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Observations abound about the power of visual imagery in human intelligence, from how Nobel-prize-winning physicists make their discov-
eries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is: what
are the computations taking place in someone’s mind when they use visual imagery? Answering this question is not easy and will require
much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question
from the perspective of artificial intelligence: if you have an intelligent agent that uses visual-imagery-based knowledge representations and
reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent
progress in AI towards answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based
artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge rep-
resentations and problem-solving strategies that are sufficient for solving problems from the Raven’s Progressive Matrices intelligence test.
We then look at how artificial agents, instead of being designed manually by AI researchers, might learn portions of their own knowledge
and reasoning procedures from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving
strategies, and learning the actual definition of the task in the first place.
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“I think in pictures. Words are like a second language to me. I1

translate both spoken and written words into full-color movies,2

complete with sound, which run like a VCR tape in my head....3

Language-based thinkers often find this phenomenon difficult4

to understand, but in my job as an equipment designer for the5

livestock industry, visual thinking is a tremendous advantage.”6

- Temple Grandin, prof. animal science and autism advocate (1)7

“What I am really trying to do is bring birth to clarity, which is8

really a half-assedly thought-out pictorial semi-vision thing. I9

would see the jiggle-jiggle-jiggle or the wiggle of the path. Even10

now when I talk about the influence functional, I see the coupling11

and I take this turn–like as if there was a big bag of stuff–and12

try to collect it away and to push it. It’s all visual. It’s hard to13

explain.” - Richard Feynman, Nobel laureate in physics (2)14

Temple Grandin is a well-known animal scientist who is on the15

autism spectrum. She has had incredible professional success in16

the livestock industry, and she credits her success to her strong17

visual imagery skills, i.e., abilities to generate, transform, combine,18

and inspect visual mental representations. (1).19

Many physicists such as Richard Feynman (2), Albert Einstein20

(3) and James Clerk Maxwell (4) used imagery in their creative dis-21

covery processes, and similar patterns emerge in accounts by and22

about mathematicians (5), engineers (6), computer programmers23

(7), product designers (8), surgeons (9), memory champions (10),24

and more. People also use visual imagery in everyday activities25

such as language comprehension (11), story understanding (12),26

and physical (13) and mathematical reasoning (14).27

These observations raise an interesting scientific question:28

what are the computations taking place in someone’s mind when29
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they use visual imagery? This is a difficult question that continues 30

to receive attention across cognitive science disciplines (15). 31

Here, we focus on a related, more circumscribed question from 32

the perspective of artificial intelligence: IF you have an intelligent 33

agent that uses visual-imagery-based knowledge representa- 34

tions and reasoning operations, THEN what kinds of problem 35

solving might be possible, and how would it all work? 36

In this paper, we discuss progress in AI towards answering this 37

question in the domain of visuospatial reasoning—reasoning about 38

the geometric and spatial properties of visual objects (16). This 39

discussion necessarily leaves out such intriguing and important 40

complexities as: non-visual forms of spatial reasoning, e.g., in 41

people with visual impairments (17); the role of physics and forces 42

in imagery (18); imagery in other sensory modalities (19); etc. 43

As a case study, we focus on visuospatial reasoning for solving 44

human intelligence tests like Raven’s Progressive Matrices. While 45

many AI techniques have been developed to solve many different 46

tests (20), we are still quite far from having an artificial agent that 47

can “sit down and take” an intelligence test without specialized 48

algorithms having been designed for that purpose. Contributions 49

of this paper include discussions of: 50

1. Why intelligence tests are such a good challenge for AI. 51

2. A framework for artificial problem-solving agents with four com- 52

ponents: a problem definition; input processing; domain knowl- 53

edge; and a problem-solving strategy or procedure. 54

3. Several imagery-based agents that solve Raven’s problems. 55

4. How an imagery-based agent could learn its domain knowledge, 56

problem-solving strategies, and problem definition / input pro- 57

cessing components, instead of each being manually designed. 58
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Fig. 1. Sample problems like those from the Raven’s intelligence test, compara-
ble to ones of easy-to-middling difficulty on the standard version of the test.

Why the Raven’s test is (still!) a hard AI challenge59

Take a look at the problems in Figure 1. Can you solve them?60

While these problems may seem straightforward, consider for a61

moment the complexity of what you just did. As you were solving62

each problem, some executive control system in your mind was63

planning and executing a series of physical and cognitive opera-64

tions, including shifts of gaze from one element of the problem to65

another; storing extracted features in working memory; computing66

and storing the results of intermediate calculations; and so on.67

And, you did all of this without any explicit instructions as to what68

cognitive operations to use, or in what order to apply them.69

At a deeper level, you may notice that no one actually even70

told you what these problems were about. Typically, Raven’s test-71

takers are instructed to solve each problem by selecting the answer72

from the bottom that best completes the matrix portion on top (21).73

However, even if you hadn’t seen problems quite like these before,74

it is likely that you were able to grok the point of the problems just75

by looking at them, no doubt due to a lifetime of experience with76

pattern-matching games and multiple choice tests.77

From a general AI perspective, intelligence tests like the Raven’s78

have been “solved” in the sense that we do have computational79

programs that, given a Raven’s problem as input, can often produce80

the correct answer as an output. In fact, some of the earliest work81

in AI was Evans’ classic ANALOGY program from the 1960s—at82

the time, the largest program written in LISP to date!—that solved83

geometric analogy problems from college aptitude tests (22).84

However, all of these programs have essentially been hand-85

crafted to solve Raven’s problems in one way or another. Humans86

(at least in theory) are supposed to take intelligence tests without87

having practiced them beforehand. Thus, intelligence tests like88

the Raven’s are still an “unsolved” challenge for AI when treated89

as tests of generalization, i.e., generalizing previously learned90

knowledge and skills to solve new and unfamiliar types of problems.91

At an even higher level, the notion of “taking a test” is itself a92

sophisticated social and cultural construct. In people, for example,93

crucial research on stereotype threat has observed how stereo-94

types about race and gender can influence a person’s performance95

on the exact same test depending on whether they are told it is a96

“test” or a “puzzle” (23). If we assume that human cognition can be97

explained in computational terms, then someday we ought to be98

able to have AI agents that model these effects.*99

*Perhaps ironically, early AI research studied what we thought were the hard problems, like taking
tests and playing chess. The next wave of research recognized that the real hard problems were in
fact the ones that were easy for many people, like walking around or recognizing cats (24). Now, we
are realizing that the original hard problems of taking tests and playing chess are quite hard after
all—but only if you really consider the full work of the agent, which includes figuring out what to do
and understanding why you are doing this thing in the first place. In other words, many animals
can walk around and pick up rocks, but only humans play good chess and take difficult tests.

The Raven’s test and similar tests of matrix reasoning and 100

geometric analogy are particularly interesting for AI for several 101

reasons. First, the Raven’s test, originally designed to measure 102

eductive ability or the ability to extract and understand information 103

from a complex situation (21), occupies a unique niche among 104

psychometric instruments as being the best single-format measure 105

of a person’s general intelligence (25). In other words, the Raven’s 106

test seems to tap into fundamental cognitive abilities that are very 107

relevant to many other things a person tries to do. 108

Second, there are several Raven’s tests that span a very wide 109

range of difficulty levels, from problems that are easy for young 110

children to problems that are difficult for most adults. The de- 111

velopmental trajectories of performance that people show offer a 112

motivating parallel for studying AI agents that meaningfully improve 113

their problem solving abilities through various learning experiences. 114

Third, there is evidence that many people use multiple forms of 115

mental representation while solving Raven’s problems, including 116

inner language as well as visual imagery (26, 27). Interestingly, 117

many people on the autism spectrum show patterns of performance 118

on the Raven’s test that do not match patterns seen in neurotypical 119

individuals (28), and neuroimaging findings suggest that many 120

individuals on the spectrum rely more on visual brain regions than 121

neurotypicals do while solving the test (29). Thus, the Raven’s 122

test is a fascinating testbed for AI research on visual imagery in 123

particular and multimodal reasoning more generally. 124

A framework for artificial agents that solve problems 125

Many approaches in AI can usefully be decomposed according to 126

the framework shown in Figure 2. The agent is given a problem as 127

input and is expected to produce a correct solution as output. 128

The problem definition refers to the agent’s understanding 129

of what the problem is actually asking, i.e., what constitutes a 130

valid format of inputs and outputs (problem template) and what 131

the goal is in terms of desired outputs (solution criteria). For 132

example, for a generic Raven’s problem, the problem template 133

might specify a 2D matrix M of images mi, with one entry in the 134

matrix missing, and an unordered set A of answer images ai, and 135

that a valid answer consists of selecting one (and only one) answer 136

ai ∈ A. The solution criterion is that the selected answer should 137

be the one that “best fits” in the missing slot in M . 138

The input processing component refers to how an agent takes 139

raw or unstructured inputs from the “world” and converts them into 140

a usable internal problem representation. For example, what the 141

Raven’s test actually provides is a pattern of ink on paper. At some 142

point, this visual image needs to be decomposed into the matrix 143

M and answer choice A elements in the problem template. For 144

many artificial agents, input processing is performed outside the 145

agent, either manually or by some other system. For example, 146

ARTIFICIAL AGENT FOR SOLVING PROBLEMS

Domain 
Knowledge

Problem Definition

Input 
Processing

Problem Template

Problem-Solving 
Strategy / ProcedureProblem

Elements
Selected
Action(s)

Solution Criteria

Problem 
instance

Solution

Fig. 2. Framework for artificial agents. Pushing the boundaries of what artificial
agents can do often involves deriving more and more of the internal structure and
knowledge of the agent through learning instead of programming.
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most chess-playing agents do not operate using a video feed of a147

chess board, but rather using an explicit specification of where all148

the pieces are on the board. While this is a reasonable assumption149

to make in many AI applications, it does mean that the agent relies150

on having a simplified and pre-processed set of inputs.151

Domain knowledge refers to whatever knowledge an agent152

needs to solve the given type of problems. The Raven’s test can be153

tackled using visuospatial knowledge about symmetry, sequential154

geometric patterns, rows and columns, etc.155

Finally, the problem-solving strategy encompasses what the156

agent actually does to solve a given problem, i.e., the algorithm157

that churns over the problem definition, domain knowledge, and158

specific problem inputs in order to generate an answer.159

Given this framework, what would it mean for an agent to use160

visual imagery to solve problems? We offer one formulation: any-161

where beyond the input processing step, the agent needs to use162

or retain representations of problem information that count as163

“images” in some way. This includes image-like representations164

occurring in the problem definition, domain knowledge, problem-165

solving strategy, and/or in the specific problem representations166

generated by the input processing component.167

What counts as an image-like representation? Previous re-168

search on computational imagery often distinguishes between169

spatial representations, i.e., that replicate the spatial structure of170

what is being represented, versus visual/object representations,171

i.e., that replicate the visual appearance of what is being repre-172

sented (30). These categories correspond to findings about spatial173

versus object imagery in people (31). Thus, we label agents us-174

ing either type of representation as using visual imagery or being175

imagery-based. The imagery-based Raven’s agents discussed176

later in this paper primarily use visual/object imagery and not spa-177

tial imagery, though certainly many other AI research efforts have178

developed agents that use spatial imagery (32).179

Note that imagery here refers to the format in which something180

is represented, not the contents of what is represented. Many181

artificial agents reason about visuospatial information using non-182

imagery-based representations (33); for example, visuospatial183

domain knowledge can be encoded propositionally, such as the184

rule: left-of(x,y) =⇒ right-of(y,x).185

Different types of Raven’s problem-solving agents186

Different paradigms of AI agents can now be described according187

to components in this framework.188

Knowledge-based approaches, also associated with terms like189

cognitive systems (34) or symbolic AI, traditionally rely on manually190

designed domain knowledge and flexible problem-solving proce-191

dures like planning and search to tackle complex problems. The192

first wave of propositional Raven’s agents used manual or auto-193

mated input processing to convert raw test problem images into194

amodal, propositional representations, such as lists of attribute-195

value pairs, and then problem-solving procedures would operate196

over these propositional representations (33, 35–37). Visuospatial197

domain knowledge in these agents included predefined types of198

relationships among elements, like similarity or containment, and199

methods for extracting and defining relationships.200

As foreshadowed in early writings about possible represen-201

tational and algorithmic strategy differences on the Raven’s test202

(38), a second wave of imagery-based Raven’s agents were also203

knowledge-based but their internal representations of problem in-204

formation remained visual, i.e., the problem-solving procedures205

directly accessed and manipulated problem images, and even of- 206

ten created new images during the course of reasoning (39–43). 207

Visuospatial domain knowledge in these agents included image 208

functions like rotation, image composition, visual similarity, etc. 209

More recently, a wave of data-driven Raven’s agents aim to 210

learn integrated representations of visuospatial domain knowledge 211

and problem-solving strategies by training on input-output pairs 212

from a large number of example problems (44–49). 213

Which approach is correct? This is a bad question, as different 214

types of agents are used for very different lines of scientific inquiry. 215

Referring again to Figure 2, most knowledge-based Raven’s agents 216

are used to study problem-solving procedures and assume a rela- 217

tively fixed set of domain knowledge (though some of these agents 218

certainly include forms of learning as well). Most of the data-driven 219

Raven’s agents are used to study how domain knowledge about 220

visuospatial relationships can be learned from examples, and the 221

problem-solving procedure is often (though not always) fixed. 222

All of these Raven’s agents have many hand-built components, 223

though the parts that are hand-built differ from one agent to an- 224

other. Many open AI challenges remain, even within the one task 225

domain of the Raven’s test, in gradually converted the components 226

in Figure 2 from being manually programmed to being learned 227

or developed by the agents themselves. Next, we discuss how 228

knowledge-based agents can use imagery to solve Raven’s prob- 229

lems in several different ways, and then we examine emerging 230

methods for agents to learn their own 1) domain knowledge, 2) 231

problem-solving strategies, and finally 3) problem definitions. 232

Imagery-based strategies for solving Raven’s problems 233

Within the category of imagery-based Raven’s agents, many dif- 234

ferent formulations are possible, in terms of the problem-solving 235

strategy that is used, the representation and contents of domain 236

knowledge, and even the problem definition. 237

We describe five imagery-based strategies along with results 238

from research by the author and colleagues. Results are reported 239

for the Raven’s Standard Progressive Matrices test, scored out of 240

60 problems (21). For comparison, human norm data suggests 241

that average children in the US would score around 26/60 as 242

8-year-olds, 40/60 as 12-year-olds, and 49/60 as 16-yer-olds. 243

At a high level, the following strategies are described in terms 244

of two strategy types observed in psychology research: (50): 245

• In constructive matching, the test-taker looks at the problem 246

matrix, generates a guess for the missing element, and then 247

chooses an answer most similar to its generated guess. 248

• In response elimination, the test-taker looks at each answer in 249

turn, plugging it into the problem matrix, and choosing the one 250

that produces the best overall matrix. 251

Strategy 1 (see Figure 3a). We developed an imagery-based 252

agent that solves Raven’s problems through multi-step search, 253

using a constructive matching strategy (39, 43, 51): 254

1. Using elements from complete rows/columns of the matrix, 255

search among known visual transformations for the one that 256

best explains image variation across parallel rows/columns. 257

2. Apply this transformation to elements in a partial row or col- 258

umn to predict a new answer image. 259

3. Search among the answer choices to find the one that is most 260

similar to the predicted answer image. 261

More formally, problem inputs include a set M of images mi rep- 262

resenting sections of the problem matrix, and a set A of answer 263

choice images ai. Let C be the set of all collinear subsets c of M , 264
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2: Transfer
3: Search

2: Search
2: Search

1: Search 1: Search 1: Search 1: Search

(a) Constructive Matching (b) Response Elimination
Analytical / Element-Wise Gestalt / Holistic

(c) Constructive Matching (d) Response EliminationRaven’s-like problem

Fig. 3. Raven’s-like problem and four different imagery-based strategies for solving it. A problem consists of matrix M of elements mi and set A of answer choices ai.
(a) First strategy begins with search for transformation t that best transforms m1 into m2, then applies t to m3 to produce an image candidate for m4, and finally searches for
answer ai most similar to m4. (b) Second strategy also begins with search for t that best transforms m1 into m2, then conducts similar searches for transformations tai that
transform m3 into each ai, and finally searches for answer ai that yields tai most similar to t. (c) Third strategy begins with search for image m4 that maximizes Gestalt
metric for matrix M , and then searches for answer ai most similar to m4. (d) Fourth strategy involves search for answer ai that maximizes Gestalt metric for matrix M .

with cx referring to the first element(s), and cy referring to the last265

element. Each c contains matrix elements along rows, columns,266

or diagonals. We define an analogy g as a pairing of a single267

complete collinear subset c1 with an incomplete collinear subset268

c2 (i.e., g = [c1.x : c1.y :: c2.x : c2.y], where c2.y is the missing269

element in the matrix). All such analogies that share the same c2270

are further aggregated into sets Gi ∈ G.271

In addition, let T be the agent’s predefined set of visual transfor-
mations. Also let sim(I1, I2) be a function that returns a real-valued
measure of similarity between images I1 and I2. First, the agent
finds the best-fit transformation:

(tmax, gmax) = argmax
t∈T,Gi∈G

(
mean
g∈Gi

(
sim
(
t(g.c1.x), g.c1.y

)))
Second, the agent computes a predicted answer image as:272

apred = tmax(gmax.c2.x). Third, the agent returns the most similar273

answer choice: afinal = argmaxai∈A

(
sim(apred, ai)

)
.274

Hand-coded domain knowledge is provided in the form of the set275

T of visual transformations, including eight rectilinear rotations and276

reflections (including identity) and three to six image composition277

operations (union, intersection, subtraction, and combinations of278

these) as well as visual similarity and other image processing utility279

functions. Steps 1 and 3 above used exhaustive search.280

Successive versions of the agent, using more transformations281

T and more varied ways to optimize over matrix entries in Step 1,282

have achieved scores of 38/60 (39), 50/60 (51), and 57/60 (43) on283

the Raven’s Standard Progressive Matrices test.284

Strategy 2 (see Figure 3b). In a related line of research, col-285

leagues developed a different imagery-based agent that adopted a286

response elimination type of strategy (see Figure 3b). In this work287

(40), a smaller set of visual transformations (rotation and reflec-288

tion) was used to compute fractal image transformations, i.e. a289

representation of one image in terms of another, using techniques290

from image compression (52).291

In particular, to compute a fractal transformation between292

source image A and target image B, B is first partitioned into293

a set of subimages bi. Then, for each bi, a fragment ai ∈ A294

is found such that bi can be expressed as an affine transforma-295

tion ti of ai. The fragments ai are twice the size of bi, resulting296

in a contractive transformations The set T of all ti is the fractal297

transformation of A into B.298

To solve a Raven’s problem, a fractal transformation T is com-
puted using elements from each complete row/column j in the

matrix, and then similar transformations T ′
ij are computed for each

of the answer choices plugged into the incomplete rows/columns of
the matrix. Finally, the selected answer is the one yielding the most
similar fractal transformations to those computed for the original
rows/columns of the matrix. Formally, if we let Tsim be a similarity
metric across fractal transformations, the final answer is given by:

afinal = argmax
ai∈A

√∑
j

Tsim(Tj , T ′
ij)2

Results using this fractal method were also 50 out of 60 correct on 299

the Raven’s Standard Progressive Matrices test, allowing for some 300

ambiguous detections of the answers, or 38 out of 60 correct with 301

a specific method for resolving these ambiguities (40). 302

Strategy 3 (see Figure 3c). The first two strategies consider each 303

matrix element individually. However, people can also use a 304

“Gestalt” strategy to consider the entire matrix as a whole (38, 53). 305

For instance, for the problem in Figure 3, if one looks at the matrix 306

as a single image, an answer might just “appear” in the blank. 307

In recent work (42), we attempted to model this kind of strat- 308

egy using neural networks for image inpainting, trained to fill in 309

the missing portions of real photographs. We used a recently 310

published image inpainting network consisting of a variational au- 311

toencoder combined with a generative adversarial network (54), 312

and we tested several versions of the network trained on different 313

types of photographs, such as objects, faces, scenes, and textures. 314

Given an image of the incomplete problem matrix, the network 315

outputs a guess for what image should fill in the missing portion. 316

This guess is then used to select the most similar answer. 317

Formally, let F be the learned encoder network that converts
an image into a representation in a learned feature space, and
let G be the learned decoder network that converts a feature-
based image back into pixel space, including inpainting to fill in any
missing portions. Then, our agent first computes M ′ = G(F (M))
to obtain a new, filled-in matrix image, with mx denoting the new,
filled in portion of M ′. Let L2dist represents the L2 norm of a
vector in the learned feature space. Then, the final answer is:

afinal = argmin
ai∈A

(
L2dist

(
F (mx)− F (ai)

))
Figure 4 shows examples of inpainting results on several ex- 318

ample problems, some of which are filled in more effectively than 319

others. The best version of this agent, trained on photographs of 320
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Fig. 4. Images generated using an inpainting neural network (54) for Raven’s-like
problems (42). The network was trained only on real-world photographs of objects.

objects, answered 25 out of 60 problems on the Raven’s Standard321

Progressive Matrices test. While this score may seem low, it is322

quite astonishing given that there was no Raven’s-specific informa-323

tion fed into or contained in the inpainting network, and in fact the324

network had never before “seen” line drawings, only photographs.325

Strategy 4 (see Figure 3c). The fourth strategy combines a326

Gestalt approach with response elimination. We have not yet327

implemented this strategy, nor do we know of other AI efforts that328

have, but we present a brief sketch here. Essentially, this strategy329

works by plugging in answers to the matrix, and choosing the one330

that creates the “best” overall picture, for some notion of best.331

Assume a Gestalt metric S that measures the Gestalt quality
of any given image. Images that are highly symmetric, contain
coherent objects, etc. would score highly, and images that are
chaotic or broken up would score poorly. Then, the agent chooses
the answer that scores highest when plugged into the matrix M :

afinal = argmax
ai∈A

(
S(M ∪ ai)

)
Strategy 5 (not shown in figure). The above four strategies treat332

RPM matrix elements as single images. However, previous compu-333

tational and human studies have suggested that it can be helpful to334

decompose RPM problems into multiple subproblems, by breaking335

up a single matrix element into subcomponents (35).336

In previous work, we have also explored imagery-based tech-337

niques for decomposing a geometric analogy into subproblems,338

solving each separately, and then re-assembling the sub-solutions339

back together to choose the final answer (55), though this method340

has not yet been tested on the actual Raven’s tests.341

Open questions. From this small survey, it is clear that there is342

no single imagery-based Raven’s strategy. Imagery-based agents343

are like logic-based agents or neural-network-based agents; there344

are a set of generally shared principles of representation and rea-345

soning, but then individual agents are designed to use specific346

instantiations of these and combine them in different ways to pro-347

duce very diverse problem-solving behaviors.348

Exploring the space of imagery-based agents is valuable not to349

find the “best” one, but rather to characterize the space itself. Each350

agent, as a data point in this space of possible agents, is an artifact351

that can be studied in order to understand something about how352

that particular set of representations and strategies can produce353

intelligent task behaviors (56). Future work should continue to add354

data points to this space and also investigate the extent to which355

these strategies overlap with human problem-solving.356

Learning visuospatial domain knowledge 357

Imagery-based agents use many kinds of visuospatial domain 358

knowledge, including: visual transformations like rotation, scaling, 359

and composition; hierarchical representations of concepts in terms 360

of attributes like shape and texture; Gestalt principles like symme- 361

try, continuity and similarity; etc. These types of knowledge can be 362

leveraged by an agent to solve problems from the Raven’s test as 363

well as many other visuospatial tests (32). 364

Visuospatial domain knowledge also includes more seman- 365

tically rich information such as what kinds of objects go where 366

in a scene (57); we do not further discuss this type of seman- 367

tic knowledge here, though it certainly plays an important role in 368

imagery-based AI, especially for agents that perform language 369

understanding or commonsense reasoning tasks (32). 370

How is visuospatial domain knowledge learned? One hypoth- 371

esis suggests that agents learn such knowledge through prior 372

sensorimotor interactions with the world. Under this view, the 373

precise nature of the representations and learning mechanisms 374

involved are important open questions. For brevity, we discuss 375

here AI research on learning two types of visuospatial domain 376

knowledge—visual transformations and Gestalt principles. 377

Learning visual transformations. In humans, many reasoning 378

operators used during visual imagery (e.g., transformations like 379

mental rotation, scaling, etc.) are hypothesized to be learned from 380

visuomotor experience, e.g., perceiving the movement of physical 381

objects in the real world (58). As with the well-known kittens-in- 382

carousel experiments (59), learning visual transformations may 383

rely on the combination of active motor actions coupled with visual 384

perception of the results of those actions. Studies in both children 385

and adults have indeed found that training on a manual rotation 386

task does improve performance on mental rotation (60, 61). 387

Computational efforts to model the learning of visual transfor- 388

mations have generally represented each transformation as a set 389

of weights in a neural network. In early work, distinct networks 390

were used to learn each transformation individually (62). More 391

recent work combines the visual and motor components of inputs 392

for learning mental rotation (63). While many of these approaches 393

implement visual transformations as distinct operations, a more 394

general approach might represent continuous visual operations as 395

combinations of basis functions that can be combined in arbitrary 396

ways (64). Along these lines, other recent work uses more complex 397

neural networks to represent transformations as combinations of 398

multiple learned factors, though this work still focused on relatively 399

simple transformations like rotation and scaling (65, 66). 400

People certainly do not learn visual transformations from spe- 401

cialized training on rotation, scaling, etc., taken as separate trans- 402

formations. More generally, we have access to a very robust and 403

diverse machinery for simulating visual change, and the simple 404

“mental rotation” types of tasks often used in studies of visual im- 405

agery tap into only very tiny slices of this knowledge base. In line 406

with evidence of the importance of motor actions and forces on our 407

own imagery abilities (18), we expect that work in AI to model phys- 408

ical transformations—especially work in robotics that combines 409

visual and motor inputs/outpus—will be essential for producing the 410

kinds of capabilities agents need for visual imagery. 411

There is starting to be a wave of relevant work in AI in the area 412

of video prediction, which involves learning representations of both 413

the appearance of objects as well as their dynamics (67–69), in- 414

cluding for increasingly complex forms of dynamics as with a robot 415

trying to manipulate a rope (70). Importantly, these efforts focus 416
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Fig. 5. Images eliciting Gestalt “completion” phenomena. Left contains only
scattered line segments, but we inescapably see a circle and rectangle. Right contains
one whole key and one broken key, but we see two whole keys with occlusion.

on learning and making inferences about object dynamics directly417

in the image space, as opposed to computational approaches that418

rely on explicit physics simulations and then project predictions419

into image space. Thus, these new approaches offer intriguing420

possibilities as potential models for how humans might learn naive421

physics as a form of imagery-based reasoning.422

Learning Gestalt principles. Many visuospatial intelligence tests423

rely on a person’s knowledge of visual relationships like similarity,424

continuity, symmetry, etc. Simple tests like shape matching require425

the test-taker to infer first-order relationships among visual ele-426

ments, while more complex tests like the Raven’s often progress427

into second-order relationships, i.e., relations over relations.428

In one sense, a test like the Raven’s ought to be agnostic with429

respect to the specific choice of first-order relationships, and indeed430

in many propositional AI agents, a relation like contains(X,Y) can431

be replaced with any arbitrary label, and the results will stay the432

same. However, for people, the actual visuospatial relationships433

at play do deeply influence our problem-solving capabilities. For434

example, isomorphs of the Tower of Hanoi task are more difficult435

if task rules are less well-aligned with our real-world knowledge436

about spatial structure and stacking (71). Similarly, the perceptual437

properties of Raven’s problems have been found to be a strong438

predictor of item difficulty (72).439

A person’s prior knowledge about visuospatial relationships is440

closely tied to Gestalt perceptual phenomena. In humans, Gestalt441

phenomena have to do, in part, with how we integrate low-level per-442

ceptual elements into coherent, higher-level wholes (73), as shown443

in Figure 5. Psychology research has enumerated a list of princi-444

ples (or laws, perceptual/reasoning processes, etc.) that seem to445

operate in human perception, like preferences for closure, symme-446

try, etc. (74). Likewise, work in image processing and computer447

vision has attempted to define these principles mathematically or448

computationally, for instance as a set of rules (75).449

However, in more recent computational models, Gestalt prin-450

ciples are seen as emergent properties that reflect, rather than451

determine, perceptions of structure in an agent’s visual environ-452

ment. For example, early approaches to image inpainting—i.e.,453

reconstructing a missing/degraded part of an image—used rule-454

like principles to determine the structure of missing content, while455

later approaches use machine learning to capture structural regu-456

larities from data and apply them to new images (76). This seems457

reasonable as a model of Gestalt phenomena in human cognition;458

it is our years of experience with the world around us we see Figure459

5 (left) as partially occluded/degraded views of whole objects.460

Image inpainting represents a fascinating area of imagery-461

based abilities for artificial agents (54), which we used in our462

model of Gestalt-type problem solving on the Raven’s test (42),463

as described earlier. Other work in computer vision and machine464

learning studies the extent to which neural networks not explicitly465

designed to model Gestalt effects might exhibit such effects as466

emergent phenomena (77–81).467

Learning a problem-solving strategy 468

Relatively little research in AI has proposed methods for automati- 469

cally generating problem-solving procedures for intelligence tests, 470

despite the extensive research on manually constructed solution 471

methods or methods that rely on a large number of examples (20). 472

How does a person obtain an effective problem-solving strategy for 473

a task they have never seen, on the fly and often without explicit 474

feedback? Some human research suggests that children learn to 475

solve a widening range of problems through two primary processes 476

of 1) strategy discovery, i.e., discovering new strategies for certain 477

problems or tasks, and 2) strategy generalization, i.e., adapting 478

strategies they already know for other problems or tasks (82, 83). 479

Some AI research on strategy discovery can be found in the 480

area of inductive programming or program synthesis, i.e., given a 481

number of input-output pairs, constraints, or other partial specifi- 482

cations of a task, together with a set of available operations, the 483

system induces a “program” or series of operations that produces 484

the desired behaviors (84). In other words, “Inductive program- 485

ming can be seen as a very special subdomain of machine learning 486

where the hypothesis space consists of classes of computer pro- 487

grams” (85). Inductive programming has been applied to some 488

intelligence-test-like tasks, such as number series problems (86), 489

and to simple visual tasks like learning visual concepts (87, 88). 490

However, more research is needed to expand these methods to 491

tackle more complex and diverse sets of tasks. For example, given 492

the imagery-based strategies described above, a challenge for 493

imagery-based program induction would be to derive these strate- 494

gies automatically from a small set of example Raven’s problems. 495

AI research has often investigated strategy generalization 496

through the lens of integrating planning with analogy. Case-based 497

planning looks at how plans stored in memory are retrieved at the 498

appropriate juncture, modified, and applied to solve a new problem 499

(89). The majority of this work has focused on agents that use 500

propositional knowledge representations, and very little (if any) has 501

applied these methods to address intelligence tests. 502

Research on strategy selection and adaptation would be enor- 503

mously informative for studying not just how people approach a 504

new type of intelligence test but also inter-problem learning on 505

intelligence tests, i.e., learning from one problem (even without 506

feedback) and use this knowledge to inform the solution of the 507

next problem. In humans, one fascinating study gave each of two 508

groups of children a different set of Raven’s-like problems to start 509

with, and then the same final set of problems that had ambiguous 510

answers (53). Depending on which set of starting problems they 511

received, the children predictably gravitated towards one of two 512

profiles of performance on the final problems. Modeling these 513

phenomena remains an open challenge for AI research. 514

Learning the problem definition 515

Even with intelligent agents that generate their own problem- 516

solving strategies or programs, the problem definition—i.e., the 517

problem template and goal—is still provided by the human system 518

designer. Interactive task learning is an area of AI research that in- 519

vestigates how “an agent actively tries to learn the actual definition 520

of a task through natural interaction with a human instructor, not 521

just how to perform a task better” (90). Research in interactive task 522

learning generally involves designing agents or robots that learn 523

from both verbal and nonverbal information, i.e., instructions along 524

with examples or situated experiences (91, 92). 525

Such multi-modal inputs are used all the time in human learning, 526
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including on intelligence tests: most tests combine verbal (spoken527

or written) instructions with simple example problems to teach528

the test-taker the point of each new task that is presented. For529

example, the Raven’s test typically begins with spoken instructions530

to select the answer choice that best fills in the matrix, together531

with a very simple example problem that the test administrator is532

supposed to show the test-taker, along with the correct answer.533

Any Raven’s agent must contain information about the problem534

definition in order to parse new problems appropriately and to follow535

a procedure that attains the goal. Moreover, agents should be able536

to modify their problem definition to accommodate slight problem537

variations. For example, if a new problem is presented with two538

empty spots in the matrix, a robust agent should be able to infer539

that this problem requires two corresponding answer responses.540

In all extant Raven’s agents, knowledge of the problem definition541

is manually provided by system designers. While these concepts542

may seem straightforward to a person, and indeed are usually543

trivial to program into an agent as static program elements, it is544

a challenging open question to consider where these concepts545

come from, and how they might be learned. For example, people546

gain extensive experience in taking multiple choice tests from a547

very early age, especially in modern societies, but we do not know548

precisely how this knowledge is represented, or the mechanisms549

by which it is generalized to new tasks.550

The interesting sub-problem of nonverbal task learning consid-551

ers how the task definition can be learned purely through a small552

number of observed examples, without the use of explicit language-553

based information at all (93). While nonverbal mechanisms are554

undoubtedly at play in multi-modal task learning for most people,555

nonverbal task learning in its pure form does also occur.556

There are many clinical populations in which individuals have557

difficulties in using or understanding language, including acquired558

aphasias or developmental language disorders. Nonverbal intelli-559

gence tests are specifically designed for use with such populations,560

and they avoid verbal instructions altogether (94). In these tests,561

examiners initially show test-takers a simple example problem562

and its solution. Test-takers must learn the task definition (e.g.,563

matching shapes, finding one shape in another, completing a vi-564

sual pattern, etc.) by observing the example, and then use this565

knowledge to solve a series of more difficult test problems.566

A small but intriguing set of converging research threads in AI567

have pinpointed the importance of nonverbal task learning. One568

recent study using robots looked at how abstract goals can be569

inferred from a small number of visual problem examples and570

applied to new problems, where the goal is represented in terms571

of a set of programs that meets it (95). Even more recently, a new572

Abstraction and Reasoning Corpus (ARC) has been proposed for573

artificial agents, containing 1,000 visual tasks with distinct goals;574

agents must infer the goal for a given task from a few examples and575

then use this knowledge to solve new problems (96). Both of these576

tasks are similar to the Raven’s test in the sense that, even though577

the Raven’s test ostensibly only has a single goal (i.e. choose the578

answer that fits best), different Raven’s problems can be thought of579

as requiring different formulations of this overarching and extremely580

vague goal. These examples also pose interesting questions about581

the extent to which problem goals might be implicitly represented582

within an agent’s problem-solving strategy, instead of explicitly, and583

the pros and cons of each alternative.584

Note that this discussion only considers goals that are well-585

defined at least in the minds of the problem creators. Intelligence586

tests are a rather odd social construct for this reason; in a way,587

the test-taker is trying to infer the intent of the test designer. How 588

agents (or humans) represent and reason about their own goals 589

might involve an extension of the processes described here, or 590

they might be different modes of reasoning altogether. 591

Conclusion and implications for cognitive science 592

We close by returning to the motivating questions from the introduc- 593

tion. The cognitive science question is: what are the computations 594

taking place in someone’s mind when they use visual imagery? 595

AI research alone cannot, of course, fully answer this question, 596

and so we presented a second, more limited question: if you have 597

an intelligent agent that uses visual-imagery-based knowledge rep- 598

resentations and reasoning operations, then what kinds of problem 599

solving might be possible, and how would it all work? 600

In this paper, we have presented a review of AI research and 601

open lines of inquiry related to answering this question in the 602

context of imagery-based agents that solve problems from the 603

Raven’s Progressive Matrices intelligence test. We discussed: 604

1) why intelligence tests are such a good challenge for AI; 2) A 605

framework for artificial problem-solving agents; 3) several imagery- 606

based agents that solve Raven’s problems; and 4) how an imagery- 607

based agent could learn its domain knowledge, problem-solving 608

strategies, and problem definition, instead of these components 609

being manually designed and programmed. 610

More generally, whether or not imagery-based AI agents are at 611

all similar to humans, designing, implementing, and studying such 612

agents contributes valuable information about what is possible in 613

terms of computation and intelligence. AI research that develops 614

different kinds of agents is helpful for sketching out different points 615

in the space of what is possible, and AI research that enables 616

such agents to learn is helpful for hypothesizing how and why 617

various computational elements of intelligence might come to be. 618

Then, further interdisciplinary inquiries can proceed to connect 619

findings and hypotheses derived from these lines of AI research to 620

corresponding lines of research about what humans do. 621
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