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ABSTRACT: Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatio-
temporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off
between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the
interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the con-
tinuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To
improve the interpretability of the results, especially when several modes of similar amplitude exist within the same fre-
quency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness).
The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and
shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height
(GPH) and sea surface temperature (SST) daily time series, the method accurately captures patterns of atmospheric Rossby
waves at high frequencies (3-60-day periods) in both GPH and SST and El Nifio—Southern Oscillation (ENSO) at low
frequencies (2-7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing
spatially coherent patterns with robust propagation dynamics.

KEYWORDS: Dynamics; Sea surface temperature; Pressure; Empirical orthogonal functions; Pattern detection; Spectral
analysis/models/distribution

1. Introduction The comprehensive knowledge of the climatic “‘state” of
the Earth at any instant requires measured or estimated nu-
merical values at every location of the globe for dozens of
variables, at a sufficiently high spatiotemporal resolution to
encompass all relevant scales of variability. For example, the
NCEP-NCAR reanalysis (Kalnay et al. 1996) comprises
more than 20 variables every 6 h from 1948 to the present
globally with 17 pressure levels on a 2.5° X 2.5° grid (more
than 1 billion entries per variable and per level). To make
such large datasets interpretable and usable for diagnostic
and prediction purposes, it is often necessary to find a proper
dimensionality reduction scheme to reduce the number of
variables of this complex system while minimizing loss of
information; in other words, to reduce the system to a man-
ageable number of dynamical modes.

A wide range of dimensionality reduction methods exists.
Principal component analysis (PCA), also commonly referred
to as empirical orthogonal function (EOF) analysis, is a non-
parametric method widely used in climate science (Lorenz
o . . . 1956; Wallace and Gutzler 1981; Jolliffe 1986; Keiner and

. Denotes content that is immediately available upon publica- Yan 1997; Ghil et al. 2002: Hsich 2004: Hannachi et al.
tion as open access. . - s .

2007; Navarra and Simoncini 2010). It consists in performing

a singular value decomposition (SVD) of a multivariate sys-

Corresponding author: Clément Guilloteau, cguillot@uci.edu tem. In practice, this is generally achieved by computing the

Identifying spatiotemporal relations and defining coherent
spatiotemporal features, typically referred to as “modes” of
variability, is a proficient way to characterize complex systems.
These modes, whether they are trends or cyclic patterns, are
regular features whose evolution is expected to be more pre-
dictable than the general background variability and whose im-
pact on other parts of the system is often significant. Earth’s
climate system is a complex system of particular interest,
exhibiting a plethora of modes caused by different physical
processes (e.g., solar forcing, oceanic/atmospheric circulations,
land-atmosphere interactions, etc.), and imprinting themselves
at various spatial and temporal scales. The accurate identifica-
tion and modeling of the modes of the climate system is neces-
sary for many key problems in geosciences, such as weather/
climate prediction, attribution of extreme events and hazards,
and assessment of climate change impacts.
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empirical covariance matrix of the variables and extracting its
eigenvectors. Its simplicity of implementation as well as the
fact that this empirical method does not require any a priori
assumption or model/parameter selection have contributed to
its popularity and success. Nevertheless, because when it is
used to identify relations across several time series it handles
each time step as an independent realization of the variables,
the classical PCA cannot identify dynamical relations in the
data. This and other limitations as further discussed below have
led to many variations or extensions of the classical PCA. For
example, if the variables are given under the form of regularly
sampled time series, one can compute the lagged covariances
or the Fourier cross-spectra of the variables rather than com-
puting only the (zero-lag) covariances, and then construct the
empirical lagged-covariance matrices or the cross-spectral
matrices of the system. This gives rise to the lagged PCA and
the spectral PCA as “‘natural” extensions of the classical PCA.

The lagged PCA allows one to better extract dynamical modes
when different variables or areas of the studied domain have delayed
linear responses to the same signal with different delays. The spectral
PCA (sPCA), through the phase (complex argument) information
in the complex cross-spectral coefficients, also allows one to handle
lagged correlations. Additionally, it offers the possibility to look for
modes in specific frequency bands and is particularly potent at
extracting wave-type modes and handling propagation effects
(nonstationary waves). Many other methods rely on the use of the
classical PCA in association with Fourier spectral analysis
and frequency filtering (e.g., Kidson 1999; Power et al. 1999; Kessler
2001; Wheeler and Hendon 2004; Roundy and Schreck 2009; Chen
and Wallace 2016; Chen et al. 2017; Wills et al. 2018). For the spectral
PCA, the linear relations between the variables leading to the
spectral PCs are defined directly in the Fourier frequency domain.
While sPCA (also known as frequency domain EOF) was intro-
duced and theorized in the early 1970s (Wallace and Dickinson 1972;
Wallace 1972) and later redefined and implemented under various
forms (Horel 1984; Hasselmann 1988; Johnson and McPhaden 1993;
Mann and Park 1994, 1999; Ghil et al. 2002; Thornhill et al. 2002;
Mann et al. 2020), it has not become a standard method in atmo-
spheric and climate science. This may be due to the fact that, in spite
of being relatively straightforward in theory, its implementation re-
quires choosing an appropriate method for computing robust cross-
spectral coefficients from finite-length time series and avoiding
overfitting. Additionally, as already pointed out by Wallace
(1971) and Wallace and Dickinson (1972), the interpretability of
the extracted principal components (PCs) may be difficult when
several dynamical modes are mixed, which is likely to be the case
when several PCs of similar amplitude are found within the same
spectral band.

To overcome the above difficulties, we herein propose a
wavelet-based implementation of the SPCA, which relies on the
complex Morlet wavelet for the estimation of the cross-spectral
matrices. The continuous wavelet transform is nowadays a stan-
dard and popular tool for spectral and cross-spectral analysis
(Hudgins et al. 1993; Perrier et al. 1995; Kumar and Foufoula-
Georgiou 1997; Jiang and Mahadevan 2011; Banskota et al. 2017).
The Morlet analytic wavelet in particular allows robust estimation
of power spectra and cross-spectra in the frequency domain, even
from relatively short time series, while allowing for reasonably
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good frequency localization (Kirby 2005; Cottis et al. 2016). In
addition, we propose a rotation of the eigenvectors resulting from
the wavelet-based sPCA, using the spatial regularity (smoothness)
of the magnitude and phase of the rotated vectors, quantified
through the L1 norm (sum of absolute values) of the spatial
Laplacian, as an optimality criterion to select the “best” rotation.
The combination of these two innovations (robust spectral esti-
mation through the Morlet wavelet and spatial regularization of the
rotated eigenvectors) improves the interpretability and reduces the
sensitivity of the extracted modes to noise and sampling variability.
The article is organized as follows. Section 2 starts with the
classical PCA, introduces the implementation of sPCA through
the complex Morlet wavelet transform, and describes the meth-
odology for the rotation of the eigenvectors (rsPCA). In section 3,
the proposed methodology is tested on synthetic data, namely
numerically generated nonstationary waves propagating in a 2D
plane, plus a colored random noise. Section 4 presents the results
of applying the rsPCA method to historical global fields of daily
geopotential height (GPH) and sea surface temperature (SST)
with focus on both multiannual and subannual modes of vari-
ability. Discussion and conclusions are presented in section 5.

2. Methodology

Let us consider a dataset made of L observations of N cen-
tered variables (e.g., zero-mean time series of length L asso-
ciated with N spatial locations). This dataset corresponds to the
N X L data matrix X:

x=|: . i M

In what follows, the notation x,, = (x,,1, - .. , X, 1), designates
the nth row of the matrix, that is, the vector of observations of
the nth variable (e.g., the time series at location n). All nota-
tions are defined in appendix A.

a. Classical PCA

The empirical sample covariance matrix C of the X dataset is

an N X N matrix defined as
¢-—1 xx 2)
L-1""

with X' denoting the transpose conjugate matrix of X.

The principal component analysis is performed by extracting
the eigenvectors u, and associated eigenvalues A? of the co-
variance matrix, which are the solutions of the system:

éun = Aiun. 3)

By definition, if u,, is a solution of Eq. (3), so is au, for any real
number «. We therefore choose to impose a unit norm (L2
Euclidian norm) for all eigenvectors. We note that any unit-
norm u, can always be arbitrarily multiplied by —1. The ei-
genvalues A2 are ranked in decreasing order such as A2 =2, .
The principal component time series associated with the ei-

genvalue A2 and the eigenvector u,, is obtained as
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The rank of a system is the number of linearly independent
variables composing it. The empirical rank of a system is taken
as the rank of its covariance matrix, that is, the number of lin-
early independent columns of the C matrix, which is equal to N
minus the number of linearly independent eigenvectors associated
with the zero eigenvalue. A system of rank R < N can be reduced to
R variables without loss of information. In practice, the covariance
matrix derived from the data is generally found to be full rank (of
rank N), simply because the relations between the variables of the
system are not perfectly linear or because of measurement noise.
However, PCs associated with small eigenvalues may be neglected
with minimum loss of information. Therefore, the decay rate of the
eigenvalues can be used as a measure of the “reducibility” of a system
(i.e., how easily a high-dimensional system can be compressed into a
low number of modes without important loss of information).

| s om0

1

S, = Jﬂi
b (f)df | +=
. K J

with sy, (f) being the Fourier cross-spectrum between the two
time series Xx,, and x,, at locations n and m, respectively, and
bi(f) a bandpass transfer function centered on frequency f;. The
matrix Sy is a complex Hermitian matrix with real diagonal co-
efficients. The index kin {1, 2, . .., K} is the frequency band index.

The sPCA is a direct extension of classical PCA in the Fourier
domain. In the fields of signal processing and systems control theory,
this approach, which consists in identifying empirical linear dynami-
cal relations between the variables of the system, is more commonly
referred to as linear dynamical systems identification (Picci and
Pinzoni 1986; Georgiou and Lindquist 2019). While the essence of the
approach always remains the same, it may be implemented in dif-
ferent ways. The various implementations of the method essentially
differ in the way the cross-spectral matrix Sy is computed from the
data and in the definition of the frequency bands {b,(f)}.

A direct consequence of the greater flexibility (more degrees of
freedom) of the SPCA method compared to the classical PCA is
that the sPCA is prone to overfitting when the cross-spectral coef-
ficients are not robustly estimated. For example, from a set of L
observations (with L finite) of N variables, if no regularity is im-
posed on the cross-spectra, and if the number K of independent
frequency bands of the empirical cross-spectra is greater than or
equal to L, one can always fit a “perfect” empirical dynamical re-
lation (i.e., a transfer function) between any two variables x,, and x,,,
and thus obtain a rank-one cross-spectral matrix for each frequency
band (see appendix B). Therefore, there is a necessary trade-off
between the spectral resolution (i.e., the number and width of fre-
quency bands) and the robustness of the cross-spectral matrix es-
timation. The Bartlett and Welch periodogram methods (Bartlett
1950; Welch 1967; Proakis 2001) are the most frequently used
methods for estimating robust (with low sampling variance) Fourier
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PCA is a powerful tool for extracting linear modes of vari-
ability of complex systems and has seen many applications in
atmospheric sciences and beyond. However, it has one main
limitation in that it can only identify linear ‘“‘synchronous”
relationships between the variables of a system. In particular,
when several variables of the system have a delayed linear
response to a given signal and if the time delay is not identical
for all the variables, the PCA will generally fail to identify this
dynamic relationship or will require several PCs to compres-
sively capture it.

b. Spectral PCA via the Morlet wavelet

The spectral PCA (sPCA) relies on the computation of the
cross-spectral matrix Sy between the time series x,, at locations
n =1, ..., N and extraction of its eigenvectors in various fre-
quency bands bi(f). In the frequency band b(f), the complex
N X N matrix Sy is defined as

| s e

| e Oar

power spectra and cross-spectra from finite-length time series. They
consist in splitting the time series into H segments and then
performing a discrete Fourier transform (DFT) for each segment.
The Welch method uses overlapping segments while the Bartlett
method uses nonoverlapping segments. A robust estimation of the
cross-spectral coefficients in each frequency band is obtained by
averaging the complex cross-spectral coefficients obtained for each
segment. As a trade-off for the greater robustness of the computed
cross-spectral coefficients with reduced sample variance due to
averaging, the Welch and Bartlett periodograms have reduced
spectral resolutions since each one of the H segments corresponds
to a shorter time series (see appendix B).

While the Welch and Bartlett methods for computing periodo-
grams are classified as nonparametric (as they do not rely on a
parametric spectrum model), the user still needs to define the num-
ber of segments for the Bartlett method, plus the overlapping
fraction for the Welch periodogram. The commonly used “modi-
fied” version of the Welsh periodogram also requires selecting a
windowing function to be applied to each segment. All these
methodological choices affect the computed cross-spectral matrix,
in particular its rank and the decay rate of its eigenvalues (see
appendix B).

Other spectral estimation methods have been used in climate
science to perform spectral PCAs. In Mann and Park (1994, 1999)
Slepian tapers are used as weighting functions to compute cross-
spectral quantities. The Slepian tapers are designed to minimize
spectral leakage, that is, to compute cross-spectral coefficients over
narrow frequency bands. The Slepian tapers method is adapted if, in
the frequency band of interest, most of the variability of the system
can be explained by a small number of PCs. Indeed, with this
method, the rank of the empirical cross-spectral matrix is at most
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equal to the number of orthogonal tapers. In Mann and Park (1994)
and Mann et al. (2020), the method is implemented with 3-6 or-
thogonal tapers. In the cases when the system is too complex to be
reduced to a few PCs, using the Slepian tapers method will inevi-
tably lead to overfitting. The “multiwavelet” method (Lilly and
Park 1995; Park and Mann 2000) corresponds to a localized in time
version of the Slepian taper method. The principal oscillation pat-
terns (POPs) introduced by Hasselmann (1988) can be seen as a
parametric version of sSPCA where the PCs are autoregressive
moving average (ARMA) processes.

As asimple alternative to the spectral computation methods
mentioned above, we propose to apply the sPCA by relying on
the complex analytic Morlet wavelet to estimate the cross-
spectral matrix. The continuous wavelet transform is obtained
by convolving the analyzed signal with a basis of wavelet
functions which are all dilated and translated versions of the
same ‘“‘mother” wavelet function. The Morlet mother wavelet
(Morlet et al. 1982; Addison 2017) is defined as

W(t) = (2 — e[*(Zﬂ'fO)Z/Z])eftz/Z, (6)

which, if 27f; > 5, can be approximated as

V(1) = VA pi2mfyt =12 (7)

The Morlet wavelet is therefore the complex exponential function
et = cos(2mrfyt) + isin(27fyt) modulated by a Gaussian enve-
lope. The continuous wavelet transform w, (v, ) of the signal x(f) is
defined as

W (1) == rx(u)qf’ (E) du ®)
X\ \/1_/ Cw v ’
with v being the scale parameter in the wavelet time-scale
domain; W'(u) designates the complex conjugate of W(u).
At scale vy, Wy is the N X L matrix of wavelet coefficients
derived from the data matrix X:

le(vk,tl) le(yk’tL)

W, = : . )

WXN(Vk’zl) WxN(Vk’tL)

Each scale v, in the wavelet scale domain corresponds to a
frequency band by in the Fourier frequency domain with the
central frequency of by being fi = fo/vi (see appendix B).
Because of the correspondence between the Morlet wavelet
transform and the Fourier transform [Egs. (7) and (8) and
appendix C], the empirical sample cross-spectral matrix for the
frequency band b, can be computed as

S =

= (10)

LW W,
The Morlet wavelet method to compute the cross-spectral matrix
can be seen as similar to using a modified Welch periodogram with a
Gaussian window whose length varies inversely proportional to the
frequency. Our proposed method can also be related to the “mul-
tiwavelet” method (Lilly and Park 1995; Park and Mann 2000),
except that in our case, robustness is obtained through temporal
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integration rather than using multiple wavelets with mutually ex-
clusive frequency support.

Similarly to the classical real-value PCA case, the complex ei-
genvectors u,,; of the S, matrix are the solutions of the equation:

(1)

e 2
Su, =AU,

The eigenvalues )\fl. « of §; are real because §; is by construction a
Hermitian matrix. As for the real case, we impose unit L2 norm
for each eigenvector. The PC series of complex wavelet coeffi-
cients associated with the eigenvector u,, at the scale vy is

A
K =

nkyay
kTN W u

k¥ nk®

(12)

The wavelet PC K, is a complex signal defined in the wavelet
space; the real-value time series corresponding to the nth
wavelet PC at scale v, can be reconstructed through an inverse
wavelet transform. We can also combine several wavelet PCs at
various scales and then apply the inverse wavelet transform to
reconstruct a time series that encapsulates the variability of the
original signal within any desired frequency band (range of
scales). The reconstructed signal corresponds to a linear com-
bination of the bandpass filtered and phase-synchronized origi-
nal time series. One shall note that the phase shift between any
two complex scalar elements of the u,, ;. vector is interpretable as
the phase shift at frequency f; between the two time series at the
corresponding locations. However, the argument of the scalar
elements of u,, is arbitrary and not physically meaningful
(similarly to the sign for real-valued eigenvectors). Indeed, if u,, 4
is a solution of Eq. (11), sois ¢*u,, for any value of . However,
multiplying w,,, by e introduces a phase shift in the re-
constructed PC. For easier interpretation of the timing of the
reconstructed PC at frequency f;, we choose the reconstructed
PC which is aligned in phase with the highest contributing time
series at that frequency (i.e., we impose a zero argument for the
scalar element of u,, ; having the highest absolute value). When
reconstructing a real time series from several wavelet PCs, it is
important to control the relative phase of the combined wavelet
PCs. Here we chose to impose for each PC a zero phase shift
relatively to the time series having the highest total contribution
across all the combined wavelet PCs. Also note that the inverse
wavelet transform with the Morlet wavelet is not an exact re-
construction; however, in practice we find that the time series are
well enough reconstructed to be interpretable.

The only parameter that has to be selected by the user for the
implementation of the Morlet wavelet sPCA is the central fre-
quency f; of the mother wavelet. It is generally chosen between
0.8 and 1; the value f; =0.849 { = [21n(2)]_1/2} can be chosen
such that the magnitude of the second highest peak of the
wavelet is half the magnitude of the highest peak (central peak).
In practice, values between 0.8 and 1 will produce similar spectra
and cross-spectra. Taking a value of f; higher than 1 will lead to a
narrower spectral bandwidth (higher-frequency resolution). It
will also lead to poorer localization of the wavelet coefficients
in the time domain (lower time resolution), which in practice
translates into wavelet coefficients more correlated in time (i.e.,
fewer independent samples for estimating the cross-spectral
coefficients), meaning less robust empirical cross-spectra and
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FIG. 1. Wave propagation example. (top left) Representation of the simulated 51 X 51 spatial grid domain with
the origins Ay and By of the two waveforms a(¢) and b(r) marked. (top right) Synthetic waveforms a(¢) and b(r).
(bottom) Temporal power spectral density and cross-spectral density of the waves a(¢) and b(¢) and of the noise w,,, ,,,(¢).
Power spectral densities (PSD) and cross-spectral densities (CPSD) are estimated using the Morlet wavelet.

higher risk of overfitting. As for the periodogram methods, the
trade-off between frequency resolution and time resolution/
number of independent samples is related to the Heisenberg—
Gabor limit (Gabor 1946; Addison 2017). One of the interesting
properties of the Morlet wavelet is that it actually reaches the
Heisenberg—Gabor limit, therefore allowing the best possible
time resolution for a given frequency resolution (i.e., minimal
temporal correlation of the wavelet coefficients and maximal
effective sample size). Note that, because the wavelets shrink as
scale gets finer and the frequency gets higher [Eq. (8)], the ef-
fective sample size increases with frequency, allowing us to po-
tentially extract robust coherent high-frequency modes even if
their amplitude is low relatively to the noise. The counterpart of
this is reduced frequency resolution at high frequencies.

The Morlet wavelet, being a differentiable wavelet (Vetterli
and Kovacevic 1995; Addison 2017), is in theory blind to linear
trends; that is, the wavelet transform of a linear function of
time is zero everywhere. However, the wavelet coefficients will
be locally affected by the ““transition points’ in the time series,
which occur when different trends affect different portions of

the analyzed signal. The spectral PCA is designed specifically
to extract periodic modes of variability and is not a recom-
mended tool for trend analysis. However, wavelets can be used
to efficiently remove periodic signals from time series (Kumar
and Foufoula-Georgiou 1997; Addison 2017) to then perform a
trend analysis on the residual signal (e.g., through a classical
PCA). Note that the wavelet coefficients are affected by edge
effects at the beginning and at the end of a time series; these
can be avoided by considering only coefficients outside of the
cone of influence or by performing appropriate padding of the
time series before the wavelet transform (see appendix D).

c¢. Rotation of eigenvectors with spatial regularization for
physical interpretability

For the PCA and sPCA, the dimensionality reduction is
obtained by projecting the data X (respectively the wavelet
coefficients W, at frequency f;) onto the subspace generated by
the first P eigenvectors (with P < N). The set of eigenvectors
{u;, wp, ..., up} (respectively {uy, Upy, ..., Upy}) is an or-
thogonal basis of this subspace. One can generate other
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sentation of the eigenvectors associated with the first four PCs, the unit-norm eigenvectors are shown with a scaling factor A,/A, with

A= 22]=1)\i/N . (right) First four PC time series.

orthogonal bases of the same subspace by performing a rota-
tion of the initial basis (i.e., by recombining linearly the eigenvec-
tors while preserving orthogonality). While the information
retained by the projection of the data onto the subspace would
remain the same under any rotation of the basis, the physical in-
terpretability of the basis vectors may be improved by finding the
right rotation, which allows “unmixing” (i.e., distinguishing) phys-
ical modes of variability (Richman 1986). In particular, in the case
when the PCA identifies two or more PCs of equal importance (i.e.,
associated with equal eigenvalues) all rotated bases are equally
valid solutions to the SVD problem, and therefore without per-
forming regularization by rotation one cannot find a unique solution
of the PCA. In practice when the eigenvalues are relatively close to
each other, physical modes of variability are more likely to be
mixed. This fact had already been pointed out by Wallace (1971)
and Wallace and Dickinson (1972), among others, as a limitation of
the sPCA technique. While this also affects the classical PCA ([see,
e.g., the “rule of thumb” in North et al. (1982)], it is more likely to be
troublesome for the sPCA as the higher number of degrees of
freedom compared to the PCA makes it more likely for two sep-
arate physical modes to have a nonzero spectral coherence in a
specific frequency band (than two separate physical modes having a
nonzero correlation for the classical PCA).

Rotated PCA methods aim at finding a rotation of the eigen-
vectors (or rotation of the PCs) maximizing a given criterion (or
minimizing a cost function). The varimax method (Kaiser 1958) is

for example the most widely used form of rotated PCA. It consists
in finding the rotation that maximizes the sum of the squared
correlations between the original variables and the rotated PCs.
While rotated PCAs have often been used in climate science
(Mestas-Nuiiez and Enfield 1999; Lian and Chen 2012; Chen et al.
2017), they have rarely been applied in a complex domain such as
the Fourier domain, and, in these rare examples (Wallace and
Dickinson 1972; Bloomfield and Davis 1994; Bueso et al. 2020),
only using the varimax or promax criteria, which ignore the phase
information and the spatial structure of the eigenvectors.

When each variable of the system can be attributed to a
spatial location, the rotated eigenvectors can be mapped as a
D-dimensional field whose structure and regularity can be
analyzed and used as a criterion to find interpretable and
meaningful rotated PCs. We propose here to evaluate the
spatial regularity (smoothness) of the rotated eigenvectors
through the Laplacian operator (sum of second partial deriv-
atives). For the sPCA, the spatial structure of the phase
(complex argument) of the eigenvectors is particularly infor-
mative, especially when one seeks to identify dynamical
propagating modes. Indeed, for a propagating wave, the phase
is expected to be a linear (or at least locally linear) function
of space.

Let us consider u; x and u, ; two unit-norm eigenvectors of
the cross-spectral matrix S; associated with the )\ik and )\%’k
eigenvalues. We define
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gl = cos(0)u, , +sin(0)e’u, (13) u"? = —sin(6,, )u, , + cos(6,, )¢, . (18)
and In practice, with a finite number N of time series corresponding
. to discrete locations y,,, J(0, ¢) is approximated as
u}}i « = —sin(f)u, , + cos()e’u,,. 14)

The vectors ug, , and uj,, are by definition unit-norm or-
thogonal vectors of CV. In the case when all N time series
forming the X dataset are associated with a spatlal locatlon
(in a D-dimensional space), the complex vectors u 0d kand uf? ok
can be represented as complex functions of space ug,, . (y) and
ul 0. 2 (y); y is a D-dimensional coordinate vector. We can then
define an objective function:

J60.0)= | A+ 8l ldy, (19
where A denotes the Laplacian operator in D dimensions. To
identify smooth rotated eigenvectors (i.e., with both phase
and magnitude being locally regular in space), we look for
the rotation parameters minimizing the objective function
1(6, ¢):

(Gopt, (popt) = argmin[J(0, ¢)]. (16)

The optimally rotated vectors at frequency f are therefore

optl
e

(17

= cos(ﬁopt)ul,k + sin(()op[)e”"om u,

and

j(97 Q)= 2 |Au9¢k(yn)| + |Au0¢k(yn)|

n=1

(19)

where A is a discrete Laplacian operator (see appendix E). In
fact, the minimized quantity is the L1 norm of the spatial
Laplacian of the mapped eigenvector. We therefore term the
proposed rotation criterion spatial Laplacian regularization
(SLR). Rotations with more than two eigenvectors can be
implemented by performing iterative pairwise rotations with
all pairs of vectors until convergence to a stable solution.

3. Demonstration of the rotated spectral PCA (rsPCA)
in a synthetic example

We demonstrate the possibilities of the proposed method-
ology by applying it to a synthetic data generated by a simple
numerical model simulating two waves propagating in opposite
directions on a 2D plane plus a colored random noise. The
magnitudes, phase, and propagation speed of the waves are
controlled, as is the noise level of the system. The simulated
system corresponds to N = 2601 time series of length L = 6000
samples (with arbitrary time unit), spatially distributed on a
51 X51 spatial grid (Fig. 1). At the (ny, n,) location (with n; and
nyin {1,2, ..., 51}), the time series x,, ,,(¢) is
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FIG. 4. Spectral PCA applied to the synthetic wave propagation example for setup 1. For this setup, y; = 0.8 so the waves a and b have
different amplitude. The noise accounts for 70% of the variance of the system. (top left) Fraction of the spectral power of the synthetic
system explained by the first three PCs of the sPCA as a function of the frequency. (right) Spatial representation of the eigenvectors
(magnitude and phase) associated with the first two PCs at frequency f; = 0.04; the unit-norm eigenvectors are shown with a scaling factor

A/ A, with A = \/22]=1)‘i,k/N . The circular arrow in the color scale of the phase indicates the direction of propagation of the extracted
waves. (bottom left) Reconstructed signal through the inverse wavelet transform of the first (s~ ') wavelet PCs at all frequencies between

0.025 and 0.065.

1 d 1 d
= —alt+2)+—"n +-2)+
o) =450 (t c ) &’ (t c ) Vot r, (-

(20)

with
d,=\/(n, = 5 + (n, — 5", @1)
dy =/, — 477 + (n, — 47", 22)

The functions a(¢) and b(r), shown in Fig. 1, are two series of
nondispersive wave packets oscillating at the same frequency.
The a(¢) signal originates from the (5,5) grid point (point Ag)
and propagates linearly through the domain. Similarly, the b(f)
signal originates from the (47,47) grid point (point By) and
propagates linearly through the domain. The parameter ¢ con-
trols the propagation speed of the a(f) and b(¢) signals. The pa-
rameter d, is a constant ensuring that the amplitude of the waves
remain finite at their origin. The parameters y; and vy, control the
relative amplitude of the two waves and of the noise w,, ,, (1)
The noise w,, ,,(t) is a colored noise with both its temporal and
spatial power spectral density (PSD) proportional to {4, where
f is the Fourier temporal/spatial frequency (see Fig. 1 for the
temporal PSD). The instantaneous phase shift between a(f) and
b(t) is randomized (by adding a random phase shift in each

individual wave packet of the b(f) signal) to minimize the spec-
tral coherence between the two waves. Two setups are presented
below. In setup 1 the two waves have different amplitudes (y; =
0.8). In setup 2, the two waves have the same amplitude (y; = 1).
For both setups, dy = 30 and ¢ = 1.2.

The classical PCA is applied to identify the principal modes
of variation of the 2601 time series of the synthetic system for
setup 1, first without noise (7y, = 0) and then with a noise level
adjusted such as the variance of the noise accounts for 70% of
the total variance of the system. The result of the PCA without
noise is shown in Fig. 2. Note that four PCs are needed to
capture 80% of the variance and no less than nine PCs are
needed to capture 95% of the variance. Additionally, none of
the first four eigenvectors can be related specifically to one of
the two waves but all four are rather a combination of both a(¢)
and b(¢). This illustrates the poor ability of the classical PCA to
simply capture dynamical linear relations between the variables
when propagation effects are involved. Figure 3 shows the result
of the PCA when noise is added to the system. One can see that
all first four eigenvectors are strongly affected by the noise. The
first two PCs essentially capture low-frequency components of
the random noise, mixed with the a(¢) and b(¢) signals.

The spectral PCA is then applied to the system for setups
1 and 2 described previously and with a noise accounting in
both cases for 70% of the system’s variance. The results for
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FIG. 5. Asin Fig. 4, but for setup 2. For this setup, y; = 1 so the waves a and b have same amplitude. The noise accounts for 70% of the variance of
the system. It is observed that in this case the first two PCs are hardly interpretable since they are both reflecting mixtures of the two waves.

setup 1 are shown in Fig. 4. For the frequency band centered
at the frequency fi; = 0.04 the first two PCs explain respec-
tively 56% and 35% of the spectral power. The phase and
magnitude structure of the two corresponding eigenvectors
accurately describe the propagation of a(¢) and b(¢) with
good separation of the two waves. The counterclockwise
progression of the phase corresponds to a forward delay in
time. The signal reconstructed through inverse wavelet
transform from the first wavelet PCs at frequencies 0.025-
0.065 corresponds mostly to the a(f) signal while the signal
reconstructed from the second PCs within the same fre-
quency range corresponds mostly to the b(¢) signal. In spite

setup #1

J(8, ) at f=0.04

0 w4 w2
7}

of the relatively good separation of the two waves some in-
terference patterns are visible in the spatial structure of the ei-
genvectors (in both the phase and the magnitude). These arise
because the two waves are not perfectly independent and can be
locally coherent over some periods of time. Actually, the spectral
coherence between the waves a(f) and b(¢) at the peak frequency is
0.1 (see Fig. 1). In practice, for a real case, nonsignificant coherence
between two dynamical modes, arising from numerical approxi-
mations and limited number of samples, can have the same effect.

In setup 2, the waves a and b have same total energy. The
results of the sPCA for this setup are shown in Fig. 5. In this
case, SPCA is able to determine that two modes of equal

setup #2

0 748
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™
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FIG. 6. Spatial Laplacian regularization (SLR) objective function J(6, ¢) as a function of the rotation parameters
6 and ¢ for the rotation of the first two eigenvectors of the SPCA u; x and w x at frequency 0.04 for the two setups of
the synthetic wave propagation example. In both panels, the white star indicates the minimum of J(0, ¢).
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FIG. 7. Result of the proposed rotation procedure of the first two eigenvectors of the SPCA u; 4 and u, at frequency 0.04 applied to the
synthetic wave propagation example for the setups 1 (waves with different amplitude) and 2 (waves with same amplitude). (top) Optimally

optl

2
rotated vectors uj o

and u;,

. The unit-norm vectors are shown with a scaling factor A{P"'/A, with A = 2:/:1/\3[, «/N. (bottom) Reconstructed

signal through the inverse wavelet transform of the first (s ') optimally rotated wavelet PCs at all frequencies between 0.025 and 0.063.

importance, explaining together more than 90% of the spectral
power, exist around the frequency 0.04. However, the first two
eigenvectors are not easily interpretable since both of them are
reflecting a complex combination of the waves a and b. As
mentioned before, with the two waves having equal amplitude,
any two orthogonal unit-norm vectors being linear combina-
tions of the two eigenvectors corresponding to the signals a and
b can be solutions of the SVD problem. In practice, numerical
approximations and small fluctuations caused by the noise will
lead to a random “‘optimal”” decomposition. The result of the
sPCA is therefore extremely sensitive to noise and is also un-
stable across nearby frequency bands in that case.

We then perform the rotation of the eigenvectors u, ; and
u, ;. at frequency 0.04 with the SLR criterion as described in
section 2d for the two setups presented above. Figure 6 shows
the value of the criterion J(6, ¢) as a function of the rotation
parameters 6 and ¢. For both setups, the function J(6, ¢)
shows a unique minimum on the [0, 7/2] X [0, 7] hypercube.
One shall note that eight symmetrical solutions always exist on

[0, 2] X [0, 2ar], which correspond to u™" and u(* being

switched and/or multiplied by —1. For the setup 1, the pair
(Bopt> Popt) Minimizing J(0, ) is (0.937/2,1.327/2). The values
€08(0op) = 0.11 and sin(f,,) = 0.99 reveal that the initial solu-
tions identified by the sSPCA were relatively close to the optimally
rotated solutions. For setup 2, (Bopi, Popr) = (0.557/2, 1.17/2)
with cos(fop) = 0.65 and sin(f,) = 0.76 revealing that the ei-
genvectors wy; and w identified by the sPCA were equipoised
mixtures of the optimally rotated vectors ul™' and u™"”.

The rotation converged to identical vectors u{™" and u(’”
leading to identical PCs (up to the difference in the magnitude
of the second PC) in the two cases (Fig. 7). One can see that,
after rotation, the two waves a and b are effectively separated.
The separation of the two waves is improved even for setup 1,
which for the initial decomposition found by the sPCA was
relatively good in identifying separately the waves a and b. We
can estimate the propagation speed from the phase informa-
tion from the spatial structure of the phase of the eigenvectors:
a phase shift of 27 at f;, = 0.04 corresponds to 30 grid incre-
ments, and we therefore estimate ¢ = 30 X 0.04 = 1.2, which is
an accurate estimate of the true propagation speed.
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FI1G. 8. Result of the varimax rotation of the first two eigenvectors of the SPCA w, 4 and u, 4 at frequency 0.04 for the setup 2 (waves with
same amplitude) of the synthetic wave propagation example. (top left) Varimax criterion as a function of the rotation parameters 6 and ¢,
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shown with a scaling factor A{?"/A, with A = ‘/ZnNﬂ/\fuk/N . (bottom left) Reconstructed signal from the combination of the first (s~ ')
optimally rotated wavelet PCs at all frequencies between 0.025 and 0.065.

For comparison the result of the rotation with the varimax
criterion for case 2 is shown in Fig. 8. The varimax criterion
ignores the phase information and the spatial structure of the
eigenvectors. As it maximizes the variance of the square of the
loadings, it promotes sparse solutions (i.e., rotated eigenvec-
tors with a few high-magnitude loadings and many loadings of
magnitude close to zero). However, in our synthetic case, as
both waves propagate across the whole domain, their support is
not sparse. The varimax criterion therefore selects a solution
highlighting constructive and destructive interferences be-
tween the two waves rather than unmixing them. In fact, the
varimax criterion can effectively help separate two waves only
in the case when these have distinct spatial supports.

4. Analysis of global geopotential height and sea surface
temperature

Identifying and extracting dominant climate modes across a
range of space—time scales, such as interannual to decadal SST
modes (Mantua et al. 1997; Trenberth 1997; Newman et al.
2016; Wang et al. 2017) and seasonal to subseasonal modes in
the atmosphere (Madden and Julian 1971; Trenberth and
Paolino 1981; Leathers et al. 1991; Trenberth and Hurrell 1994;
Thompson and Wallace 1998; Feldstein 2000; Hurrell et al.
2013), has received a lot of attention. PCA methodologies have

been a primary tool in such studies, with the many variants and
extensions of the classical PCA method as discussed in the
introduction. However, unmixing modes and accurately ex-
tracting propagating anomalies still present unique challenges.
In this section, we apply the proposed rsPCA methodology to
global daily SST and 500-mb (1 mb = 1 hPa) GPH time series,
with the aim of highlighting its advantages in identifying and
unmixing modes of climate variability at any desired temporal
scale, as well as depicting the propagation of dynamical modes.
We focus on subseasonal and interannual scales.

a. Data used for analysis

The analyzed data consist of a record of 71 years (1948-2019)
of global daily 500-mb GPH from the NCEP-NCAR reanalysis
project (Kalnay et al. 1996) and daily global SST observations
from September 1981 to December 2014 from the NOAA
Optimum Interpolation Sea Surface Temperature (OISST)
analysis (Reynolds et al. 2007). The original GPH data are
provided on 2.5° X 2.5° latitude/longitude grid while the original
SST data are given on a 0.25° X 0.25° grid. For the purpose of this
study, both datasets are reprojected on 220 km X 220 km equal-
area pixels through a Mollweide projection (Snyder 1977). The
reprojection on equal-area pixels is recommended before ap-
plying PCA or sPCA, to avoid giving excessive weight to high-
latitude areas in terms of contribution to the system’s variance.
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FIG. 9. Distribution of energy (variance) of SST and 500-mb GPH daily anomalies across space and across
temporal frequencies. (left) Standard deviation of the anomaly time series in each pixel. (right) Temporal power
spectral densities (PSD) of the GPH and SST time series. PSDs are estimated using the Morlet wavelet for each
pixel and then averaged over all pixels. PSDs are normalized by the total variance of the system to be comparable.

Because the temporal variations of GPH and SST are dominated
by the seasonal cycle, which is not what we are trying to char-
acterize here, we removed the seasonal variations of the time
series by subtracting the climatic mean of each calendar day in
every pixel to obtain series of climatic anomalies. The climatic
mean for each calendar day corresponds to the average over the
whole time series of the 15-day period centered on this day. The
studied systems are of dimension N = 10284 pixels and L =
26298 time steps for the GPH data, and N = 7588 pixels (land
pixel being excluded) and L = 12167 time steps for the
SST data.

Figure 9 shows how the energy (variance) of these variables
is distributed across space and across temporal frequencies.
The variability of the GPH is much lower in the tropics than at
middle and high latitudes, whereas for the SST the variability is
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found more evenly distributed across the globe. Comparing the
power spectral density of the two variables, we can see that SST
shows relatively more variability than GPH at temporal scales
between 3 months and 10 years while GPH shows more vari-
ability for periods shorter than 3 months (i.e., S2S time scales).

b. Results

Similarly to previous published studies (Weare et al. 1976;
Wallace et al. 1993; Messié and Chavez 2011), the classical
PCA is first applied to the global GPH and SST anomalies.
Figure 10 shows how much of the variance is captured by the
first 400 PCs for both variables. One can see that the first two
PCs explain a higher fraction of the variance for the SST than
for 500-mb GPH; however, the 50 first PCs explain 80% of the
variability for GPH while they explain only 65% for SST. For
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FIG. 10. (left) Percentage of the variance explained by the first 10 PCs for the classical PCA applied to daily SST and
500-mb GPH anomalies. (right) Cumulated variance explained by the first 400 PCs.
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F1G. 11. Result of the classical PCA applied to daily SST anomalies, first four eigenvectors and associated PC time
series. The unit-norm eigenvectors are shown with a scaling factor A,/A, with A = w/anzl)\ﬁ/N .

the SST, the first two modes, accounting respectively for 10.8%
and 8.3% of the variance, appear to be related to the El Nifio—
Southern Oscillation (ENSO) signal (Trenberth 1997; Wang
et al. 2017) (3-7-yr cycle) and to anthropogenic climate change
(trend) with a strong signal over the tropical Pacific Ocean
(Fig. 11). The third and fourth modes seem to resemble the
patterns of the North Pacific gyre oscillation (Di Lorenzo et al.
2008, 2009) and the Pacific decadal oscillation (PDO) (Mantua
et al. 1997; Newman et al. 2016). However, all these physical
modes of variability and change are not perfectly separated by
the PCA, as the first two PCs both reflect part of the ENSO and
climate change signals, and the third and fourth PCs both re-
flect signals of the PDO and the North Pacific gyre oscillation.
This is therefore a case for which a rotation of the PCs with an
adapted criterion may allow a better physical attribution and
interpretation (e.g., Chen and Wallace 2016; Chen et al. 2017,

Wills et al. 2018). We note that all first four modes identified by
the classical PCA are low-frequency modes corresponding to
interannual to decadal time scales.

For the 500-mb GPH all first six PCs affect the medium and
high latitudes (Fig. 12). The first one is located over Antarctica
and the Southern Ocean. It forms a dipole as the polar region
and the region between 50° and 70°S show an opposite re-
sponse, which seems to resemble the pattern of the Antarctic
Oscillation (AAO) (Thompson and Wallace 2000). The first
PC shows a long-term trend (which is consistent with studies
reporting current and projected trends in the AAO; Cai et al.
2003; Shindell and Schmidt 2004), together with high-
frequency variations (typically 10-50-day oscillations). The
other five first PCs only show high-frequency variations with no
noticeable trend. The patterns shown by the eigenvectors
with a succession of negative and positive values along
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FIG. 12. Result of the classical PCA applied to daily 500-mb GPH anomalies, first six eigenvectors, and associated PC time series. The unit-
norm eigenvectors are shown with a scaling factor A,,/A, with A = \/zgzlAf,/N .

latitudinal bands are typical wave propagation patterns
(Kidson 1999; Roundy and Schreck 2009; Roundy 2015).
However, nothing can be said about the direction and speed of
propagation of the waves from the eigenvectors.

The wavelet-based spectral PCA is then applied to the GPH
and SST datasets. Figure 13 shows how much of the spectral
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power of the system is explained by the four first spectral PCs
as a function of the frequency. For the SST at periods between
2 and 10 years, the first spectral PC explains 50%—70% of the
spectral power. For subannual frequencies, the fraction of
spectral power explained by the first four PCs decreases at
higher frequencies. For periods shorter than two months, each
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FIG. 13. Fraction of the spectral power explained by the first four spectral PCs of the sPCA as a function of the
frequency for daily 500-mb GPH and SST anomalies.
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FIG. 14. Results of the sPCA and rsPCA applied to daily 500-mb GPH anomalies at the 4-day period. (top) First four unrotated

eigenvectors (magnitude and phase); the unit-norm eigenvectors are shown with a scaling factor A, 4/A, with A = 1/22’:1/\1 «N. The
circular arrow in the color scale of the phase indicates the direction of propagation of the extracted waves. (bottom) First four optimally
rotated vectors, using the proposed spatial Laplacian regularization (SLR) criterion. It is noted how the rotation ‘‘unmixes” the dynamic
modes (i.e., separates the waves in the Northern and Southern Hemispheres).

one of the first four PCs explains less than 4% of the spectral
power. For the 500-mb GPH, the first four PCs each explain
between 5% and 12% of the spectral power for periods shorter
than 6 months.

Figure 14 (top panel) shows the first four eigenvectors
identified by the sPCA for the 500-mb GPH at the 4-day pe-
riod, which is the highest frequency that can reasonably be
analyzed with daily data. All the first four spectral PCs affect
the latitudes poleward from 45°, specifically the first two PCs
affect mostly the Southern Hemisphere, while the third and
fourth ones affect both hemispheres. The SLR rotation pro-
cedure is performed among the first five eigenvectors to unmix
their patterns (Fig. 14, bottom panel; the fifth vector is not
shown). The first two eigenvectors are only slightly affected
by the rotation, but the third and fourth are better differenti-
ated after rotation: the third rotated vector affects the
Northern Hemisphere and the fourth one affects the Southern
Hemisphere. All four vectors depict waves of GPH anoma-
lies with an eastward propagation, which are most likely the
signature of Rossby wave propagation on top of the mean
circulation in the atmosphere (i.e., the jet stream). At the 15-
day period (Fig. 15), the first eigenvector also shows a wave
with eastward propagation southward of 50°S, consistently

corresponding to Rossby waves. This pattern in the Southern
Hemisphere is consistently found among the first two eigen-
vectors of the sPCA for all periods between 4 and 60 days (not
shown) with a spatial wavelength increasing with decreasing
frequency, as expected from Rossby wave theory (Rossby
1945; Platzman 1968; Gill 1982). In the Northern Hemisphere,
at the 15 days period, the second and fourth eigenvectors after
rotation show a meandering pattern northward of 50°N with a
westward propagation.

For the SST, the first eigenvector at frequencies 1/4 and
1/6yr~! is shown in Fig. 16. The spectral PCs associated with
the first eigenvector represent respectively 59% and 68% of
the spectral power at these two frequencies. The patterns at
these two frequencies are consistent and correspond to the
ENSO patterns that also appeared in the first two eigenvectors
of the classical PCA. The tropical Pacific Ocean is the region of
the globe showing the strongest response to this mode. Regions
in the South and North Pacific also respond to this mode with
an opposite phase (7 shift) to what is found in the tropical region,
meaning anomalies of opposite sign. Outside of the Pacific, some
regions of the Atlantic and Indian Oceans seem to also have a
weaker response to the ENSO signal; however, for these regions
the patterns are not consistent between the 4- and 6-yr period,

Unauthenticated | Downloaded 12/23/20 08:16 PM UTC



730

JOURNAL OF CLIMATE

VOLUME 34

Ayuy/A at 15 days period Aauz/A at 15 days period
) " s 1

v,

R

Asus/A at 15 days period AsUa/A at 15 days period
= TS .

2,

3n/2

APBYOBIA at 15 days period APBYoPHIA 3t 15 days period

n/2

FIG. 15. As in Fig. 14, but at the 15-day period.

particularly in terms of phase. No neat propagation patterns can
be found in the phase of the first eigenvector at the two considered
frequencies. ENSO is therefore characterized mostly as a sta-
tionary wave (a dipole). The bottom panel of Fig. 16 shows the
reconstructed signal through the inverse wavelet transform of the
first wavelet PC at all frequencies between 1/2 and 1/7yr™'. As
explained in section 2b, the reconstructed signal is a linear com-
bination of the bandpass filtered and phase-synchronized SST
anomaly time series. The bandpass filtering through the (inverse)
wavelet transform allows a smooth signal and well-defined peaks.
The phase synchronization also fosters well-defined peaks as the
combined phase-synchronized time series will generally all peak
at the same time. The reconstructed signal is consistent with the
well-known historical variations of ENSO.

At the 15-day period, the first spectral PC of the SST only
accounts for 2% of the spectral power (Fig. 13). However, even
if noisy, the spatial pattern of the associated eigenvector is
coherent. It appears as a wave around 50°S with an eastward
propagation (Fig. 17). It is consistent with the Rossby wave
pattern identified by the rsPCA in the 500-mb GPH at that
same frequency of 15 days. Therefore, this mode is interpreted
as the signature of an atmospheric Rossby wave on the SST and
reveals ocean—atmosphere coupling. This shows the ability of
the spectral PCA to extract coherent modes of low amplitude
from random variability and noise.

The results shown in this section clearly illustrate the ad-
vantage of the wavelet-based sPCA against the classical PCA,
in separating modes that correspond to different frequencies,

and in extracting propagation information. Moreover, it is
demonstrated that, in the presence of several competing modes
at subannual scales, rotation of the eigenvectors and optimal
unmixing of the underlying climate modes via the proposed
rsPCA methodology is essential for physical interpretability.

5. Conclusions

The need for understanding patterns of variability and
change in climate signals for the purpose of predictive and diag-
nostic analysis (e.g., for regional prediction, untangling the forced
signal from internal variability, and diagnosing the performance of
climate models) has never been more imperative. Classical PCA
is a well-developed mathematical analysis tool that has been used
extensively in climate studies. Its extension in the Fourier fre-
quency domain, the spectral PCA (sPCA), has seen more limited
application even though it can potentially better handle dynamical
modes of variability thanks to the phase information. We show
that the implementation of spectral PCA through the continuous
Morlet analytic wavelet transform offers several advantages in
terms of simplicity and robustness. In the present work, particular
interest is given to the phase of the eigenvectors, which contains
the information for making the patterns physically interpretable.
Moreover, when several modes of similar amplitude exist within
the same frequency band, the rotation of the eigenvectors pro-
cedure can help interpret the patterns of the emerging modes.
Our proposed criterion for optimal rotation is to look for the ro-
tated eigenvectors having the simplest spatial structure, which is
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FIG. 16. Results of the sSPCA applied to SST daily anomalies at the periods between 2 and 7 years. (top) First unrotated
eigenvector (magnitude and phase) at 6- and 4-yr periods. (bottom) Reconstructed signal through the inverse wavelet
transform of the first wavelet PC at every frequency corresponding to periods between 2 and 7 years along with the Nifio-
3.4 index (Deser et al. 2010). The linear correlation between the reconstructed signal and the Nifio-3.4 index is 0.83.

achieved by a regularized estimation that minimizes the integral
over the studied spatial area of the absolute value (i.e., the L1
norm) of the spatial Laplacian of the rotated vectors. This crite-
rion, termed spatial Laplacian regularization (SLR), is found to be
very efficient when applied to a synthetic example with two waves
propagating in opposite directions, even in the presence of high
variance spatiotemporally correlated noise.

When applied to global 500-mb GPH reanalysis data, the
Morlet wavelet-based spectral PCA is able to identify signa-
tures of Rossby waves at periods between 4 and 60 days. The
SLR rotation allows to better separate the several components
of the Rossby waves and leads to more easily interpreted ei-
genvectors. When applied to global SST observations, the
SPCA can extract the ENSO signal for period between 2 and 7
years. This signal accounts for about 60% of the spectral power
in the corresponding frequency band. Even without the rota-
tion procedure, it does well in isolating the ENSO signal from
other physical modes (unlike the classical PCA, which mixes
the ENSO and climate change signals). This can be attributed
both to the frequency localization (two modes of variability
operating at different frequencies are naturally separated by
the SPCA) and to the fact that the Morlet wavelet is not sen-
sitive to linear trends. At the 15-day period, the wavelet-based
sPCA is able to identify the signature of an atmospheric Rossby
wave on the SST anomaly time series even if the corresponding
spectral PC accounts for only 2% of the spectral power showing
the ability of the method to extract low-amplitude propagating
waves from a highly variable random signal.

When analyzing the spatial structure of the mapped complex
eigenvectors, the argument (phase) is particularly informative.
It informs us about the propagation of the wave-type modes at
the corresponding frequency, and the phase velocity in
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FIG. 17. First unrotated eigenvector (magnitude and phase) at
the 15-day period of the sSPCA applied to daily SST anomalies. The
eastward propagating signal is interpreted as the signature of an
atmospheric Rossby wave.
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particular can be estimated directly from the mapped ei-
genvector. The phase information of the sPCA can help
understand dynamics and causal relations when classical
PCA can only determine correlations. One must note however
that the propagation of the phase information does not necessarily
correspond to energy or mass flow, particularly when it comes to
non-monochromatic dispersive waves, for which phase velocity
and group velocity are different (Gill 1982). That is why it is im-
portant to analyze the full range of frequencies when non-
monochromatic signals are involved.

As the SLR regularization has been shown particularly ef-
ficient in improving the interpretability of the patterns of the
complex mapped eigenvectors in the present study, it could
also be used on real-valued eigenvectors such as those resulting
from the classical PCA (e.g., Figs. 11 and 12). Even in the ab-
sence of phase information it would impose spatially smooth
eigenvectors. For complex eigenvectors, a possible alternative
to minimizing the L1 norm of the Laplacian is to minimize only
the norm of the Laplacian of the argument of the mapped ei-
genvector. This would impose smooth and spatially linear
phase, while ignoring the local magnitude of the waves. This
alternative criterion has been found efficient when the sought
waves affect the whole analyzed domain (not shown); however,
when some regions of the spatial domain do not show any re-
sponse to the wave signal, the criterion is negatively affected by
the fact that the phase is undefined (random in practice) in
those unaffected areas.

The rsPCA method holds a great potential for evaluating
and comparing climate model simulations and separate cli-
matic signal from noise by applying the method to ensembles
of realizations. We note that the method may be employed
using an analytic wavelet different from the Morlet wavelet.
While the Morlet wavelet transform has the advantage of
being relatively simply related to the Fourier transform,
making the Morlet wavelet and Fourier cross-spectral ma-
trices interpretable in a similar way, other wavelets may be
more adapted for identifying modes that are not necessarily
oscillatory and show irregular periodicity. The proposed
rsPCA methodology is expected to benefit from further ex-
perimentation and evaluation, which may lead to potential
improvements in implementation. For example, an open
question concerning this particular rsPCA and rotated PCAs
in general, is how to choose the number of PCs to retain when
performing rotations (Horel 1981, 1984; Richman 1981, 1986;
White et al. 1991).
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APPENDIX A

Notations
Operators are given as follows:

y' denotes the transpose conjugate of y; if y is a complex
scalar, y’ simply denotes the complex conjugate;

y denotes the empirical estimate of the quantity y;

y denotes the Fourier transform of y;

A is the Laplacian operator.

Indices are denoted as follows:

nin (1, ..., N)is the variable/location index. It also denotes
the rank of an eigenvalue and associated eigenvector;

lin (1, ..., L) is the observation/time index;

kin (1, ..., K) is the scale/frequency index.

Matrix and vector notation is given as follows:

X is the N X L data matrix;

X,, is the nth row of the matrix X;

C is the N X N covariance matrix;

W, is the N X L matrix of wavelet coefficients at scale vy;

S, is the N X N cross-spectral matrix at frequency f;

u,, is the nth eigenvector of éiv

u,, . is the nth eigenvector of Sy;

u;™ is the nth optimally rotated vector;

K, is the nth principal component time series for the clas-
sical PCA;

K, 1s the nth principal component series of wavelet coef-
ficients at scale v, of the sPCA.

Variable and parameters are denoted as follows:

AZ is the nth eigenvalue of C;

A, is the nth eigenvalue of Sy;

vy is the scale parameter;

fx 1s the frequency parameter;

b (f) is the frequency band associated to the Morlet wavelet
at scale vy,

(6, @) are the rotation parameters in the space generated by
two complex vectors;

J(6, @) is the objective function of the rotation;

(Bopt» Popt) are the rotation parameters minimizing the
objective function;

a(t) and b(t) are the wave signals of the synthetic example;

Iy, n, () is the noise in the synthetic example;

Unauthenticated | Downloaded 12/23/20 08:16 PM UTC


https://doi.org/10.7289/V5SQ8XB5
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html

15 JANUARY 2021

o
2 s
L]
[=%
"f! 0.6
-
g
o Bartlett LS=6
2 04 Bartlett L_=12
=) s
= Bartlett L =23
=
— — — . Welch L_=47
g 0.2 N
S — — —-Welch L =23
— — — -Welch LS=11
0
0 5 10 15 20 25 30 35
PC rank
=
[}
£
o
5
a4
©
; Bartlett Ls=ﬁ
= Bartlett L_=12|
) s
&5 Bartlett L =23
=
£ — — — -Welch L =47
3 — — —Welch L _=23
— — —-Welch L =11
30 40 50 60

PC rank

FIG. B1. Cumulative variance explained as a function of the PC
rank for periodogram-based spectral PCAs with different win-
dowing setups applied to a system composed of 3960 independent
time series (white noise); L¢is the number of discrete frequencies in
each frequency band by, and L; is the number of windows of the
periodograms. For the Welch periodograms, the windowing func-
tion is a Daniell window and the overlapping factor is 50%. Note
that for the periodogram-based PCA with independent white noise
time series, these results are independent of the frequency.

d, is the distance to the origin of the wave a in the synthetic
example;

d, is the distance to the origin of the wave b in the synthetic
example;

Y1, V2, do, and ¢ are the parameters controlling the waves and
the noise amplitude and the waves propagation in the
synthetic example [Eq. (20)].

APPENDIX B

Rank of Empirical Cross-Spectral Matrix

The empirical Fourier cross-spectral matrix computed di-
rectly from the Fourier coefficients over the b, frequency
band is
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733
. . -
c_ 1
sk*LSLf. : ’
) LS LS
P IR )
(B1)

where X1;(f;) is the empirical Fourier coefficient (from a dis-
crete Fourier transform) derived from the jth subsample of the
time series x; at frequency f;; Lyis the number of number of
discrete frequencies within the b, frequency band and L is the
number of subsamples. Each subsample is obtained by win-
dowing or tapering the time series. The prime (') denotes the
complex conjugate operator.

In the limit case where Ly =1 and L, = 1 (e.g., when using
the discrete Fourier transform without averaging, windowing
or tapering in the time domain or in the frequency domain),
with X1 1(f;) = @1€?” we obtain

2 i(0,—6,) (6. —
aj a a,e’ ™% . . el —0y)
17N
i(0,~0,) 2
N a,a,e a3
S, = ,
i(0y—0,) 2
aya e -

(B2)

which is by construction a rank-1 matrix. More generally, the
rank of the empirical cross-spectral matrix is at most of rank
L, X Lgsince from (B1) it can be decomposed as a sum of L, X
Ly rank-1 matrices. The degree of independence between the
subsamples and the adjacent frequency bands also affects the
decrease rate of the eigenvalues (see Fig. B1).

APPENDIX C

Fourier Spectrum of the Morlet Wavelet

The Fourier transform of the Morlet mother wavelet V¥ is
(Addison 2017)

‘i’(f) = iR mf=2nf, )12 (C1)
The frequency band b, associated with the Morlet mother
wavelet ¥ is therefore a Gaussian function centered at the

frequency f,. The Fourier transform of the Morlet daughter
wavelet ¥, ,(u) = 1/y/vW(u — t/v) is

¥, (1) = Vil e . (€2)
The frequency band b, associated with the Morlet daughter
wavelet at scale vy is therefore a Gaussian function centered at
the frequency fi = fo/v.
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APPENDIX D

Cone of Influence and Edge Effects

When computing wavelet coefficients from finite length time
series, a padding operation is needed to compute the coeffi-
cients at the beginning and at the end of the series (Torrence
and Compo 1998). Possible solutions are zero-padding, re-
peating, or mirroring the time series. Repeating and zero-
padding are not recommended since they are likely to create a
sharp discontinuity (particularly when the time series show a
trend). An efficient solution, which is used in the present ar-
ticle, is to pad the series with the values corresponding to its
first and last time steps, thus avoiding creating discontinuities.
The most conservative option would be to not consider all the
coefficients inside the ‘“‘cone of influence”, that is, all the co-
efficients potentially affected by edge effects (e.g., by setting
them to zero). However, this would reduce the length of the
series of wavelet coefficients available for computing the cross-
spectral matrix (particularly at coarse scales/low frequencies).

APPENDIX E

Laplacian Operator and Phase Unwrapping

In image processing the discrete Laplacian operator Ais
defined as a convolution kernel of the following form:

0 -1 0

-1 4 1. (E1)
0 -1 0
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