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ABSTRACT: Understanding the physical drivers of seasonal hydroclimatic variability and improving predictive skill

remains a challenge with important socioeconomic and environmental implications for many regions around the world.

Physics-based deterministic models show limited ability to predict precipitation as the lead time increases, due to imperfect

representation of physical processes and incomplete knowledge of initial conditions. Similarly, statistical methods drawing

upon established climate teleconnections have low prediction skill due to the complex nature of the climate system.

Recently, promising data-driven approaches have been proposed, but they often suffer from overparameterization and

overfitting due to the short observational record, and they often do not account for spatiotemporal dependencies among

covariates (i.e., predictors such as sea surface temperatures). This study addresses these challenges via a predictive model

based on a graph-guided regularizer that simultaneously promotes similarity of predictive weights for highly correlated

covariates and enforces sparsity in the covariate domain. This approach both decreases the effective dimensionality of the

problem and identifies the most predictive features without specifying them a priori. We use large ensemble simulations

from a climate model to construct this regularizer, reducing the structural uncertainty in the estimation. We apply the

learned model to predict winter precipitation in the southwestern United States using sea surface temperatures over the

entire Pacific basin, and demonstrate its superiority compared to other regularization approaches and statistical models

informed by known teleconnections. Our results highlight the potential to combine optimally the space–time structure of

predictor variables learned from climate models with new graph-based regularizers to improve seasonal prediction.
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1. Introduction

Seasonal prediction of regional hydroclimate is typically

based on deterministic physical models or statistical tech-

niques, yet both approaches exhibit limited predictive ability

(Wang et al. 2009; National Academies of Sciences, Engineering,

and Medicine 2016). Precipitation predictions based on deter-

ministic physical models (regional climatemodels) exhibit high

uncertainty due to imperfect physical conceptualizations,

sensitivity to initial and boundary conditions, and variations

in model physics and grid resolutions (e.g., Chang et al. 2000).

On the other hand, predictive statistical approaches (e.g.,

Wu et al. 2009; Schepen et al. 2012; Peng et al. 2014; Tao

et al. 2017), which exploit historically and physically es-

tablished climate teleconnections between regional hy-

droclimate and large-scale modes of climate variability [e.g.,

El Niño–Southern Oscillation (ENSO); see, e.g., Ropelewski

and Halpert 1986; Bradley et al. 1987; Redmond and Koch

1991; McCabe and Dettinger 1999; Dai 2013], also exhibit

limited predictive skill. The main reason is that the complex

and nonstationary interactions between large-scale dynamics

and regional hydroclimate cannot be captured sufficiently well

with a limited number of prespecified climate indices (regions

used for computing sea surface temperature anomalies) as

predictors, even when sophisticated statistical schemes are used

(nonlinear statistical schemes, Bayesian techniques, etc.).

Recognizing the limitations above, the community has been

increasingly embracing the application of methods that aim to

learn from both climate models and statistical schemes in order

to improve seasonal predictive skill. Thesemethods range from

weighted multimodel averaging techniques (Raftery et al.

2005; Luo et al. 2007; Schepen and Wang 2013; Cheng and
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AghaKouchak 2015) or methods that directly combine pre-

dictions from climate models and statistical schemes (Coelho

et al. 2004; Schepen et al. 2014; Madadgar et al. 2016) to data-

driven approaches based on machine learning, in a setting

where predictor variables are not prespecified but rather are

guided by the data or climate model outputs (Quan et al. 2006;

DelSole and Banerjee 2017; Hewitt et al. 2018; Ham et al. 2019;

Willard et al. 2020; He et al. 2020). In the former category of

methods, the prediction skill depends strongly on the skill of

each of the models considered, thus making such techniques

prone to all the aforementioned limitations. In contrast, the use

of machine learning has potential since climate information

from the entire globe can in principle be used to inform the

prediction. However, these techniques also face important

practical limitations. First, because of the short record of ob-

servations and the large number of predictors, the number of

degrees of freedom of the problem is vast, significantly in-

creasing the risk of overfitting (Ham et al. 2019). Second,

strong spatiotemporal dependences among the predictor var-

iables, which are certainly present in climate applications, need

to be taken into consideration for imposing structure in the

predictor space to reduce the dimensionality of the problem

and improve physical interpretability.

In this study, we aim to address the challenges discussed above

by introducing a regularized regression scheme that accounts ex-

plicitly for spatiotemporally correlated predictors. Regularization

is an established technique in statistics, machine learning, and

signal processing that canmitigate the challenges of many degrees

of freedom relative to the amount of data. The key idea is that

rather than simply finding the model that best fits the data

according to some loss function, we instead minimize the sum of

the loss and a regularization function, where the latter reflects

some prior belief about which models are better than others.

Sparsity regularization [e.g., the least absolute shrinkage and se-

lection operator (LASSO) regularization; Tibshirani (1996)] has

already been explored in the context of precipitation downscaling

and data assimilation (Ebtehaj et al. 2012; Ebtehaj and Foufoula-

Georgiou 2013) and climate forecasting [see the recent studies of

DelSole and Banerjee (2017) and He et al. (2020)], but suffers

from ignoring the spatiotemporal dependencies among predictors.

To respect the embedded space–time structure of the climate

system and enforce sparsity, we use a ‘‘graph total variation’’

(GTV) regularizer (i.e., constraint) that promotes similarity of

weights (i.e., regression coefficients) for highly correlated predic-

tors. The GTV is a graph-based regularizer, based on the graph

formed by the covariance matrix of the predictors, that was re-

cently introduced by Li et al. (2018). To address the issue of the

short observational record, and to estimate robustly the covari-

ance matrix of the predictor variables, we make use of a large

ensemble of climate model outputs. Using climate model outputs

in the training ofmachine learning (ML)models is a subcase of the

general category of techniques that aim to integrate physical

knowledge and machine learning (Willard et al. 2020), and it has

recently been shown to be highly efficient in increasing predictive

skill on seasonal to interannual time scales (DelSole and Banerjee

2017; Ham et al. 2019). Although our study differs from these

studies in that it uses the climate model outputs not to train the

ML model per se, but only to compute the covariance matrix

of the predictors used as a GTV regularizer, it adds to this

important new line of research in synergistically leveraging

both climate models and observations with the goal of im-

proving prediction skill.

We explore the prediction skill of ourmethodology for the case

study of predicting precipitation over the southwestern United

States (SWUS), focusing on the winter season (specifically,

November–March), when the majority of precipitation occurs.

Despite the increasing attention that it has received over the years

(Schonher and Nicholson 1989; McCabe and Dettinger 1999;

Gershunov and Cayan 2003; Schubert et al. 2016;Madadgar et al.

2016; Liu et al. 2018; Hao et al. 2018; Zhang et al. 2018;

Mamalakis et al. 2018; Pan et al. 2019), early and accurate pre-

diction of winter precipitation in SWUS remains a challenge, with

significant implications for the region’s population and economy

(Howitt et al. 2014, 2015; AghaKouchak et al. 2015; Medellín-
Azuara et al. 2016). Traditional climatic drivers of SWUS pre-

cipitation (e.g., ENSO) explain just a small fraction of the in-

terannual variability of precipitation totals, which in some

cases are determined by a small number of winter storms

(Dettinger et al. 2011; Dettinger andCayan 2014).Moreover, it

is known that the ENSO relationship with SWUS climate un-

dergoes multidecadal fluctuations (McCabe and Dettinger

1999; Yu et al. 2012), withmany recent studies pointing out that

it has been losing strength in the recent decades, while the

western Pacific climatic state is gaining in importance (Wang

et al. 2014; Baxter and Nigam 2015; Teng and Branstator 2017;

Seager et al. 2017; Swain et al. 2017; Myoung et al. 2018;

Mamalakis et al. 2018; Lee et al. 2018). The special difficulty of

this problem also arises because the SWUS lies within a tran-

sition zone between the subtropics and the midlatitudes (i.e.,

308–408N). In fact, the latter is among the reasons that the ef-

fect of climate change on future precipitation trends over the

SWUS is highly uncertain, with midlatitude regions expected

to become wetter and subtropical regions drier (Allen and

Luptowitz 2017). Because of its intrinsic complexity, this re-

gion offers an excellent case study for exploring and bench-

marking data-driven predictive methods.

As predictor variables, we use late summer and early fall (July,

August, September, andOctober) sea surface temperature (SST)

over the entire Pacific basin. Note that although there are studies

indicating the importance of Atlantic Ocean temperatures as

drivers of SWUS precipitation as well (Enfield et al. 2001;

McCabe et al. 2004), our focus here is only on the Pacific Ocean,

as a first step. We cast the prediction problem as an estimation

problem in which predictors are not specified in advance, but

rather emerge from the data by minimizing an appropriate loss

function. We first demonstrate the increased predictive skill of

the proposed GTV model when the covariance matrix that de-

fines theGTV regularizer is computed from a large ensemble of a

climate model, rather than the single realization of observations.

Second, we benchmark the GTV model against two different

classes of predictive models: 1) other regularized regression

methods (LASSO and fused LASSO; Tibshirani et al. 2005)

and 2) simple ordinary least squares using known teleconnection

indices as predictors. Our analysis shows that constraining

the predictive model by the spatiotemporal covariance of the

predictors via a GTV regularization outperforms all the other
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considered models and substantially increases the seasonal pre-

cipitation predictive skill. Last, we show that both the GTV

performance and the emerged predictors of precipitation are

quite robust to perturbations in the covariancematrix that is used

to define the GTV regularization term.

The structure of the paper is as follows. In section 2, we de-

scribe the prediction problem and the data used. We introduce

the proposed methodology in section 3 and discuss the advan-

tages of using a graph-based regularizer in which the graph is

based on covariance information from a climate model, instead

from the limited observations. In section 4, we present results on

the performance of our proposed model and compare its skill to

other methods. Moreover, we study the emergent predictors,

aiming to gain physical insight about the drivers of SWUS pre-

cipitation.We also perform a sensitivity analysis of our results to

gain more confidence in the predictive performance and the

emergent predictors. Conclusions and directions for future re-

search are discussed in section 5.

2. Prediction problem and data/models used

The SWUS (California, Nevada, Utah, and Arizona) is

composed of 25 climate divisions, for each of which precipi-

tation series are available at https://www.ncdc.noaa.gov/cag/

time-series/us (Vose et al. 2014). The season we aim to predict

precipitation is November–March, when the majority of the

annual precipitation occurs; note also that winter precipitation,

especially that which is stored as snowpack, is necessary for

sustaining the water supply through relatively dry summers

(Mote et al. 2005; Shukla et al. 2015; Liu et al. 2018). As shown

in Fig. 1a, the northwestern part of the region receives much

higher precipitation than the rest of the SWUS, which is gen-

erally considered a fairly dry area. However, the interannual

variability in the central and southern part is high, generally

higher than 40%–50% of the mean precipitation (coefficient of

variation of the order of 0.4–0.5 or higher), compared to the

northern part of the SWUS, where the coefficient of variation

is 0.3 or lower (Fig. 1b). To distinguish between the two dif-

ferent hydroclimatologies of the northern part and the central/

southern part of the SWUS, previous studies have used dif-

ferent approaches, such as focusing on the area below a certain

latitude (Liu et al. 2018) or considering only the climate divi-

sions for which a specific predictor (e.g., the Niño-3.4 index, an
ENSO index) exhibits a significant relation with precipitation

(Mamalakis et al. 2018). Here, we distinguish between the two

precipitation regimes using an area-weighted principal com-

ponent (PC) analysis. As can be seen from Fig. 1c, PC1 (which

explain about 64% of the total precipitation variability in the

SWUS) is more strongly associated with the central and

southern part of the SWUS than with the northern part. Based

FIG. 1. Spatial patterns of winter precipitation statistics over the southwestern United States. (a) Multiyear mean of November–March

precipitation over SWUS, for the period from 1940/41 to 2018/19. (b) Coefficient of variation (sample standard deviation divided by

sample mean) of November–March precipitation for the period from 1940/41 to 2018/19. (c) Correlation of the first area-weighted

principal component (PC1) of the November–March precipitation over the SWUS and precipitation in each climate division. (d) Series of

the area-weighted average precipitation over the climate divisions considered in this study (see panel to the right). In our study, we use

years 1940/41–1989/90 as a training period (for model fitting), and years 1990/91–2018/19 as a test period (for model evaluation).
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on PC1 and PC2 (which explain about 22% of the total pre-

cipitation variability in the SWUS; not shown), we have se-

lected the region of focus for our analysis, composed of 18

climate divisions, which is shown in Fig. 1d, together with the

series of the area-weighted average precipitation.

As predictor variables, we use late summer and early fall

(July–October) SSTs over the Pacific basin, which is defined as

the area in 608S–608N, 808–2808E. Historical time series of SST

(monthly seriesona18 3 18 grid; seeHiraharaetal. 2014)areobtained

from https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html. At

that resolution, the number of predictor variables is very large

(roughly 1203 2003 45 96 000)making the problem highly ill

posed. Thus, we upscale the original SST field by simple areal

averaging into grid boxes of size 108 3 108 over the Pacific

basin, to reduce the dimensionality of the problem. After re-

moving the boxes over land, we end up with roughly 900 pre-

dictor variables in total (i.e., 4 months over 12 boxes in latitude

and 20 boxes in longitude).

The analysis is performed for the years 1940/41–2018/19,

since SST records are not trustworthy before the 1940s, due to

the limited availability of observations over the Pacific basin

and globally (Deser et al. 2010). In particular, we use years

1940/41–1989/90 as a training period, and years 1990/91–2018/

19 as a test period. All individual SST series are linearly de-

trended and standardized (zeromean and unit variance) before

they are used in the analysis.

To reduce the uncertainty in the estimation of the spatio-

temporal dependency of the predictors (covariance matrix of

SST predictors, used to define the GTV regularizer), we also

examined simulations from the Community Earth System

Model-Large Ensemble project (CESM-LENS; Kay et al. 2015),

which can be found at http://www.cesm.ucar.edu/projects/community-

projects/LENS/data-sets.html. Specifically, we use monthly series

(on a 1.258 3 0.98 grid) of surface temperatures over the Pacific

basin, which we also upscale to 108 3 108 grids to match the grids

used for the observed SSTs. We note that the CESM-LENS

project consists of 40 ensemblemembers, each one corresponding

to the same model physics but different initial conditions in the

atmosphere. CESM-LENS relies on historical boundary conditions

for the period 1920–2005, and the representative concentration

pathway 8.5 (RCP8.5) is applied as forcing for years 2006–2100.

Here we used only archives of simulation output from 1940 to

2005 to build our model covariance matrices, as the focus of our

analysis is on improving prediction for the contemporary period.

Note that the 40 ensemble members constitute independent but

equally probable trajectories of the Earth system with historical

forcing [see Kay et al. (2015) for more information].

3. Methodology

Let y(i)r denote the winter precipitation in year i and climate

division r. We hypothesize that y(i)r can be predicted from cli-

mate variables at different locations over the PacificOcean and

different lag times (e.g., months ahead of the winter period),

with a model of the form

y(i)r 5�
p

j51

x
(i)
j b

j,r
1 «(i)r , (1)

where «(i)r is a Gaussian noise N(0, s2) term. Writing (1) in a

matrix form and dropping the index r for convenience results in

y5Xb1 e , (2)

where y5 (y(1), y(2), . . . , y(n))T 2 R
n is the vector of winter

precipitation over n years, X5 [x(1), x(2), . . . , x(n)]T 2 R
n3p is

the matrix of climate variables (i.e., SSTs over the Pacific

Ocean and in the four different months preceding the winter

season, namely July, August, September, and October),

b5 (b1,b2, . . . ,bp)
T 2 R

p is the vector of weights corresponding

to p predictors, and e5 («(1), «(2), . . . , «(n))T 2 R
n is a Gaussian

noise vector.We clarify that x(i) is a p-dimensional vector in year i

of SSTs arranged by moving along all longitudes and latitudes

of the Pacific Ocean and for the four months of July, August,

September, and October. Thus, p 5 900 in our case, while the

number of available years is n 5 79 (i.e., we use 50 years for

training and 29 years for testing; from 1940/41 to 1989/90 and from

1990/91 to 2018/19, respectively).Obviously, this problem is highly

underdetermined, since n � p. To solve for b, we reduce the

effective dimension of the problem by adding regularization

terms, leading to the formulation

b̂5 argmin
b

�
1

n
ky2Xbk22 1lR(b)

�
, (3)

whereR(b) is a regularization term, chosen to impose structure

and sparsity on b, and l. 0 is the regularization parameter. A

popular choice for R(b) is the LASSO regularizer (Tibshirani

1996), that is, R(b)5 kbk1 5�p

i51jbij, which yields minimizers

of (3) for which b is sparse; that is, there are only a few spa-

tiotemporal variables that are truly predictive while the rest are

conditionally independent of the response y. The value of l,

typically estimated using cross-validation, reflects the weight

given to the sparsity constraint. However, the LASSO regu-

larization does not take into account that predictors might

have a significant spatiotemporal dependence structure that, if

included, might further constrain and improve the prediction.

a. Graph total variation

To overcome this problem, we propose a regularizer that

accounts explicitly for the spatiotemporal covariance of the

predictors. The central idea of this regularizer is that if cova-

riates xj and xk are highly correlated with one another, then

they should receive similar weights b̂j and b̂k. This approach

helps us select highly correlated collections of covariates that

serve as strong predictors of precipitation. In contrast, the

LASSO estimator would generally select either b̂j or b̂k, but

not both, and the selected covariate would be very sensitive to

any noise in the data. We form a graph to represent the cor-

relations between pairs of covariates, and select a set of weights

b that is ‘‘aligned’’ with the graph. This regularization scheme,

known as graph total variation (GTV), was introduced in Li

et al. (2018). Although graph-based regularizers have been

explored before (e.g., fused LASSO, edge LASSO, graph-

trend filtering), Li et al. (2018) developed theoretical guaran-

tees for the GTV regularizer for highly correlated covariates,

and showed how imposing additional structure on b to en-

courage ‘‘alignment’’ with the covariance graph can lead to

optimal solutions. This property is important in our problem
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sinceX contains highly correlated columns, resulting for example

fromdependence betweenSSTanomalies at nearby locations for

small time lags or at distant locations but lagged in time.

Let Ŝ be an estimate of the covariance matrix of X and let

ŝj,k 5 sign(Ŝj,k). The GTV estimator is given by

b̂5 argmin
b

(
1

n
ky2Xbk22 1l

TV�
j,k
jŜ

j,k
j1/2jb

j
2 ŝ

j,k
b
k
j1l

1
kbk

1

)
,

(4)

where l1 and lTV are regularization parameters chosen

through cross-validation. Here we use a standard fivefold

cross-validation approach applied to the training data (i.e., a

total of 50 years) to estimate the optimal (l1*, lTV* ) combination.

Specifically, we split the training dataset into five nonoverlap-

ping, random 10-yr sets; for each of the five sets, we train our

model (i.e., estimate b̂) using the other four sets and compute

the prediction error on the held out fifth set. This is repeated for

each candidate tuning parameter pair (l1, lTV). The optimal

(l1*, lTV* ) combination is the one that, on average, minimizes the

prediction error across the five different holdout sets. Note that

choosing the value of lTV that determines the importance of the

GTV term via cross-validation can mitigate the effect of any

systematic biases reflected in the estimate Ŝ, since if Ŝ were not

informative at all, the optimal lTV would be close to zero.

We can interpret the estimator in Eq. (4) from a graph

perspective by defining a covariance graph based on Ŝ. Let

G 5 (V, E, W) be an undirected weighted graph with vertices

V 5 {1, 2, . . . , p}, edges E:5 f(j, k): jŜj,kj. u, j 6¼ kg, and
weight matrix W with wj,k 5 jŜj,kj1/2. That is, each predictor

variable (e.g., SST at a particular place and time) is associated

with one of the nodes of the graph, and edges reflect the pairs of

predictors that are correlated. A threshold parameter u can be

applied to the covariance matrix (Bickel and Levina 2008) for

assessing which edges (i.e., links between covariates) will be

used in the GTV term (see further discussion about parameter

u in section 3c).

The expression inEq. (4)may be rewritten using new notation

that highlights connections with previous methods and known

software for solving the optimization problem. Specifically, let

G 2 R
jEj3p be the weighted edge incidence matrix of G, where

each row l represents a pair of connected vertices (jl, kl):

G
l,jl
5w

jl ,kl
,

G
l,kl

52ŝ
jl ,kl

w
jl ,kl

: (5)

Then, we can write (4) as

b̂5 argmin
b

�
1

n
ky2Xbk22 1l

TV
kGbk

1
1l

1
kbk

1

�
. (6)

As mentioned above,GTV promotes estimates ofb that contain

sparse clusters of coefficients, each cluster corresponding to a

highly correlated set of variables. That is, the stronger the cor-

relation between xj and xk, the more similar b̂j and b̂k. The jjbjj1
term promotes overall sparsity. We note that (6) can be viewed

as a generalized LASSO estimator (Tibshirani and Taylor 2011),

for which a number of efficient implementations exist.

b. Other regularization methods

This work sits alongside a growing body of literature of

structured estimation in high dimensions with a specific ap-

plication to climate data (e.g., Goncalves et al. 2017). A variety

of regularization schemes have recently shown promise in

improving predictive skill by imposing structure and sparsity

on the predictors. Chatterjee et al. (2012) proposed using the

sparse group lasso (SGL), in which the regularizer is given by

R(b)5 fkbk
1
1 (12 f )kbk

1,G
,

where G 5 {G1, G2, . . . , GM} areM groups of variables across

multiple locations and times. This scheme yields solutions in

which variables at certain locations and times are simulta-

neously selected or else zeroed out. Using this scheme to

predict monthly temperature and precipitation showed signif-

icant improvement over LASSO. He et al. (2019) proposed a

weighted LASSO given by

R(b)5�
p

i51

w
i
jb

i
j,

where the weights are chosen to be proportional to the distance

between the location of the feature and the location of its re-

sponse. This penalizes predictors that are far away from the

region of interest and it is not appropriate for our problem, in

which long-distance climate teleconnections play an impor-

tant role.

Finally, we note that GTV is a special case of the fused

LASSO estimator (Tibshirani et al. 2005). While these esti-

mators have significant theoretical support, the theory relies on

the assumption thatX is full rank and does not consider the role

of correlations among columns of X. Furthermore, the edges

included in the fusion penalty are assumed to be highly struc-

tured (i.e., only direct spatial or temporal neighbors), and the

theory does not generalize to the types of unstructured co-

variance graphs that arise in many applications. In climate and

other domains, there are known long-range correlation pat-

terns that would not be captured by a direct neighbor penalty.

We will, however, benchmark GTV against the fused LASSO,

which has the regularization term

R(b)5 �
j,k2N

jb
j
2b

k
j1l

1
kbk

1
,

N :5 f(j, k)j(x
j
, x

k
) are spatially adjacentg< f(j, k)j(x

j
, x

k
)

are temporally adjacentg:

c. Using climatemodel outputs to compute the covariance of
the SST predictors

The theoretical guarantees of GTV depend on a sufficiently

accurate estimate of the covariance matrix of the Pacific SSTs

S:5E(XTX). However, for our problem where n � p, the

sample covariance (1/n)XTX is a highly uncertain estimate ofS

(Bickel and Levina 2008; Cai et al. 2016). Thus, we propose to

explore the use of ensemble simulations from climate models,

the size of which is several times larger than that of observa-

tions, in order to reduce the uncertainty of the covariance
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matrix estimate and improve the performance of the GTV

regularized regression. While we acknowledge that climate

models might not accurately capture all multiscale space–time

variability of SSTs in the Pacific (e.g., de Szoeke and Xie 2008;

Kim et al. 2014; Bellenger et al. 2014; Li and Xie 2014; Wang

and Miao 2018), we assert that leveraging their information

content to improve high-dimensional data-driven predictive

methods offers great potential and deserves careful examina-

tion. In a recent study by Ham et al. (2019), climate model

outputs were used in the context of ‘‘physics-guided initiali-

zation’’ [the term is adopted from Willard et al. (2020)].

Particularly, the adopted ML model was first trained using

climate model outputs, so some initial estimates of the weights

were obtained. Then, as a second step, prediction was per-

formed by fine-tuning the weights using historical data (a

process known as ‘‘transfer learning’’).

Here, we suggest that defining the GTV regularizer using

covariance information from climate models can increase

predictive performance. We term this approach ‘‘physics-

guided regularization’’. We rigorously demonstrate the merits

of this approach using the SST outputs from the 40 ensemble

members of CESM-LENS. Since CESM-LENS simulations

are produced on a different spatial grid from that of the SST

observations, we interpolated late summer and early fall

SSTs from CESM-LENS linearly onto the observation grid.

We emphasize that the CESM-LENS outputs are used only

to estimate the covariance matrix of the predictors, while

the training of our model (estimation of the regression pa-

rameters and coefficients) and its performance evaluation

(see section 4) are always performed using the observed SST

and precipitation series in the training and test periods,

respectively.

Letting XCL 2 R
40n3p be the detrended and standardized

(zero mean and unit variance) matrix of stacked SST variables

from all the CESM-LENS members, we define ŜCL as the

sample covariance of XCL. We also define Ŝobs as the covari-

ancematrix estimated from the observations. These covariance

matrices are p 3 p matrices in which all considered variables

are ordered by longitude, latitude, and month, resulting in

repetitive patterns arising from the spatial and temporal de-

pendencies (see Fig. 2a for Ŝobs). Visually, there is no striking

difference in the dependence structure of SSTs between dif-

ferent months (Fig. 2a, left panel). The highest correlations

(both positive and negative) are found in the tropics, with

strong SST couplings along the eastern and central tropical

Pacific basin (high positive correlation) and between the

eastern and western tropical Pacific basin (high negative cor-

relation), features that are a consequence of the ENSO (Wang

et al. 2012); for example, see the zoom-in panels in Fig. 2a for

the October covariance matrix. Figure 2b shows Ŝobs and ŜCL

for the month of October. Although some differences are ob-

served, the CESM-LENS appears to capture well the spatial

structure of the observed SST correlations (i.e., tropics vs ex-

tratropics, etc.), and as demonstrated in section 4a, the reduced

uncertainty of ŜCL adds significant predictive skill and robust-

ness to the GTV model.

To finalize the construction of the graph underlying the

GTV regularization, we further process the SST covariance

matrix ŜCL estimated from the output of CESM-LENS, using a

thresholding procedure with statistical guarantees (see Bickel

and Levina 2008; Li et al. 2018). This method simply sets ele-

ments of the sample covariance with absolute value under a

certain threshold equal to zero, that is, for a threshold u, the

covariance graphG has edges E:5 f(j, k): jŜj,kj. u, j 6¼ kg. In
addition to the statistical advantage of this thresholding in

yielding more consistent covariance estimates, thresholding is

also useful from a computational perspective, as it drastically

limits the number of edges used in the regularization term [i.e.,

the number of rows in G in Eq. (6)]. We treat the threshold

u as a model parameter and estimate its optimal value in a

cross-validation training setting (i.e., similarly to l1 and lTV;

see section 3a), which allows us to disregard the smaller, less

certain SST correlation values that, if included, would have led

to a worse performance (i.e., if ŜCL were not informative at all,

the optimal u would be close to one).

d. Accounting for nonstationarity in precipitation

teleconnections

The last issue that our analysis aims to account for is possi-

ble nonstationarities in the strength of the precipitation tele-

connections. Traditionally, precipitation in the SWUS has

been linked to various large-scale modes of climate variability,

and more commonly the state of ENSO (Schonher and

Nicholson 1989; Redmond and Koch 1991; Mo and Higgins

1998; McCabe and Dettinger 1999; Cayan et al. 1999).

Physically, El Niño (or La Niña) events typically associate

with persistent low (or high) atmospheric pressure patterns

over the northeastern Pacific (a teleconnection that materi-

alizes via quasi-stationary Rossby waves; Trenberth et al.

1998; Castello and Shelton 2004), and thus disturb the loca-

tion and strength of the wintertime jet stream, which can then

bring more (or fewer) winter storms to the SWUS, leading to

wet (or dry) conditions over the SWUS and dry (or wet)

conditions over the northwestern United States. However,

recent research shows that the ENSO effect on the atmo-

spheric pressure and (consequently) on precipitation over the

eastern Pacific and North America has been decreasing in

strength during the last 3–4 decades, while many studies have

highlighted to a greater or lesser extent that the western

Pacific climatic state (e.g., SSTs) has been a stronger driver of

precipitation variability over North America (Wang et al.

2014; Baxter and Nigam 2015; Teng and Branstator 2017;

Seager et al. 2017; Swain et al. 2017; Myoung et al. 2018;

Mamalakis et al. 2018). On a similar note, new research

(Johnson et al. 2019) shows that during the last 3–4 decades,

western Pacific SSTs have been important players in affecting

the connection between the tropical atmospheric circulation

and the eastern tropical Pacific SSTs, during weak ENSO

events, which highlights changes in the tropical Pacific dy-

namics (see also Mamalakis et al. 2019). Whether these

changes in precipitation teleconnections and Pacific dynamics

are a result of internal multidecadal climate variability or

anthropogenic forcing is still not clear. However, to ac-

knowledge the nonstationary nature of the prediction prob-

lem, we herein use a weighted loss function that gives more

weight to the more recent years in the training dataset (i.e.,
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the period after the 1970s and 1980s). This is roughly the time

that most studies have pinpointed as the start of these changes

(Wang et al. 2014; Swain et al. 2016; Mamalakis et al. 2018;

Johnson et al. 2019), and it is also the period during which the

SWUS precipitation variability (interannual variance) has

started to increase (see Fig. 1). As such, with regard to the

data-fit term of Eq. (6), we minimize the weighted loss

function �1989

t51940fa19892t(y(t) 2 x(t) � b)2g, with a being a dis-

count factor set to a 5 0.90, and x(t) � b indicating the inner

product. This simple but effective approach is widely used in

the forecasting literature (e.g., Hyndman and Athanasopoulos

2018) and gives preference to the relationship between Pacific

SSTs and SWUS precipitation in the more recent decades, while

still retaining some information from earlier years.

4. Results

In Fig. 3, we summarize schematically the proposed ap-

proach based on the GTV described in the previous sections,

for the prediction of winter precipitation totals in SWUS. We

inform our prediction using observed Pacific SSTs during the

boreal late summer and early fall (July–October) and we

form a space–time covariance graph with edge weights corre-

sponding to pairwise correlations (normalized covariances)

FIG. 2. Space–time covariance of sea surface temperatures (SSTs) in the Pacific Ocean. (a) Sample covariance matrix of the observed

Pacific SSTs over longitude–latitude and for four months. Zoom-in covariance in October highlights the spatial extent of the tropical

ENSO signal and a further zoom-in at the fixed latitude of 608S shows the spatial longitudinal dependence. (b) Comparison of the sample

covariance of October Pacific SSTs as estimated from the observations and the output of CESM-LENS.
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between SST boxes of 108 3 108, to constrain our regularization
scheme, in addition to the traditionally used LASSO term.

Correlations are obtained from the output of climate models

(i.e., using SST outputs from 40 ensemble members of the

CESM-LENS, for the period 1940–2005) to decrease estimation

uncertainty and improve prediction in the test period.

a. Predictive performance of the GTV model

The GTV model [Eq. (6)] was fitted in the training period

(from 1940/41 to 1989/90) and the optimal threshold value u*

and optimal parameter values (l1*, lTV* ) were estimated through

a fivefold cross-validation procedure (see section 3a). For the

case of the areal average precipitation over SWUS, this pro-

cedure identified the values u* 5 0.5 and (l1*, lTV* ) 5 (0.013,

0.0007). To test the sensitivity and robustness of the GTV

model to this optimal choice of parameters, and also to

showcase the advantage of using the CESM-LENS versus the

covariance of observations, we start by presenting and discus-

sing results for three different values u 5 (0.35, 0.5, 0.75) and

various (l1, lTV) combinations. Figure 4 shows the October

SSTs covariance for those different u thresholds, highlighting

the sparseness of the covariance matrix as the threshold in-

creases. Although not shown in Fig. 4, the dependency graph

formed by the thresholded covariances has, as expected, a

decreasing number of links (it is sparser) as u increases.

Specifically, the number of links of the GTV graph is 80 503,

32 644, and 5357 for u 5 0.35, 0.5, and 0.75, respectively,

highlighting the computational advantages that the reduced-

degree graph also offers.

The center-column panels in Fig. 4 show the model perfor-

mance in the test period, measured by the coefficient of de-

termination R2, as a function of the different combinations of

(l1, lTV) parameters. On the same panels, the optimal set

of parameters (l1*, lTV* ) obtained from the fivefold cross-

validation in the training period, conditional on the three

values of u, is also shown. It is observed that for u* 5 0.5, the

optimal parameters (l1*, lTV* ) robustly fall within the region for

which the model performance in the test period is also optimal.

This illustrates that optimally thresholding the covariance to

reduce the spatiotemporally correlated predictors used in the

regularization avoids overfitting and increases model accuracy.

Moreover, our results show that the GTV model explains

about R2 5 40% of precipitation variance in the test period;

even for parameter values other than the optimal (u*, l1*, lTV* ),

R2 is consistently higher than 30%. This is a significant im-

provement over the R2 values obtained in prior work, since

commonly used teleconnection indices typically result in a

much lower fraction of explained variance, on the order of

10%–20% (see Lee et al. 2018; Deser et al. 2018; see also Fig. 6

herein). The latter indicates that informing the GTV regular-

izer based on the covariance matrix ŜCL robustly improves the

prediction.

To highlight further the merit of using the climate model

covariance ŜCL versus the covariance of the observations Ŝobs,

the rightmost column panels in Fig. 4 present the same analysis

as the middle column panels, but using Ŝobs instead. It is telling

that the performance in the test period in this case is inferior

(smaller R2 values) for all combinations of parameters

(l1, lTV) and threshold values u.

Having established the robustness of the GTV model using

ŜCL with the optimal parameters u* 5 0.5 and (l1*, lTV* ) 5
(0.013, 0.0007), we compare in Fig. 5 the predicted and observed

precipitation series for the years from 1990/91 to 2018/19.

The predicted series explains about 42% of the precipitation

FIG. 3. Schematic for the graph-guided regularization [graph total variation (GTV)] for predicting winter precipitation over SWUS.We

use observed Pacific SSTs as input to the predictivemodel and we form a space–time covariance graphwith edge weights corresponding to

pairwise SST covariances to constrain themodel via aGTV regularization term. The covariancematrix is estimated based on the output of

climate models and subjected to a hard thresholding (see section 3c) to increase the consistency of the dependency among predictors for

improved performance of the GTV algorithm.
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variability and captures adequately many of the extreme pre-

cipitation years (i.e., the wet years 1992/93, 1994/95, 1997/98,

and 2004/05 and the dry years 1998/99, 2001/02, and 2006/07.

Also, the probability of a dry (or wet) hit is high (high chance

in predicting dry, when actually dry conditions occur, and

likewise for wet). Specifically, if we define a wet (dry) year to

be a year that falls above (below) the multiyear precipitation

average, then our results indicate that our method exhibits

a wet hit probability of 64% and dry hit probability of 72%.

Moreover, the residuals between the prediction and observa-

tions are found to be normally distributed and exhibit in-

significant autocorrelation at a 0.05 significance level (see

Figs. 5b,c), consistent with the ‘‘white noise’’ assumption in

Eqs. (1) and (2).

Finally, the residuals of the prediction do not show statistically

significant correlation with the Pacific SSTs (Fig. 5d), indicating

that no information in the Pacific SSTs is left unexplored in the

predictive model. Only a few small and incoherent SST patterns

are found to significantly correlate to precipitation at a 0.05

significance level, probably due the fact that in Fig. 5d we si-

multaneously test multiple ‘‘local’’ hypotheses, which increases

the chances of a type I error (i.e., rejecting a true null hypothesis;

Wilks 2016). Thus, we can conclude that our model sufficiently

exploits the Pacific SST information, and that any deviation

(residual) between our predictions and reality either comes from

other forcings not included in our analysis (e.g., SST variability

over the Atlantic Ocean; Enfield et al. 2001) or is the result of

internal stochastic variability.

FIG. 4. Sensitivity analysis of the GTVmodel performance for a range of covariance thresholds u and regularization parameters l1 and

lTV. (left) The covariance of the October SSTs (as estimated based on the CESM-LENS) for three different thresholds (u5 0.35, 0.5, and

0.75). (center), The coefficient of determination (R2) between the areal average observed and model predicted precipitation in the test

period (1990/91–2018/19), when the CESM-LENS covariance is used to define the GTV regularizer. (right) As in the center panels, but

when the observed SST covariance is used. In all panels, and conditional on the corresponding values of u, the optimal (l1*, lTV* ) pair for

each model (obtained by using a fivefold cross-validation in the training period 1940/41–1989/90) is shown (black dots). These results

highlight that 1) the use of the CESM-LENS covariance, instead of the observational covariance, to inform theGTV regularizer leads to a

highly robust and improved predictive performance, as judged by the larger domain of regularization parameters with highR2 values (see

center column plots, as compared to their right counterparts), and 2) our choice to use a threshold of u* 5 0.5, which was based on a

fivefold cross-validation in the training period (see section 4a), shows to yield the most robust and highest predictive performance.
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b. Benchmarking against other predictive models

In this section, we compare the prediction skill of the GTV,

for all climate divisions over the SWUS and the areal average

precipitation, to other regularized regression models and

models based on commonly used teleconnections (Fig. 6).

Specifically, we benchmark our results against the following

methods:

d LASSO: standard ‘1-penalized regression; coefficients are

penalized so that the solution is very sparse.
d Fused LASSO: Direct spatial and temporal neighbors are

penalized to have similar coefficients.

d GTV (Obs): GTV with the regularization term defined using

the covariance matrix estimated from the observations and

thresholded at u* 5 0.5.
d GTV (CESM-LENS): GTV with the regularization term

defined using the covariance matrix estimated from CESM-

LENS and thresholded at u* 5 0.5.
d Ordinary least squares using known teleconnection indices.

We highlight that all methods are trained in years from 1940/

41 to 1989/90 using theweighting formula described in section 3d

to account for nonstationarity and tested in years from 1990/91

to 2018/19. Only observations are used for training and testing;

FIG. 5. Evaluation of the prediction of winter (November–March) precipitation. (a) Series of observed (green)

and predicted (brown) November–March areal average SWUS precipitation during the test period from 1990/91 to

2018/19. Prediction is made using the sample covariance from the CESM-LENS output. (b),(c) Histogram and

autocorrelation function of the residual time series during the test period [residuals are between GTV predictions

and observations shown in (a)]. The null hypothesis that the residuals are normally distributed is not rejected at a

0.05 significance level. Also, the null hypothesis that there is no year to year linear dependence (autocorrelation) in

the residual time series is not rejected at the 0.05 significance level. (d) Partial correlation between SWUS pre-

cipitation inNovember–March and linear detrended grid point SSTs in July–October, after accounting for theGTV

prediction. Stippling indicates locally significant correlations. The absence of significant correlation patterns in-

dicates that no more predictive information can be extracted from the Pacific basin SSTs, providing confidence for

the fitted model.
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the CESM-LENS output is used simply to define the regulari-

zation term in theGTV (CESM-LENS), but not to actually fit or

test the model.

First, we find that the prediction accuracy differs significantly

among climate divisions of the studied region. Most notably,

prediction of northern climate divisions in California and Utah,

specifically, CA(4), CA(5), UT(1), UT(6), and UT(7), is poorer

relatively to climate divisions over most of Arizona (AZ). The

fact that this holds for all models indicates that the signal of the

Pacific SSTs to precipitation is weaker as one moves to northern

California, Nevada, and Utah, which is in accordance with

other studies (see Schonher and Nicholson 1989; McCabe and

Dettinger 1999; Castello and Shelton 2004; Mamalakis et al.

2018; see also our discussion in section 2).With regard to the best

performing model, our results show that the proposed GTV

model reproduces the highest fraction of precipitation variability

over almost all climate divisions, ranging from almostR25 0.5 in

AZ(7) toR2 5 0.1 in UT(1), andR25 0.42 for the areal average

precipitation, when using ŜCL. When using Ŝobs, the perfor-

mance is poorer and similar to the performance of LASSO and

fused LASSO, in terms of the areal average precipitation. Fused

LASSO performs slightly better than GTV in AZ(3), but it only

slightly exceeds R2 5 0.1 for the areal average precipitation.

As a benchmark, we also compare the prediction performance

of GTV with known physical teleconnections. Specifically, we

train a weighted (see section 3d) linear regression scheme using

the averaged July–October Niño-3.4 index as our predictor,

which captures ENSO variability and is typically associated with

SWUSprecipitation.We also use aweighted bivariate regression

model combining theNiño-3.4 index and theNewZealand index

(NZI) over the same summer months. The NZI has been shown

to exhibit high correlation with precipitation over the last four

decades (Mamalakis et al. 2018). The latter interhemispheric

teleconnection has been suggested to materialize through a

western Pacific ocean–atmosphere pathway, whereby SST anom-

alies in the southwestern Pacific during late boreal summer can

modulate time-lagged anomalies of the same sign in the north-

western and central Pacific via perturbation of the regional

southern Hadley cell, which in turn affect the jet stream and

winter storm tracks to the U.S. west coast. Our results show that

ENSO-based predictions explain about 10%–15% of the pre-

cipitation variability over most climate divisions. When NZI is

added, the prediction performance increases significantly and

the explained variance is almost twice as high for the areal av-

erage SWUS precipitation. However, in almost all climate divi-

sions, the GTV(CESM-LENS) model outperforms all other

models. Similar conclusions are reached also based on the mean

square error (see Table 1), where the GTVmodel is not the best

performing in only three climate divisions out of the 18 [i.e., in

AZ(3), AZ(4), and AZ(7)].

Generally, the results described above, and summarized in

Table 1 and Fig. 6, show that GTV(CESM-LENS) robustly

outperforms the competing regularized regression schemes

and known teleconnections, offering promise for increasing the

predictive skill of winter precipitation over the SWUS.

c. Physical interpretation of the predictors

In this section, we seek insight intowhich SST patterns play an

important role in driving winter precipitation variability over

the SWUS. In doing so, we seek physical interpretations of the

FIG. 6. Performance of (top) GTV and different methods of regularization and (bottom) known teleconnections

in predicting precipitation totals over different SWUS divisions in the test period from 1990/91 to 2018/19. The

coefficient of determination (R2) is presented. It is shown that GTV with model-estimated covariance of SSTs

outperforms all other regularization methods (top) as well as statistical regression on two known teleconnections

(bottom).
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‘‘optimal’’ solutions of regression coefficients corresponding to

each regularization method. We repeat here that we estimate b̂

by (i) applying a fivefold cross-validation technique to the

training data to estimate the regularization parameters of each

model, and (ii) minimizing the corresponding loss function using

the estimated regularization parameters from (i). Although this

analysis is not suitable to draw rigorous causal inferences, it can

highlight important sources of predictability for precipitation,

which should be physically interpretable.

The optimal weights b̂ for the LASSO model are presented

in Fig. 7a. Keeping in mind that the LASSO regularization

promotes sparsity, this method essentially pinpoints the few

regions around the Pacific basin, over which late summer and

early fall SSTs contained the highest predictive information for

November–March precipitation, during the training period

from 1940/41 to 1989/90. Specifically, negative regression co-

efficients on the order of 20.3 are found over the tropical and

subtropical western Pacific, and positive coefficients of the

same order are found over the Southern Hemisphere midlati-

tudes. Fused LASSO (Fig. 7b), which promotes the assignment

of similar weights to neighboring grid boxes, yields a smoother

version of the LASSO solution, in which the majority of Pacific

participates in the prediction, but many regions (grid boxes)

contribute in a negligible way (many coefficients are on the

order of 1023–1024). There is some contribution by the

northern midlatitude SSTs, but the highest weights are again

assigned to the tropical and subtropical western Pacific (neg-

ative coefficients), and to the Southern Hemisphere midlati-

tudes, especially over the southeastern Pacific (positive

coefficients). Last, slightly different solutions are obtained by

the GTV model when using Ŝobs (Fig. 7c) or ŜCL (Fig. 7d).

However, in terms of the patterns of the SST predictors (i.e.,

not in terms of grid by grid comparison), there is some con-

sistency between these two variants over the southwestern

Pacific Ocean (where both models exhibit high negative co-

efficients), and the northeastern and central Pacific basin

(positive coefficients).

Although the GTV model (when using ŜCL) gives the best

prediction performance in the test period, for our physical in-

terpretation we focus on SST patterns that are consistent across

all methods. Specifically, in accordance with recent studies

(Wang et al. 2014; Seager et al. 2017; Swain et al. 2017; Myoung

et al. 2018; Mamalakis et al. 2018), all models highlight to a

greater or lesser extent the western Pacific SSTs as important

predictors of SWUS precipitation, rather than the eastern Pacific

SSTs. Physically, it has been shown that the western tropical

Pacific is a region over which anomalous convection can be an

important source of Rossby wave energy, which teleconnects

through a quasi-stationary Rossby wave train with the atmo-

spheric pressure over the northeastern Pacific, affecting the lo-

cation of the jet stream, and eventually precipitation totals in

North America (Wang et al. 2014). Moreover, the southwestern

Pacific (close to New Zealand) has been highlighted in the lit-

erature as a special region in leading tropical climate. First, some

studies support that climate variability (e.g., SST, sea level

pressure, etc.) over the southwestern Pacific leads by a few sea-

sons the ENSO variability (Trenberth and Shea 1987; van Loon

and Shea 1987; Stephens et al. 2007), and specific indices have

been suggested to increase predictive skill of ENSO state

(Hamlington et al. 2015). Given that ENSO is known to be re-

lated with SWUS precipitation during winter (i.e., for zero lead

time), the southwestern Pacific SSTs may provide important

predictors of precipitation, by leading the ENSO state, and are

highlighted by all models in our analysis. By contrast, eastern

tropical Pacific SSTs are not shown to be predictive, since our

analysis considers nonzero lead times. More recent studies,

however, suggest that western Pacific SSTs can also affect pre-

cipitation through a western Pacific pathway (i.e., not necessarily

TABLE 1.Mean square error (MSE) of differentmethods of regularization and teleconnections in predicting precipitation totals over different

SWUS divisions in the test period from 1990/91 to 2018/19. Precipitation series has been standardized (zero mean and unit variance). For the

GTVmodel the covariance threshold of u*5 0.5 has been used. Bold font indicates the method with the lowest MSE for each climate division.

Region Niño-3.4 Niño-3.4 and NZI LASSO Fused LASSO GTV (Obs) GTV (CESM-LENS)

Arizona (1) 1.1515 1.0091 1.1556 0.9549 1.1279 0.9321

Arizona (2) 1.0219 0.8037 0.9234 0.9631 0.9349 0.7372

Arizona (3) 1.1344 0.9102 1.0036 0.8540 0.9691 0.8625

Arizona (4) 0.9812 0.6815 0.9017 0.9536 0.7758 0.7571

Arizona (5) 1.1927 0.9918 1.3016 1.0754 1.2016 0.9833

Arizona (6) 0.9684 0.6985 0.8250 0.8656 0.7178 0.6744

Arizona (7) 0.9239 0.6104 0.7885 0.7105 0.5936 0.6135

California (4) 0.8560 0.9695 0.9469 0.8174 0.9549 0.7672

California (5) 0.9169 1.1322 0.9663 0.8756 0.9663 0.8270

California (6) 1.0367 0.9062 1.0598 0.9606 1.1127 0.8552

California (7) 1.1252 0.9870 1.3009 1.0544 1.1543 0.8409
Nevada (3) 0.9632 0.8927 1.0182 0.8761 0.9006 0.7889

Nevada (4) 1.1680 1.0907 1.2489 1.0980 1.1567 0.9255

Utah (1) 1.1706 1.2818 1.2238 1.2196 1.1871 1.1074
Utah (2) 1.1295 1.0078 1.1973 0.9915 1.1512 0.9545

Utah (4) 0.9243 0.8656 0.9108 0.9000 0.8312 0.7773

Utah (6) 0.8958 0.9667 0.8537 0.8849 0.7305 0.7012

Utah (7) 0.8462 0.7622 0.8470 0.8740 0.8450 0.6701
Area-weighted average 0.9818 0.8671 1.0087 0.9803 1.0074 0.6652
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through ENSO teleconnections) (Mamalakis et al. 2018). The

latter has been suggested to materialize through the seasonal

migration of the intertropical convergence zone and the associ-

ated expansion of the southern Hadley cell during late summer

(Waliser and Gautier 1993; Berry and Reeder 2014; Mamalakis

and Foufoula-Georgiou 2018), which allows for persistent SST

anomalies to impact the atmospheric circulation and climate

variability in the western tropical Pacific, which as noted earlier

is a key region of Rossby wave energy. This teleconnection has

been increasing in importance during the last 40 years, which is

also the time when new, ENSO-independent SST patterns have

been emerging and affecting tropical atmospheric circulation

(Johnson et al. 2019).

d. Sensitivity of the GTV model to uncertainty in the
covariance matrix

Finally, to explore the sensitivity of the GTV model to pertur-

bations of the covariance matrix used to define the regularization

term,weperforma bootstrap analysis. Namely, rather than stacking

all 40 CESM-LENS trajectories to form the covariance matrix, we

resample the 40 trajectories (with replacement) and compute the

sample covariance of the new sample. Next, we form our GTV

regularization term using this resampled covariance matrix, then fit

the GTV scheme in the training period, and finally calculate the

coefficient of determination (R2) in the test period.By repeating this

procedure 1000 times, we can quantify how the uncertainty in the

covariance matrix propagates to uncertainty in the regression co-

efficients b̂ and model performance.

Our results show that the GTVmodel always captures more

than R2 5 30% of the variability of the November–March

areal-average precipitation, in some cases reaching R2 5 45%.

The bootstrap average is on the order of R2 5 40% and the

bootstrap standard deviation is about 5% (see Fig. 8a). These

results indicate that theGTVmodel is not particularly sensitive

to the uncertainty in the covariance matrix and always out-

performs all alternative predictive models.

Regarding the propagation of uncertainty to the regression

coefficients, the average vector of b̂ across the 1000 bootstrap

FIG. 7. The emergent predictors of the areal average SWUS winter precipitation for different models of regu-

larization: (a) LASSO, (b) fused LASSO, (c) GTV using the sample covariance of the observed SSTs, and (d) GTV

using the sample covariance from the CESM-LENS output. The b̂ values are presented (colored circles) after

training eachmethod in the training period from 1940/41 to 1989/90, using a fivefold cross-validation technique. The

color of the circles indicates the sign of the b̂ values (yellow for positive and purple for negative), while the size of

circles is proportional the their magnitude; for each method, the minimum and maximum b̂ values (in absolute

terms) are also given. Niño-3.4 and NZI boxes are also shown. All models highlight to a greater or lesser extent the

western and southwestern Pacific SSTs as important predictors of SWUS precipitation.
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realizations (see Fig. 8b) very closely resembles the results pre-

sented in Fig. 7d, indicating the importance of the southwestern

Pacific Ocean (high negative coefficients), and the northeastern

and central Pacific basin (positive coefficients). Moreover, al-

though in some grid points the standard deviation of b̂ across the

1000 bootstrap realizations is of the same magnitude as the av-

erage value, most of the largest coefficients in Fig. 8b are char-

acterized by small underlying uncertainty in Fig. 8c, which implies

that they are not sensitive to covariance perturbations as quanti-

fied here. This provides confidence that these SST features mostly

located in the western Pacific are indeed important sources of

predictability of the November–March SWUS precipitation.

5. Conclusions and future work

In this study, we approached the problem of early prediction

of winter precipitation over the SWUS by using machine

learning methodologies to increase predictive skill relative to

traditional approaches of utilizing dynamical models or relying

on empirically established teleconnections. We use late sum-

mer and early fall SST information to predict precipitation

based on a newly proposed regularized regression scheme,

specifically designed to account for high dimensionality and

high spatiotemporal dependence structure in the predictor

variables, making it well suited to climate applications. The

proposed predictive model accounts for high spatiotemporal

dependence structures in the predictors expressed as a graph,

which is then used to define a graph total variation (GTV)

regularizer that promotes similar weights for highly correlated

predictors. We also address the short observational record and

high dimensionality of the problem by using LASSO terms that

promote sparsity, as well as by using large-ensemble outputs

from climate models to decrease the structural uncertainty in

the estimation of the SST covariance matrix.

Our analysis shows that predictive skill for SWUS precipitation

can be increased considerably by using our novel regularization

FIG. 8. Bootstrap investigation of the sensitivity of the GTV to the uncertainty of the covariance estimated from

CESM-LENS. (a) The histogram of the coefficient of determination (R2) between the observed November–March

SWUS precipitation and the GTV prediction across all 1000 bootstrap realizations. (b) The vector average of the 1000

b̂ vectors from the 1000 bootstrap realizations. For each realization, training is performed in the period from 1940/41 to

1989/90, using a fivefold cross-validation technique. (c) As in (b), but the standard deviation of the 1000 b̂ vectors is

presented. The small uncertainty of the most important predictors (grids with the largest b̂ values) is noteworthy.
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methodology, explaining more than 40% of the average precipi-

tation variability over the SWUS. Our model’s performance is

higher than any other regularized regression model (LASSO and

fused LASSO), and it also outperforms models based on known

teleconnection indices. Our results also show that, in accordance

with recent literature (DelSole and Banerjee 2017; Ham et al.

2019), climatemodels can be used in a nonconventional way (e.g.,

for training rather than predicting and, in our case, for building the

graph-based regularizer) toward increasing prediction accuracy.

With regard to important regions/sources of precipitation pre-

dictability, our analysis highlights the tropical and subtropical

western Pacific SSTs as themost consistently important predictors

of precipitation, which have increasingly gained attention in the

literature (Wang et al. 2014; Swain et al. 2017; Mamalakis et al.

2018). Finally, based on a bootstrap analysis, we show that the

proposed model is robust to perturbations in the covariance ma-

trix used to form the GTV regularization term.

The results presented herein suggest some further questions

and challenges with regard to the exigent task of seasonal

SWUS precipitation prediction. For example, future work

should address the intricate nonstationarity of the climate

system more explicitly by allowing the regression coefficients

to vary with time (Livneh and Badger 2020). This property

might be especially important as precipitation variability in

California is expected to increase even more under climate

change (Swain et al. 2018). It should also address quantification

of the underlying uncertainty of the regression coefficients

(beyond the uncertainty of the covariance matrix explored

herein), which can be translated into confidence intervals of the

predicted precipitation. Last, our approach can be extended by

using global information from additional climate variables

(e.g., ocean heat content, atmospheric pressure, etc.) and using

climate model outputs from different projects, like the North

AmericanMultimodel Ensemble (Kirtman et al. 2014), phase 6

of the Coupled Model Intercomparison Project (Eyring et al.

2016), or the Decadal Prediction Large Ensemble project

(Yeager et al. 2018).

In conclusion, while more complex nonlinear models, such

as deep neural networks, have been gaining popularity in

modeling of climate data, our work shows that for high-

dimensional problems with limited historical records sparse

linear models with informative regularization can play an im-

portant role in building predictive models for climate vari-

ability. This is consistent with a recent review paper that

focused on seasonal to subseasonal prediction of climate var-

iables over the entire United States (He et al. 2020) and that

highlighted the success of regularized regression models (such

as simple LASSO; see also DelSole and Banerjee 2017). In

addition, an important advantage of sparse linear models in

this context is that they are considerably easier to interpret

from a physical perspective, compared to nonlinear models

such as deep neural networks. Our results suggest that a

promising direction for future research is the development of

new models that can incorporate relevant physical knowledge

(e.g., from large ensemble simulations of climate models), that

can retain the interpretability of sparse linear models, and that

have the flexibility to improve the accuracy of current models

for seasonal and subseasonal precipitation prediction.
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