

AI, Visual Imagery, and a Case Study on the Challenges Posed by Human Intelligence Tests

Maithilee Kunda^{a,2}

This manuscript was compiled on January 14, 2021

1 **Observations abound about the power of visual imagery in human intelligence, from how Nobel-prize-winning physicists make their discoveries to how children understand bedtime stories. These observations raise an important question for cognitive science, which is: what**
2 **are the computations taking place in someone's mind when they use visual imagery? Answering this question is not easy and will require**
3 **much continued research across the multiple disciplines of cognitive science. Here, we focus on a related and more circumscribed question**
4 **from the perspective of artificial intelligence: if you have an intelligent agent that uses visual-imagery-based knowledge representations and**
5 **reasoning operations, then what kinds of problem solving might be possible, and how would such problem solving work? We highlight recent**
6 **progress in AI towards answering these questions in the domain of visuospatial reasoning, looking at a case study of how imagery-based**
7 **artificial agents can solve visuospatial intelligence tests. In particular, we first examine several variations of imagery-based knowledge**
8 **representations and problem-solving strategies that are sufficient for solving problems from the Raven's Progressive Matrices intelligence test.**
9 **We then look at how artificial agents, instead of being designed manually by AI researchers, might learn portions of their own knowledge**
10 **and reasoning procedures from experience, including learning visuospatial domain knowledge, learning and generalizing problem-solving**
11 **strategies, and learning the actual definition of the task in the first place.**

Artificial intelligence | Computational modeling | Mental imagery | Raven's Progressive Matrices | Visuospatial reasoning

1 *"I think in pictures. Words are like a second language to me. I*
2 *translate both spoken and written words into full-color movies,*
3 *complete with sound, which run like a VCR tape in my head....*
4 *Language-based thinkers often find this phenomenon difficult*
5 *to understand, but in my job as an equipment designer for the*
6 *livestock industry, visual thinking is a tremendous advantage."*
7 - Temple Grandin, prof. animal science and autism advocate (1)

8 *"What I am really trying to do is bring birth to clarity, which is*
9 *really a half-assedly thought-out pictorial semi-vision thing. I*
10 *would see the jiggle-jiggle-jiggle or the wiggle of the path. Even*
11 *now when I talk about the influence functional, I see the coupling*
12 *and I take this turn-like as if there was a big bag of stuff-and*
13 *try to collect it away and to push it. It's all visual. It's hard to*
14 *explain."* - Richard Feynman, Nobel laureate in physics (2)

15 Temple Grandin is a well-known animal scientist who is on the
16 autism spectrum. She has had incredible professional success in
17 the livestock industry, and she credits her success to her strong
18 visual imagery skills, i.e., abilities to generate, transform, combine,
19 and inspect visual mental representations. (1).

20 Many physicists such as Richard Feynman (2), Albert Einstein
21 (3) and James Clerk Maxwell (4) used imagery in their creative dis-
22 covery processes, and similar patterns emerge in accounts by and
23 about mathematicians (5), engineers (6), computer programmers
24 (7), product designers (8), surgeons (9), memory champions (10),
25 and more. People also use visual imagery in everyday activities
26 such as language comprehension (11), story understanding (12),
27 and physical (13) and mathematical reasoning (14).

28 These observations raise an interesting scientific question:
29 what are the computations taking place in someone's mind when

30 they use visual imagery? This is a difficult question that continues
31 to receive attention across cognitive science disciplines (15).

32 Here, we focus on a related, more circumscribed question from
33 the perspective of artificial intelligence: **IF you have an intelligent**
34 **agent that uses visual-imagery-based knowledge representa-**
35 **tions and reasoning operations, THEN what kinds of problem**
36 **solving might be possible, and how would it all work?**

37 In this paper, we discuss progress in AI towards answering this
38 question in the domain of visuospatial reasoning—reasoning about
39 the geometric and spatial properties of visual objects (16). This
40 discussion necessarily leaves out such intriguing and important
41 complexities as: non-visual forms of spatial reasoning, e.g., in
42 people with visual impairments (17); the role of physics and forces
43 in imagery (18); imagery in other sensory modalities (19); etc.

44 As a case study, we focus on visuospatial reasoning for solving
45 human intelligence tests like Raven's Progressive Matrices. While
46 many AI techniques have been developed to solve many different
47 tests (20), we are still quite far from having an artificial agent that
48 can "sit down and take" an intelligence test without specialized
49 algorithms having been designed for that purpose. Contributions
50 of this paper include discussions of:

1. Why intelligence tests are such a good challenge for AI.
2. A framework for artificial problem-solving agents with four com-
ponents: a problem definition; input processing; domain knowl-
edge; and a problem-solving strategy or procedure.
3. Several imagery-based agents that solve Raven's problems.
4. How an imagery-based agent could learn its domain knowledge,
problem-solving strategies, and problem definition / input pro-
cessing components, instead of each being manually designed.

^aElectrical Engineering and Computer Science, Vanderbilt University, PMB 351679, 2301 Vanderbilt Place, Nashville, TN 37235-1679, USA

²To whom correspondence should be addressed. E-mail: mkunda@vanderbilt.edu

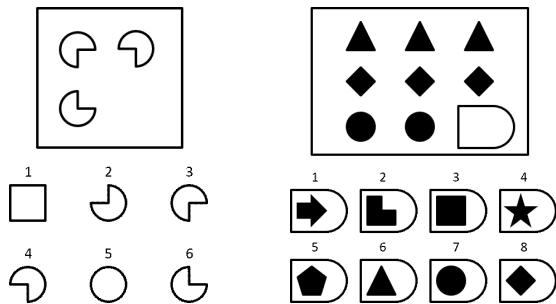


Fig. 1. Sample problems like those from the Raven's intelligence test, comparable to ones of easy-to-middling difficulty on the standard version of the test.

59 Why the Raven's test is (still!) a hard AI challenge

60 Take a look at the problems in Figure 1. Can you solve them?

61 While these problems may seem straightforward, consider for a moment the complexity of what you just did. As you were solving each problem, some executive control system in your mind was planning and executing a series of physical and cognitive operations, including shifts of gaze from one element of the problem to another; storing extracted features in working memory; computing and storing the results of intermediate calculations; and so on. 62 And, you did all of this without any explicit instructions as to what cognitive operations to use, or in what order to apply them.

63 At a deeper level, you may notice that no one actually even told you what these problems were about. Typically, Raven's test-takers are instructed to solve each problem by selecting the answer from the bottom that best completes the matrix portion on top (21). 64 However, even if you hadn't seen problems quite like these before, it is likely that you were able to grok the point of the problems just by looking at them, no doubt due to a lifetime of experience with pattern-matching games and multiple choice tests.

65 From a general AI perspective, intelligence tests like the Raven's have been "solved" in the sense that we do have computational programs that, given a Raven's problem as input, can often produce the correct answer as an output. In fact, some of the earliest work 66 in AI was Evans' classic ANALOGY program from the 1960s—at 67 the time, the largest program written in LISP to date!—that solved 68 geometric analogy problems from college aptitude tests (22).

69 However, all of these programs have essentially been hand-crafted to solve Raven's problems in one way or another. Humans 70 (at least in theory) are supposed to take intelligence tests without 71 having practiced them beforehand. Thus, intelligence tests like 72 the Raven's are still an "unsolved" challenge for AI when treated 73 as tests of generalization, i.e., generalizing previously learned 74 knowledge and skills to solve new and unfamiliar types of problems.

75 At an even higher level, the notion of "taking a test" is itself a 76 sophisticated social and cultural construct. In people, for example, 77 crucial research on stereotype threat has observed how stereotypes 78 about race and gender can influence a person's performance 79 on the exact same test depending on whether they are told it is a 80 "test" or a "puzzle" (23). If we assume that human cognition can be 81 explained in computational terms, then someday we ought to be 82 able to have AI agents that model these effects.*

*Perhaps ironically, early AI research studied what we thought were the hard problems, like taking tests and playing chess. The next wave of research recognized that the *real* hard problems were in fact the ones that were easy for many people, like walking around or recognizing cats (24). Now, we are realizing that the original hard problems of taking tests and playing chess are quite hard after all—but only if you really consider the full work of the agent, which includes figuring out what to do and understanding why you are doing this thing in the first place. In other words, many animals can walk around and pick up rocks, but only humans play good chess and take difficult tests.

100 The Raven's test and similar tests of matrix reasoning and
101 geometric analogy are particularly interesting for AI for several
102 reasons. First, the Raven's test, originally designed to measure
103 *eductive ability* or the ability to extract and understand information
104 from a complex situation (21), occupies a unique niche among
105 psychometric instruments as being the best single-format measure
106 of a person's general intelligence (25). In other words, the Raven's
107 test seems to tap into fundamental cognitive abilities that are very
108 relevant to many other things a person tries to do.

109 Second, there are several Raven's tests that span a very wide
110 range of difficulty levels, from problems that are easy for young
111 children to problems that are difficult for most adults. The de-
112 velopmental trajectories of performance that people show offer a
113 motivating parallel for studying AI agents that meaningfully improve
114 their problem solving abilities through various learning experiences.

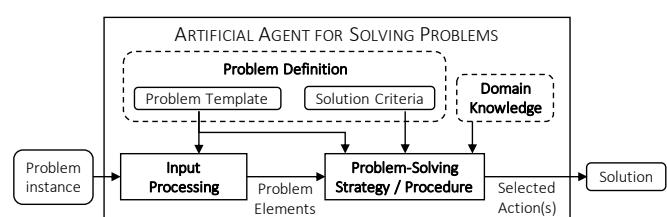
115 Third, there is evidence that many people use multiple forms of
116 mental representation while solving Raven's problems, including
117 inner language as well as visual imagery (26, 27). Interestingly,
118 many people on the autism spectrum show patterns of performance
119 on the Raven's test that do not match patterns seen in neurotypical
120 individuals (28), and neuroimaging findings suggest that many
121 individuals on the spectrum rely more on visual brain regions than
122 neurotypicals do while solving the test (29). Thus, the Raven's
123 test is a fascinating testbed for AI research on visual imagery in
124 particular and multimodal reasoning more generally.

125 A framework for artificial agents that solve problems

126 Many approaches in AI can usefully be decomposed according to
127 the framework shown in Figure 2. The agent is given a problem as
128 input and is expected to produce a correct solution as output.

129 The **problem definition** refers to the agent's understanding
130 of what the problem is actually asking, i.e., what constitutes a
131 valid format of inputs and outputs (**problem template**) and what
132 the goal is in terms of desired outputs (**solution criteria**). For
133 example, for a generic Raven's problem, the problem template
134 might specify a 2D matrix M of images m_i , with one entry in the
135 matrix missing, and an unordered set A of answer images a_i , and
136 that a valid answer consists of selecting one (and only one) answer
137 $a_i \in A$. The solution criterion is that the selected answer should
138 be the one that "best fits" in the missing slot in M .

139 The **input processing** component refers to how an agent takes
140 raw or unstructured inputs from the "world" and converts them into
141 a usable internal problem representation. For example, what the
142 Raven's test actually provides is a pattern of ink on paper. At some
143 point, this visual image needs to be decomposed into the matrix
144 M and answer choice A elements in the problem template. For
145 many artificial agents, input processing is performed outside the
146 agent, either manually or by some other system. For example,



147 Fig. 2. Framework for artificial agents. Pushing the boundaries of what artificial
148 agents can do often involves deriving more and more of the internal structure and
149 knowledge of the agent through learning instead of programming.

147 most chess-playing agents do not operate using a video feed of a
148 chess board, but rather using an explicit specification of where all
149 the pieces are on the board. While this is a reasonable assumption
150 to make in many AI applications, it does mean that the agent relies
151 on having a simplified and pre-processed set of inputs.

152 **Domain knowledge** refers to whatever knowledge an agent
153 needs to solve the given type of problems. The Raven's test can be
154 tackled using visuospatial knowledge about symmetry, sequential
155 geometric patterns, rows and columns, etc.

156 Finally, the **problem-solving strategy** encompasses what the
157 agent actually does to solve a given problem, i.e., the algorithm
158 that churns over the problem definition, domain knowledge, and
159 specific problem inputs in order to generate an answer.

160 Given this framework, what would it mean for an agent to use
161 visual imagery to solve problems? We offer one formulation: anywhere
162 beyond the input processing step, the agent needs to use
163 or retain representations of problem information that count as
164 "images" in some way. This includes image-like representations
165 occurring in the problem definition, domain knowledge, problem-
166 solving strategy, and/or in the specific problem representations
167 generated by the input processing component.

168 What counts as an image-like representation? Previous re-
169 search on computational imagery often distinguishes between
170 spatial representations, i.e., that replicate the spatial structure of
171 what is being represented, versus visual/object representations,
172 i.e., that replicate the visual appearance of what is being repre-
173 sented (30). These categories correspond to findings about spatial
174 versus object imagery in people (31). Thus, we label agents us-
175 ing either type of representation as using visual imagery or being
176 imagery-based. The imagery-based Raven's agents discussed
177 later in this paper primarily use visual/object imagery and not spatial
178 imagery, though certainly many other AI research efforts have
179 developed agents that use spatial imagery (32).

180 Note that imagery here refers to the *format* in which something
181 is represented, not the *contents* of what is represented. Many
182 artificial agents reason about visuospatial information using non-
183 imagery-based representations (33); for example, visuospatial
184 domain knowledge can be encoded propositionally, such as the
185 rule: $\text{left-of}(x, y) \implies \text{right-of}(y, x)$.

186 **Different types of Raven's problem-solving agents**

187 Different paradigms of AI agents can now be described according
188 to components in this framework.

189 Knowledge-based approaches, also associated with terms like
190 cognitive systems (34) or symbolic AI, traditionally rely on manually
191 designed domain knowledge and flexible problem-solving pro-
192 cedures like planning and search to tackle complex problems. The
193 first wave of **propositional Raven's agents** used manual or auto-
194 mated input processing to convert raw test problem images into
195 amodal, propositional representations, such as lists of attribute-
196 value pairs, and then problem-solving procedures would operate
197 over these propositional representations (33, 35–37). Visuospatial
198 domain knowledge in these agents included predefined types of
199 relationships among elements, like similarity or containment, and
200 methods for extracting and defining relationships.

201 As foreshadowed in early writings about possible represen-
202 tational and algorithmic strategy differences on the Raven's test
203 (38), a second wave of **imagery-based Raven's agents** were also
204 knowledge-based but their internal representations of problem in-
205 formation remained visual, i.e., the problem-solving procedures

206 directly accessed and manipulated problem images, and even of-
207 ten created new images during the course of reasoning (39–43).
208 Visuospatial domain knowledge in these agents included image
209 functions like rotation, image composition, visual similarity, etc.

210 More recently, a wave of **data-driven Raven's agents** aim to
211 learn integrated representations of visuospatial domain knowledge
212 and problem-solving strategies by training on input-output pairs
213 from a large number of example problems (44–49).

214 Which approach is correct? This is a bad question, as different
215 types of agents are used for very different lines of scientific inquiry.
216 Referring again to Figure 2, most knowledge-based Raven's agents
217 are used to study *problem-solving procedures* and assume a rela-
218 tively fixed set of domain knowledge (though some of these agents
219 certainly include forms of learning as well). Most of the data-driven
220 Raven's agents are used to study how *domain knowledge* about
221 visuospatial relationships can be learned from examples, and the
222 problem-solving procedure is often (though not always) fixed.

223 All of these Raven's agents have many hand-built components,
224 though the parts that are hand-built differ from one agent to an-
225 other. Many open AI challenges remain, even within the one task
226 domain of the Raven's test, in gradually converted the components
227 in Figure 2 from being manually programmed to being learned
228 or developed by the agents themselves. Next, we discuss how
229 knowledge-based agents can use imagery to solve Raven's prob-
230 lems in several different ways, and then we examine emerging
231 methods for agents to learn their own 1) domain knowledge, 2)
232 problem-solving strategies, and finally 3) problem definitions.

233 **Imagery-based strategies for solving Raven's problems**

234 Within the category of imagery-based Raven's agents, many dif-
235 ferent formulations are possible, in terms of the problem-solving
236 strategy that is used, the representation and contents of domain
237 knowledge, and even the problem definition.

238 We describe five imagery-based strategies along with results
239 from research by the author and colleagues. Results are reported
240 for the Raven's Standard Progressive Matrices test, scored out of
241 60 problems (21). For comparison, human norm data suggests
242 that average children in the US would score around 26/60 as
243 8-year-olds, 40/60 as 12-year-olds, and 49/60 as 16-year-olds.

244 At a high level, the following strategies are described in terms
245 of two strategy types observed in psychology research: (50):

- 246 • In *constructive matching*, the test-taker looks at the problem
247 matrix, generates a guess for the missing element, and then
248 chooses an answer most similar to its generated guess.
- 249 • In *response elimination*, the test-taker looks at each answer in
250 turn, plugging it into the problem matrix, and choosing the one
251 that produces the best overall matrix.

252 **Strategy 1 (see Figure 3a).** We developed an imagery-based
253 agent that solves Raven's problems through multi-step search,
254 using a constructive matching strategy (39, 43, 51):

- 255 1. Using elements from complete rows/columns of the matrix,
256 search among known visual transformations for the one that
257 best explains image variation across parallel rows/columns.
- 258 2. Apply this transformation to elements in a partial row or col-
259 umn to predict a new answer image.
- 260 3. Search among the answer choices to find the one that is most
261 similar to the predicted answer image.

262 More formally, problem inputs include a set M of images m_i rep-
263 resenting sections of the problem matrix, and a set A of answer
264 choice images a_i . Let C be the set of all collinear subsets c of M ,

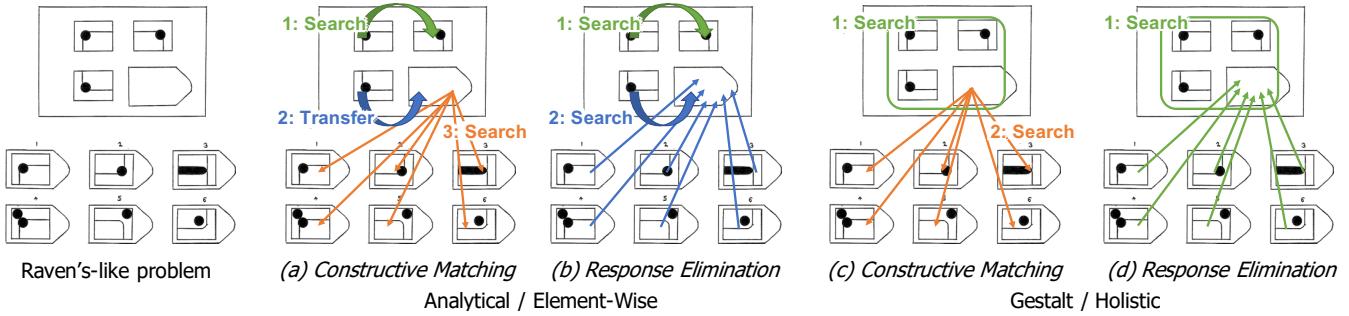


Fig. 3. Raven's-like problem and four different imagery-based strategies for solving it. A problem consists of matrix M of elements m_i and set A of answer choices a_i . (a) First strategy begins with search for transformation t that best transforms m_1 into m_2 , then applies t to m_3 to produce an image candidate for m_4 , and finally searches for answer a_i most similar to m_4 . (b) Second strategy also begins with search for t that best transforms m_1 into m_2 , then conducts similar searches for transformations t_{a_i} that transform m_3 into each a_i , and finally searches for answer a_i that yields t_{a_i} most similar to t . (c) Third strategy begins with search for image m_4 that maximizes Gestalt metric for matrix M , and then searches for answer a_i most similar to m_4 . (d) Fourth strategy involves search for answer a_i that maximizes Gestalt metric for matrix M .

265 with c_x referring to the first element(s), and c_y referring to the last
 266 element. Each c contains matrix elements along rows, columns,
 267 or diagonals. We define an analogy g as a pairing of a single
 268 complete collinear subset c_1 with an incomplete collinear subset
 269 c_2 (i.e., $g = [c_{1,x} : c_{1,y} :: c_{2,x} : c_{2,y}]$, where $c_{2,y}$ is the missing
 270 element in the matrix). All such analogies that share the same c_2
 271 are further aggregated into sets $G_i \in G$.

In addition, let T be the agent's predefined set of visual transformations. Also let $\text{sim}(I_1, I_2)$ be a function that returns a real-valued measure of similarity between images I_1 and I_2 . First, the agent finds the best-fit transformation:

$$(t_{max}, g_{max}) = \underset{t \in T, G_i \in G}{\text{argmax}} \left(\underset{g \in G_i}{\text{mean}} \left(\text{sim}(t(g.c_{1,x}), g.c_{1,y}) \right) \right)$$

272 Second, the agent computes a predicted answer image as:
 273 $a_{pred} = t_{max}(g_{max}.c_{2,x})$. Third, the agent returns the most similar
 274 answer choice: $a_{final} = \underset{a_i \in A}{\text{argmax}} (\text{sim}(a_{pred}, a_i))$.

275 Hand-coded domain knowledge is provided in the form of the set
 276 T of visual transformations, including eight rectilinear rotations and
 277 reflections (including identity) and three to six image composition
 278 operations (union, intersection, subtraction, and combinations of
 279 these) as well as visual similarity and other image processing utility
 280 functions. Steps 1 and 3 above used exhaustive search.

281 Successive versions of the agent, using more transformations
 282 T and more varied ways to optimize over matrix entries in Step 1,
 283 have achieved scores of 38/60 (39), 50/60 (51), and 57/60 (43) on
 284 the Raven's Standard Progressive Matrices test.

285 **Strategy 2 (see Figure 3b).** In a related line of research, col-
 286 leagues developed a different imagery-based agent that adopted a
 287 response elimination type of strategy (see Figure 3b). In this work
 288 (40), a smaller set of visual transformations (rotation and reflec-
 289 tion) was used to compute *fractal image transformations*, i.e. a
 290 representation of one image in terms of another, using techniques
 291 from image compression (52).

292 In particular, to compute a fractal transformation between
 293 source image A and target image B , B is first partitioned into
 294 a set of subimages b_i . Then, for each b_i , a fragment $a_i \in A$
 295 is found such that b_i can be expressed as an affine transforma-
 296 tion t_i of a_i . The fragments a_i are twice the size of b_i , resulting
 297 in a contractive transformation. The set T of all t_i is the fractal
 298 transformation of A into B .

To solve a Raven's problem, a fractal transformation T is computed using elements from each complete row/column j in the

matrix, and then similar transformations T'_{ij} are computed for each of the answer choices plugged into the incomplete rows/columns of the matrix. Finally, the selected answer is the one yielding the most similar fractal transformations to those computed for the original rows/columns of the matrix. Formally, if we let Tsim be a similarity metric across fractal transformations, the final answer is given by:

$$a_{final} = \underset{a_i \in A}{\text{argmax}} \sqrt{\sum_j \text{Tsim}(T_j, T'_{ij})^2}$$

299 Results using this fractal method were also 50 out of 60 correct on
 300 the Raven's Standard Progressive Matrices test, allowing for some
 301 ambiguous detections of the answers, or 38 out of 60 correct with
 302 a specific method for resolving these ambiguities (40).

Strategy 3 (see Figure 3c). The first two strategies consider each matrix element individually. However, people can also use a "Gestalt" strategy to consider the entire matrix as a whole (38, 53). For instance, for the problem in Figure 3, if one looks at the matrix as a single image, an answer might just "appear" in the blank.

303 In recent work (42), we attempted to model this kind of strat-
 304 egy using neural networks for image inpainting, trained to fill in
 305 the missing portions of real photographs. We used a recently
 306 published image inpainting network consisting of a variational
 307 autoencoder combined with a generative adversarial network (54),
 308 and we tested several versions of the network trained on different
 309 types of photographs, such as objects, faces, scenes, and textures.
 310 Given an image of the incomplete problem matrix, the network
 311 outputs a guess for what image should fill in the missing portion.
 312 This guess is then used to select the most similar answer.

313 Formally, let F be the learned encoder network that converts
 314 an image into a representation in a learned feature space, and
 315 let G be the learned decoder network that converts a feature-
 316 based image back into pixel space, including inpainting to fill in any
 317 missing portions. Then, our agent first computes $M' = G(F(M))$
 318 to obtain a new, filled-in matrix image, with m_x denoting the new,
 319 filled in portion of M' . Let L2dist represents the L2 norm of a
 320 vector in the learned feature space. Then, the final answer is:

$$a_{final} = \underset{a_i \in A}{\text{argmin}} (\text{L2dist}(F(m_x) - F(a_i)))$$

321 Figure 4 shows examples of inpainting results on several ex-
 322 ample problems, some of which are filled in more effectively than
 323 others. The best version of this agent, trained on photographs of

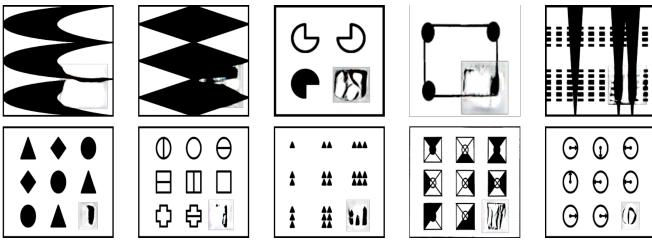


Fig. 4. Images generated using an inpainting neural network (54) for Raven's-like problems (42). The network was trained only on real-world photographs of objects.

321 objects, answered 25 out of 60 problems on the Raven's Standard
 322 Progressive Matrices test. While this score may seem low, it is
 323 quite astonishing given that there was no Raven's-specific information
 324 fed into or contained in the inpainting network, and in fact the
 325 network had never before "seen" line drawings, only photographs.

326 **Strategy 4 (see Figure 3c).** The fourth strategy combines a
 327 Gestalt approach with response elimination. We have not yet
 328 implemented this strategy, nor do we know of other AI efforts that
 329 have, but we present a brief sketch here. Essentially, this strategy
 330 works by plugging in answers to the matrix, and choosing the one
 331 that creates the "best" overall picture, for some notion of best.

Assume a Gestalt metric S that measures the Gestalt quality of any given image. Images that are highly symmetric, contain coherent objects, etc. would score highly, and images that are chaotic or broken up would score poorly. Then, the agent chooses the answer that scores highest when plugged into the matrix M :

$$a_{final} = \operatorname{argmax}_{a_i \in A} (S(M \cup a_i))$$

332 **Strategy 5 (not shown in figure).** The above four strategies treat
 333 RPM matrix elements as single images. However, previous computational
 334 and human studies have suggested that it can be helpful to
 335 decompose RPM problems into multiple subproblems, by breaking
 336 up a single matrix element into subcomponents (35).

337 In previous work, we have also explored imagery-based techniques
 338 for decomposing a geometric analogy into subproblems, solving each separately, and then re-assembling the sub-solutions
 339 back together to choose the final answer (55), though this method
 340 has not yet been tested on the actual Raven's tests.

342 **Open questions.** From this small survey, it is clear that there is
 343 no single imagery-based Raven's strategy. Imagery-based agents
 344 are like logic-based agents or neural-network-based agents; there
 345 are a set of generally shared principles of representation and
 346 reasoning, but then individual agents are designed to use specific
 347 instantiations of these and combine them in different ways to pro-
 348 duce very diverse problem-solving behaviors.

349 Exploring the space of imagery-based agents is valuable not to
 350 find the "best" one, but rather to characterize the space itself. Each
 351 agent, as a data point in this space of possible agents, is an artifact
 352 that can be studied in order to understand something about how
 353 that particular set of representations and strategies can produce
 354 intelligent task behaviors (56). Future work should continue to add
 355 data points to this space and also investigate the extent to which
 356 these strategies overlap with human problem-solving.

Learning visuospatial domain knowledge

357
 358 Imagery-based agents use many kinds of visuospatial domain
 359 knowledge, including: visual transformations like rotation, scaling,
 360 and composition; hierarchical representations of concepts in terms
 361 of attributes like shape and texture; Gestalt principles like sym-
 362 metry, continuity and similarity; etc. These types of knowledge can be
 363 leveraged by an agent to solve problems from the Raven's test as
 364 well as many other visuospatial tests (32).

365 Visuospatial domain knowledge also includes more seman-
 366 tically rich information such as what kinds of objects go where
 367 in a scene (57); we do not further discuss this type of seman-
 368 tic knowledge here, though it certainly plays an important role in
 369 imagery-based AI, especially for agents that perform language
 370 understanding or commonsense reasoning tasks (32).

371 How is visuospatial domain knowledge learned? One hypoth-
 372 esis suggests that agents learn such knowledge through prior
 373 sensorimotor interactions with the world. Under this view, the
 374 precise nature of the representations and learning mechanisms
 375 involved are important open questions. For brevity, we discuss
 376 here AI research on learning two types of visuospatial domain
 377 knowledge—visual transformations and Gestalt principles.

378 **Learning visual transformations.** In humans, many reasoning
 379 operators used during visual imagery (e.g., transformations like
 380 mental rotation, scaling, etc.) are hypothesized to be learned from
 381 visuomotor experience, e.g., perceiving the movement of physical
 382 objects in the real world (58). As with the well-known kittens-in-
 383 carousels experiments (59), learning visual transformations may
 384 rely on the combination of active motor actions coupled with visual
 385 perception of the results of those actions. Studies in both children
 386 and adults have indeed found that training on a manual rotation
 387 task does improve performance on mental rotation (60, 61).

388 Computational efforts to model the learning of visual transfor-
 389 mations have generally represented each transformation as a set
 390 of weights in a neural network. In early work, distinct networks
 391 were used to learn each transformation individually (62). More
 392 recent work combines the visual and motor components of inputs
 393 for learning mental rotation (63). While many of these approaches
 394 implement visual transformations as distinct operations, a more
 395 general approach might represent continuous visual operations as
 396 combinations of basis functions that can be combined in arbitrary
 397 ways (64). Along these lines, other recent work uses more complex
 398 neural networks to represent transformations as combinations of
 399 multiple learned factors, though this work still focused on relatively
 400 simple transformations like rotation and scaling (65, 66).

401 People certainly do not learn visual transformations from spe-
 402 cialized training on rotation, scaling, etc., taken as separate trans-
 403 formations. More generally, we have access to a very robust and
 404 diverse machinery for simulating visual change, and the simple
 405 "mental rotation" types of tasks often used in studies of visual im-
 406 agery tap into only very tiny slices of this knowledge base. In line
 407 with evidence of the importance of motor actions and forces on our
 408 own imagery abilities (18), we expect that work in AI to model phys-
 409 ical transformations—especially work in robotics that combines
 410 visual and motor inputs/outputs—will be essential for producing the
 411 kinds of capabilities agents need for visual imagery.

412 There is starting to be a wave of relevant work in AI in the area
 413 of *video prediction*, which involves learning representations of both
 414 the appearance of objects as well as their dynamics (67–69), in-
 415 cluding for increasingly complex forms of dynamics as with a robot
 416 trying to manipulate a rope (70). Importantly, these efforts focus

Fig. 5. Images eliciting Gestalt “completion” phenomena. Left contains only scattered line segments, but we inescapably see a circle and rectangle. Right contains one whole key and one broken key, but we see two whole keys with occlusion.

417 on learning and making inferences about object dynamics directly
 418 in the image space, as opposed to computational approaches that
 419 rely on explicit physics simulations and then project predictions
 420 into image space. Thus, these new approaches offer intriguing
 421 possibilities as potential models for how humans might learn naive
 422 physics as a form of imagery-based reasoning.

423 **Learning Gestalt principles.** Many visuospatial intelligence tests
 424 rely on a person’s knowledge of visual relationships like similarity,
 425 continuity, symmetry, etc. Simple tests like shape matching require
 426 the test-taker to infer first-order relationships among visual ele-
 427 ments, while more complex tests like the Raven’s often progress
 428 into second-order relationships, i.e., relations over relations.

429 In one sense, a test like the Raven’s ought to be agnostic with
 430 respect to the specific choice of first-order relationships, and indeed
 431 in many propositional AI agents, a relation like *contains*(X, Y) can
 432 be replaced with any arbitrary label, and the results will stay the
 433 same. However, for people, the actual visuospatial relationships
 434 at play do deeply influence our problem-solving capabilities. For
 435 example, isomorphs of the Tower of Hanoi task are more difficult
 436 if task rules are less well-aligned with our real-world knowledge
 437 about spatial structure and stacking (71). Similarly, the perceptual
 438 properties of Raven’s problems have been found to be a strong
 439 predictor of item difficulty (72).

440 A person’s prior knowledge about visuospatial relationships is
 441 closely tied to Gestalt perceptual phenomena. In humans, Gestalt
 442 phenomena have to do, in part, with how we integrate low-level per-
 443 ceptual elements into coherent, higher-level wholes (73), as shown
 444 in Figure 5. Psychology research has enumerated a list of prin-
 445 ciples (or laws, perceptual/reasoning processes, etc.) that seem to
 446 operate in human perception, like preferences for closure, symme-
 447 try, etc. (74). Likewise, work in image processing and computer
 448 vision has attempted to define these principles mathematically or
 449 computationally, for instance as a set of rules (75).

450 However, in more recent computational models, Gestalt prin-
 451 ciples are seen as emergent properties that reflect, rather than
 452 determine, perceptions of structure in an agent’s visual environ-
 453 ment. For example, early approaches to image inpainting—i.e.,
 454 reconstructing a missing/degraded part of an image—used rule-
 455 like principles to determine the structure of missing content, while
 456 later approaches use machine learning to capture structural regu-
 457 larities from data and apply them to new images (76). This seems
 458 reasonable as a model of Gestalt phenomena in human cognition;
 459 it is our years of experience with the world around us we see Figure
 460 5 (left) as partially occluded/degraded views of whole objects.

461 Image inpainting represents a fascinating area of imagery-
 462 based abilities for artificial agents (54), which we used in our
 463 model of Gestalt-type problem solving on the Raven’s test (42),
 464 as described earlier. Other work in computer vision and machine
 465 learning studies the extent to which neural networks not explicitly
 466 designed to model Gestalt effects might exhibit such effects as
 467 emergent phenomena (77–81).

Learning a problem-solving strategy

468 Relatively little research in AI has proposed methods for automatic-
 469 ically generating problem-solving procedures for intelligence tests,
 470 despite the extensive research on manually constructed solution
 471 methods or methods that rely on a large number of examples (20).
 472 How does a person obtain an effective problem-solving strategy for
 473 a task they have never seen, on the fly and often without explicit
 474 feedback? Some human research suggests that children learn to
 475 solve a widening range of problems through two primary processes
 476 of 1) *strategy discovery*, i.e., discovering new strategies for certain
 477 problems or tasks, and 2) *strategy generalization*, i.e., adapting
 478 strategies they already know for other problems or tasks (82, 83).

479 Some AI research on strategy discovery can be found in the
 480 area of inductive programming or program synthesis, i.e., given a
 481 number of input-output pairs, constraints, or other partial specifi-
 482 cations of a task, together with a set of available operations, the
 483 system induces a “program” or series of operations that produces
 484 the desired behaviors (84). In other words, “Inductive program-
 485 ming can be seen as a very special subdomain of machine learning
 486 where the hypothesis space consists of classes of computer pro-
 487 grams” (85). Inductive programming has been applied to some
 488 intelligence-test-like tasks, such as number series problems (86),
 489 and to simple visual tasks like learning visual concepts (87, 88).
 490 However, more research is needed to expand these methods to
 491 tackle more complex and diverse sets of tasks. For example, given
 492 the imagery-based strategies described above, a challenge for
 493 imagery-based program induction would be to derive these strate-
 494 gies automatically from a small set of example Raven’s problems.

495 AI research has often investigated strategy generalization
 496 through the lens of integrating planning with analogy. Case-based
 497 planning looks at how plans stored in memory are retrieved at the
 498 appropriate juncture, modified, and applied to solve a new problem
 499 (89). The majority of this work has focused on agents that use
 500 propositional knowledge representations, and very little (if any) has
 501 applied these methods to address intelligence tests.

502 Research on strategy selection and adaptation would be enor-
 503 mously informative for studying not just how people approach a
 504 new type of intelligence test but also inter-problem learning on
 505 intelligence tests, i.e., learning from one problem (even without
 506 feedback) and use this knowledge to inform the solution of the
 507 next problem. In humans, one fascinating study gave each of two
 508 groups of children a different set of Raven’s-like problems to start
 509 with, and then the same final set of problems that had ambiguous
 510 answers (53). Depending on which set of starting problems they
 511 received, the children predictably gravitated towards one of two
 512 profiles of performance on the final problems. Modeling these
 513 phenomena remains an open challenge for AI research.

Learning the problem definition

515 Even with intelligent agents that generate their own problem-
 516 solving strategies or programs, the problem definition—i.e., the
 517 problem template and goal—is still provided by the human system
 518 designer. Interactive task learning is an area of AI research that
 519 investigates how “an agent actively tries to learn the actual definition
 520 of a task through natural interaction with a human instructor, not
 521 just how to perform a task better” (90). Research in interactive task
 522 learning generally involves designing agents or robots that learn
 523 from both verbal and nonverbal information, i.e., instructions along
 524 with examples or situated experiences (91, 92).

525 Such multi-modal inputs are used all the time in human learning,

527 including on intelligence tests: most tests combine verbal (spoken
528 or written) instructions with simple example problems to teach
529 the test-taker the point of each new task that is presented. For
530 example, the Raven's test typically begins with spoken instructions
531 to select the answer choice that best fills in the matrix, together
532 with a very simple example problem that the test administrator is
533 supposed to show the test-taker, along with the correct answer.

534 Any Raven's agent must contain information about the problem
535 definition in order to parse new problems appropriately and to follow
536 a procedure that attains the goal. Moreover, agents should be able
537 to modify their problem definition to accommodate slight problem
538 variations. For example, if a new problem is presented with two
539 empty spots in the matrix, a robust agent should be able to infer
540 that this problem requires two corresponding answer responses.

541 In all extant Raven's agents, knowledge of the problem definition
542 is manually provided by system designers. While these concepts
543 may seem straightforward to a person, and indeed are usually
544 trivial to program into an agent as static program elements, it is
545 a challenging open question to consider where these concepts
546 come from, and how they might be learned. For example, people
547 gain extensive experience in taking multiple choice tests from a
548 very early age, especially in modern societies, but we do not know
549 precisely how this knowledge is represented, or the mechanisms
550 by which it is generalized to new tasks.

551 The interesting sub-problem of *nonverbal task learning* considers
552 how the task definition can be learned purely through a small
553 number of observed examples, without the use of explicit language-
554 based information at all (93). While nonverbal mechanisms are
555 undoubtedly at play in multi-modal task learning for most people,
556 nonverbal task learning in its pure form does also occur.

557 There are many clinical populations in which individuals have
558 difficulties in using or understanding language, including acquired
559 aphasias or developmental language disorders. Nonverbal intelligence
560 tests are specifically designed for use with such populations,
561 and they avoid verbal instructions altogether (94). In these tests,
562 examiners initially show test-takers a simple example problem
563 and its solution. Test-takers must learn the task definition (e.g.,
564 matching shapes, finding one shape in another, completing a visual
565 pattern, etc.) by observing the example, and then use this
566 knowledge to solve a series of more difficult test problems.

567 A small but intriguing set of converging research threads in AI
568 have pinpointed the importance of nonverbal task learning. One
569 recent study using robots looked at how abstract goals can be
570 inferred from a small number of visual problem examples and
571 applied to new problems, where the goal is represented in terms
572 of a set of programs that meets it (95). Even more recently, a new
573 Abstraction and Reasoning Corpus (ARC) has been proposed for
574 artificial agents, containing 1,000 visual tasks with distinct goals;
575 agents must infer the goal for a given task from a few examples and
576 then use this knowledge to solve new problems (96). Both of these
577 tasks are similar to the Raven's test in the sense that, even though
578 the Raven's test ostensibly only has a single goal (i.e. choose the
579 answer that fits best), different Raven's problems can be thought of
580 as requiring different formulations of this overarching and extremely
581 vague goal. These examples also pose interesting questions about
582 the extent to which problem goals might be implicitly represented
583 within an agent's problem-solving strategy, instead of explicitly, and
584 the pros and cons of each alternative.

585 Note that this discussion only considers goals that are well-
586 defined at least in the minds of the problem creators. Intelligence
587 tests are a rather odd social construct for this reason; in a way,

588 the test-taker is trying to infer the intent of the test designer. How
589 agents (or humans) represent and reason about their *own* goals
590 might involve an extension of the processes described here, or
591 they might be different modes of reasoning altogether.

592 Conclusion and implications for cognitive science

593 We close by returning to the motivating questions from the introduction.
594 The cognitive science question is: what are the computations
595 taking place in someone's mind when they use visual imagery?

596 AI research alone cannot, of course, fully answer this question,
597 and so we presented a second, more limited question: if you have
598 an intelligent agent that uses visual-imagery-based knowledge rep-
599 resentations and reasoning operations, then what kinds of problem
600 solving might be possible, and how would it all work?

601 In this paper, we have presented a review of AI research and
602 open lines of inquiry related to answering this question in the
603 context of imagery-based agents that solve problems from the
604 Raven's Progressive Matrices intelligence test. We discussed:
605 1) why intelligence tests are such a good challenge for AI; 2) A
606 framework for artificial problem-solving agents; 3) several imagery-
607 based agents that solve Raven's problems; and 4) how an imagery-
608 based agent could *learn* its domain knowledge, problem-solving
609 strategies, and problem definition, instead of these components
610 being manually designed and programmed.

611 More generally, whether or not imagery-based AI agents are at
612 all similar to humans, designing, implementing, and studying such
613 agents contributes valuable information about what is *possible* in
614 terms of computation and intelligence. AI research that develops
615 different kinds of agents is helpful for sketching out different points
616 in the space of what is possible, and AI research that enables
617 such agents to learn is helpful for hypothesizing how and why
618 various computational elements of intelligence might come to be.
619 Then, further interdisciplinary inquiries can proceed to connect
620 findings and hypotheses derived from these lines of AI research to
621 corresponding lines of research about what humans do.

622 Acknowledgments

623 Many thanks to the reviewers for their helpful comments. This work
624 was funded in part by NSF award #1730044.

- 1 T Grandin, *Thinking in pictures, expanded edition: My life with autism*. (Vintage), (2008).
- 2 J Gleick, *Genius: The life and science of Richard Feynman*. (Vintage), (1992).
- 3 GJ Feist, *The psychology of science and the origins of the scientific mind*. (Yale University Press), (2008).
- 4 NJ Nersessian, *Creating scientific concepts*. (MIT press), (2008).
- 5 M Giacinto, *Visual thinking in mathematics*. (Oxford University Press), (2007).
- 6 ES Ferguson, *Engineering and the Mind's Eye*. (MIT press), (1994).
- 7 M Petre, AF Blackwell, Mental imagery in program design and visual programming. *Int. J. Human-Computer Stud.* **51**, 7–30 (1999).
- 8 DW Dahl, A Chatterjee, GJ Gorn, The use of visual mental imagery in new product design. *J. Mark. Res.* **36**, 18–28 (1999).
- 9 KR Wanzer, SJ Hamstra, DJ Anastakis, ED Matsumoto, MD Cusimano, Effect of visual-spatial ability on learning of spatially-complex surgical skills. *The lancet* **359**, 230–231 (2002).
- 10 J Foer, *Moonwalking with Einstein: The art and science of remembering everything*. (Penguin), (2011).
- 11 BK Bergen, *Louder than words: The new science of how the mind makes meaning*. (Basic Books (AZ)), (2012).
- 12 JS Hutton, et al., Home reading environment and brain activation in preschool children listening to stories. *Pediatrics* **136**, 466–478 (2015).
- 13 M Hegarty, Mechanical reasoning by mental simulation. *Trends cognitive sciences* **8**, 280–285 (2004).
- 14 D Van Garderen, Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. *J. learning disabilities* **39**, 496–506 (2006).
- 15 J Pearson, SM Kosslyn, The heterogeneity of mental representation: ending the imagery debate. *Proc. Natl. Acad. Sci.* **112**, 10089–10092 (2015).
- 16 NS Newcombe, TF Shipley, Thinking about spatial thinking: New typology, new assessments in *Studying visual and spatial reasoning for design creativity*. (Springer), pp. 179–192 (2015).

652 17 M Knauft, E May, Mental imagery, reasoning, and blindness. *Q. J. Exp. Psychol.* **59**, 161–177 (2006).
 653 18 DL Schwartz, Physical imagery: Kinematic versus dynamic models. *Cogn. Psychol.* **38**, 433–464 (1999).
 654 19 MO Belardinelli, et al., An fmri investigation on image generation in different sensory modalities: the influence of vividness. *Acta psychologica* **132**, 190–200 (2009).
 655 20 J Hernández-Orallo, F Martínez-Plumed, U Schmid, M Siebers, DL Dowe, Computer models solving intelligence test problems: Progress and implications. *Artif. Intell.* **230**, 74–107 (2016).
 656 21 J Raven, JC Raven, JH Court, *Manual for Raven's Progressive Matrices and Vocabulary Scales*. (Harcourt Assessment, Inc.), (1998).
 657 22 TG Evans, A program for the solution of geometric-analogy intelligence test questions in *Semantic Information Processing*, ed. M Minsky. (MIT Press, Cambridge, MA), pp. 271–353 (1968).
 658 23 RP Brown, EA Day, The difference isn't black and white: Stereotype threat and the race gap on raven's advanced progressive matrices. *J. Appl. Psychol.* **91**, 979 (2006).
 659 24 RA Brooks, Intelligence without representation. *Artif. intelligence* **47**, 139–159 (1991).
 660 25 RE Snow, PC Kyllonen, B Marshalek, The topography of ability and learning correlations. *Adv. psychologic human intelligence* **2**, 47–103 (1984).
 661 26 V Prabhakaran, JA Smith, JE Desmond, GH Glover, JD Gabrieli, Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices test. *Cogn. psychology* **33**, 43–63 (1997).
 662 27 RP DeShon, D Chan, DA Weissbein, Verbal overshadowing effects on Raven's advanced progressive matrices: Evidence for multidimensional performance determinants. *Intelligence* **21**, 135–155 (1995).
 663 28 M Dawson, I Soulières, MA Gernsbacher, L Mottron, The Level and Nature of Autistic Intelligence. *Psychol. Sci.* **18**, 657–662 (2007).
 664 29 I Soulières, et al., Enhanced visual processing contributes to matrix reasoning in autism. *Hum. Brain Mapp.* **30**, 4082–4107 (2009).
 665 30 J Glasgow, D Papadias, Computational Imagery. *Cogn. Sci.* **16**, 355–394 (1992).
 666 31 M Kozhevnikov, S Kosslyn, J Shepard, Spatial versus object visualizers: A new characterization of visual cognitive style. *Mem. & cognition* **33**, 710–726 (2005).
 667 32 M Kunda, Visual mental imagery: A view from artificial intelligence. *Cortex* **105**, 155–172 (2018).
 668 33 A Lovett, K Forbus, Modeling visual problem solving as analogical reasoning. *Psychol. review* **124**, 60 (2017).
 669 34 P Langley, The cognitive systems paradigm. *Adv. Cogn. Syst.* **1**, 3–13 (2012).
 670 35 PA Carpenter, MA Just, P Shell, What one intelligence test measures: a theoretical account of the processing in the raven progressive matrices test. *Psychol. review* **97**, 404–431 (1990).
 671 36 D Rasmussen, C Eliasmith, A neural model of rule generation in inductive reasoning. *Top. Cogn. Sci.* **3**, 140–153 (2011).
 672 37 C Stranneågård, S Cirillo, V Ström, An anthropomorphic method for progressive matrix problems. *Cogn. Syst. Res.* **22**, 35–46 (2013).
 673 38 E Hunt, Quote the Raven? Nevermore in *Knowledge and cognition*. (Lawrence Erlbaum, Oxford, England), pp. ix, 321 (1974).
 674 39 M Kunda, K McGreggor, AK Goel, A computational model for solving problems from the raven's progressive matrices intelligence test using iconic visual representations. *Cogn. Syst. Res.* **22**, 47–66 (2013).
 675 40 K McGreggor, M Kunda, AK Goel, Fractals and ravens. *Artif. Intell.* **215**, 1–23 (2014).
 676 41 S Shegheva, A Goel, The structural affinity method for solving the raven's progressive matrices test for intelligence in *Thirty-Second AAAI Conference on Artificial Intelligence*. (2018).
 677 42 T Hua, M Kunda, Modeling gestalt visual reasoning on raven's progressive matrices using generative image inpainting techniques in *Annual Conference on Advances in Cognitive Systems (ACS)*. (2020).
 678 43 Y Yang, K McGreggor, M Kunda, Not quite any way you slice it: How different analogical constructions affect raven's matrices performance in *Annual Conference on Advances in Cognitive Systems (ACS)*. (2020).
 679 44 D Hoshen, M Werman, Iq of neural networks (2017).
 680 45 DG Barrett, F Hill, A Santoro, AS Morcos, T Lillicrap, Measuring abstract reasoning in neural networks (2018).
 681 46 F Hill, A Santoro, DG Barrett, AS Morcos, T Lillicrap, Learning to make analogies by contrasting abstract relational structure (2019).
 682 47 X Steenbrugge, S Leroux, T Verbelen, B Dhoedt, Improving generalization for abstract reasoning tasks using disentangled feature representations (2018).
 683 48 S van Steenkiste, F Locatello, J Schmidhuber, O Bachem, Are disentangled representations helpful for abstract visual reasoning? (2019).
 684 49 C Zhang, F Gao, B Jia, Y Zhu, SC Zhu, Raven: A dataset for relational and analogical visual reasoning in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. pp. 5317–5327 (2019).
 685 50 CE Bethell-Fox, DF Lohman, RE Snow, Adaptive reasoning: Componential and eye movement analysis of geometric analogy performance. *Intelligence* **8**, 205–238 (1984).
 686 51 M Kunda, Ph.D. thesis (Georgia Tech) (2013).
 687 52 M Barnsley, LP Hurd, *Fractal Image Compression*. (A.K. Peters, Boston, MA), (1992).
 688 53 JR Kirby, MJ Lawson, Effects of strategy training on progressive matrices performance. *Contemp. Educ. Psychol.* **8**, 127–140 (1983).
 689 54 J Yu, et al., Generative image inpainting with contextual attention in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. pp. 5505–5514 (2018).
 690 55 M Kunda, Computational mental imagery, and visual mechanisms for maintaining a goal-subgoal hierarchy in *Proceedings of the Third Annual Conference on Advances in Cognitive Systems (ACS)*. p. 4 (2015).
 691 56 A Newell, HA Simon, Computer science as empirical inquiry: Symbols and search. *Commun. ACM* **19**, 113–126 (1976).
 692 57 AX Chang, M Savva, CD Manning, Learning spatial knowledge for text to 3d scene generation. in *EMNLP*. pp. 2028–2038 (2014).
 693 58 RN Shepard, Ecological constraints on internal representation: resonant kinematics of perceiving, imagining, thinking, and dreaming. *Psychol. review* **91**, 417–447 (1984).
 694 59 R Held, A Hein, Movement-produced stimulation in the development of visually guided behavior. *J. comparative physiological psychology* **56**, 872 (1963).
 695 60 G Wiedenbauer, J Schmid, P Jansen-Osmann, Manual training of mental rotation. *Eur. J. Cogn. Psychol.* **19**, 17–36 (2007).
 696 61 G Wiedenbauer, P Jansen-Osmann, Manual training of mental rotation in children. *Learn. instruction* **18**, 30–41 (2008).
 697 62 BW Mel, A connectionist learning model for 3-d mental rotation, zoom, and pan in *Proceedings of the Eighth Annual Conference of the Cognitive Science Society*. pp. 562–71 (1986).
 698 63 K Seepanomwan, D Caligore, G Baldassarre, A Cangelosi, Modelling mental rotation in cognitive robots. *Adapt. Behav.* **21**, 299–312 (2013).
 699 64 RP Goebel, The mathematics of mental rotations. *J. Math. Psychol.* **34**, 435–444 (1990).
 700 65 R Memisevic, GE Hinton, Learning to represent spatial transformations with factored higher-order boltzmann machines. *Neural computation* **22**, 1473–1492 (2010).
 701 66 R Memisevic, Learning to Relate Images. *IEEE Transactions on Pattern Analysis Mach. Intell.* **35**, 1829–1846 (2013).
 702 67 C Finn, I Goodfellow, S Levine, Unsupervised learning for physical interaction through video prediction in *Advances in neural information processing systems*. pp. 64–72 (2016).
 703 68 R Mottaghi, M Rastegari, A Gupta, A Farhadi, "what happens if..." learning to predict the effect of forces in images in *European Conference on Computer Vision*. (Springer), pp. 269–285 (2016).
 704 69 N Watters, et al., Visual interaction networks: Learning a physics simulator from video in *Advances in neural information processing systems*. pp. 4539–4547 (2017).
 705 70 A Nair, et al., Combining self-supervised learning and imitation for vision-based rope manipulation in *2017 IEEE International Conference on Robotics and Automation (ICRA)*. (IEEE), pp. 2146–2153 (2017).
 706 71 K Kotovsky, HA Simon, What makes some problems really hard: Explorations in the problem space of difficulty. *Cogn. psychology* **22**, 143–183 (1990).
 707 72 R Primi, Complexity of geometric inductive reasoning tasks: Contribution to the understanding of fluid intelligence. *Intelligence* **30**, 41–70 (2001).
 708 73 J Wagenaars, et al., A century of gestalt psychology in visual perception: I. perceptual grouping and figure-ground organization. *Psychol. bulletin* **138**, 1172 (2012).
 709 74 G Kanizsa, *Organization in vision: Essays on Gestalt perception*. (Praeger Publishers), (1979).
 710 75 A Desolneux, L Moisan, JM Morel, *From gestalt theory to image analysis: a probabilistic approach*. (Springer Science & Business Media) Vol. 34, (2007).
 711 76 CB Schönlieb, *Partial differential equation methods for image inpainting*. (Cambridge University Press), (2015).
 712 77 MH Herzog, UA Ernst, A Etzold, CW Eurich, Local interactions in neural networks explain global effects in gestalt processing and masking. *Neural Comput.* **15**, 2091–2113 (2003).
 713 78 C Prodöhl, RP Würtz, C Von Der Malsburg, Learning the gestalt rule of collinearity from object motion. *Neural Comput.* **15**, 1865–1896 (2003).
 714 79 A Amanatidis, VG Kaburlasos, EB Kosmatopoulos, Understanding deep convolutional networks through gestalt theory in *2018 IEEE International Conference on Imaging Systems and Techniques (IST)*. (IEEE), pp. 1–6 (2018).
 715 80 G Ehrenperger, S Stabinger, AR Sánchez, Evaluating cnns on the gestalt principle of closure (2019).
 716 81 B Kim, E Reif, M Wattenberg, S Bengio, Do neural networks show gestalt phenomena? an exploration of the law of closure (2019).
 717 82 DF Björklund, *Children's strategies: Contemporary views of cognitive development*. (Psychology Press), (2013).
 718 83 R Siegler, EA Jenkins, *How children discover new strategies*. (Psychology Press), (2014).
 719 84 S Gulwani, et al., Inductive programming meets the real world. *Commun. ACM* **58**, 90–99 (2015).
 720 85 J Hernández-Orallo, SH Muggleton, U Schmid, B Zorn, Approaches and applications of inductive programming (dagstuhl seminar 15442) in *Dagstuhl Reports*. (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik), Vol. 5.10, (2016).
 721 86 J Hofmann, E Kitzelmann, U Schmid, Applying inductive program synthesis to induction of number series a case study with igor2 in *Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz)*. (Springer), pp. 25–36 (2014).
 722 87 BM Lake, R Salakhutdinov, JB Tenenbaum, Human-level concept learning through probabilistic program induction. *Science* **350**, 1332–1338 (2015).
 723 88 K Ellis, D Ritchie, A Solar-Lezama, J Tenenbaum, Learning to infer graphics programs from hand-drawn images in *Advances in neural information processing systems*. pp. 6059–6068 (2018).
 724 89 D Borrajo, A Roubíčková, I Serina, Progress in case-based planning. *ACM Comput. Surv. (CSUR)* **47**, 35 (2015).
 725 90 JE Laird, et al., Interactive task learning. *IEEE Intell. Syst.* **32**, 6–21 (2017).
 726 91 TR Hinrichs, KD Forbus, X goes first: Teaching simple games through multimodal interaction. *Adv. Cogn. Syst.* **3**, 31–46 (2014).
 727 92 J Kirk, A Mininger, J Laird, Learning task goals interactively with visual demonstrations. *Biol. Inspired Cogn. Archit.* **18**, 1–8 (2016).
 728 93 M Kunda, Nonverbal task learning in *Proceedings of the 7th Annual Conference on Advances in Cognitive Systems (ACS)*. (2019).
 729 94 LS DeThorne, BA Schaefer, A guide to child nonverbal iq measures. *Am. J. Speech-Language Pathol.* **13**, 275–290 (2004).
 730 95 M Lázaro-Gredilla, D Lin, JS Guntupalli, D George, Beyond imitation: Zero-shot task transfer on robots by learning concepts as cognitive programs. *Sci. Robotics* **4**, eaav3150 (2019).
 731 96 F Chollet, On the measure of intelligence (2019).