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We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and
valence-bond solid ground states in the square-lattice S = 1/2 J-Q model. The critical correlation
function of the () terms gives a scaling dimension corresponding to the value v = 0.455 £ 0.002
of the correlation-length exponent. This value agrees with previous (less precise) results from con-
ventional methods, e.g., finite-size scaling of the near-critical order parameters. We also study the
Q-derivatives of the Binder cumulants of the order parameters for L? lattices with L up to 448. The
slope grows as L¥ with a value of v consistent with the scaling dimension of the Q term. There are
no indications of runaway flow to a first-order phase transition. The mutually consistent estimates
of v provide compelling support for a continuous deconfined quantum-critical point.

Among the many proposed exotic quantum states
and quantum phase transitions beyond the Landau-
Ginzburg-Wilson (LGW) paradigm in two dimensions [1-
3], the deconfined quantum crititical point (DQCP) [4]
is special because it has concrete lattice realizations in
sign-free “designer models” accessible to quantum Monte
Carlo (QMC) simulations [5]. Indeed, the first hints of an
LGW-forbidden continuous transition between antiferro-
magnetic (AFM) and spontaneously dimerized valence-
bond solid (VBS) ground states came from QMC simula-
tions [6], and following the DQCP concept (which builds
on previous works on VBS phases and topological defects
[7-13]) numerous additional studies have been reported.
The most compelling results for DQCP physics have been
obtained with J-Q models [14-27], which are Heisen-
berg antiferromagnets in which the exchange of strength
J is supplemented by multi-spin couplings of strength
@ that induce singlet correlations and eventually cause
spontaneous dimerization. The space-time loop structure
employed in QMC simulations [28-30] can also be used
to formulate analogous classical three-dimensional loop
models, which exhibit behaviors very similar to the J-Q
models [31, 32].

Even though very large lattices have been studied, with
linear size L up to 256 for the J-Q model [18, 26] and
twice as large for the loop model [32], it has not yet been
possible to draw definite conclusions on the nature of the
AFM-VBS transition. While no explicit signs of a first-
order transition have been detected in the best DQCP
candidate models (in contrast to intriguing discontinuous
transitions with emergent symmetry in related models
[33-35]), some observables exhibit scaling behaviors in-
compatible with conventional quantum criticality. Such
behaviors have been interpreted as runaway flows toward
what would eventually become a first-order transition on
lattices even larger than those studied so far [16, 22, 36].
Another proposal is that the DQCP is even more ex-
otic than initially anticipated, with novel relationships
between critical exponents originating from the presence

of two divergent langth scales [26]—in addition to the
standard correlation length &, there is a larger scale &’
associated with a “dangerously irrelevant” perturbation
and emergent U(1) symmetry of the near-critical VBS
fluctuations in the DQCP scenario [4, 37]. The weak first-
order scenario has attracted attention in the context of
non-unitary conformal field theories (CFTs), which have
critical points in the complex plane [38—41]. In this sce-
nario, the AFM—-VBS transition is a “walking” first-order
transition [42, 43] where the renormalization-group flow
(which is manifested also in finite-size scaling) is affected
by the inaccessible nearby critical point and only slowly
“walks” to a first-order instability.

In support of the weak first-order scenario, the J-Q and
loop models are often invoked as supporting evidence,
though there are no concrete predictions that have been
compared with the numerical results. In the absence of
any quantitative tests or clear signs of discontinuities or
coexistence state in the lattice models, the walking sce-
nario should not be accepted as the final word on the fate
of the DQCP. Here we will show that the cited [39-41]
large scaling corrections affecting estimates of the critical
correlation exponent v [21, 26, 32] are not precursors to
a first-order transition. We reach this conclusion by ex-
tracting v from the scaling dimension of the relevant field
of the model. The corresponding correlation function ex-
hibits only small scaling corrections and delivers an expo-
nent compatible with results based on Binder cumulants;
v = 0.455(2). Given the well behaved estimators of v, a
continuous transition is the most likely scenario.

To set the stage, we briefly summarize some standard
facts on critical scaling. Consider a Hamiltonian H,
tuned to a quantum critical point to which a perturbation
is added that maintains all the symmetries of H;

H=H,+6» D(r), (1)

where r denotes the lattice coordinates and D(r) are local
operators. Normally H is written in a form with some



tunable parameter g such that, for some critical value
g =9, H(9c) = H. and § = g — g.. We assume that
the system develops long-range order when § > 0, with
an order parameter m(r) such that (m) = (m(r)) o 6°
for small § > 0 and m = 0 for § < 0. The critical ex-
ponent 8 depends on the universality class of H. in the
thermodynamic limit. On either side of the phase tran-
sition, the exponential decay of the correlation function
Cm(r) = (m(0)m(r)) — (m)? defines the divergent cor-
relation length, & « [|§|77. At § = 0, the correlation
function takes the critical form C,,(r) oc r=24= where
A, = B/v is the scaling dimension of the operator m.

In QMC calculations v is typically extracted using
finite-size scaling of some dimensionless quantity, such as
the Binder ratio R = (M*)/(M?)%, where M = > _m(r).
Neglecting scaling corrections, in the neighborhood of the
critical point we have R(§,L) = R(S§L'/"), by which v
(and the critical point g. if it is not known) can be ob-
tained from data for different values of 6 and and L. A
less common method is to use the relation 1/v = d—Ap,
where d is the space-time dimensionality (here d = 3) and
Ap is the scaling dimension of the perturbing operator D
in Eq. (1). The scaling dimension can be obtained from
the power-law decay Cp(r) r=2AD of the correlation
function Cp(r) = (D(0)D(r)) — (D)? at g..

It is not clear to us why v is not commonly extracted
from Cp(r), but there are two potential drawbacks: (i)
Often Ap is rather large, e.g., in the case of the O(3)
universality class (of which we will show an example be-
low) Ap = 1.6, so that the correlation function decays
rapidly and is difficult to compute precisely (with small
relative statistical errors) at large r. (ii) The operator
D is often off-diagonal and may appear to be technically
difficult to compute. However, although the latter issue
is absent in simulations of classical systems, the scaling
dimension Ap is still normally not computed.

Here we will take advantage of the fact that existing
estimates of v at the DQCP (v = 0.45 in both the J-Q
[26] and loop [32] models) correspond to a rather small
value of the scaling dimension, Ap ~ 0.8, and therefore
it may be possible to compute it reliably in this case
(as was done recently for the transverse-field Ising chain,
where, in the notation used here, Ap =1 [44]). Further-
more, we point out that off-diagonal correlation functions
of operators that are terms of the Hamiltonian have very
simple estimators within the Stochastic Series Exapan-
sion (SSE) QMC method [29, 30, 45, 46]. The quantum
fluctuations are here represented by a string of length n
of terms H; of H, with mean length (n) = |(H)|/T, where
T is the temperature. A connected correlation function
of any two terms is given by [46]

Cun = (HoHy) — (H,){Hy)
=T ({nap(n — 1) — (na)(m)),  (2)

where n, is the number of operators H,, in the string and
Ngp is the number of times that H, and H, appear adja-
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FIG. 1. Dimer correlation function, Eq. (4), in the critical
bilayer at separation r = (x,0) with z = L/2 — 1. Results are
shown for two different values of LT. The lines have slope
—2A, = —3.188, corresponding to the O(3) value of v.

cent to each other. This expression can be easily applied
to all location pairs (a, b) in a single scan of the operator
string, and translational invariance can be exploited at
no additional cost to improve the statistics.

As a demonstration of the method, we first consider
the S = 1/2 bilayer Heisenberg Hamiltonian

N
H=J Z Zsa,i'sa,j+JZZsl,i'SQ,i7 (3)
im1

a=1,2 (ij)

where (i) denotes nearest-neighbors on a square periodic
lattice with N = L? sites and a is the layer index. This
system has an AFM ground state for ¢ = Jo/J1 < ¢
and is a quantum paramagnet dominated by inter-layer
singlet formation for g > g.. The O(3) quantum phase
transition has been investigated in many previous works.
Here we take g. = 2.52205 for the critical point [47, 48]
and study a correlation funtion corresponding to the per-
turbation D in Eq. (1). Since both the J; and Js inter-
actions drive the system away from the critical point, we
can study correlations between either type of terms (i.e.,
they have the same scaling dimension). We use the Jo
terms, which form a simple square lattice, and define

Ca(rij) = ((S1,i-S2,)(S1,5 - Sa,5)) — (S1i - S24)% (4)

where r;; denotes the separation of the sites ¢ and j.
Investigating the decay of the correlations, we can ei-
ther study large lattices and focus on r < L to elimi-
nate finite-size effects or take r of order L and study the
size dependence. Here we opt for the latter method with
r = (L/2 — 1,0), for which there are more equivalent
points for averaging than for the high-symmetry points
(L/2,0) and (L/2,L/2). For the expected O(3) universal-
ity class in 2+1 dimensions v ~ 0.711 [49], corresponding
to a scaling dimension As &~ 1.594 of the J; interaction.
As shown in Fig. 1, because of the rapid decay we can
access only rather modest distances, but the results still
show a remarkably good agreement with the expected
form Cy(r) oc r=242 starting from » = 4 (L = 10). In



the SSE simulations we have used T = ¢/L (in units
with J; = 1), reflecting the emergent Lorentz invariance
of the system (i.e., the dynamic exponent z = 1), with
two different proportionality factors; ¢ = 2 and ¢ = 1/8.
Apart from the different amplitudes of the correlations,
both data sets exhibit the same decay.

Turning now to the J-Q model, we express the AFM
Heisenberg interaction as a singlet projector, —F;;, on
S = 1/2 spins; P;; = 1/4 —S; - S;. To simplify the
notation, we use a bond index b to implicitly refer to
two nearest-neighbor spins (i, j)y; P, = P;;. We also use
an index p to refer to a 2 x 2 plaquette with sites in
the arrangement (; g )p and define Q, = P;; Pu + P Pjy.
With these definitons the J-@Q Hamiltonian is [14]

H:—JZPI;_QZQP~ (5)
b p

We define the coupling ratio ¢ = J/Q and use the SSE
method to compute the z component of the staggered
magnetization (the AFM order parameter)

1 z ry+ry
mZ:NZ:SF(_U v, (6)

and the two-component dimer (VBS) order parameter,
also defined with the z spin components,

1 z Q2 re
da - N ;Sr r+d(_1) ) (7)

where « stands for the x or y lattice direction. We scale
the temperature in units of Q as T = ¢/L, with ¢ = 2.38
being the estimated critical velocity of excitations [25]
(i.e., the system is in the “cubic” scaling regime [48, 50],
as in the case 1/T = L/2 for the bilayer model in Fig. 1).

Early QMC studies placed the VBS-AFM transition
at g. ~ 0.040 [14-16], while more recent works show a
somewhat larger value, g. ~ 0.045 [18, 25, 26, 30], as
a consequences of significant finite-size corrections. We
now have data for system sizes up to L = 512 and present
the Binder cumulants U, and Uy defined in the standard
way such that Uy — 1 with increasing system sizes if
there is order of type x and U, — 0 otherwise;

((d3 +d3)*)

Ug=2— (8)

Results for several system sizes are shown in Fig. 2(a).
To improve the g, estimate, we analyze crossing points
g = g* where U,(¢*,L) = U4(g*, L) and also where (for
different ¢*) Ux(g*, L/2) = Ux(g*, L) withx = zorx = d.
As shown in Fig. 2(b), these crossing points flow to g. =
0.04510(2) as L — oo. The extrapolation is based on a fit
to two power laws for each data set, with a common g..
Unconstrained fits also result in consistent g. values. We
have excluded small systems until a statistically sound fit
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FIG. 2. (a) Binder cumulants of the AFM (red points) and
VBS (blue points) order parameters vs the coupling ratio for
system sizes L = 64, 128, 256, and 512. The slopes increase
with L and the L = 512 data are shown with solid symbols.
(b) Inverse-size dependence of interpolated crossing points be-
tween the two cumulants for given L and for the same cumu-
lant on L and L/2 lattices. The curves show fits to two power
laws for each data set with a common g. = g* (L — o) value,
resulting in the critical point estimate g. = 0.04510(2).

is obtained, with L > 64 included in the final analysis.
From now on we fix the coupling ratio to g = 0.0451 = g..

We here examine the correlation function of the Q-
terms in the Hamiltonian, Eq. (5),

Cq(riyj) = (QiQy) — (Qi), (9)

which is less noisy than the J-energy correlator. As
shown in Fig. 3(a), the correlations exhibit strong even-
odd oscillations, with amplitude decaying with the dis-
tance. The reason for the oscillating behavior is that the
columnar VBS correlations are also detected by the pla-
quette correlation function Cg(r) (for a detailed general
discussion of this, see Ref. [35]). In a columnar state with
x-oriented dimers, C(0,y) will be small while Cg(x,0)
will have signs (—1)® due to the dimerization. In an
ergodic QMC simulation, Cg(x,y) will reflect averaging
over states with xz- and y-oriented dimers. The contri-
butions from the VBS order parameter then cancel in
Cg(z,0) for odd z, while Cg(z, z) retains the VBS con-
tributions with (—1)® signs. These behaviors are seen in
Fig. 3(a), where the amplitude decay is due to the system
being a critical VBS. Since the system has emergent U(1)
symmetry of the order parameter [14, 16], we should con-
sider Cg(r) as averaged over an angle ¢ € [0,27) corre-
sponding to a circular-symmetric distribution P(d,,dy).
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FIG. 3. Correlation function, Eq. (9), of the @ terms in the
critical J-Q model (g = 0.0451). In (a) results at r = (z,0)
and (z, ) are shown for L = 48. In (b) results at r = (z,0) are
shown only for odd values of x, with blue points at x = L/2—1
for different system sizes L and red points for fixed L = 256.
The lines in (b) have slope —2Ag = —1.60.

The above mentioned behaviors of Cg(r) along the lines
r = (z,0) and r = (z,z) will hold also in this case.

In addition to the large contributions to Cg(r) from
the VBS order parameter, there should be a uniform
component reflecting the scaling dimension of the full
@ operator. Since the VBS contributions are absent at
(z,0) with odd z, examining the correlations at these dis-
tances is a good way to access the uniform component.
In Fig. 3(a), small rapidly decaying values are indeed
seen, and in Fig. 3(b) the functional form is analyzed on
a log-log plot. We use a large system, L = 256, with
x < L, as well as & = L/2 — 1 for smaller sizes. In
both cases we observe the same algebraic asymptotic de-
cay, and a power-law fit to the x = L/2 — 1 data for
x > 12 gives Ag = 0.800(4). This scaling dimension cor-
responds to 1/v = 2.200(4), in good agreement with the
previous (less precise) results for the J-Q [26] and loop
[32] models.

Next we consider the cumulant slopes Sy = dU,/dQ,
x = d,z, computed with direct SSE estimators as pre-
viously done for S, with L < 160 in Ref. [26]. Here
we present results for L up to L = 448 (our L = 512
results are too noisy). The slopes should scale asymp-
totically as L'/*. In order to account for the leading
correction we also include a second power-law term with
smaller exponent, and exclude small systems until good
fits are obtained. The results are shown in Fig. 4. The
inset shows the same data sets and fits converted into
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L

FIG. 4. Critical cumulant slopes vs the system size. The
curves are fits of the L > 64 data to the form aL'/¥ (14+bL~%),
with 1/v = 2.23(2) (constrained to be the same for both data
sets) and w = 1.1(1) (for both data sets, not constrained to be
the same). The inset shows 1/v* = In[S(L)/S(L/2)]In"*(2)
vs 1/L. The purple circle indicates the extrapolated exponent
1/v = 2.23(2) and the dashed lines show the values 1/v =
3 — Ag = 2.200 = 0.004 determined in Fig. 3.

1/v* = In[S(L)/S(L/2)]In"*(2), which flows to 1/v as
L — oo. We note that: (i) 1/v = 2.23(2) is fully consis-
tent with the previous result from smaller systems [26],
and (ii) the value also agrees with the above result from
the scaling dimension of the @ terms (with deviations
less than 1.5 standard deviations).

While the finite-size corrections in 1/v obtained from
the cumulant slopes in Fig. 4 are substantial, the cor-
rections to the 724 form of the correlation function
in Fig. 3 are very small. The good agreement of the
extracted exponents with the relationship 1/v =3 — Ag
should alleviate any concerns of 1/v eventually flowing to
the value 3 (= d) expected at a conventional first-order
transition (or to d + 1, as found at an unconventional
transition in Ref. 33). Weak first-order transitions are
often most clearly manifested in 1/v [51], and the results
presented here simply do not indicate anything unusual.

Previously, anomalous scaling was found of the order
parameters and the spin stiffness [16, 18, 22, 32], and it
was argued that the standard finite-size scaling hypoth-
esis must be replaced by a form taking into account two
divergent length scales in a new way [26]. Though this
interpretation has not been independently confirmed, the
results presented here reinforce the notion that anoma-
lies are not present in the magnitude L~/* of the crit-
ical window. The value v = 0.455(2) is still puzzling in
the sense that it violates a CFT bound from the boot-
strap method [52]. This disagreement suggests that the
transition is either not described by a CFT or that the
arguments underlying the bound has some loophole. It
would be interesting to compute v from the relevant criti-
cal correlator for fermionic DQCP candidate models [53],
where the standard finite-size analysis is difficult because
of the rather small accessible lattices.
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