase (where the CVBS order parameter is peaked
at 0) to a four-peak distribution reflecting the four-fold
degeneracy in the CVBS phase. In a narrow window close
to the transition we observe [Fig. 22(b,c)] five peaks re-
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FIG. 21. Binder cumulants of the AFM and and CVBS
order parameters of the the columnar J-Qg model. The inset
shows one of the Qgs-terms in the model; all translations of
this operator and its 7/2 rotated version are included in the
Hamiltonian, defined in analogy with Eq. (1).
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FIG. 22. Probability distribution of the dimer order parame-
ter P(D,, Dy) of the columnar J-Qs model at (a) @ = 0.1961,
(b) 0.1962, (c) 0.1963, and (d) 0.1964, computed in SSE sim-
ulations on lattices of size L = 48.

flecting coexistence of the AFM and CVBS phases.

On the one hand, these results for the columnar J-Qg
model support a standard nucleation mechanism at play
in this case, as no emergent symmetry is present. On
the other hand, in the plaquette J-Q¢ model we have the
same number of interacting spins but do observe emer-
gent symmetry, which speaks against the standard nu-
cleation scenario. The continuous nature of the PVBS—
AVBS transition we observe also shows that nucleation
does not necessarily follow from a large number of in-
teracting spins. Nevertheless, in this case, a plaquette
consisting of four spins becomes one degree of freedom in
the effective Ising model, so the @-term may be consid-
ered as an effectively three-body term.

In any case, the emergent symmetry is clearly not uni-



versal at general first-order AFM—-VBS transitions (see
also Ref. [81]), and the possibility also remains that the
emergent symmetry at the AFM-PVBS transition in the
present case only holds up to some length scale larger
than the systems studied here. If so, the transitions
in the two different J-Qs models may be qualitatively
the same but differ in the length scale at which con-
ventional coexistence is apparent—in which case it still
is remarkable and unexpected to have SO(5) symmetry
up to such large length scales in the plaquette case. It
is interesting to note that the two J-Q) models where
emergent symmetry of the coexistence state has been
observed both have PVBS states; the two-fold degen-
erate one in Ref. [65] and the four-fold degenerate case
studied in the present paper. This may be an indica-
tion of a symmetry-breaking perturbation that exists (or
is strong) at first-order AFM—CVBS but vanishes (or is
very weak) at AFM-PVBS transitions.

C. SO(5) theory of high-T. superconductivity

The possible emergence of SO(5) symmetry in con-
densed matter systems has received significant attention
due to the fact that phases with O(3) AFM order often
exist adjacent to superconducting phases, which break
U(1) symmetry. One may then speculate that the two
types of orders share a common origin in a unified de-
gree of freedom that collectively can rotate between the
two phases [22]. The SO(5) scenario for high-T, super-
conductivity [21] postulates that doping away from the
half-filled-band, where the cuprate materials are AFM in-
sulators, eventually leads to a “flop” on an SO(5) sphere
from the a direction spanned by the three AFM com-
ponents into the plane spanned by the superconducting
order parameter. This mechanism is very similar to what
we have discussed here for the transition of the AFM into
the PVBS state.

In the case of the cuprates, to study the SO(5) scenario
with numerical simulations, the underlying Hubbard or
t-J model first has to be projected down to an effective
model (because the electronic models are too difficult to
study on sufficiently large length scales), which is bosonic
and can be simulated with QMC methods. Such stud-
ies were carried out with the SSE method in Ref. [118].
Though a first-order transition was identified at a criti-
cal doping fraction, the coexistence state did not exhibit
SO(5) symmetry, but instead conventional phase coexis-
tence was found. It was argued that long-range Coulomb
interactions might eventually act against phase separa-
tion and lead to a quantum-critical point. This scenario
thus differs from the first-order coexistence state with
SO(5) symmetry of the J-Qg model at the AFM-PVBS
transition, where there is neither phase separation nor
conventional criticality.

Experimentally, the existence of an excitation mode
at 41 meV, detected in inelastic neutron scattering ex-
periments, was taken as support of the SO(5) scenario
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[21, 119], but arguments to the contrary have also been
voiced [120]. Since the J-Qg model has a different, more
exotic kind of coexistence state than what was found in
the projected SO(5) model, it would be interesting to
study also the dynamical spectral functions of the J-Qg
model (which can be done with SSE simulations in com-
bination with numerical analytic continuation methods
[76]) in and close to the coexistence state. It is tempting
to speculate that the SO(5) predictions for the cuprates
would come out differently with the exotic coexistence
state, and further studies of the J-Qs model may serve
as an analogy where reliable results can be obtained.

D. Future prospects

Our work presented here illustrates the power of the J-
@ designer Hamiltonian approach in engineering sign-free
Hamiltonians with exotic quantum states and quantum
phase transitions. The results and remaining open issues
prompt several possible follow-up studies, some of which
we summarize here.

It would clearly be interesting to design a J-@ model
with a continuous AFM-PVBS transition, which was our
initial goal. This may not be so easy however, as we have
so far not even succeeded in creating a PVBS state with
less than six singlet projectors (with @4 terms similar to
our Qg terms in Fig. 2 leading to CVBS states). If nucle-
ation due to a large number of coupled spins is indeed the
root cause of the first-order transition (which is not clear,
as discussed in Sec. VIIIB), an even larger number of sin-
glet projectors will likely take us even further away from
the DQC scenario. It would still be worth trying, e.g., Qs
interactions defined on 4 x 4 lattice sites. We here also
note that the PVBS state can be regarded as a “superpo-
sition of superposition states” (locally resonating valence
bonds), and this specific aspect of the state seems to be
what makes it more difficult to realize a PVBS than a
CVBS—at least within the J-@ approach. The broader
family of models by Kaul [121], expanding on the J-Q ap-
proach, should also be explored more extensively, though
our initial attempts have not been successful in producing
PVBS states with less than twelve interacting spins.

Another interesting prospect is to mix different kinds
of @ terms and investigate the interplay between interac-
tions favoring PVBS and CVBS states (in a way similar
to what was recently done with competing interactions
favoring CVBS and staggered VBS states [122]). It may
be possible in this way to design a Hamiltonian which
can be fine-tuned to have an eight-fold degenerate VBS
state, with both CVBS and PVBS order. In histograms
such as those in Fig. 5 this kind of state would give rise
to eight equidistant peaks, and the phase would break Zg
symmetry. A potentially continuous transition between
the AFM state and such a VBS would be very interest-
ing, considering that clock-like Z, perturbations should
be increasingly irrelevant as the number of states ¢ is
increased [90, 95]. It may then be possible to observe



DQC physics with less anomalies and scaling corrections
than with the spin models studied so far [59]. Recently,
a fermionic model argued to have a DQC-type transition
without any discrete perturbation was studied [123], but
in this case the system sizes are very small because of
the unfavorable scaling of the fermion determinant QMC
algorithm.

The finding here of a first-order transition also in the
columnar J-Qg model calls for more systematic studies of
columnar J-@Q,, models. Previous studies for n = 2 [49-
52, 56-60] and n = 3 [48] point to continuous transitions,
and it would be useful to systematically increase n and
find the smallest n for which the transition is clearly first-
order. Such a study might be helpful in determining
whether the transitions for small n are truly continuous
or only very weakly first-order.

The order graph approach we have introduced here to
analyze multi-stage discrete symmetry breaking should
have wide applicability to both classical and quantum
phase transitions. The order graph provides a natu-
ral set of possible intermediate phases, and specifies in
what ways they can be adjacent in the phase diagram.
It would be interesting to explore possible phase dia-
grams in other challenging models, e.g., the classical frus-
trated spin models discussed in Refs. [124, 125], which ex-
hibit (possibly multiple-stage) discrete symmetry break-
ing with large numbers of states.
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Appendix A: Symmetry breaking in the PVBS phase

The symmetry being broken in the PVBS phase has
some subtlety. While it is argued in some studies that
the symmetry breaking here is just the same Z,4 as in the
CVBS phase [36, 37], alternatively it may appear to be
breaking Zo X Zs, owing to its translational symmetry
breaking in both the z direction and y direction of the
square lattice. Here, we clarify the situation by carefully
analyzing the symmetry breakings for the CVBS and the
PVBS on the square lattice. We will see that the struc-
ture of the coset group defining the original and remain-
ing symmetries in both cases are exactly the same, and
technically they can all be seen as either Z, symmetry
breaking or Zs x Zo symmetry breaking, leading to the
potential confusion. In both cases, the spin rotational
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symmetry is not broken, so we can ignore the symmetry
of the spin degrees of freedom.

Let us start with the CVBS phase. The Hamiltonian
originally obeys all the symmetries of the square lat-
tice: D4 x Z2. The point group is the fourth dihedral
group Dy (also called c4v) which includes k7 /2 rotations
(k=0,1,2,3) and reflections with respect to four differ-
ent axes. Z2 corresponds to the translational symmetry
of the infinite lattice. In the CVBS phase, the remaining
symmetry becomes Da X (Zx2Z). The usual procedure to
determine the symmetry breaking is then to consider the
coset G/H where G is the original symmetry group and
H the remaining symmetry group. However, the semidi-
rect product denoted by x of two groups is in general not
uniquely determined. Therefore, it is meaningless to con-
sider with expressions such as {Dy xZ?} /{ Dy x (Zx 2Z)}
unless the way the two semidirect products are taken
is further specified. In the present case, the situation
is made most clear by considering the equivalence class
among symmetric transformations according to how they
act on the order parameter.

We here only consider reflections with the axis going
through sites and rotations with the center located on
a particular site. Other choices of axes or centers could
be realized as a combination of the restricted reflections
and/or rotations combined with translations. We con-
struct the following equivalence classes as elements of the
relevant symmetry group:

I: All translations which are even in both (x and y) di-
rections T{g g, translations even in x direction and
odd in y direction followed by a reflection by the
x axis M;T{o,1), analogous in the different direc-
tion M,T(1,0) = RxM,T(1,), or a 7 rotation after
a translation odd in both directions R;T(; 1).

a: Rotation of 7/2 after any transformation in I,
Le. RW/QT(O,O)a Rﬂ'/ZMIT(O,l)a R37r/2MazT(1,0)a and
Rz /9T(1,1)-

a®: Rotation of 7 after any transformation in I, i.e.
R:T0,0), ReMyT0,1), MoT(1,0), and T(q 1y-

a3: Similarly, Rsr/2T00,0),
Ry joMyT1 0y, and Ry j2T(1,1).

Rz oM T(0,1),

b: Reflection with respect to a 7/4 angle axis M,
followed by any transformation in the equivalence
class I, i.e., Tig,0)M+ = R3y/2M3T(0,0); Rrj21(1,0);

R37T/2T(071), and RWT(171)M+ = MIT(1,1)~

ab: Rotation of 7/2 after any transformation in b, i.e.,
M. T0,0), RxT(1,0), T(0,1), and Ry /o M;T1 1)-

a?b: Rotation of 7 after any transformation in b,
ie., RroM:Too0), Rsr;2T(1,0), Brs2T(0,1), and
R M,T(1 ).

a®b: Similarly, RrM,T{o.),
Ry /oM T (1 1y

T(l,O)a RﬂT(O,l)? and



Here, translation of (s, t) in the (z,y) direction is denoted
as T,y and we categorize these according to the parity
of s and ¢t (mod 2). M, is reflection with respect to the
x axis, and Ry is f-rotation around the site at the origin.
Any symmetry transformation of the square lattice can
be written in the form RgMiO’l}T(S)t), and thus belongs
to one and only one of the above equivalence classes.

The above eight equivalence classes form a group iso-
morphic to Dy, which exactly corresponds to the au-
tomorphism group of the order graph for four CVBS
states—the order graph is described in Sec. VI the main
text and in further detail in Appendix B. This is also
equivalent to saying that, within each equivalence class,
the transformations have exactly the same effect on the
order parameter. For example, all transformations in a
correspond to a /2 rotation in the order parameter space
of D and II, and b results in a reflection along a diag-
onal axis. When the system is in the CVBS phase, the
remaining symmetry is {I, ab} or {I,a3b} depending on
which of the four states the system is in.

An important point is that neither {I,ab} nor
{I,a®b} is a normal subgroup of D4. Therefore, the
symmetry being broken here is technically Dy/Zo, which
is just a coset and not a quotient group. In the most
strict sense, the symmetry breaking is neither a Z4 nor
Zo X Zo symmetry breaking. Nevertheless, we can still
express the coset Dy/7Zs in a way that looks like Zy: e.g.
the left coset is

Dy/1{I,ab} = (A1)
{{I, ab},{a,a®b},{a? a3b}, {a®, b}}7

and we can choose the representatives as {I, a,a?,a®}.
This corresponds to the fact that we can express the four
degenerate CVBS states as

(1D > 0), RapalD. > 0) =D, <0),

Re|D, > 0) = D, < 0), Ryep| Dy > 0) = Dy > 0)),

just like a Z4 group, because R;/3 € a, Ry € a?, and
R3r /0 € a®. However, this is just because we chose an
expression that is based on the Z4 subgroup of D4 for
the left coset Dy/1,Z2. We can also choose the represen-
tatives to be {I,a?b,a?,b} which now corresponds to
expressing the four degenerate states as

(|Dm > 0), RyM.|D,>0)=]|D, <0),
Ry|Dy > 0) = |Dy < 0), My|Dy > 0) = |D, > o>),

which has a Zy X Zs structure. This ambiguity directly
originates from the fact that D4/Zs is a coset, and either
representations are equally valid. Thus, the terms “Z4
symmetry breaking” and “Zo X Zg symmetry breaking”
are both valid in the sense that subgroups of the original
symmetry group G of the lattice that are isomorphic to
Z4 or Zo X 7o are completely broken in the ordered phase.
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The situation is almost exactly the same for the PVBS
phase, including the way the symmetry transformations
are divided into equivalence classes. The only difference
is that the remaining symmetry in the PVBS phase is
either {I,b} or {I,a®b}, depending on the symmetry
broken state. Similarly to the case of CVBS phase, nei-
ther of the two are normal subgroups of Dy and allow
multiple representations of Dy /1,Zo. In this case, the left
coset is

D4/L{I7 b} = {{17 b}a {a’7 ab}v {aza azb}a {CL37 a3b}}7
(A2)
and the Z4 and Zy x Zy representations are {I,a,a?,a3}
and {I,ab,a?,a3b}, respectively. We can represent the
four different PVBS states as either Z4-like using the rep-
resentation {I,a,a?,a3}:

(It > 0), Repollly > 0) = |1y > 0),
Ry|Tly > 0) = [Ty < 0), Ry olTly > 0) = I < o>),
or Zg X Za-like using the representation {I, ab, a?, a3b}:
(|H0 >0), M|y > 0) = [II; > 0),
R M, [Ty > 0) = [II; < 0), Rx|lly > 0) = [Ty < o>),

analogously to the CVBS case.

We conclude that the symmetry breaking of the CVBS
and PVBS phases have exactly the same structure:
D, /Z>. We have shown that this becomes apparent when
we group all the symmetry transformations into equiv-
alence classes according to how they act on the order
parameters. This approach is practically very simple if
one starts from the automorphism group of the order
graph. The difference between the two phases amounts
to whether the remaining symmetry is {I,b}&{I,a?b}
or {I,ab}&{I,a®b}. The “duality” between CVBS
and PVBS is most clearly understood when we observe
that the remaining symmetries of Zs for either of the
phases are actually isomorphic via automorphisms, e.g.,
a’ = a,b’ = ab of the group D, itself. To be more pre-
cise, this renaming will not affect the relations of the ele-
ments in the group (e.g. b’a’ = a’3b’ just as ba = a®b),
and simply corresponds to changing which axis to choose
for the reflection represented by b. In this sense, we can
say that the effective symmetry breaking in the CVBS
and PVBS phases are exactly the same, which can be
expressed with Zy or Zo X Zs.

Note that the ferromagnetic clock model with four
states exactly follows the above classification of symme-
tries, and can actually be seen as both Z4 or Zo X Zo
symmetry breaking. This is consistent with the fact that
when we consider a “hard” clock model, where the spins
can only point in discrete direction (instead of using a co-
sine potential), the model reduces to two decoupled Ising
models, which obviously should be able to be seen as a
Zo X Zo symmetry breaking. This ambiguity essentially
comes from the peculiarity of the group D4 that does not



appear in Dy with ¢ > 4. Thus, for clock models with the
number of states ¢ larger than 4, the broken symmetry
can only be classified as Z,.

Appendix B: Rigorous construction of the order
graph and its embedding in Euclidean space

Here, we precisely define the construction of the or-
der graph introduced in Sec. VI and also explain exactly
what we mean by a faithful embedding of it in Euclidean
space. The topic of embedding graphs into Euclidean
spaces of broad interest in fields ranging from machine
learning [126] to pure graph theory [127], but the em-
bedding we consider here has a constraint which has not
been considered in depth before.

Let us consider a discrete symmetry breaking with pos-
sibly multiple steps. By assuming that it is always a dis-
crete symmetry that is being broken, we will have only
finitely many ordered (or disordered) states at any point.
We consider a situation where we lower the (classical or
quantum) fluctuation, starting from a disordered phase
with no spontaneous symmetry breaking. Let us assume
that, after one or several symmetry breakings there are
M degenerate ordered states in the final phase, and that
we already know those M states.

Definition: Order Graph

An order graph G = (V, E) for a multiple discrete sym-
metry breaking consists of the vertex set V' where each of
the vertices corresponds to one of the M ordered states
in the final phase, and an edge function E. The edge
function £ : V2 — {1,2,..., K} is a symmetric function
that tells what type of bond a pair of vertices have be-
tween them. The edge function will be defined according
to the strength of fluctuation between the two ordered
states.

Whereas the usual definition of a graph involves the
edge set £ C V2, our definition is a slight extension of it
since now F is a function that specifies what type of rela-
tion two ordered states have out of K possibilities. Usual
graphs can be considered as the case where K = 2, cor-
responding to the two possible relations either having or
not having an edge. The strength of fluctuation between
two states vi,vs in V can be quantified in several dif-
ferent ways. One is to compute the domain wall (free)
energy between the two states. Another way is to evalu-
ate the transition probability from one state to another
under some local dynamics, e.g. local Monte Carlo up-
dates. In a quantum state, tunneling amplitudes can be
calculated in principle and are reflected in the probability
distribution between peaks in histograms such as those
in Figs. 5 and 6.

All of these methods should classify all M (M — 1)/2
pairs of states into groups with the same “distances”.
Then F(v1,v2) will be set to 1 if they have the strongest
possible fluctuation, and 2 if it is the next strongest, and
so on. Exactly how the strength of the fluctuations are
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quantified may in some cases be further refined, but the
essential point here is that we can in principle construct
a well-defined function FE, which orders and classifies
the pairs of states according to their physical fluctuation
strengths. For the model we analyze in this paper, if we
consider the two-stage discrete symmetry breaking in the
sequence AFM-PVBS-AVBS (or paramagnetic-PVBS-
AVBS), then M = 8 and K = 3. We only draw edges
corresponding to 1 and 2 in Fig. 10 for visualization, and
all pairs of vertices without a drawn edge corresponds to
the third type.

An automorphism on the order graph G is a map from
V to itself f: V — V which satisfies

Vo, v2 €V, E(vi,v2) = E(f(v1), f(v2)). (B1)
Since this graph is representing the relations between the
ordered states, which should have exactly the same (free)
energy, this graph must be vertex transitive, which means
that all vertices are in a way equivalent, i.e.,

Yoy, ve € V, 3f : automorphism s.t. f(v1) = ve. (B2)

The graph also must be edge transitive as well, since all
pairs with the same value of E should be equivalent in
the same way, i.e.,

Vo1, v2,v3,04 €V, E(v1,v2) = E(vs,v4)
= 3f : automorphism f(v1) =vs, f(ve) =vs. (B3)

Any symmetric transformation to a state that preserves
energy corresponds to an automorphism of the order
graph. To demonstrate this, let us take the model we
have studied in the main text as an example. The order
graph is as shown in Fig. 10, and we have M = 8 states
in the final AVBS phase labeled from A to D’. If the
system locks into the pattern labeled A, a shift in the 4=z
direction in unit distance transforms the state into pat-
tern B. The state will become B’ if the shift is in the —z
direction instead. Since the system is not breaking any
symmetry between the +x direction and —x direction,
the physical fluctuation between (A <> B) and (A + B’)
should be equivalent. This explains E(A,B) = E(A,B’).
The shift +x also maps other states as well, resulting
in the automorphism of (A,B,A’,B")(C,D,C’,D’). Note
that this permutation satisfies Eq. (B1). As another ex-
ample, a m/2 clock-wise spatial rotation in the depiction
will correspond to the automorphism (A, A’)(B, D, B’,D’).
An ideal order parameter will have the same set of sym-
metries as the Hamiltonian does, which means it should
respect the symmetry of the automorphism group of the
order graph, as we explain next.

When we think of an order parameter which is an d
dimensional vector, we can regard it as a point in the d
dimensional Euclidean space E?. If there are M differ-
ent ordered states, they should correspond to M differ-
ent points &1, s, ...,z in E?, and these points should
have equal distance from the origin. We set Vi, |x;| =1
for simplicity. Furthermore, let us think of two ordered



states corresponding to x; and x;, where they are “ad-
jacent” ) meaning that the fluctuation between those two
ordered states are the strongest. This means that the
corresponding vertices in the order graph v; and v; have
a connecting edge E(v;,v;) = 1. Ideally, all states
(z, for example) which have the same relation to x; as
x; does, should have the same relation, which requires
|x; — x;| = |x; — xx|. Now, if we think of a symmet-
ric transformation of the Hamiltonian, it transforms one
ordered state to another one in general. Note that a sym-
metric transformation which does not change any ordered
state to another corresponds to a symmetry that does not
become broken even after a (partial) symmetry breaking
has taken place. As we have exemplified in the previous
paragraph, we can express the transformation by a per-
mutation o among M elements. Such transformations
translate to isometric transformations of the M points
in E?, corresponding to some rotation and/or reflection
F. This is because the relative relation between states
should not change under these transformations, and thus
|wi - (I}j| = |a:,,p(i) - $0F(j)| holds for any F and 7,,]
If we want to construct an order parameter that reflects
the broken symmetry, all symmetries of the Hamiltonian
(note that they are always expressible by automorphisms
of the order graph) should have a corresponding isometric
transformation in the order parameter space E.

From the above argument, we arrive to a general way
for constructing order parameters for discrete symmetry
breaking, by a faithful embedding of the order graph de-
fined as the following.

Definition: Faithful Embedding

A faithful embedding of a graph G = (V. E) to a Eu-
clidean space E? is a mapping I' : V' — E of vertices to
points, such that for all automorphism f of G, there is
an isometry F in E? that satisfies Vo € V, T'(f(v)) =
F(T(v)).

With this embedding, order parameters could be defined
to be the sum of the vectors I'(v;) = «; corresponding to
each microscopic degrees of freedom in a given configura-
tion. This is possible because global symmetry breaking
always have long range order, meaning that looking at
local degrees of freedom is enough for determining which
state the system is locally in.

Let’s consider the AVBS phase as an example. In this
phase, it is sufficient to look at four spins in a plaque-
tte to determine which of the eight-fold degenerate states
the system is in. More precisely, if we observe two ad-
jacent and parallel dimer singlets, depending on which
direction (vertical or horizontal) they are pointing and
which of the four plaquette patterns they are in, one of
the eight states is uniquely determined to be associated
with them. This corresponds to the local degrees of free-
dom determining the state, as explained above. Once we
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obtain the ordered state ¢ that corresponds to a particu-
lar local configuration, then the vector I'(v;) = @; is the
order parameter value that corresponds. Thus, a sum
over all the sites of such vectors will be the most natu-
ral order parameter. In practice, since we use the z basis
representation in our SSE simulation, it is more practical
to define the correspondence between a local z basis con-
figuration and the eight AVBS states. This essentially
makes the resulting six dimensional order parameter to
be equivalent to the direct sum of the plaquette order pa-
rameter IT and the alternating order parameter A defined
in Eq. (3) and (10), respectively.

It should be noted that we only deal with discrete sym-
metry breaking here. Continuous symietries are natu-
rally associated with a corresponding perturbation in the
physical system, and has a more direct physical mean-
ing. For example, two ordered states which are connected
with an infinitesimally small continuous symmetric trans-
formation (Lie group) also are related with a perturba-
tion (Lie algebra). Two spatially separated regions with
different ordered states can be smoothly connected with
a continuously varying order parameter, which is exactly
the manifestation of the continuous symmetry. This cor-
responds to some shear in the order parameter space,
such as spin stiffness. Discrete symmetry breaking on
the other hand, are less connected to specific physical
properties, since two ordered states which are connected
with a symmetry transformation do not have a smooth
connection between them characterized by a parameter-
ized transformation of the symmetry in general. Discrete
symmetry groups can be regarded as a subgroup of a con-
tinuous symmetry group, and we can expect that they
become a very good approximations to the continuous
symmetry when the subgroup is “large enough”. This
is indeed the case of g¢-state clock models with ¢ large
enough, which the discrete Z, symmetry becomes a good
approximation of an O(2) symmetry which corresponds
to an XY model. This results in those clock models with
large ¢ to have emergent XY criticality. Our method
provides a systematic and intuitive way to obtain the
possible emergent symmetry by analyzing the relation of
the ordered states with a graph.

The embedding method discussed here is very close
to that in Ref. [128], which considered only the case of
M = 2 and furthermore imposed an additional constraint
that edges are not allowed to cross each other in the em-
bedding. The faithful embedding defined for our purpose
is also interesting in it’s own right, revealing interesting
properties of vertex transitive graphs. For example, the
minimum embedding dimension of a Petersen graph in
the way we defined here is 5, which is nontrivial and
also coincides with the embedding dimension defined in
a more algebraically way [129], suggesting possible con-
nection.
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