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Challenges Posed by Human Intelligence Tests

Maithilee Kunda®?

This manuscript was compiled on January 14, 2021

Observations abound about the power of visual imagery in human intelligence, from how Nobel-prize-winning physicists make their discov-
eries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is: what
are the computations taking place in someone’s mind when they use visual imagery? Answering this question is not easy and will require
much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question
from the perspective of artificial intelligence: if you have an intelligent agent that uses visual-imagery-based knowledge representations and
reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent
progress in Al towards answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based
artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge rep-
resentations and problem-solving strategies that are sufficient for solving problems from the Raven’s Progressive Matrices intelligence test.
We then look at how artificial agents, instead of being designed manually by Al researchers, might learn portions of their own knowledge
and reasoning procedures from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving
strategies, and learning the actual definition of the task in the first place.

Artificial intelligence | Computational modeling | Mental imagery | Raven’s Progressive Matrices | Visuospatial reasoning

“l think in pictures. Words are like a second language to me. | they use visual imagery? This is a difficult question that continues
translate both spoken and written words into full-color movies, to receive attention across cognitive science disciplines (15).
complete with sound, which run like a VCR tape in my head.... Here, we focus on a related, more circumscribed question from
Language-based thinkers often find this phenomenon difficult the perspective of artificial intelligence: IF you have an intelligent
to understand, but in my job as an equipment designer for the agent that uses visual-imagery-based knowledge representa-
livestock industry, visual thinking is a tremendous advantage.” tions and reasoning operations, THEN what kinds of problem
- Temple Grandin, prof. animal science and autism advocate (1) solving might be possible, and how would it all work?

In this paper, we discuss progress in Al towards answering this
question in the domain of visuospatial reasoning—reasoning about
the geometric and spatial properties of visual objects (16). This
discussion necessarily leaves out such intriguing and important
complexities as: non-visual forms of spatial reasoning, e.g., in
people with visual impairments (17); the role of physics and forces
in imagery (18); imagery in other sensory modalities (19); etc.

As a case study, we focus on visuospatial reasoning for solving
Temple Grandin is a well-known animal scientist who is on the human intelligence tests like Raven’s Progressive Matrices. While
autism spectrum. She has had incredible professional successin ~ Many Al techniques have been developed to solve many different
the livestock industry, and she credits her success to her strong tests (20), we are still quite far from having an artificial agent that
visual imagery skills, i.e., abilities to generate, transform, combine, ~ €an “sit down and take” an intelligence test without specialized
and inspect visual mental representations. (1). algorithms having been designed for that purpose. Contributions

Many physicists such as Richard Feynman (2), Albert Einstein  ©f this paper include discussions of:

(3) and James Clerk Maxwell (4) used imagery in their creative dis- 1. Why intelligence tests are such a good challenge for Al.
Covery processes, and similar patterns emerge in accounts by and 2. A framework for artificial prOblem-SOlVing agents with four com-
about mathematicians (5), engineers (6), computer programmers ponents: a problem definition; input processing; domain knowl-
(7), product designers (8), surgeons (9), memory champions (10), edge; and a problem-solving strategy or procedure.

and more. People also use visual imagery in everyday activities 3. Several imagery-based agents that solve Raven’s problems.
such as language comprehension (11), story understanding (12), 4. How animagery-based agent could learn its domain knowledge,
and physical (13) and mathematical reasoning (14). problem-solving strategies, and problem definition / input pro-

These observations raise an interesting scientific question: cessing components, instead of each being manually designed.
what are the computations taking place in someone’s mind when

“What I am really trying to do is bring birth to clarity, which is
really a half-assedly thought-out pictorial semi-vision thing. |
would see the jiggle-jiggle-jiggle or the wiggle of the path. Even
now when | talk about the influence functional, | see the coupling
and | take this turn—like as if there was a big bag of stuff-and
try to collect it away and to push it. It's all visual. It's hard to
explain.” - Richard Feynman, Nobel laureate in physics (2)
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Fig. 1. Sample problems like those from the Raven’s intelligence test, compara-
ble to ones of easy-to-middling difficulty on the standard version of the test.
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Why the Raven’s test is (still!) a hard Al challenge

Take a look at the problems in Figure 1. Can you solve them?

While these problems may seem straightforward, consider for a
moment the complexity of what you just did. As you were solving
each problem, some executive control system in your mind was
planning and executing a series of physical and cognitive opera-
tions, including shifts of gaze from one element of the problem to
another; storing extracted features in working memory; computing
and storing the results of intermediate calculations; and so on.
And, you did all of this without any explicit instructions as to what
cognitive operations to use, or in what order to apply them.

At a deeper level, you may notice that no one actually even
told you what these problems were about. Typically, Raven’s test-
takers are instructed to solve each problem by selecting the answer
from the bottom that best completes the matrix portion on top (21).
However, even if you hadn’t seen problems quite like these before,
it is likely that you were able to grok the point of the problems just
by looking at them, no doubt due to a lifetime of experience with
pattern-matching games and multiple choice tests.

From a general Al perspective, intelligence tests like the Raven’s
have been “solved” in the sense that we do have computational
programs that, given a Raven’s problem as input, can often produce
the correct answer as an output. In fact, some of the earliest work
in Al was Evans’ classic ANALOGY program from the 1960s—at
the time, the largest program written in LISP to date!—that solved
geometric analogy problems from college aptitude tests (22).

However, all of these programs have essentially been hand-
crafted to solve Raven’s problems in one way or another. Humans
(at least in theory) are supposed to take intelligence tests without
having practiced them beforehand. Thus, intelligence tests like
the Raven’s are still an “unsolved” challenge for Al when treated
as tests of generalization, i.e., generalizing previously learned
knowledge and skills to solve new and unfamiliar types of problems.

At an even higher level, the notion of “taking a test” is itself a
sophisticated social and cultural construct. In people, for example,
crucial research on stereotype threat has observed how stereo-
types about race and gender can influence a person’s performance
on the exact same test depending on whether they are told it is a
“test” or a “puzzle” (23). If we assume that human cognition can be
explained in computational terms, then someday we ought to be
able to have Al agents that model these effects.”

“Perhaps ironically, early Al research studied what we thought were the hard problems, like taking

tests and playing chess. The next wave of research recognized that the real hard problems were in
fact the ones that were easy for many people, like walking around or recognizing cats (24). Now, we
are realizing that the original hard problems of taking tests and playing chess are quite hard after
all—but only if you really consider the full work of the agent, which includes figuring out what to do
and understanding why you are doing this thing in the first place. In other words, many animals
can walk around and pick up rocks, but only humans play good chess and take difficult tests.

20f8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

The Raven’s test and similar tests of matrix reasoning and
geometric analogy are particularly interesting for Al for several
reasons. First, the Raven’s test, originally designed to measure
eductive ability or the ability to extract and understand information
from a complex situation (21), occupies a unique niche among
psychometric instruments as being the best single-format measure
of a person’s general intelligence (25). In other words, the Raven’s
test seems to tap into fundamental cognitive abilities that are very
relevant to many other things a person tries to do.

Second, there are several Raven'’s tests that span a very wide
range of difficulty levels, from problems that are easy for young
children to problems that are difficult for most adults. The de-
velopmental trajectories of performance that people show offer a
motivating parallel for studying Al agents that meaningfully improve
their problem solving abilities through various learning experiences.

Third, there is evidence that many people use multiple forms of
mental representation while solving Raven’s problems, including
inner language as well as visual imagery (26, 27). Interestingly,
many people on the autism spectrum show patterns of performance
on the Raven’s test that do not match patterns seen in neurotypical
individuals (28), and neuroimaging findings suggest that many
individuals on the spectrum rely more on visual brain regions than
neurotypicals do while solving the test (29). Thus, the Raven’s
test is a fascinating testbed for Al research on visual imagery in
particular and multimodal reasoning more generally.

A framework for artificial agents that solve problems

Many approaches in Al can usefully be decomposed according to
the framework shown in Figure 2. The agent is given a problem as
input and is expected to produce a correct solution as output.

The problem definition refers to the agent’s understanding
of what the problem is actually asking, i.e., what constitutes a
valid format of inputs and outputs (problem template) and what
the goal is in terms of desired outputs (solution criteria). For
example, for a generic Raven’s problem, the problem template
might specify a 2D matrix M of images m;, with one entry in the
matrix missing, and an unordered set A of answer images a;, and
that a valid answer consists of selecting one (and only one) answer
a; € A. The solution criterion is that the selected answer should
be the one that “best fits” in the missing slot in M.

The input processing component refers to how an agent takes
raw or unstructured inputs from the “world” and converts them into
a usable internal problem representation. For example, what the
Raven'’s test actually provides is a pattern of ink on paper. At some
point, this visual image needs to be decomposed into the matrix
M and answer choice A elements in the problem template. For
many artificial agents, input processing is performed outside the
agent, either manually or by some other system. For example,

ARTIFICIAL AGENT FOR SOLVING PROBLEMS

Problem Definition !

__________

e ;
- ——) !+ Domain |
[ Solution Criteria ] i Knowledge |

;
Problem-Solving
Strategy / Procedure

! [ Problem Template ]

Input
Processing

Solution

Selected
Action(s)

Problem
Elements

Problem
instance

Fig. 2. Framework for artificial agents. Pushing the boundaries of what artificial
agents can do often involves deriving more and more of the internal structure and
knowledge of the agent through learning instead of programming.
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most chess-playing agents do not operate using a video feed of a
chess board, but rather using an explicit specification of where all
the pieces are on the board. While this is a reasonable assumption
to make in many Al applications, it does mean that the agent relies
on having a simplified and pre-processed set of inputs.

Domain knowledge refers to whatever knowledge an agent
needs to solve the given type of problems. The Raven'’s test can be
tackled using visuospatial knowledge about symmetry, sequential
geometric patterns, rows and columns, etc.

Finally, the problem-solving strategy encompasses what the
agent actually does to solve a given problem, i.e., the algorithm
that churns over the problem definition, domain knowledge, and
specific problem inputs in order to generate an answer.

Given this framework, what would it mean for an agent to use
visual imagery to solve problems? We offer one formulation: any-
where beyond the input processing step, the agent needs to use
or retain representations of problem information that count as
“images” in some way. This includes image-like representations
occurring in the problem definition, domain knowledge, problem-
solving strategy, and/or in the specific problem representations
generated by the input processing component.

What counts as an image-like representation? Previous re-
search on computational imagery often distinguishes between
spatial representations, i.e., that replicate the spatial structure of
what is being represented, versus visual/object representations,
i.e., that replicate the visual appearance of what is being repre-
sented (30). These categories correspond to findings about spatial
versus object imagery in people (31). Thus, we label agents us-
ing either type of representation as using visual imagery or being
imagery-based. The imagery-based Raven’s agents discussed
later in this paper primarily use visual/object imagery and not spa-
tial imagery, though certainly many other Al research efforts have
developed agents that use spatial imagery (32).

Note that imagery here refers to the format in which something
is represented, not the contents of what is represented. Many
artificial agents reason about visuospatial information using non-
imagery-based representations (33); for example, visuospatial
domain knowledge can be encoded propositionally, such as the
rule: left-of (x,y) = right-of(y,x)

Different types of Raven’s problem-solving agents

Different paradigms of Al agents can now be described according
to components in this framework.

Knowledge-based approaches, also associated with terms like
cognitive systems (34) or symbolic Al, traditionally rely on manually
designed domain knowledge and flexible problem-solving proce-
dures like planning and search to tackle complex problems. The
first wave of propositional Raven’s agents used manual or auto-
mated input processing to convert raw test problem images into
amodal, propositional representations, such as lists of attribute-
value pairs, and then problem-solving procedures would operate
over these propositional representations (33, 35-37). Visuospatial
domain knowledge in these agents included predefined types of
relationships among elements, like similarity or containment, and
methods for extracting and defining relationships.

As foreshadowed in early writings about possible represen-
tational and algorithmic strategy differences on the Raven’s test
(38), a second wave of imagery-based Raven’s agents were also
knowledge-based but their internal representations of problem in-
formation remained visual, i.e., the problem-solving procedures
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directly accessed and manipulated problem images, and even of-
ten created new images during the course of reasoning (39-43).
Visuospatial domain knowledge in these agents included image
functions like rotation, image composition, visual similarity, etc.

More recently, a wave of data-driven Raven’s agents aim to
learn integrated representations of visuospatial domain knowledge
and problem-solving strategies by training on input-output pairs
from a large number of example problems (44—49).

Which approach is correct? This is a bad question, as different
types of agents are used for very different lines of scientific inquiry.
Referring again to Figure 2, most knowledge-based Raven’s agents
are used to study problem-solving procedures and assume a rela-
tively fixed set of domain knowledge (though some of these agents
certainly include forms of learning as well). Most of the data-driven
Raven’s agents are used to study how domain knowledge about
visuospatial relationships can be learned from examples, and the
problem-solving procedure is often (though not always) fixed.

All of these Raven’s agents have many hand-built components,
though the parts that are hand-built differ from one agent to an-
other. Many open Al challenges remain, even within the one task
domain of the Raven’s test, in gradually converted the components
in Figure 2 from being manually programmed to being learned
or developed by the agents themselves. Next, we discuss how
knowledge-based agents can use imagery to solve Raven’s prob-
lems in several different ways, and then we examine emerging
methods for agents to learn their own 1) domain knowledge, 2)
problem-solving strategies, and finally 3) problem definitions.

Imagery-based strategies for solving Raven’s problems

Within the category of imagery-based Raven’s agents, many dif-
ferent formulations are possible, in terms of the problem-solving
strategy that is used, the representation and contents of domain
knowledge, and even the problem definition.

We describe five imagery-based strategies along with results
from research by the author and colleagues. Results are reported
for the Raven’s Standard Progressive Matrices test, scored out of
60 problems (21). For comparison, human norm data suggests
that average children in the US would score around 26/60 as
8-year-olds, 40/60 as 12-year-olds, and 49/60 as 16-yer-olds.

At a high level, the following strategies are described in terms
of two strategy types observed in psychology research: (50):

« In constructive matching, the test-taker looks at the problem
matrix, generates a guess for the missing element, and then
chooses an answer most similar to its generated guess.

* In response elimination, the test-taker looks at each answer in
turn, plugging it into the problem matrix, and choosing the one
that produces the best overall matrix.

Strategy 1 (see Figure 3a). We developed an imagery-based
agent that solves Raven’s problems through multi-step search,
using a constructive matching strategy (39, 43, 51):

1. Using elements from complete rows/columns of the matrix,
search among known visual transformations for the one that
best explains image variation across parallel rows/columns.

2. Apply this transformation to elements in a partial row or col-
umn to predict a new answer image.

3. Search among the answer choices to find the one that is most
similar to the predicted answer image.

More formally, problem inputs include a set M of images m; rep-
resenting sections of the problem matrix, and a set A of answer
choice images a;. Let C be the set of all collinear subsets ¢ of M,
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Raven’s-like problem

(a) Constructive Matching  (b) Response Elimination
Analytical / Element-Wise

(¢) Constructive Matching (d) Response Elimination
Gestalt / Holistic

Fig. 3. Raven’s-like problem and four different imagery-based strategies for solving it. A problem consists of matrix M of elements m; and set A of answer choices a;.
(a) First strategy begins with search for transformation ¢ that best transforms m into m2, then applies ¢ to m3 to produce an image candidate for m4, and finally searches for
answer a; most similar to m4. (b) Second strategy also begins with search for ¢ that best transforms m into m 2, then conducts similar searches for transformations ¢,; that
transform ms3 into each a;, and finally searches for answer a; that yields t,; most similar to ¢. (c) Third strategy begins with search for image m4 that maximizes Gestalt
metric for matrix M, and then searches for answer a; most similar to m4. (d) Fourth strategy involves search for answer a; that maximizes Gestalt metric for matrix M.

with ¢, referring to the first element(s), and ¢, referring to the last
element. Each ¢ contains matrix elements along rows, columns,
or diagonals. We define an analogy g as a pairing of a single
complete collinear subset c; with an incomplete collinear subset
c2 (i€, g = [c12 t C1y = Cow @ Cayl, Where cay is the missing
element in the matrix). All such analogies that share the same c»
are further aggregated into sets G; € G.

In addition, let T" be the agent’s predefined set of visual transfor-
mations. Also let sim(Iy, I2) be a function that returns a real-valued
measure of similarity between images I; and I». First, the agent
finds the best-fit transformation:

(tmaz7 gmaz) - ti%gtz)é (I;leeca;{l (Slm (t(g.cl_z), 9~014y)))

Second, the agent computes a predicted answer image as:
Apred = tmaz (Gmaz-C2.2)- Third, the agent returns the most similar
answer choice: afinal = argmax, . 4 (sim(amed7 ai)).

Hand-coded domain knowledge is provided in the form of the set
T of visual transformations, including eight rectilinear rotations and
reflections (including identity) and three to six image composition
operations (union, intersection, subtraction, and combinations of
these) as well as visual similarity and other image processing utility
functions. Steps 1 and 3 above used exhaustive search.

Successive versions of the agent, using more transformations
T and more varied ways to optimize over matrix entries in Step 1,
have achieved scores of 38/60 (39), 50/60 (51), and 57/60 (43) on
the Raven’s Standard Progressive Matrices test.

Strategy 2 (see Figure 3b).In a related line of research, col-
leagues developed a different imagery-based agent that adopted a
response elimination type of strategy (see Figure 3b). In this work
(40), a smaller set of visual transformations (rotation and reflec-
tion) was used to compute fractal image transformations, i.e. a
representation of one image in terms of another, using techniques
from image compression (52).

In particular, to compute a fractal transformation between
source image A and target image B, B is first partitioned into
a set of subimages b;. Then, for each b;, a fragment a; € A
is found such that b; can be expressed as an affine transforma-
tion ¢; of a;. The fragments a; are twice the size of b;, resulting
in a contractive transformations The set T" of all ¢; is the fractal
transformation of A into B.

To solve a Raven’s problem, a fractal transformation 7" is com-
puted using elements from each complete row/column j in the
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matrix, and then similar transformations 7; are computed for each
of the answer choices plugged into the incomplete rows/columns of
the matrix. Finally, the selected answer is the one yielding the most
similar fractal transformations to those computed for the original
rows/columns of the matrix. Formally, if we let Tsim be a similarity
metric across fractal transformations, the final answer is given by:

Gfingl = argmax \/Z Tsim(T5, T7;)?
J

a;EA

Results using this fractal method were also 50 out of 60 correct on
the Raven’s Standard Progressive Matrices test, allowing for some
ambiguous detections of the answers, or 38 out of 60 correct with
a specific method for resolving these ambiguities (40).

Strategy 3 (see Figure 3c). The first two strategies consider each
matrix element individually. However, people can also use a
“Gestalt” strategy to consider the entire matrix as a whole (38, 53).
For instance, for the problem in Figure 3, if one looks at the matrix
as a single image, an answer might just “appear” in the blank.

In recent work (42), we attempted to model this kind of strat-
egy using neural networks for image inpainting, trained to fill in
the missing portions of real photographs. We used a recently
published image inpainting network consisting of a variational au-
toencoder combined with a generative adversarial network (54),
and we tested several versions of the network trained on different
types of photographs, such as objects, faces, scenes, and textures.
Given an image of the incomplete problem matrix, the network
outputs a guess for what image should fill in the missing portion.
This guess is then used to select the most similar answer.

Formally, let F' be the learned encoder network that converts
an image into a representation in a learned feature space, and
let G be the learned decoder network that converts a feature-
based image back into pixel space, including inpainting to fill in any
missing portions. Then, our agent first computes M’ = G(F(M))
to obtain a new, filled-in matrix image, with m, denoting the new,
filled in portion of M’. Let L2dist represents the L2 norm of a
vector in the learned feature space. Then, the final answer is:

Gfingl = argmin (L2dist (F(mz) - F(az)))
a; €A

Figure 4 shows examples of inpainting results on several ex-
ample problems, some of which are filled in more effectively than
others. The best version of this agent, trained on photographs of
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Fig. 4. Images generated using an inpainting neural network (54) for Raven’s-like
problems (42). The network was trained only on real-world photographs of objects.

objects, answered 25 out of 60 problems on the Raven’s Standard
Progressive Matrices test. While this score may seem low, it is
quite astonishing given that there was no Raven’s-specific informa-
tion fed into or contained in the inpainting network, and in fact the
network had never before “seen” line drawings, only photographs.

Strategy 4 (see Figure 3c). The fourth strategy combines a
Gestalt approach with response elimination. We have not yet
implemented this strategy, nor do we know of other Al efforts that
have, but we present a brief sketch here. Essentially, this strategy
works by plugging in answers to the matrix, and choosing the one
that creates the “best” overall picture, for some notion of best.
Assume a Gestalt metric S that measures the Gestalt quality
of any given image. Images that are highly symmetric, contain
coherent objects, etc. would score highly, and images that are
chaotic or broken up would score poorly. Then, the agent chooses
the answer that scores highest when plugged into the matrix M:

Gfinal = argmax (S(M U ai))
a; €A

Strategy 5 (not shown in figure). The above four strategies treat
RPM matrix elements as single images. However, previous compu-
tational and human studies have suggested that it can be helpful to
decompose RPM problems into multiple subproblems, by breaking
up a single matrix element into subcomponents (35).

In previous work, we have also explored imagery-based tech-
niques for decomposing a geometric analogy into subproblems,
solving each separately, and then re-assembling the sub-solutions
back together to choose the final answer (55), though this method
has not yet been tested on the actual Raven’s tests.

Open questions. From this small survey, it is clear that there is
no single imagery-based Raven’s strategy. Imagery-based agents
are like logic-based agents or neural-network-based agents; there
are a set of generally shared principles of representation and rea-
soning, but then individual agents are designed to use specific
instantiations of these and combine them in different ways to pro-
duce very diverse problem-solving behaviors.

Exploring the space of imagery-based agents is valuable not to
find the “best” one, but rather to characterize the space itself. Each
agent, as a data point in this space of possible agents, is an artifact
that can be studied in order to understand something about how
that particular set of representations and strategies can produce
intelligent task behaviors (56). Future work should continue to add
data points to this space and also investigate the extent to which
these strategies overlap with human problem-solving.

Kunda

Learning visuospatial domain knowledge

Imagery-based agents use many kinds of visuospatial domain
knowledge, including: visual transformations like rotation, scaling,
and composition; hierarchical representations of concepts in terms
of attributes like shape and texture; Gestalt principles like symme-
try, continuity and similarity; etc. These types of knowledge can be
leveraged by an agent to solve problems from the Raven’s test as
well as many other visuospatial tests (32).

Visuospatial domain knowledge also includes more seman-
tically rich information such as what kinds of objects go where
in a scene (57); we do not further discuss this type of seman-
tic knowledge here, though it certainly plays an important role in
imagery-based Al, especially for agents that perform language
understanding or commonsense reasoning tasks (32).

How is visuospatial domain knowledge learned? One hypoth-
esis suggests that agents learn such knowledge through prior
sensorimotor interactions with the world. Under this view, the
precise nature of the representations and learning mechanisms
involved are important open questions. For brevity, we discuss
here Al research on learning two types of visuospatial domain
knowledge—visual transformations and Gestalt principles.

Learning visual transformations. In humans, many reasoning
operators used during visual imagery (e.g., transformations like
mental rotation, scaling, etc.) are hypothesized to be learned from
visuomotor experience, e.g., perceiving the movement of physical
objects in the real world (58). As with the well-known kittens-in-
carousel experiments (59), learning visual transformations may
rely on the combination of active motor actions coupled with visual
perception of the results of those actions. Studies in both children
and adults have indeed found that training on a manual rotation
task does improve performance on mental rotation (60, 61).

Computational efforts to model the learning of visual transfor-
mations have generally represented each transformation as a set
of weights in a neural network. In early work, distinct networks
were used to learn each transformation individually (62). More
recent work combines the visual and motor components of inputs
for learning mental rotation (63). While many of these approaches
implement visual transformations as distinct operations, a more
general approach might represent continuous visual operations as
combinations of basis functions that can be combined in arbitrary
ways (64). Along these lines, other recent work uses more complex
neural networks to represent transformations as combinations of
multiple learned factors, though this work still focused on relatively
simple transformations like rotation and scaling (65, 66).

People certainly do not learn visual transformations from spe-
cialized training on rotation, scaling, etc., taken as separate trans-
formations. More generally, we have access to a very robust and
diverse machinery for simulating visual change, and the simple
“mental rotation” types of tasks often used in studies of visual im-
agery tap into only very tiny slices of this knowledge base. In line
with evidence of the importance of motor actions and forces on our
own imagery abilities (18), we expect that work in Al to model phys-
ical transformations—especially work in robotics that combines
visual and motor inputs/outpus—will be essential for producing the
kinds of capabilities agents need for visual imagery.

There is starting to be a wave of relevant work in Al in the area
of video prediction, which involves learning representations of both
the appearance of objects as well as their dynamics (67—69), in-
cluding for increasingly complex forms of dynamics as with a robot
trying to manipulate a rope (70). Importantly, these efforts focus
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Fig. 5. Images eliciting Gestalt “completion” phenomena. Left contains only
scattered line segments, but we inescapably see a circle and rectangle. Right contains
one whole key and one broken key, but we see two whole keys with occlusion.

on learning and making inferences about object dynamics directly
in the image space, as opposed to computational approaches that
rely on explicit physics simulations and then project predictions
into image space. Thus, these new approaches offer intriguing
possibilities as potential models for how humans might learn naive
physics as a form of imagery-based reasoning.

Learning Gestalt principles. Many visuospatial intelligence tests
rely on a person’s knowledge of visual relationships like similarity,
continuity, symmetry, etc. Simple tests like shape matching require
the test-taker to infer first-order relationships among visual ele-
ments, while more complex tests like the Raven’s often progress
into second-order relationships, i.e., relations over relations.

In one sense, a test like the Raven’s ought to be agnostic with
respect to the specific choice of first-order relationships, and indeed
in many propositional Al agents, a relation like contains (X,Y) can
be replaced with any arbitrary label, and the results will stay the
same. However, for people, the actual visuospatial relationships
at play do deeply influence our problem-solving capabilities. For
example, isomorphs of the Tower of Hanoi task are more difficult
if task rules are less well-aligned with our real-world knowledge
about spatial structure and stacking (71). Similarly, the perceptual
properties of Raven’s problems have been found to be a strong
predictor of item difficulty (72).

A person’s prior knowledge about visuospatial relationships is
closely tied to Gestalt perceptual phenomena. In humans, Gestalt
phenomena have to do, in part, with how we integrate low-level per-
ceptual elements into coherent, higher-level wholes (73), as shown
in Figure 5. Psychology research has enumerated a list of princi-
ples (or laws, perceptual/reasoning processes, etc.) that seem to
operate in human perception, like preferences for closure, symme-
try, etc. (74). Likewise, work in image processing and computer
vision has attempted to define these principles mathematically or
computationally, for instance as a set of rules (75).

However, in more recent computational models, Gestalt prin-
ciples are seen as emergent properties that reflect, rather than
determine, perceptions of structure in an agent’s visual environ-
ment. For example, early approaches to image inpainting—i.e.,
reconstructing a missing/degraded part of an image—used rule-
like principles to determine the structure of missing content, while
later approaches use machine learning to capture structural regu-
larities from data and apply them to new images (76). This seems
reasonable as a model of Gestalt phenomena in human cognition;
it is our years of experience with the world around us we see Figure
5 (left) as partially occluded/degraded views of whole objects.

Image inpainting represents a fascinating area of imagery-
based abilities for artificial agents (54), which we used in our
model of Gestalt-type problem solving on the Raven’s test (42),
as described earlier. Other work in computer vision and machine
learning studies the extent to which neural networks not explicitly
designed to model Gestalt effects might exhibit such effects as
emergent phenomena (77-81).
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Learning a problem-solving strategy

Relatively little research in Al has proposed methods for automati-
cally generating problem-solving procedures for intelligence tests,
despite the extensive research on manually constructed solution
methods or methods that rely on a large number of examples (20).
How does a person obtain an effective problem-solving strategy for
a task they have never seen, on the fly and often without explicit
feedback? Some human research suggests that children learn to
solve a widening range of problems through two primary processes
of 1) strategy discovery, i.e., discovering new strategies for certain
problems or tasks, and 2) strategy generalization, i.e., adapting
strategies they already know for other problems or tasks (82, 83).

Some Al research on strategy discovery can be found in the
area of inductive programming or program synthesis, i.e., given a
number of input-output pairs, constraints, or other partial specifi-
cations of a task, together with a set of available operations, the
system induces a “program” or series of operations that produces
the desired behaviors (84). In other words, “Inductive program-
ming can be seen as a very special subdomain of machine learning
where the hypothesis space consists of classes of computer pro-
grams” (85). Inductive programming has been applied to some
intelligence-test-like tasks, such as number series problems (86),
and to simple visual tasks like learning visual concepts (87, 88).
However, more research is needed to expand these methods to
tackle more complex and diverse sets of tasks. For example, given
the imagery-based strategies described above, a challenge for
imagery-based program induction would be to derive these strate-
gies automatically from a small set of example Raven’s problems.

Al research has often investigated strategy generalization
through the lens of integrating planning with analogy. Case-based
planning looks at how plans stored in memory are retrieved at the
appropriate juncture, modified, and applied to solve a new problem
(89). The majority of this work has focused on agents that use
propositional knowledge representations, and very little (if any) has
applied these methods to address intelligence tests.

Research on strategy selection and adaptation would be enor-
mously informative for studying not just how people approach a
new type of intelligence test but also inter-problem learning on
intelligence tests, i.e., learning from one problem (even without
feedback) and use this knowledge to inform the solution of the
next problem. In humans, one fascinating study gave each of two
groups of children a different set of Raven’s-like problems to start
with, and then the same final set of problems that had ambiguous
answers (53). Depending on which set of starting problems they
received, the children predictably gravitated towards one of two
profiles of performance on the final problems. Modeling these
phenomena remains an open challenge for Al research.

Learning the problem definition

Even with intelligent agents that generate their own problem-
solving strategies or programs, the problem definition—i.e., the
problem template and goal—is still provided by the human system
designer. Interactive task learning is an area of Al research that in-
vestigates how “an agent actively tries to learn the actual definition
of a task through natural interaction with a human instructor, not
just how to perform a task better” (90). Research in interactive task
learning generally involves designing agents or robots that learn
from both verbal and nonverbal information, i.e., instructions along
with examples or situated experiences (91, 92).

Such multi-modal inputs are used all the time in human learning,
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including on intelligence tests: most tests combine verbal (spoken
or written) instructions with simple example problems to teach
the test-taker the point of each new task that is presented. For
example, the Raven’s test typically begins with spoken instructions
to select the answer choice that best fills in the matrix, together
with a very simple example problem that the test administrator is
supposed to show the test-taker, along with the correct answer.

Any Raven’s agent must contain information about the problem
definition in order to parse new problems appropriately and to follow
a procedure that attains the goal. Moreover, agents should be able
to modify their problem definition to accommodate slight problem
variations. For example, if a new problem is presented with two
empty spots in the matrix, a robust agent should be able to infer
that this problem requires two corresponding answer responses.

In all extant Raven’s agents, knowledge of the problem definition
is manually provided by system designers. While these concepts
may seem straightforward to a person, and indeed are usually
trivial to program into an agent as static program elements, it is
a challenging open question to consider where these concepts
come from, and how they might be learned. For example, people
gain extensive experience in taking multiple choice tests from a
very early age, especially in modern societies, but we do not know
precisely how this knowledge is represented, or the mechanisms
by which it is generalized to new tasks.

The interesting sub-problem of nonverbal task learning consid-
ers how the task definition can be learned purely through a small
number of observed examples, without the use of explicit language-
based information at all (93). While nonverbal mechanisms are
undoubtedly at play in multi-modal task learning for most people,
nonverbal task learning in its pure form does also occur.

There are many clinical populations in which individuals have
difficulties in using or understanding language, including acquired
aphasias or developmental language disorders. Nonverbal intelli-
gence tests are specifically designed for use with such populations,
and they avoid verbal instructions altogether (94). In these tests,
examiners initially show test-takers a simple example problem
and its solution. Test-takers must learn the task definition (e.g.,
matching shapes, finding one shape in another, completing a vi-
sual pattern, etc.) by observing the example, and then use this
knowledge to solve a series of more difficult test problems.

A small but intriguing set of converging research threads in Al
have pinpointed the importance of nonverbal task learning. One
recent study using robots looked at how abstract goals can be
inferred from a small number of visual problem examples and
applied to new problems, where the goal is represented in terms
of a set of programs that meets it (95). Even more recently, a new
Abstraction and Reasoning Corpus (ARC) has been proposed for
artificial agents, containing 1,000 visual tasks with distinct goals;
agents must infer the goal for a given task from a few examples and
then use this knowledge to solve new problems (96). Both of these
tasks are similar to the Raven'’s test in the sense that, even though
the Raven’s test ostensibly only has a single goal (i.e. choose the
answer that fits best), different Raven’s problems can be thought of
as requiring different formulations of this overarching and extremely
vague goal. These examples also pose interesting questions about
the extent to which problem goals might be implicitly represented
within an agent’s problem-solving strategy, instead of explicitly, and
the pros and cons of each alternative.

Note that this discussion only considers goals that are well-
defined at least in the minds of the problem creators. Intelligence
tests are a rather odd social construct for this reason; in a way,
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the test-taker is trying to infer the intent of the test designer. How
agents (or humans) represent and reason about their own goals
might involve an extension of the processes described here, or
they might be different modes of reasoning altogether.

Conclusion and implications for cognitive science

We close by returning to the motivating questions from the introduc-
tion. The cognitive science question is: what are the computations
taking place in someone’s mind when they use visual imagery?

Al research alone cannot, of course, fully answer this question,
and so we presented a second, more limited question: if you have
an intelligent agent that uses visual-imagery-based knowledge rep-
resentations and reasoning operations, then what kinds of problem
solving might be possible, and how would it all work?

In this paper, we have presented a review of Al research and
open lines of inquiry related to answering this question in the
context of imagery-based agents that solve problems from the
Raven’s Progressive Matrices intelligence test. We discussed:
1) why intelligence tests are such a good challenge for Al; 2) A
framework for artificial problem-solving agents; 3) several imagery-
based agents that solve Raven’s problems; and 4) how an imagery-
based agent could /earn its domain knowledge, problem-solving
strategies, and problem definition, instead of these components
being manually designed and programmed.

More generally, whether or not imagery-based Al agents are at
all similar to humans, designing, implementing, and studying such
agents contributes valuable information about what is possible in
terms of computation and intelligence. Al research that develops
different kinds of agents is helpful for sketching out different points
in the space of what is possible, and Al research that enables
such agents to learn is helpful for hypothesizing how and why
various computational elements of intelligence might come to be.
Then, further interdisciplinary inquiries can proceed to connect
findings and hypotheses derived from these lines of Al research to
corresponding lines of research about what humans do.
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