
Modeling Uncertainties of Bathymetry Predicted With
Satellite Altimetry Data and Application to Tsunami
Hazard Assessments
Ignacio Sepúlveda1 , Brook Tozer1 , Jennifer S. Haase1 , Philip L.-F. Liu2,3,4 ,
and Mircea Grigoriu2

1Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego,
La Jolla, CA, USA, 2Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA, 3Institute of
Hydrological and Oceanic Sciences, National Central University, Jhongli, Taiwan, 4Department of Civil and
Environmental Engineering, National University of Singapore, Singapore

Abstract Models of bathymetry derived from satellite radar altimetry are essential for modeling many
marine processes. They are affected by uncertainties which require quantification. We propose an
uncertainty model that assumes errors are caused by the lack of high-wavenumber content within the
altimetry data. The model is then applied to a tsunami hazard assessment. We build a bathymetry
uncertainty model for northern Chile. Statistical properties of the altimetry-predicted bathymetry error are
obtained using multibeam data. We find that a Von Karman correlation function and a Laplacian marginal
distribution can be used to define an uncertainty model based on a random field. We also propose a
method for generating synthetic bathymetry samples conditional to shipboard measurements. The method
is further extended to account for interpolation uncertainties, when bathymetry data resolution is finer
than ∼10 km. We illustrate the usefulness of the method by quantifying the bathymetry-induced
uncertainty of a tsunami hazard estimate. We demonstrate that tsunami leading wave predictions at
middle/near field tide gauges and buoys are insensitive to bathymetry uncertainties in Chile. This result
implies that tsunami early warning approaches can take full advantage of altimetry-predicted bathymetry
in numerical simulations. Finally, we evaluate the feasibility of modeling uncertainties in regions without
multibeam data by assessing the bathymetry error statistics of 15 globally distributed regions. We find that
a general Von Karman correlation and a Laplacian marginal distribution can serve as a first-order
approximation. The standard deviation of the uncertainty random field model varies regionally and is
estimated from a proposed scaling law.

1. Introduction
Many geophysical processes in marine environments are influenced by seafloor bathymetry. Some examples
are ocean tides (Egbert & Ray, 2001), tsunamis (Mofjeld et al., 2001), ocean circulation (Gille et al., 2004),
internal waves (Hu et al., 2020), and turbulent mixing (Kunze & Smith, 2004). The propagation of ocean sur-
face waves is strongly affected by bathymetry when depths are comparable to their wavelengths. Tsunami
waves, in particular, are affected by bathymetry at all ocean depths. High-resolution bathymetry data, such
as those obtained from shipboard multibeam surveys, however, are very scarce. A recent compilation of
publicly available shipboard bathymetry data found that only 11% of the seafloor has been surveyed at
15 arcsec (Tozer et al., 2019). For the remaining areas, indirect approaches have been adopted to fill the
voids. A great advance was made in the prediction of bathymetry with the advent of satellite altimetry
(e.g., Smith & Sandwell, 1994, 1997). The prediction of bathymetry by means of satellite altimetry is limited
to wavelengths larger than ∼10 km (Tozer et al., 2019). Thus, the altimetry-predicted bathymetry contains
errors at short wavelengths. Several digital elevation models (DEM herein) based on satellite altimetry
data have been produced over the last three decades (e.g., Becker et al., 2009; Smith & Sandwell, 1997;
Tozer et al., 2019; Weatherall et al., 2015), and they are massively exploited in ocean engineering, geophys-
ical/oceanographic research, and education. The bathymetry obtained from DEMs is usually interpolated
to estimate the bathymetry at a desired point location (e.g., at the nodes of a regular grid). This interpola-
tion produces errors for length scales smaller than the data resolution. Little attention has been paid to the
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uncertainties of the altimetry-predicted bathymetry and interpolations or how they propagate into derived
results. These uncertainties are the focus of this paper.

Higher resolution measurements (i.e., from shipboard methods) are required to quantify errors in pre-
dicted bathymetry. When errors are statistically described, however, stochastic approaches can be used
to model their uncertainty. Many studies have demonstrated that the topography and bathymetry of
the Earth exhibit a general fractal behavior at wavenumbers greater than ∼0.01 km−1 (i.e., wavelengths
𝜆< 100 km), with unknown maximum wavenumber (e.g., Bell, 1975; Mandelbrot, 1967). The relevant
consequence of this fractal behavior (also known as self-similarity) is that the power spectral density of
topo-bathymetry is characterized by a function which follows a constant power law decay for high wavenum-
bers. This distinctive power spectral density is then employed to determine an autocorrelation function.
While the distribution of the high wavenumber content of the bathymetry (i.e., marginal distribution)
was first modeled as Gaussian, it was soon demonstrated that distributions are non-Gaussian (Goff, 1991).
Indeed, Smith and Sandwell (1994) and recently Tozer et al. (2019) showed that errors in their predicted
bathymetry model, which are predominantly caused by the absence of certain high wavenumber con-
tent, exhibit a non-Gaussian distribution in many locations, with longer tails and a higher peak than a
Gaussian distribution.

Previous studies have used the statistical properties of the bathymetry and stochastic approaches to gener-
ate random realizations of regional (synthetic) bathymetry samples for wavelengths 𝜆< 100 km. Goff and
Jordan (1988), in particular, proposed key elements to create synthetic bathymetry of abyssal hills, and
several follow-up studies proposed better non-Gaussian random field models for length scales of 2–10 km
(e.g., Goff, 1993, 2010; Goff & Arbic, 2010). Williams et al. (2017) also used a stochastic approach to generate
synthetic bathymetry samples of fjords of Greenland in their ice-sea interaction studies. A valuable applica-
tion of generating synthetic samples of high wavenumber content is to determine the impact of bathymetry
uncertainties in oceanographic and geophysical modeling. A Monte Carlo simulation using a tsunami prop-
agation model, for instance, can be adopted to determine the statistics of the tsunami response uncertainty
due to the uncertain bathymetry.

This paper proposes a methodology to quantify the uncertainties of altimetry-predicted bathymetry
and its impact on tsunami responses in northern Chile. In section 2, we analyze the main source of
altimetry-predicted bathymetry errors. In section 3, we determine the bathymetry error statistics in northern
Chile, and we use them to define the second moment properties for an uncertainty model. This uncertainty
model is then employed to generate synthetic bathymetry samples with a new proposed method. In section 4,
we quantify the uncertainty of tsunami responses due to altimetry-predicted bathymetry errors via a Monte
Carlo simulation that uses the bathymetry samples. In section 5, we further analyze the statistical proper-
ties of altimetry-predicted bathymetry errors in 15 multibeam surveyed regions around the world, aiming
to define a first-order approximation uncertainty model that can be used globally.

2. Errors in Altimetry-Predicted Bathymetry
The gradient of the altimetry data is the main constraint in the technique for predicting bathymetry. Its
errors are summarized below. The hydrostatic response of the ocean causes its surface to closely follow
the surface of constant gravitational potential energy called the geoid. Because bathymetry causes gravity
anomalies large enough to be recorded at the sea surface, in principle the bathymetry can be derived from the
gradient in the ocean surface height measured by highly accurate satellite altimetry (Smith, 1998; Smith &
Sandwell, 1994). However, satellite altimetry data can only predict the bathymetry at wavelengths between
∼160 and ∼10 km. The upper bound of ∼160 km occurs because isostatic compensation of features with
larger wavelengths dampens their gravity anomalies (Smith & Sandwell, 1994). The lower wavelength bound
of ∼10 km occurs because at the ocean surface, the upward continuation attenuates high wavenumber grav-
ity anomalies generated at the seafloor (Blakely, 1996), reducing their amplitude below the satellite altimetry
noise level. Sparse shipboard soundings are interpolated to recover variations with wavelengths >160 km.
However, there are no means to recover information associated with the high wavenumber content. Assum-
ing a linear relation between gravity anomalies and bathymetry, we can determine the bathymetry between
wavelengths of ∼160 and ∼10 km. The Inverse Nettleton procedure (Smith & Sandwell, 1994) uses a linear
regression to relate band-pass filtered shipboard bathymetry measurements to altimetry-predicted grav-
ity anomalies. Figures 1 and 2 show the altimetry-predicted bathymetry, h̃ (top panels), in two areas in
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Figure 1. Top panel: Global map indicating the locations of the 15 multibeam surveys used in this study. Lower panels: Comparison between the
altimetry-predicted bathymetry, h̃ (first row), and the multibeam bathymetry, h (second row), for Surveys #1 to #4. The labels indicate the corresponding
number in the reference map and the name of the region. The red squares enclose the multibeam survey areas, whose dimensions vary according to the
available multibeam data, between 75× 75 km2 (Regions #1 to #4 and #13 to #15) and 140× 140 km2 (Regions #5 to #12).
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Figure 2. Comparison between the altimetry-predicted bathymetry and multibeam bathymetry for Surveys #5 to #15.
Explanation as in Figure 1.
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northern Chile (Samples #1 and #2) and 13 additional areas near the southwestern coast of Australia
(Samples #3 to #6), the East Coast of the United States (Samples #7 and #8), near the Mariana Islands (Sam-
ples #9 to #12), Central Pacific (Samples #13 and #14), and the Gulf of Mexico (Sample #15), obtained from
the SRTM15+V2.0 DEM. The samples are extracted from a grid containing altimetry predictions only (i.e.,
not containing shipboard soundings).

In recent years, high-resolution multibeam surveys that span large areal extents (>75× 75 km2) have become
publicly available. These data make it possible to describe the statistical properties of the bathymetry over a
broad range of wavenumbers. Bathymetry information obtained with multibeam technology has high accu-
racy at a horizontal resolution of roughly 7% of the mean water depth (Mayer et al., 2018). This is significantly
better than the altimetry-predicted bathymetry, and it can be considered a reference for the true bathymetry,
defined in this study as h. Hence, we can use multibeam data to quantify errors of the altimetry-predicted
bathymetry. Figures 1 and 2 show multibeam surveys conducted by Geomar (Geersen et al., 2018; Kopp
et al., 2016) in northern Chile, by Geoscience Australia in Australia, and by the Center for Coastal and
Ocean Mapping of the University of New Hampshire in the remaining regions. All surveys cover at least
75× 75 km2, with horizontal resolution finer than 500 m (i.e., with survey depths shallower than 7 km). The
predicted bathymetry, h̃, is noticeably smoother than h (lower panels), due to the lack of high-wavenumber
content in the altimetry-predicted bathymetry.

In the next section, we will quantitatively describe the altimetry-predicted bathymetry errors in northern
Chile, where bathymetry has been comprehensively surveyed by Geomar, as an example to demonstrate
how the bathymetry uncertainty model has been defined. This area is also susceptible to the occurrence of
tsunamis and so serves as a good test case for examining the impact of the bathymetry errors on tsunami
hazard simulations. At the end of the manuscript, we describe altimetry-predicted bathymetry error statistics
for the other regions shown in Figures 1 and 2 suggest a general relation for bathymetry errors.

3. Uncertainty Model for Altimetry-Predicted Bathymetry in Chile
3.1. Statistical Analysis of Bathymetry

Before assessing the altimetry-predicted bathymetry errors, we shall first gain more insight into the statistical
properties of the true bathymetry, h, represented by the multibeam surveys #1 and #2 in Figure 1. First,
we compute the power spectral densities of the Chilean multibeam surveys, which are useful to assess the
bathymetry at different length scales. We use a discrete Fourier transform (DFT). The data are interpolated
to a regular grid, as required by the DFT, at a resolution of 500 m, which is equal or coarser than the effective
data resolution of the bathymetric sample regions. The power spectral density is calculated by computing the
Fourier transform of the bathymetry and by squaring the amplitude of each wavenumber bin. To compute
the discrete Fourier transform, we use the fast Fourier transform algorithm implemented in Matlab (function
FFT2). The power spectral amplitudes are normalized by P = P′Δ2∕Nn, where P′ is the nonnormalized
power spectral density (i.e., output from FFT2), Δ is the separation between grid nodes (i.e., 500 m), and Nn
is the number of grid nodes in the regions. By adopting this normalization, the following relation holds:

𝜎2 =
Nx∑
i=1

N𝑦∑
𝑗=1

1
Δ2Nn

P(kxi, k𝑦𝑗), (1)

where 𝜎2 is the spatial variance of the bathymetry, (i, j) represents a wavenumber bin, Nx and Ny are the
number of nodes in the local coordinate axes (i.e., Nx × N𝑦 = Nn), and kxi and kyj are wavenumbers with
the unit of m−1. The amplitudes of the power spectral density of a two-dimensional field have the unit of
m4. Edge effects are minimized by detrending the bathymetry, using a least-squares fit, and tapering the
boundaries of the regions using a sinusoidal tapering window function, W f , which multiplies the water
depths of the grid nodes. The window function has the form

W𝑓 (db) =
{

0.5(1 − cos(𝜋db∕wl)), for db < wl,

1, for db ≥ wl,
(2)

where db is the distance from a grid node to the boundary of the regions and wl is the window width. Setting
wl = 5 km is sufficient to avoid artifacts at kx = 0 and k𝑦 = 0. We also split the bathymetry data into four
subsamples and compute the average of the resulting power spectral densities to reduce numerical spectral
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Figure 3. (a) Power spectral densities of the two multibeam surveys in Chile shown in Figure 1. (b) Black bars represent the histograms of the high
wavenumber content of the multibeam bathymetry, isolated using Equation 3. A total of 17,424 points are used in the histograms. Green and red lines represent
the best fit Laplacian and Gaussian distributions, respectively, with zero mean and equivalent variance. (c) Blue dots represent the power spectral density
of the multibeam data h collapsed in terms of k (same as panel (a)). Red dots represent the power spectral density of h̃. The black vertical lines indicate
WL = 0.5. (d) Power spectral densities (i.e., Fourier transform of c(𝜉)) of 𝜖. The lower left corner shows the modeled power spectral density for a Von Karman
function with a = 4 km, H = 0.975, and 𝜎e = 160 m. (e) Histograms of 𝜖 (black bars), modeled Laplacian distribution (green line), and modeled Gaussian
distribution (red line) using the same sample variance. (f) Variance-normalized power spectral density of 𝜖 as a function of k. The dashed red curves correspond
to the best fit Von-Karman curve. Values of the best fit values of H, a, and rms error on a logarithmic scale are reported in the insets.

noise. The spectra of h of #1 and #2 in Figure 1 are shown in Figure 3a. The two-dimensional power spectral
densities of the Chilean surveys have higher power at low wavenumbers and are approximately isotropic. For
isotropic regions, the power spectra can be modeled as a function of the wavenumber only. Figure 3c shows
the same power spectral densities as Figure 3a, collapsed to one dimension as a function of k =

√
k2

x + k2
𝑦

(blue dots). The blue dots show little dispersion, indicating that the isotropic assumption is adequate for
the analyzed multibeam samples. Another relevant characteristic is that the spectral decay has a nearly
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constant negative slope for high wavenumbers. Hence, the samples exhibit a fractal (self-similar) behavior,
which extends to wavenumbers of k = 10−3 m−1 (i.e., wavelengths 𝜆 = 1 km). The adequacy of the isotropic
assumption and the fractal behavior observed in northern Chile are analyzed later for the other regions.

Another relevant statistical property of the bathymetry is the marginal distribution (or 1-point statistics),
which we equate to the spatial histogram of h in this study. The bathymetry histograms are very different
between the two Chilean samples when all length scales are considered. They have different spatial trends
and average values. However, after removing low wavenumber content using the low-pass filter of Smith
and Sandwell (1994),

WL(k, h̄) =
(

1 + Ak4e4𝜋k|h̄|)−1
, (3)

where k is the wavenumber in km−1, h̄ is the depth reference (e.g., here we use the mean value, in kilo-
meters) and A is an empirical dimensional parameter defining the filtered wavenumbers, we observe that
the high wavenumber content of the bathymetry exhibits the same histogram distribution for both regions.
The black bars in Figure 3b present such histograms. We adopt this low-pass filter because it is also used
by Tozer et al. (2019) to remove high wavenumber noise created by upward continuation and the noise in
the altimetric gravity data, when creating the SRTM15+V2.0 DEM model. We apply this as a high-pass filter
to the multibeam data (i.e., the reference for the true bathymetry) to produce the high wavenumber con-
tent, which is missing in the altimetry predicted bathymetry of SRTM15+V2.0 DEM. We use A = 1,200 km4

(Tozer et al., 2019), which corresponds to a wavenumber cut-off of roughly 10−1 km−1 for shallow areas
(i.e., wavelengths of ∼10 km at 2.5 km depths). Some variations are observed in the filtered wavelengths
for different regions because the filter (and the upward continuation phenomenon) depends on the refer-
ence depth. Further analysis of the relation between the parameter A, the reference depth, and the filtered
wavenumbers are given in the supporting information. Figure 3b shows Laplacian and Gaussian distribu-
tion functions scaled with the high wavenumber content variance (i.e., same variance as black histograms).
The histograms show long tails and a sharp peak at zero. The histograms of both Chilean regions are better
fit by the Laplacian rather than a Gaussian function. This is a relevant characteristic because it shows that
high wavenumber content, which is absent in altimetry-predicted bathymetry and which is expected to be
the main cause of DEM errors, can be modeled with a Laplacian marginal distribution.

The red dots in Figure 3c show the collapsed spectra of the altimetry predicted bathymetry, h̃, in terms of
k =

√
k2

x + k2
𝑦
. The black vertical lines in the panels indicate the wavenumber at which W L of Equation 3

becomes 0.5, indicating the wavenumber from which altimetry does not predict the bathymetry. To the left
of the line at WL = 0.5, the spectra of h and h̃ yield similar amplitudes. To the right of WL = 0.5, conversely,
the amplitudes of h̃ are much smaller than the the amplitudes of h, as expected. This provides the rationale
for the statistical behavior of the altimetry-predicted bathymetry errors. Next, we shall deduce the empirical
statistics of these errors, defined as

𝜖 = h̃ − h. (4)

3.2. Statistical Model for the Altimetry-Predicted Bathymetry Errors (𝝐)

We determine the second moment properties of 𝜖 in Regions #1 and #2 in northern Chile by computing the
autocorrelation coefficient function and the histogram.
3.2.1. Autocorrelation Coefficient Function for the Altimetry-Predicted Bathymetry Errors (𝝐)
The black dots of Figure 3f represent the variance-normalized power spectral densities of 𝜖. We present
the variance-normalized spectra and analyze the spectral shape and the variance separately. The power
spectral densities presented in Figure 3a are equivalent to the Fourier transform of the autocovariance
defined as c(𝜉) = E[(h(x) − h̄)(h(x+𝜉) − h̄)]. The variance-normalized power spectral density, on the other
hand, corresponds to the Fourier transform of the autocorrelation coefficient function, defined as r(𝜉) =
E[(𝜖(x) − 𝜖)(𝜖(x+𝜉) − 𝜖)]∕𝜎2

e (Grigoriu, 2012). Here, E() is the expectation operator, 𝜎2
e is the total sample vari-

ance of 𝜖, and 𝜖 is the mean error. To remove numerical artifacts, each region is split into four subregions
and multiplied by a 5 km taper. We do not detrend the variance normalized power spectral densities of 𝜖
because errors are expected to correspond to high wavenumbers.

The spectra in Figure 3f (black dots) show little dispersion, which indicates that isotropy is a simple and
reasonable assumption for 𝜖 in the Chilean regions. The power spectral densities have an approximately
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constant power law decay at high wavenumbers and a plateau at low wavenumbers. We model the power
spectral densities using a Von Karman function (Goff & Jordan, 1988) with the form

P(kx, k𝑦) =
4𝜋𝜎2

e Haxa𝑦

(1 + a2
xk′2

x + a2
𝑦
k′2

𝑦
)1+H

. (5)

The Von Karman covariance function, used later to build random field models, has the form

c(𝜉) = 𝜎2
e

21−H

Γ(H)
d̄H
𝜉

KH(d̄𝜉),

d̄𝜉 =

√
(𝜉x)2

a2
x

−
(𝜉𝑦)2

a2
𝑦

> 0.
(6)

In these equations, Γ(H) is the Gamma function, KH is the modified Bessel function of the second kind of
order H, 𝜉 = (𝜉x, 𝜉𝑦) is the distance between neighbor locations, and kx′ and ky′ are wavenumbers with
units of radians per meter. Four shape parameters have to be specified in the Von Karman function. The
shape parameter H is known as the Hurst number, and it controls the power law decay at high wavenum-
bers. As seen in Equation 5, the power law decay at high wavenumber is proportional to k−(2 + 2H ). The
parameters ax and ay are the characteristic correlation lengths of the bathymetry along the easting and nor-
thing directions, respectively. Because we assume that 𝜖 is isotropic, ax = ay = a. Shorter values of ax and ay
extend the plateau region and move the power law decay region of the function to higher wavenumbers. The
total variance 𝜎2

e constitutes a shape parameter which controls the amplitude of the power spectral density.
Because 𝜎2

e is equal to the integral of the power spectral density over all wavenumbers, 𝜎2
e increases with

increasing spectral amplitudes. The correlation coefficient function model r(𝜉) is given by r(𝜉) = c(𝜉)∕𝜎2
e .

The shape parameters H and a are calibrated using the variance-normalized power spectral densities of
Figure 3f. The red dashed curves in Figure 3f represent the Von Karman function with the best least squares
fit to each local spectra. The values of a and H and the fitting errors (in logarithmic units) are shown for each
spectra. The average Hurst number for the two regions is H = 0.975, which has a power law decay of −3.95
at high wavenumbers. The average correlation length a is 4 km. The covariance model is defined by speci-
fying a variance, 𝜎2

e . Both bathymetry samples in Chile have a value of 𝜎e close to 160 m. Figure 3d shows
the two-dimensional power spectral densities of 𝜖, which correspond to the Fourier transform of the auto-
covariance. The proposed model for the Chilean samples of 𝜖 is presented in the bottom left corner, using
the Von Karman autocovariance function with the average parameters of a = 4 km, H = 0.975, and 𝜎e =
160 m. We observe that both samples of 𝜖 are reasonably well represented by the proposed power spectral
density model.
3.2.2. Histograms of the Altimetry-Predicted Bathymetry Errors (𝝐)
Figure 3e shows the histograms of the altimetry-predicted bathymetry errors, 𝜖, for the two regions studied
in Chile. While the histograms present some deviation from zero mean, their shape is closer to a Lapla-
cian distribution than a Gaussian. This can be expected when the source of error is due only to the lack of
high wavenumber content in the model bathymetry. Therefore, in the next section, we use the Laplacian
distribution and the modeled Von Karman autocovariance function to propose a bathymetry uncertainty
model based on a random field model. The spatial histogram and autocovariance of the bathymetry values
in each region yield the marginal distribution and covariance of the random field, respectively, when prob-
ability properties are ergodic and when sample sizes (i.e., >75 km) are much larger than correlation lengths
(i.e., a = 4 km). While the second condition is fulfilled, the ergodicity condition is more difficult to validate.
Based on the similarities of statistics between the two Chilean regions, though, we conclude that ergodicity
holds in the study area in northern Chile. The assumptions of isotropy and ergodicity, which are somewhat
supported by the multibeam data analysis of Figure 3, will be further discussed in section 5 for every region
of Figures 1 and 2. Finally, we assume that the constant spectral decay extends to wavelengths as short as
𝜆 = 100 m. This assumption means that the fractal behavior is extended to 𝜆 = 100 m and the Von Karman
correlation function can be applied to fine grids in which we will model interpolation errors.

3.3. Altimetry-Predicted Bathymetry Uncertainty Model

To model bathymetry uncertainties, we adopt a stochastic approach that uses a random field and use
accurate shipboard measurements (e.g., single beam and multibeam measurements) to constrain the
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uncertainties. The SRTM15+V2.0 global DEM (Tozer et al., 2019), for example, contains shipboard sound-
ings in ∼11% of the grid cells. In this study, we assume that errors of the shipboard data are negligible com-
pared to 𝜖. To combine the altimetry-predicted bathymetry uncertainty with the complementary shipboard
data, we model the bathymetry uncertainty as a conditional random field. In this way, regions with no ship-
board data nearby will have uncertainty determined by 𝜖, while regions with shipboard data nearby will have
smaller uncertainties. It is noteworthy that alternative approaches based on weighting functions have been
proposed to reduce uncertainty close to shipboard data (Timko et al., 2017). We think that conditional ran-
dom fields better simulate the spatial extent of the sounding data influence, which will be comparable to the
correlation lengths.

The modeling of conditional non-Gaussian random fields is difficult, and analytical solutions are only found
for special cases. We propose a simple strategy: First, we define a conditional Gaussian random field model,
whose samples can be obtained with standard procedures; second, these samples are transformed into a
non-Gaussian random field by means of a translation model. The conditional Gaussian random field is
defined by the covariance cb and mean 𝜇b with the forms (e.g., Grigoriu, 2012; Kelker, 1970)

cb(xi, x𝑗) = cp11 − cp12(cp22)−1cp21, (7)

𝜇b = 𝜇p1 + cp12(cp22)−1(z − 𝜇p2), (8)

where z is the vector with known depths at the directly measured locations (i.e., where bathymetry is
assumed to be certain), and the matrices cp11, cp22, cp12, and cp21 are blocks of the unconditional covariance
matrix cp over the bathymetry domain. cp is equal to c in Equation 6, with H = 0.975, ax = a𝑦 = a = 4 km
and 𝜎e = 160 m. cp11 are the covariance terms between the locations with uncertain depths (i.e., grid points
with errors), cp22 are the covariance terms between the locations with known depths (i.e., accurately mea-
sured locations), and cp12 are the covariance between locations with uncertain (rows) and certain (columns)
depths. Finally, cp12 = cT

p21. The vector 𝜇p1 contains the mean of field positions which have uncertain
depths, while 𝜇p2 contains the mean of the positions with known values. Here, measured locations are
assumed to have no errors and 𝜇p2 = z. The resulting cb(xi, xj), 𝜇b and uncertainty model are nonstationary
(i.e., not homogeneous).

3.4. Synthetic Bathymetry Sample Generation

The samples of the conditional Gaussian random field, G(𝜔), are built by adopting a Karhunen-Loeve (K-L)
expansion (Grigoriu, 2012; Sepúlveda et al., 2017). The K-L expansion uses an eigenvalue decomposition
of the covariance matrix to model random field samples as a superposition of uncorrelated modes, each of
them multiplied by a random number (i.e., one random dimension per mode). The K-L expansion presents
some advantages compared to other classic methods (e.g., Fourier transform methods with random phases).
For example, it is sufficiently robust to be applied to nonsquare domains and to model nonhomogeneous
random fields. The expansion is expressed as

G(𝜔) = 𝜇b +
N∑
𝑗=1

Ψ𝑗

√
𝜆𝑗Z𝑗(𝜔), (9)

where G(𝜔), 𝜇b, and Ψj are vectors representing the values in the field, the mean, and the jth covariance
eigenmode, respectively. 𝜆j is the jth eigenvalue. Zj(𝜔) is a random number sample which is uncorrelated
with the random number samples of other terms of the expansion. For the particular case of a Gaussian
random field, the values of Zi(𝜔) are independent and follow a normal distribution with zero mean and
unit variance. They can be simply obtained using a normal random number generator, such as norm-
rnd(0, 1) in Matlab. N represents the number of eigenmodes included in the expansion. The accuracy of
the K-L expansion can be measured by the loss of variance as a consequence of the expansion truncation
(Grigoriu, 2012)

𝜖var(i) =
∑N

𝑗=1 Ψ
2
i,𝑗𝜆𝑗 − 𝜎2

e

𝜎2
e

. (10)

SEPÚLVEDA ET AL. 9 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2020JB019735

An analysis of the K-L truncation and accuracy is given below. Finally, the conditional Gaussian random
field samples are transformed to random field samples with a Laplacian marginal distribution, B(𝜔). We
apply a translation with the form

Bi(w) =

{√
𝜎ei∕2Log[2Φ(Gi(𝜔))], forGi(𝜔) < 𝜇ei,

−
√
𝜎ei∕2Log[2(1 − Φ(Gi(𝜔)))], forGi(𝜔) ≥ 𝜇ei,

(11)

where 𝜇ei and 𝜎ei are the error mean and standard deviation at location i, Gi(𝜔) is a sample of the Gaussian
random field at location i, and Φ is the Gaussian cumulative density function. The translation is a nonlin-
ear function transforming not only the marginal distribution but also the covariance function of the final
samples. While the analytical relation between the correlation coefficients of the Gaussian and the corre-
sponding non-Gaussian random fields only exists for special cases (e.g., translating from a Gaussian to a
log-normal marginal distribution in Sepúlveda et al., 2017), Grigoriu (1995) indicated that the translation
produces small modifications to the correlation coefficient function when the latter is strictly positive. This
is the case for Equation 6. Hence, the Gaussian random field samples of this study are built by specifying
the same Von Karman covariance in Equation 6. Now, we apply the uncertainty model and the sampling
generation method to produce synthetic bathymetry samples for northern Chile.
3.4.1. Sample Generation for Synthetic High Wavenumber Bathymetry
We create synthetic bathymetry samples for northern Chile by combining the predicted long wavelength
component of the altimetry-predicted bathymetry with short wavelength error samples generated using
our uncertainty model. The SRTM15+V2.0 DEM (Tozer et al., 2019), which has a 15 arcsec grid resolution
(∼500 m), provides the long wavelength component. The methodology is robust enough to be applied to any
DEM combining altimetry-predicted bathymetry with complementary highly accurate measurements. The
SRTM15+V2.0 DEM data are extracted for two grids, which are shown in the left panels of Figures 4a and 4b.
For Grid 1, we undersample the number of grid nodes from the DEM, so we reach a resolution of 1.5 arcmin.
For Grid 2, we use the original resolution of the DEM, equal to 15 arcsec. Accurate shipboard soundings are
shown as black dots in the right panels of Figures 4a and 4b, which are provided in a data information grid
file for the SRTM15+V2.0 DEM (known as source identifier, SID). This information is assumed to be certain.
We further assume that the low coastal topography has no uncertainty, because topography data are often
more accurate than bathymetry. These certain low topography data are used to constrain bathymetry uncer-
tainty close to the coast (i.e., is considered in the construction of random field samples). Higher topography
data are certain as well but do not constrain the bathymetry uncertainty. For the uncertainty model, we use
a = 4 km, H = 0.975, and 𝜎e = 160 m, and the DEM is adopted as the mean bathymetry (i.e., left panels
of Figures 4a and 4b). The computed standard deviation of the uncertainties are shown in the right panels
of Figures 4a and 4b. Low values of standard deviations are reached close to the survey data. Grids 1 and 2
contain 222,742 and 48,960 nodes, respectively. Such a large number of nodes requires very large uncondi-
tional and conditional covariance matrices, which demand a large amount of computer memory for their
storage. To reduce the computational demand, a reduced number of grid nodes can be selected, depending
on the type of study. For instance, tsunami waves are affected by bathymetry uncertainties when the latter
are comparable to the total water depth (as tsunami propagation depends on the total water depth). Con-
sequently, we may only assign uncertainties to the grid nodes at depths shallower than a certain threshold.
In our illustration case below, for example, we specify uncertainties at mean depths shallower than 3 km,
where the uncertainty standard deviations (i.e., 𝜎e = 160 m far from data) are at least 5% of the mean water
depth. Nodes in deeper zones are removed from the uncertainty model. Figures 4a and 4b show that the
uncertainty standard deviation is zero for mean depths deeper than 3 km (see the −3 km isobath).

The accuracy of the generated samples depends on the truncation of the K-L expansion (i.e., Equation 10).
Figure 5 shows the median relative errors of the variance for the nodes of Grids 1 and 2. Grid 1 requires more
than 4,500 K-L terms to obtain median relative errors smaller than 20%. Grid 2, on the other hand, reaches
the same accuracy with less than 1,000 K-L terms. For a given accuracy, more K-L terms are required for
larger grids and shorter correlation lengths. For our illustration case, we use a total of 4,600 K-L terms for
all grids.

Figures 6a and 6b show three realizations of the synthetic bathymetry samples that include the error from the
synthetic high wavenumber content. The left panels show the certain shipboard survey soundings for depths

SEPÚLVEDA ET AL. 10 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2020JB019735

Figure 4. Mean and standard deviation of the bathymetry uncertainty model. Rows (a), (b), and (c) correspond to grids
1, 2, and 3, respectively. The mean bathymetry of Grids 1 and 2 is equal to the SRTM15+V2.0 DEM. The Grid 3 mean
is based on the interpolation from shipboard sounding data within the grid. The black dots in the right panels show
accurate shipboard survey data and low topography data constraining bathymetry close to the coast. The data of Grids 1
and 2 are extracted from the SRTM15+V2.0 SID file. The survey data of Grid 3, on the other hand, are obtained from
soundings from a nautical chart used in this study (SHOA, 2009). The thick black contours are the coastline and the
thin black contours indicate the 3 km isobath relative to mean sea level. Areas shallower than 3 km are assigned an
uncertainty in the uncertainty model. White rectangles show the location of the higher resolution grids.
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Figure 5. Median relative errors of the variances for the nodes of Grids 1, 2, and 3 as a function of the number of terms
of the K-L truncation. We use 4,600 K-L terms for all the grids to achieve median relative errors of 20%, 5%, and 3% for
Grids 1, 2, and 3, respectively.

shallower than 3 km and low topography data (constraining bathymetry uncertainties close to the coast)
as black dots. The corresponding error samples (i.e., synthetic high wavenumber content samples) are also
shown in Figure S2. The contribution of the synthetic high wavenumber content is evident after comparing
the mean bathymetry of Figure 4 and the samples of Figure 6. Figure 7 shows a comparison between the
target probability properties (i.e., a Von Karman covariance function with H = 0.975 and a = 4 km, a
Laplacian distribution, and 𝜎e = 160 m at unconditional areas) and the statistics of 20,000 samples. We
observe that statistics are very close to the target probability properties. Some small deviations are seen
because of K-L truncation and translation errors. The largest, but still small, errors are found for Grid 1,
which has the largest K-L truncation errors.

Different grids are commonly nested in numerical models in order to vary the resolution. The mean
bathymetry of different grids are equivalent at the same locations (e.g., at the edges of the finer grids) because
they are equal to the DEM. Hence, the mean bathymetry is expected to be continuous where coarser and
finer grids connect. However, the bathymetry samples generated with additional uncertainty are indepen-
dent among the different grids and, therefore, may present significant discontinuities where grids connect.
To remove spurious discontinuities, the finer grid is modified at the edges so that its bathymetry is equal
to the corresponding bathymetry sample of the coarser grid. We modify the finer grids in a buffer zone of
3 km from each edge, which is comparable to the uncertainty correlation length. To include uncertainty
once within the buffer zone, we remove the uncertainty of the finer grid model (i.e., we only consider the
uncertainty of the coarser grids at the edges of the finer grid).

3.4.2. Sample Generation of Uncertain Bathymetry in High-Resolution Grids
We now employ the uncertainty model and sampling method to quantify the uncertainties when
high-resolution shipboard soundings are interpolated. Some form of interpolation is commonly employed
to generate uniform and fine bathymetry grids. This is often the case for tsunami propagation models in
which bathymetry sampling finer than 100 m is required in coastal areas for accurate simulations. As we
noted above, the spectral amplitude of 𝜖 is expected to be equal to that of the high wavenumber content
of the true bathymetry. When the distance between the interpolated shipboard soundings is shorter than
∼10 km, we can use the same uncertainty model to add high wavenumber variability, which is not resolved
by the interpolation.

The left panel of Figure 4c shows an interpolated bathymetry grid generated by sounding data in the port
of Iquique, Chile. We use a cubic interpolating function, which has been observed to generate small spu-
rious signals at high wavenumbers (i.e., at small length scales). The soundings used in the interpolation
are obtained from the nautical chart of the area (SHOA, 2009) and are assumed to be highly accurate and
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Figure 6. Three realizations of synthetic bathymetry samples for Grids 1 (a), 2 (b), and 3 (c). For spatial continuity, the
two finer grids have a buffer region of 3 km at the borders. The continuous black line is the coastline, and the thin black
line is the isobath at −3 km. Seafloor depths shallower than 3 km are assigned a value of uncertainty. Black dots in the
left panels show data that are considered to be certain and which are not assigned a value of uncertainty for the random
sample generation (i.e., shipboard survey soundings and low topography containing bathymetry close to the coast).
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Figure 7. Comparison of 20,000 sample statistics and target probability properties for the uncertainty models of the
three grids. Left panels show a comparison of the covariance terms. Green line is the 1:1 relation. The right panels
compare the histograms of the synthetic high wavenumber content for each grid node and the target Laplacian
distribution (depicted in green). The histograms and distributions for each grid node are normalized by the
corresponding standard deviation.

certain. The resolution of the grid is finer than the average spatial density of the soundings, and, therefore,
the interpolated grid is affected by uncertainty.

To model the uncertainty of the interpolated grid, we first generate an unconditional random vector, which
includes the grid nodes and the highly accurate sounding locations (which are not exactly located at the grid
nodes). Then, a conditional random field is built, conditional to the soundings. The standard deviation of
the uncertainty model is shown in the right panel of Figure 4c. Grid nodes close to the soundings have small
values, as expected. We also show the accuracy of the uncertainty model as a function of the K-L truncation
in Figure 5 and a validation of the statistics of bathymetry samples in Figure 7, which are described in
detail above for Grids 1 and 2. Figure 6c shows bathymetry samples, and Figure S2 shows error samples.
For Grid 3, we specify values equal to that of the coarser Grid 2 samples in a buffer region within 3 km of
the borders.
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4. Tsunami Hazard Assessment in Chile With Consideration of Uncertain
Bathymetry
In this section, we aim to quantify the uncertainties of a tsunami hazard assessment due to uncertainties
in the altimetry-predicted bathymetry for an example case in northern Chile. We assess the tsunami trig-
gered by the 2014 MW 8 Iquique earthquake and use the initial surface elevation condition of the tsunami
estimated by An et al. (2014), which is shown in Figure S3. To predict the tsunami initial condition, An
et al. (2014) used DART buoy records and a tsunami source inversion solving for the earthquake slip dis-
tribution. A validation of the inversion was also conducted by performing a forward tsunami simulation
and comparing simulated coastal responses with tide gauge records. The comparison of An et al. (2014)
(Figure 6 of that paper) showed that simulations fit the leading wave amplitudes fairly well at most of the
stations. However, significant misfits on the arrival times and trailing wave amplitudes were observed at
some stations. While sources of such errors are still unknown, bathymetry uncertainties were hypothesized
as one possible source. Hence, in this application case, we aim to understand the impact of bathymetry
uncertainties on the tsunami propagation.

For the propagation of uncertainty from the bathymetry to the tsunami response, we adopt a Monte Carlo
approach and use the COMCOT tsunami model to solve the nonlinear shallow water equations with an
explicit leapfrog finite difference scheme (Wang, 2009). The numerical grids, where the tsunami responses
are calculated, are the same grids as shown in Figure 4. Different grid resolutions are required to satisfy
criteria for the typical wavelengths of tsunami waves, which change during the shoaling process, so three
nested grids are used. We simulate bottom friction using the Manning formula with coefficient 0.03 (Bricker
et al., 2015) and simulate the tsunami runup using a moving boundary scheme (Wang, 2009). We con-
duct a sensitivity analysis to determine the number of samples required to get accurate estimates of the
tsunami response statistics, and we find that 1,000 samples are necessary for the convergence of statistics
(i.e., convergence of 95% percentiles). The statistics obtained with 1,000 samples are as accurate as those
obtained with 3,000 samples (see Figure 9b). This reasonable number of samples has important implica-
tions because it shows that regardless of the high number of random dimensions necessary to accurately
describe bathymetry uncertainties (e.g., at least 4,600 for Grid 1), the tsunami response seems to be affected
by a smaller number of dimensions (otherwise, we would require a much greater number of samples). The
number of required samples could possibly be further reduced by adopting better uncertainty propagation
methods such as SROM (Sepúlveda et al., 2017) or by implementing a surrogate model (Liu & Guillas, 2017).
The number of required bathymetry samples may change for other regional tsunami hazard assessments.

4.1. Uncertainty Statistics Within the Tsunami Model Domain

We compute the maximum tsunami surface elevation for each simulation, which is defined as the maximum
surface elevation reached during 120 min of tsunami propagation. Then, we compute the second moment
properties. The mean maximum tsunami elevations, shown in Figure 8a, have values larger than 1 m in
the tsunami generation zone and at the coast. In some coastal areas, we observe a significant amplifica-
tion of the tsunami wave likely due to shoaling and coastal resonances. For example, in Iquique port, we
observe large values within the port, exceeding 2 m (i.e., right panel in Figure 8a). A comprehensive mea-
sure of the uncertainty of the maximum tsunami elevation is the variance, which is shown in Figure 8b. To
highlight the differences of the tsunami response uncertainty, the variance is plotted in a logarithmic scale.
We observe that the uncertainty in the maximum tsunami elevation is near zero in the generation zone. In
this region, the maximum elevation occurs at an early time (at or near the initial time). At that time, the
tsunami wave has propagated a short distance or has not propagated at all, and the bathymetry uncertainty
does not affect the long waves. As tsunami waves propagate longer distances, uncertainty effects increase.
The impact of bathymetry uncertainties depend on the mean bathymetry. In deeper water regions (i.e., west
of the source region), the highest tsunami waves propagate through areas where uncertainties are much
smaller than mean water depths. As a consequence, the impact of the uncertainty on tsunami propaga-
tion is small there. However, we observe an increase of uncertainty in areas of shallow depths and farther
away from the tsunami source, in particular at the southwestern corner of Grid 1 (Figure 4a). Close to the
continental coast, we observe a strong increase of the maximum tsunami elevation uncertainty.
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Figure 8. Mean (a) and variance (b) of the maximum tsunami elevation affected by bathymetry uncertainties. The variance is presented with a logarithmic
scale.

4.2. Uncertainty in Tsunami Elevation Time Histories

To gain more insight into the response of tsunami waves and their uncertainty, we analyze tsunami time
histories at 12 gauges in the middle and near field, which are depicted by orange dots in Figure 8a. The
gauges at Iquique port and Iquique City are located within Grid 3 and show the impact of bathymetry uncer-
tainty at locations where bathymetry data are spatially dense. Both locations also illustrate the uncertainty
variations in coastal areas. For instance, Iquique port is located inside a bay, apparently affected by tsunami
wave resonance, while Iquique city gauge is outside the bay. DART32401 and DART32402 show the effect
of bathymetry uncertainties at offshore buoys, which are commonly used for tsunami early warning and
and have also been used for tsunami source inversions, because leading waves arriving there are usually
not affected by nonlinearity. The eight additional coastal gauges at Arica, Pisagua, Patache, Tocopilla, Mejil-
lones, Antofagasta, Paposo, and Taltal are included to show the impact at coastal locations where only coarse
bathymetry data are available and where the simulation equations are solved on coarse numerical grids.
Coarse grids are commonly used for early-warning tsunami models, which require fast computation (Titov
& Gonzalez, 1997). All of the gauges are located in water, including the coastal ones near the shoreline. How-
ever, a few bathymetry samples are generated with one or two gauges located on land (i.e., above the water
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Figure 9. (a) Time histories of the tsunami water elevation at 12 tide gauge and buoy locations. Yellow and red curves represent the 50% and 95% exceedance
probabilities, respectively. The pink dashed curves represent a tsunami simulation with no bathymetry error. (b) Exceedance curves for the maximum tsunami
water elevation at the 12 locations. The black lines correspond to Monte Carlo simulations with 3,000 samples. The two red lines correspond to different Monte
Carlo simulations with 1,000 samples.

surface elevation) because the random bathymetry error is larger than the water depth. Those samples are
removed from the analysis.

Figure 9a shows time histories of the tsunami elevation at the 12 gauges shown in the map in Figure 8a.
For each location, we show the 50% and 95% exceedance probabilities for the water surface elevation at
every time, as well as a tsunami simulation without any bathymetric error added. In general, we observe
that leading waves are less affected by the bathymetry uncertainty, compared to the trailing waves. We also
observe that arrival times are practically unaffected by bathymetry uncertainties. While tsunami wave peri-
ods present more variability among the tsunami samples, the differences are small for the first waves (i.e.,
leading and second waves). The uncertainty of trailing waves is diverse at the 12 gauges, and it seems to be
independent of the surrounding water depths. Figure 9b also presents exceedance curves of the maximum
tsunami elevation and the corresponding coefficient of variation (COV) for each of the gauges. The COV
is defined as the maximum tsunami elevation standard deviation divided by the mean and describes the
intensity of the maximum tsunami elevation uncertainty as compared to the mean value. The largest COV
values are located at the Arica, Iquique city, Paposo, Patache, and Tocopilla coastal gauges, associated with
the maximum elevations occurring in trailing waves. The smallest COV values correspond to the offshore
buoys DART32401 and DART32402, in which the maximum tsunami elevations correspond to a leading
wave propagating through significant water depths.

The results of Figure 9 show that uncertainty is relevant only when two conditions are present. First,
bathymetry uncertainties have to be comparable to water depths, so celerity of long waves is significantly

SEPÚLVEDA ET AL. 17 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2020JB019735

modified and propagation can be altered. Leading waves propagating from the source to the west, for exam-
ple, have smaller uncertainty than leading waves arriving at coastal gauges. Second, tsunami wavelengths
have to be comparable to the characteristic length scale of the bathymetry uncertainty, which in this study
is represented by the uncertainty correlation length. Trailing waves of the coastal gauges, for instance, occur
after leading waves approach the coast and shorter waves are generated as a consequence of the irregu-
lar topo-bathymetry. Those shorter waves are then more affected by the high wavenumber content of the
bathymetry, which is uncertain. Thus, our results show that bathymetry uncertainties are not the main cause
of the significant misfits observed in the comparison between the tsunami records and model results of
An et al. (2014).

While trailing waves are more affected by bathymetry uncertainties, compared to the leading wave, the
accuracy of their estimation may be challenged by physical processes which are ignored by the shallow
water wave theory. For instance, as waves become shorter wavelength and higher amplitude, frequency
dispersion may become relevant. Furthermore, wave breaking at the coast is not considered. A more accu-
rate quantification of trailing wave statistics may require more sophisticated tsunami models that include
frequency dispersion and wave breaking. In the tsunami model above, we have also specified a constant
Manning coefficient to model bottom friction. Bottom friction, though, depends on the high wavenum-
ber content of the bathymetry. Therefore, the inclusion of bathymetry high wavenumber content (and the
bathymetry uncertainty model) may also need to be considered in the bottom friction model. Our bathymetry
uncertainty model specifies low topography as certain because it is often much more accurate than the
altimetry-predicted bathymetry. However, coastal topography data may suffer by errors in the order of tens
of centimeters to meters. These errors may be relevant when tsunami inundation depths are comparable.
As a consequence, the tsunami runup and inundation processes for the leading wave may also have larger
uncertainties than those obtained at the analyzed coastal gauges.

5. Estimating Statistics of Altimetry-Predicted Bathymetry Errors (𝝐) in the
Oceans
In section 3, we demonstrated that the statistics of 𝜖 for the seafloor off the Chilean coast can be modeled
reasonably well by using the Von Karman and Laplacian functions for the correlation and marginal distri-
bution, respectively. This poses the question about whether the statistical model (i.e., a Laplacian marginal
distribution and a Von Karman correlation function with parameters a, H, and 𝜎e) can be generalized to use
for any region of the oceans. This question is especially pertinent for regions where multibeam data are not
available. We conduct the statistical analysis of section 3 for the remaining 13 regions shown in Figures 1
and 2. Two samples exhibit small artifacts, likely derived from the multibeam surveys (i.e., small artificial
“banding” in Regions #7 and #14 in Figure 2). We decide to include these samples because the artifacts are
small and band-limited and so will have little impact on our analysis.

Figure 10a shows the power spectral density of 𝜖. Figure 10b shows the variance-normalized power spectral
density collapsed to one dimension in k. For completeness, we include the power spectral density and his-
tograms of the multibeam data in Figure S4. The plots of the Chilean regions are presented again for the sake
of comparison. Anisotropy, which is revealed by the shape of the spectra in Figure 10a and the dispersion
of the black dots in Figure 10b, is stronger in some regions than others (e.g., Region 7), but it is not severe.
Indeed, the width of the most dispersed dot clouds in Figure 10b is ∼1.5 units on a logarithmic scale, and
the power spectral amplitude ranges between 2 and 8 units. In general, the isotropic assumption is reason-
able for all the 15 regions. All the samples exhibit a similar power spectral density with a constant power
law decay at high wavenumbers, although that constant varies for each region.

Long- and short-scale variations of the bathymetry may be sculpted by different processes. Tectonics also
plays a primary role in determining the spectral properties of the bathymetry of a given region. These types
of differences can be identified in the sample regions we have selected. For example, Regions #9 and #13
show sea mounts surrounded by smooth flat sea floor. These different long- and short-scale features are also
evident in the spectra of h (Figure S4) and 𝜖 (Figure 10b) and produce deviations from the ideal fractal behav-
ior. For instance, Figure 10b shows that the empirical spectra of Regions #9 and #13 have greater spectral
amplitude in wavenumbers of 10−4 m−1 (i.e., the seamounts) and a faster amplitude decay for wavenumbers
between 10−4 and 10−3.5 m−1, compared to the best fit Von Karman model assuming a fractal behavior at high

SEPÚLVEDA ET AL. 18 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2020JB019735

Figure 10. (a) Power spectral densities (i.e., Fourier transform of c(𝜉)) of 𝜖 for the 15 regions. The lower-left corner shows the modeled power spectral density
for a Von Karman function with ag = 6 km, Hg = 0.95, and a variance predicted with Figure 11a. (b) Variance-normalized power spectral density of 𝜖 as a
function of k. The dashed red curves correspond to the best fit Von-Karman curve for each region. Values of correlation length, a, and Hurst number, H, are
given in each panel. We also report the rms error on a logarithmic scale. The Von Karman curve with the best fit to all spectra (solid red curves) has ag = 6 km
and Hg = 0.95.
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wavenumbers. These deviations from the fractal behavior due to local features, however, are not severe, and
the spectra smoothly decrease in amplitude with wavenumber. For example, Region #9 has deviations of ∼1
unit on a logarithmic scale with the power at low wavenumbers greater than 7. To first order, all of the sam-
ples can be satisfactorily modeled with a Von Karman correlation function with some additional uncertainty
due to the deviations from self-similarity. In section 5.1, we further demonstrate that such deviations do not
impact the uncertainty quantification in the tsunami hazard assessment. As in Figure 3f, Figure 10b shows
red dashed curves representing the Von Karman function with the best least squares fit to the observed 𝜖.
The values of a and H and the fitting errors are shown for each spectrum. We also present a globally fitted
set of Von Karman parameters equal to ag = 6 km and Hg = 0.95, corresponding to a power law decay of
−3.90 at high wavenumbers. The globally fitted curve is shown as a red solid line in Figure 10b. The values
of ag and Hg have some moderate but evident differences with respect to the local fitted parameters. The
impacts of such differences are evaluated in the next section, where the tsunami uncertainty for a specific
case is quantified.

Figure 11a shows the empirical values of 𝜎e for the 15 regions on a logarithmic scale. Unlike a and H,
the range of 𝜎e is very large for the 15 regions. Thus, it seems inappropriate to specify a globally fitted value,
and we rather need to estimate it from information available for each region. It would be useful to pose the
hypothesis that 𝜎2

e can be estimated from information that we are able to recover from the altimetry data.
We examine whether the variance of the detrended altimetry-predicted bathymetry (i.e., the area under the
red spectra in Figure S5a), defined here as 𝜎2

m, can be used to predict 𝜎2
e using an empirical linear regression.

Linear trends are removed from the bathymetry in order to remove the effects of longer wavelengths which
are not accurately captured with the finite area multibeam bathymetry. If 𝜖 is isotropic and the bathymetry
has a known power spectral density, then 𝜎e, which is also the standard deviation of the bathymetry high
wavenumber content, and 𝜎m should follow the analytic expressions

𝜎2
m = ∫

∞

kmin

WL(k, h̄)PT(k)2𝜋kdk, (12)

𝜎2
e = ∫

∞

kmin

(1 − WL(k, h̄))PT(k)2𝜋kdk, (13)

where the power spectral density of the detrended true bathymetry, PT , is isotropic. The minimum
wavenumber, kmin, is determined by the dimension of the bathymetry sample. Because WL(k, h̄) of
Equation 3 and PT are known, 𝜎e and 𝜎m in Equations 12 and 13, respectively, are expected to be related. We
use the data from the 15 bathymetry samples to test such a relation between the variances. Figure 11a shows
a scatter plot comparing 𝜎e and 𝜎m. We obtain the variances for a 75 km× 75 km size area in each of the 15
regions. For the samples with size 140 km× 140 km, we use a subsample located in the bottom-left corner
that is [0, 75 km]× [0, 75 km]. This produces a systematic linear relation, on a logarithmic scale, between
𝜎e and 𝜎m, empirically demonstrating that 𝜎e can be estimated from 𝜎m, at least in these 15 regions. By
performing a linear regression, we find the best fit line to be 𝜎e = 10b𝜎a

m with a = 0.555 and b = 0.840.
Figure 11a shows the best fit line in blue. We also present the 90% and 75% confidence bounds in red and
green, respectively. The blue and red lines are separated by a vertical distance of ∼0.17 units. This corre-
sponds to relative differences of 47% and −32% for the values of 𝜎e. Including greater areas (i.e., greater than
75 km× 75 km) and smaller kmin may yield modified relations, as 𝜎m will include lower wavenumbers. The
bottom left corner of the spectra of Figure 10a shows the proposed model using the Von Karman covariance
function with ag = 6km, Hg = 0.95, and 𝜎e obtained from the scaling law of Figure 11a. Most of the sam-
ples are reasonably well represented by the global power spectral density model. A few samples, though,
significantly deviate from the model. The marginal distribution model for the 15 bathymetry samples is also
presented. Figure 11b shows the histograms of 𝜖. Many samples exhibit a distribution closer to a Laplacian
distribution. Some histograms, however, significantly deviate from the Laplacian distribution, with signifi-
cant skewness and nonzero mean. The deviations of these regions from the general approximate model are
further described in the discussion section.

5.1. Tsunami Uncertainty Quantification Using Global Average Statistics

We use the global average Von Karman correlation and Laplacian distribution functions to repeat the uncer-
tainty propagation for the tsunami hazard assessment in Chile. Figure 12a shows the tsunami response
samples using ag, Hg, and 𝜎e obtained from the scaling law of Figure 11a, equal to 141 m (for 𝜎m = 230 m).
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Figure 11. (a) Standard deviation of 𝜖, 𝜎e, as a function of the standard deviation of the detrended altimetry-predicted bathymetry, 𝜎m. Blue numbered
dots correspond to the 15 regions analyzed in this study. The blue line corresponds to the best fit, which is given by 𝜎e = 𝜎0.555

m × 100.840. The red and green lines
correspond to the 90% and 75% confidence intervals. (b) Histograms of 𝜖 (black bars), modeled Laplacian distribution (green line), and modeled Gaussian
distribution (red line) using the same sample variance. The number of points in each histogram (i.e., at the DEM nodes) is shown in the individual panels.

The 50% and 95% exceedance curves are also presented. Figure 12b presents the new exceedance curves for
the maximum tsunami elevation as red lines. As a reference, we also plot the exceedance curve of Figure 9b
as black lines. The exceedance curves using a = 4 km, H = 0.975, and 𝜎e = 160 m are very similar to the
curves using the globally fitted parameters ag, Hg, and 𝜎e = 141 m. To further evaluate the stability of our
tsunami uncertainty quantification results, we conduct three additional experiments in which we modify the
bathymetry uncertainty properties according to the power spectral density variations seen in the 15 regions.
First, we modify the correlation length from 6 to 2 km. The latter corresponds to the minimum correlation
length fitted from the 15 regions (i.e., dashed red spectra of Region #5 in Figure 10b). The second experiment
changes the Hurst number from 0.95 to 0.8, which corresponds to the minimum fitted value (i.e., dashed red
spectra of Regions #11 and #12 in Figure 10b). The third experiment corresponds to a change of 𝜎e = 184 m,
which corresponds to the 75% upper confidence limit (i.e., upper red line in Figure 11b). We adopt the min-
imum correlation length, lowest Hurst number, and larger 𝜎e for our sensitivity experiments because they
are expected to be associated with more energy at high wavenumber, as compared to the global average
parameter model. As a consequence, we expect that the corresponding tsunami responses are more uncer-
tain in the sensitivity experiments. The green, cyan, and orange curves in Figure 12b represent exceedance
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Figure 12. (a) Time histories of the tsunami water elevation at 12 tide gauge and buoy locations using bathymetry samples calibrated with globally fitted
statistical properties. Yellow and red curves show the 50% and 95% exceedance probabilities, respectively. (b) Corresponding exceedance curves of the
maximum tsunami water elevation at the 12 locations as red thick curves. For reference, the black curves correspond to the exceedance curves of Figure 9b.
Green, cyan, and orange curves correspond to Monte Carlo simulations with a change of correlation lengths to a = 2 km, a change of the Hurst number to
H = 0.8, and a change of the standard deviation to 𝜎e = 184 m, respectively.

curves for bathymetry with smaller correlation lengths, lower Hurst number, and larger 𝜎e, respectively. As
observed in the 12 gauges, the uncertainty is only slightly larger than that of the preferred global and local
models (i.e., red and black curves, respectively). Conclusively, tsunami response uncertainties at the selected
gauges are not severely affected by the variation of the statistical properties of 𝜖 in the different regions.

5.2. Discussion of the Global Average Statistics of 𝝐

In many cases, very long and very short scales of bathymetric roughness are independent of each other
because they may be sculpted by different geomorphic and tectonic processes. For instance, incised canyons
on the continental shelf and slope will be independent of the long wavelength structure of the slope itself that
is generated, for example, by previous global sea level variations (e.g., Region #15 in Figure 2). Furthermore,
the statistical properties of the bathymetry are only approximately constant (i.e., statistically homogeneous)
within a particular region and may be different in other locations as a result of different geological processes
and age (e.g., abyssal plains vs. continental shelves) (Fox & Hayes, 1985). The analyzed samples of h and
𝜖, though, provide evidence of smoothly varying power spectral densities as a function of wavenumber in
all samples and a consistent relation between 𝜎e and 𝜎m. This is possible because the altimetry-predicted
bathymetry, specifically the bathymetry based on the altimetry data used by Tozer et al. (2019), may still con-
tain significant information in the transition from low to high wavenumber content. In the future, as more
multibeam surveys become available, the behavior of the power spectral density and the relation between
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𝜎e and 𝜎m can be investigated further, refinement of the relation can be carried out, and the limits of the
approximation can be established.

The errors in the altimetry-predicted bathymetry, 𝜖, are expected to be mainly caused by the absence of high
wavenumber content in the original satellite altimetry data. However, some histograms of 𝜖 in Figure 11b
(e.g., Regions #4, #7, #8, and #14) show significant deviations from the Laplacian function and from
the histograms of the high wavenumber content of the multibeam data of Figure S4b. Furthermore, the
altimetry-predicted bathymetry power spectral amplitudes at low wavenumbers are higher than those of
the multibeam data in some regions (see Figure S5). We hypothesize that such deviations are caused by
errors within the resolvable waveband of the altimetry-prediction method (i.e., the Inverse Nettleton pro-
cedure for 𝜆> 10 km). The sources of these errors have been extensively investigated. When the seafloor
is heavily sedimented, for example, gravity anomalies may reflect the subseafloor basement structure. The
predicted bathymetry, therefore, will be erroneously linked to the buried structures rather than the sea floor
topography (Smith & Sandwell, 1994). Another relevant source of error is the dependence of water surface
heights on steady oceanic currents (Smith, 1998). While the average effect of oceanic currents is usually
small as compared to gravity anomalies (45–60 times smaller), nonnegligible effects can be found locally
(e.g., at some boundary currents such as the Gulf Stream Smith, 1998). To assess the relative importance
of 𝜖 in the wavenumber domain, Figure S6 presents the relative spectral amplitude errors of 𝜖 as a func-
tion of wavenumber. The relative error spectra are calculated by dividing each spectral bin of the power
spectral density of 𝜖 with that of the multibeam bathymetry (not detrended). The plot shows that errors at
low wavenumbers (long wavelengths) are insignificant compared to the actual spectral amplitudes of the
bathymetry in the 15 regions.

The statistical models for 𝜖, based on a Von Karman covariance function, a Laplacian marginal distribution,
and the predictor of 𝜎e, are sufficiently accurate to assess the uncertainties of tsunami hazard assessments.
Simulated tsunamis are insensitive to the differences seen in a and H among the 15 regions. Furthermore,
they are insensitive to variations of 𝜎e within the confidence intervals of the proposed scaling law. However,
other type of uncertainty quantification more sensitive to the high wavenumber content (e.g., studies of
internal wave dissipation) may require a refinement of the uncertainty model of this study.

The uncertainty model proposed in this paper can be improved by adopting a better random field model
and by better understanding the behavior of statistical properties of the seafloor morphology. For instance,
the random field model assumed ergodicity, which is somewhat supported for the Chilean analysis. Some
regions, though, show significant differences in their local statistics. Thus, we expect that the statistics deter-
mined for each specific sample are only valid in the near field and where the processes sculpting the seafloor
morphology do not change. Anisotropy can be also included in a future improvement of the random field
model. Tectonic processes, for example, produce seafloor structures with preferred orientations, and, conse-
quently, bathymetry may exhibit strong anisotropy at some wavelengths (e.g., see Samples 5 and 7 in Figure 1
and Harper et al., 2019). The study of abyssal hills (Goff et al., 1997; Goff & Arbic, 2010) has also shown that
more sophisticated models can be adopted.

6. Conclusions
A great majority of the ocean bathymetry is estimated from satellite altimetry data mapping gravity anoma-
lies at the sea surface. While this technique provides near-complete coverage of the oceans, the approach
cannot resolve the high wavenumber content of the bathymetry. By considering the nearly fractal behav-
ior of the bathymetry at high wavenumbers, we propose an isotropic random field model accounting for
the uncertainty of altimetry-predicted bathymetry. The random field model is calibrated using the statistical
properties of multibeam surveys. We found that for the ocean offshore northern Chile, the marginal distribu-
tion of the bathymetry error, 𝜖, can be modeled with a Laplacian distribution, and the correlation coefficient
function can be modeled with a Von Karman function with average values of a = 4 km, H = 0.975, and
𝜎e = 160 m.

The generation of synthetic bathymetry samples for sensitivity studies is challenging because it should
consider that some regions contain data with much lower uncertainty than satellite-predicted data. Conse-
quently, we proposed a conditional random field model to account for areas with and without uncertainty.
The conditional fields modeled for the demonstration case in Chile require more than 4,500 K-L terms to
obtain variance errors smaller than 20%. We show that the statistics of bathymetry samples converge to
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the target probability properties proposed in this study. Because of the high dimensionality of the random
field and the large number of grid points required for numerical modeling, the construction of synthetic
bathymetry random field samples is challenging in terms of computational demand. To reduce the compu-
tational demand, ad-hoc strategies or simplifications should be adopted. For tsunami hazard assessments,
for example, bathymetry uncertainties can be disregarded when their standard deviations are much smaller
than mean water depths.

The bathymetry uncertainty model and the method for the generation of synthetic bathymetry samples are
applied to an illustrative tsunami hazard assessment in northern Chile. The tsunami response is assessed at
middle- and near-field offshore and coastal gauges. We demonstrate that leading waves and arrival times at
the Chilean coast are not significantly affected by bathymetry uncertainties for near-field tsunami sources.
Trailing waves, in contrast, are significantly affected by bathymetry uncertainties. Our study has impor-
tant implications for tsunami early warning and hazard assessment in Chile employing numerical tsunami
models. It demonstrates that altimetry-predicted bathymetry uncertainties do not impact the leading wave
amplitude and its arrival time, which are critical parameters to be delivered to coastal communities. This
conclusion should be further investigated for other regions and coastal settings and by adopting more
sophisticated tsunami propagation models.

As the first step in a broader application of the approach, the analysis was carried out for multibeam data
in 15 different globally distributed regions. A systematic study shows that the locally fitted values of a and
H have only moderate differences among the regions. These differences are found to be not relevant for
tsunami hazard assessments. We determine a set of globally fitted values of ag = 6 km and Hg = 0.95.
However, the variance 𝜎e has strong variations among the 15 regions. Hence, we proposed an empirically
determined scaling law to predict 𝜎e at any location, based on the altimetry-predicted bathymetry variance
𝜎m. These values can serve as a first-order approximation to model bathymetry uncertainties. Several areas
of the statistical analysis have been identified for further improvement in terms of the modeled properties.
For example, we have assumed that 𝜖 is isotropic, which may not be adequate everywhere. The ergodicity
assumption may also need to be relaxed in future improvements to the uncertainty model.

Data Availability Statement
The SRTM15+V2 is downloaded from https://topex.ucsd.edu. This study also used multibeam bathymetry
data provided by Geomar, the Center for Coastal and Ocean Mapping (CCOM) of the Joint Hydrographic
Center and Geoscience Australia. The bathymetry data of CCOM are available at https://ccom.unh.edu/
data-type/bathymetry. The bathymetry data of Geoscience Australia are available at https://www.ga.gov.au/
about/projects/marine/mh370-data-release.
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