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Abstract—Ground penetrating radar (GPR) has 
been widely used as a non-destructive technique 
to detect subsurface objects. Manual process 
and interpretation of GPR data is tedious and 
time-consuming. To address this challenge, an 
automatic method based on a deep instance 
segmentation framework is developed to detect 
and segment object signatures from GPR scans. 
The proposed method develops the Mask 
Scoring R-CNN (MS R-CNN) architecture by 
introducing a novel anchoring scheme. By 
analyzing the characteristics of the hyperbolic 
signatures of subsurface objects in GPR scans, a 
set of anchor shape ratios are optimized and 
selected to substitute the predefined and fixed 
aspect ratios in the MS R-CNN framework to improve the signature detection performance. In addition, transfer learning 
technique is adopted to obtain a pre-trained model to address the challenge of insufficient GPR dataset for model 
training. The detected and segmented signatures can then be further processed for target localization and 
characterization. GPR data of tree roots were collected in the field to validate the proposed methods. Despite the noisy 
background and varying signatures in the GPR scans, the proposed method demonstrated promising results in object 
detection and segmentation. Computational results show that the improved MS R-CNN outperforms the other 
state-of-the-art methods. 

 
Index Terms—Ground penetrating radar (GPR), deep learning (DL), instance segmentation, root detection, Mask Scoring 

R-CNN (MS R-CNN), anchor box. 

 

 

I.  INTRODUCTION 

round penetrating radar (GPR) have been adopted for 

subsurface mapping as it could provide rich information 

regarding the objects buried at varying depths in the subsurface 

[1]. GPR has been used in a variety of domains ranging from 

civil engineering [2-5], archaeology [6, 7] to agricultural 

activities [8-12]. In most of the applications such as 

non-destructive bridge assessment [13, 14], underground utility 

mapping [15, 16], and tree root detection [17, 18], detecting and 

identifying of objects from GPR scans is a vital step to retrieve 

meaningful information. However, manual processing GPR 

data is time-consuming and labor-intensive, and thus are not 

suitable for large amounts of GPR data acquired from the field. 
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Therefore, an automatic method is needed for accurate 

detection of subsurface objects from GPR scans. 

The existing studies have demonstrated the feasibility of 

using GPR to scan the subsurface and its promise for extracting 

useful information from GPR profiles to locate objects in 

subsurface. Li et al. [17] used randomized Hough transform 

method to detect tree roots in GPR scans. The performance was 

evaluated in controlled and in situ experiments, where root 

datasets were collected by GPR with different center 

frequencies. The method presented in [19] first identifies 

hyperbola regions in GPR scans, and then uses the generalized 

Hough transform to locate the hyperbolic signatures of the 

buried objects. Studies [20, 21] used a genetic algorithm 

(GA)-based technique to identify the linear and hyperbolic 

features resulted from subsurface objects in binary GPR images. 

Based on the extracted features, Harkat et al. [21] further used a 

classifier based on neural network radial basis function (RBF) 

to classify windows of GPR radargrams into two classes: 

regions with and without objects. The success of technique 

presented in [22] demonstrated the potential of using histogram 

of oriented gradient (HOG) feature extraction and support 

vector machine (SVM) to detect object signatures in GPR scans. 

However, most input features need to be recognized by 

practical experts, and the classification result depends on the 

quality of these features, which are limited by the amount of 

GPR data processed. 
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In recent years, deep learning (DL) techniques have been 

exploited to automatically detect object signatures in GPR 

scans [23-25]. DL methods can learn the feature representation 

of buried objects from GPR data. In the method developed by 

Kien Dinh et al. in [26], first image processing operations 

(zero-time correction, migration, filtering, and threshold 

segmentation) are used to find the vertices of each hyperbola. 

The fixed-size areas around vertices are then extracted and 

divided into positive or negative sample, which are used as the 

input for convolutional neural networks (CNN) to train the 

model. Finally, the trained model is used to test the candidate 

dataset. The work in [27] proposed a hybrid deep CNN to detect 

and locate moisture damage of bridges from GPR data. This 

hybrid model consists of the ResNet50 [28] network for feature 

extraction and YOLO v2 [29] network for target recognition. 

The typical object detection framework, Faster R-CNN [30], is 

used in [24] to classify buried linear objects and narrow down 

candidate hyperbola region. The hyperbolic clusters are 

segmented from complex background using a double cluster 

seeking estimate (DCSE) algorithm. In addition, a novel 

column-based transverse filter points (CTFP) method is used to 

automatically extract data points from hyperbolic regions. 

However, complete information could not be extracted from the 

detected hyperbolic signatures in that study. To address issue, 

an enhanced DL framework is proposed in [31], which 

integrates Mask R-CNN [32] and a novel loss function 

computation to simultaneously detect and segment hyperbolic 

signatures. Instead of using clustering-based methods to obtain 

segmented results as in [24, 33, 34], both the box and mask 

patches of hyperbolic signatures can be obtained. 

Although the application of DL techniques in GPR data 

processing has achieved partial success, the performance of DL 

models still remains a concern in real-world applications. First, 

the formation of hyperbolic signatures in GPR depends on a 

variety of conditions, including the size of the buried object, 

buried depth, antenna frequency, and soil condition. Due to the 

complex subsurface conditions and the radar wave reflections, 

the object signatures in GPR images could also be incomplete 

and distorted. This imposes difficulties on developing a DL 

model that could achieve desired performance for specific GPR 

application. Second, DL model can be adopted for most 

image-related tasks. However, radargram is different from 

conventional images. The internal architectures of DL models 

have not been well linked with the attributes and characteristics 

of radargram and the object signatures. Thus, direct application 

of such DL models for GPR data processing may omit useful 

information and lead to redundant processing. 

We proposed a new method to address the limitations, as 

shown in Fig. 1. First, a DL-based framework was developed to 

automate the detection and segmentation of object signatures in 

GPR scans. The innovation is twofold. The Mask Scoring 

R-CNN (MS R-CNN) [35] predefines a set of fixed anchor 

shapes (e.g. aspect ratios, scale) to generate proposals. 

However, using these generated proposals is not suitable for 

detecting various object signatures with different sizes and 

shapes in GPR scans. Therefore, we first analyzed the 

hyperbolic signatures and develop a new customizable 

anchoring scheme to enhance the proposal generation to 

improve detection performance for GPR scans. In addition, 

DL-based methods need a large number of labeled datasets to 

train the model. Unlike conventional image processing tasks, 

the labeled GPR datasets are very scare. We adopt the transfer 

learning method to solve the problem of inadequate training 

dataset and improve the model robustness. The new anchoring 

scheme and the transfer learning method are integrated with the 

MS R-CNN to process GPR scans to detect and segment object 

signatures. Second, the segmented signatures are extracted 

from cluttered background, and then hyperbolic fitting is 

performed to find the peak that approximately indicate the 

object position. 

The rest of the paper is organized as follows. Section II 

designs a novel anchoring scheme and incorporates it into the 

MS R-CNN framework. Section III elaborates the customized 

anchors for subsurface targets and transfer learning technique, 

and introduces the automatic target recognition scheme based 

on the improved MS R-CNN framework. Section IV presents 

experimental results, followed by the conclusion and future 

research in Section V.

 
Fig. 1.  The proposed GPR object signature detection and segmentation framework. 
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II. IMPROVED MS R-CNN FRAMEWORK   

A new anchoring scheme and a transfer learning technique 

are developed and integrated into the MS R-CNN to 

automatically detect and segment hyperbolic signatures of 

buried objects from GPR scans. Table 1 lists the abbreviations. 
 

TABLE I 
SUMMARY OF ABBREVIATIONS 

Abbreviation Description 

AP Average Precision 
AR Average Recall 
bbox Bounding Box 
CNN Convolutional Neural Networks 
DL Deep Learning 

FPN Feature Pyramid Network 
FCs Fully Connected Layers 
GPR Ground Penetrating Radar 
GT Ground Truth 
IoU Intersection over Union 
NMS Non-maximum Suppression 
RPN Region Proposal Network 
RoI Region of Interest 
RoIAlign Region of Interest Align 
R-CNN Region-based CNN 
Soft-NMS Soft Non-maximum Suppression 

 

A. Overview of MS R-CNN 

The instance segmentation model can simultaneously 

classify, detect, and segment objects in the input image. For 

most instance segmentation tasks, the quality of segmented 

mask is determined by the classification confidence of the 

detection branch. However, the mask quality does not 

necessarily match with the classification confidence. MS 

R-CNN is a typical instance segmentation framework to 

address this issue [35]. It integrates an additional network block 

‘MaskIoU head’ into Mask R-CNN to explore the mask scoring. 

Its network architecture consists of three stages as denoted in 

Fig. 1. First, a region proposal network (RPN) is leveraged to 

generate a set of candidate proposals. The second stage is to use 

region of interest align (RoIAlign) to extract features from each 

proposal and feed them into two standard components: 

region-based convolutional neural networks (R-CNN) head and 

Mask head. The former generates classification result and 

bounding box (bbox) regression result, while the latter 

performs mask prediction. The top-k (for example, top100) 

score bboxes output by R-CNN head are processed by soft 

non-maximum suppression (Soft-NMS), and then sent to Mask 

head to get masks. The third stage concatenates the obtained 

mask and RoI feature map into MaskIoU head to get MaskIoU 

value. 

 

 
Fig. 2.  MaskIoU head and its two inputs: predicted mask and RoI 
feature. 
 

Fig. 2 shows the network architecture of the MaskIoU head 

branch. It includes four convolutional layers and three fully 

connected layers (FCs). The kernel size is set to 3 for all the 

convolutional layers, and stride is set to 2 for downsampling in 

the last convolutional layer. The final FC outputs C classes of 

MaskIoU. The MaskIoU head takes both predicted mask 

(generated via Mask head) and IoU features (yielded via 

RoIAlign) as inputs to re-calibrate mask. There are two tasks: 

classifying each mask into correct categories, and regressing 

the MaskIoU of each proposal for category correction. To 

perform these two tasks, the calibrated mask score is computed 

by multiplying classification confidence claS  and IoU 

regression value iouS , as in Equation (1).  

mask cla iouS S S=   (1) 

claS  is used to classify each candidate proposal into a certain 

category at the R-CNN stage, and iouS  is used to regress IoU 

value between the predicted mask and ground truth (GT) mask 

in MaskIoU head module. MaskIoU head is concatenated in the 

R-CNN head and the mask head of Mask R-CNN. 

B. Designed Anchor Scheme 

1) Overview of Anchor: Most state-of-the-art object detectors 

provide an anchor scheme that contains a large number of dense 

anchors. Anchors are used to generate proposals, extract the 

corresponding region features and regress the location of 

bboxes. Because the candidate targets may be unpredictably 

distributed in an input image with various shapes, a set of 

anchor boxes need to be generated based on the center point of 

every sliding window in feature map and is determined by 

predefined anchor scales and aspect ratios. The feature map, as 

the output of CNN, is used to roughly locate targets. The anchor 

scales and anchor aspect ratios are used to respectively 

represent the size and shape of target. 

Modern object detectors are roughly divided into two-stage 

and single-stage pipelines. The two-stage approach is 

mainstream in object detection task. Generating anchors via a 

sliding window located in feature maps has been widely 

accepted in anchor-based object detectors. For instance, Faster 

R-CNN [30] innovatively proposed the RPN model to produce 

proposals from candidate anchors, and then these generated 

proposals are classified and regressed. These anchors are 

obtained by scanning feature map using the sliding window. 
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The Faster R-CNN defines three scales [8,16,32]  and three 

ratios [0.5,1.0,2.0] , combing 9 anchor boxes in different 

shapes. The Mask R-CNN and the MS R-CNN adopt the same 

design as Faster R-CNN. They define 15 anchor boxes with five 

scales [32,64,128,256,512]  and three ratios [0.5,1.0,2.0] . In 

contrast to two-stage frameworks, the single-stage approach 

just classifies object to a certain category and predict bbox with 

confidence in one evaluation, and skips the stage of generating 

object proposal. The single-stage approach still requires the use 

of the sliding window to produce anchor boxes. For instance, 

the SSD [36] sets five different aspect ratios 
1 1

[1,2,3, , ]
2 3

 to 

generate a series of anchors. Facing the challenge of balancing 

the proportion of positive and negative samples, the RetinaNet 

[37] approach introduces focal loss into backbone to lower the 

weight of negative samples in training process to address the 

above challenge. Specifically, YOLOv2 [29] and YOLOv3 [38] 

utilize K-means [39] method to learn and yield different 

anchors from training set, rather than the combination of scales 

and aspect ratios. 

2) Customized Aspect Ratios based on Hyperbolic 

Signatures: The essence of object detection task in GPR 

B-scans is to identify hyperbolic signature. The formation of 

hyperbolic signatures in GPR scans depends on the subsurface 

object (e.g., object size), underground environment (e.g., soil 

dielectric constant), and antenna frequency. Therefore, the 

object signatures are of various shapes and sizes. Applying the 

fixed anchoring scheme on different types of buried objects or 

on different handling of problems will generate many 

redundant proposals, which compromise the detection and 

segmentation performance. Hence, a new anchoring scheme is 

needed.

 
Fig. 3.  Sketch of anchor ratio computation based on hyperbolic 
signature. 
 

In this study, we customize the specific anchors based on the 

property of hyperbolic curves of buried objects. First, a concept 

of ‘candidate box’ is given, which is a rectangle defined by the 

location of focus and symmetric center ( )0 0,x y  of a hyperbola, 

as well as asymptotes 1 2,l l . The aspect ratio of the candidate 

box is computed to approximately represent the shape of 

hyperbola. The computed aspect ratio will replace the previous 

fixed aspect ratios in the MS R-CNN. Fig. 3 illustrates a 

hyperbola and the candidate box for computation of the aspect 

ratios. The general equation of hyperbola is denoted in 

Equation (2) [40]: 

( ) ( )
2 2

0 0

2 2
1

y y x x

a b

− −
− = , ( )0, 0a b      (2) 

Where ( ),x y  represents the arbitrary position in hyperbola, 

( )0 0,x y  is the symmetric center of hyperbolic curve. a  and b  

denote solid semi-axis and imaginary semi-axis respectively. 

Equation (3) indicates the corresponding expansion of Equation 

(2). Also, Equation (4) [40] gives its asymptote. 

2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 02 2 0a x b y a x x b y y b y a x a b−  +  +  −  + − − =  

(3) 

( )0 0

a
y y x x

b
− =  −     (4) 

 We assure the accurate location of F  is ( )0 0,x y c− , where 

2 2c a b= + . Taking the ordinate of F , i.e., 0y y c= − , as input 

of Equation (4), we can obtain Equation (5). The line where F  

is located and paralleling to X-axis intersects with two 

asymptotes 1l  and 2l , and then two intersection points of 1x  

and 2x  are obtained in Equation (6).  

1 0 1 0 0

2 0 2 0 0

:

:

a a
l y c x y x

b b

a a
l y c x y x

b b


− =  +  +


 − = −  −  +


   (5) 

1 0

2 0

b
x x c

a

b
x x c

a


= − 


 = + 


   (6) 

The two vital parameters: width w  and height h  that belong 

to candidate box are computed and given in Equation (7), 

respectively. The ratio of w  to h  is computed as candidate 

anchor ratio for buried object, shown in Equation (8). Thus, the 

properties of hyperbolic signature, a  and b  , can be used to 

directly estimate the aspect ratios of anchors belonging to 

different targets. 

2 1

2bc
w x x

a
= − =  ,    h c=  (7) 

2w b
ratio

h a
= =     (8) 

C. Transfer Learning based on ResNeXt101 in MS 
R-CNN 

Training the DL model requires a large amount of labeled 

positive/negative samples. The limited GPR datasets are not 

adequate to support the model training procedure. In this 

section, to strengthen the imagery recognition performance and 

lower the demand for a large number of labeled samples, a 

transfer learning technique is adopted in the improved MS 

R-CNN model. 
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During pre-training phase, we first give two concepts: 

‘source set’ and ‘target set’. The source set is selected to 

pre-processing model. The target set is used for experimental 

aim and presentation. First, a DL model is pre-trained based on 

the source set and the model information is obtained with 

updated weights and network parameters. Second, this 

pre-trained model is used to promote the training procedure on 

the target problem. The effectiveness of pre-training relies 

largely on the degree of similarity between source set and target 

set. Due to the complexity and uniqueness of GPR 

characteristics, it is not easy to search for a suitable and similar 

source set for GPR target set. We recognize this challenge and 

investigate its acceptable source set for model pre-training. 

Inspired by [41], two criteria are used to determine the 

source set for pre-training the MS R-CNN framework. First, the 

dataset needs to be large enough to train the framework. Second, 

the source set should be as similar as possible to our target 

dataset in terms of the problem and the data properties. Hence, a 

GPR dataset was selected from [31] as the source set of this 

work, which was used to identify rebars in grey GPR scans for 

bridge deck assessment. This source set was collected on a 

concrete bridge deck that consists of 95 grey images with a size 

of 512 1676  and contains thousands of annotated object 

instances. These instances belong to the category of hyperbolic 

signatures. 

Fig. 4 illustrates the transfer learning process from three 

aspects: input, processing, and output. The ResNeXt101 [42] 

model is first trained using both ImageNet dataset and bridge 

rebar dataset. Then a set of pre-trained neuron parameters and 

weights are generated. These parameters are added to the 

training process to obtain the final model, which can predict the 

location of multiple boundary boxes and multiple categories of 

targets in real time. 

ResNeXt101 FC Layer

Classification 

Prediction 

Layer

Classification

Pre-trained dataset
Convolutional Neural Networks

Transfer

Fine-tune

ImageNet dataset

Bridge rebar dataset

Pre-trained 

convolutional weights

 
Fig. 4.  Flowchart of the transfer learning based on ResNeXt101 
network. 
 

III. EXPERIMENTS AND IMPLEMENTATION 

A. Field Data Collection 

The field experiment was conducted in the UT Gardens 

(35°56'54.6"N 83°55'52.1"W), Knoxville, USA [Fig. 5]. By 

using the GSSI GPR SIR-4000 system with a center frequency 

of 2GHz, we collected radargrams of tree roots and will use it to 

test our developed method [Fig. 6]. The energy of a 2 GHz 

antenna can penetrate to a depth of about 0.5 m.  

 
 

Fig. 5.  Site aerial view and field site. 
 

 
 
Fig. 6.  In situ tree root experiment. Figure tabs the scan circle lines, 
start/end line, GPR control unit, and 2GHz antenna. 
 

B. Experimental Setup 

We used the PyTorch1.4.0 implementation of the MS 

R-CNN, which is based on the open-source object detection 

toolbox, namely mmdetection, released by Facebook research 

(https://github.com/zjhuang22/maskscoring_rcnn). All tasks 

are implemented using the computation environment with 

Nvidia GeForce GTX 1060 GPU. The ResNeXt-101 with 

feature pyramid network (FPN) is selected as the backbone 

network architecture for the MS R-CNN.  

The source set has 95 GPR bridge scans containing 

thousands of annotated rebar instances. The target set includes 

93 GPR root scans. To estimate the parameters and avoid 

overfitting, 10-fold cross validation is accepted by using 85% 

of the target data as training and 15% as testing at each fold. All 

input images are rescaled to [800, 300] for both training and 

testing pipeline. We optimize the learning rate to 0.0025 and 

run 20000 iterations. In model testing configuration stage, we 

evaluate an appropriate threshold value of 0.5 for NMS in RPN 

stage and a score threshold of 0.8 in R-CNN stage. In RPN 

stage, the anchoring scheme is updated with 

 _ 16aspect scale = ,  _ 0.3492,0.5406,0.8528aspect ratios = , 

 _ 2,4,8,16,32aspect strides = .  
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C. Improved MS R-CNN Based Signature Detection 

First, background removal and broad band filtering are 

applied to preprocess the raw GPR data. Then, the work of 

automatic object recognition is to: (1) customize anchors based 

on hyperbolic signature of root targets and integrate them into 

the instance segmentation model; (2) detect and segment 

hyperbolic signatures using the improved model; (3) identify 

targets based on curve fitting and peak localization. 

1) Customized Anchors for Targets: Based on the 

observation of the hyperbolic signature of root targets, the 

target signature is relatively small compared to the entire GPR 

image, which leads to a small proportion of target in the image. 

This indicates a set of small-scale anchors needs to be designed 

for matching the root targets. We design a four-step 

computation method to obtain the customized aspect ratios 

instead of the previous fixed ones. The flowchart is shown in 

Fig. 7. 

 
Fig. 7.  Flowchart of the designed anchoring scheme for root objects. 
Step1: Example of picked representative patches (each patch contains 
a hyperbola); Step2: Extracted data points and the corresponding 
hyperbolic fitting; Step3: General hyperbola expression with coefficients; 
Step4: Parameter list and the computed aspect ratios of each patch.   
 

As shown in Fig. 7, there are four stages to customize 

anchors for root objects. The first step is to pick several 

representative root samples from GPR images for subsequent 

aspect ratios computation. Two criteria are designed for 

selecting these samples: (1) the shape of each sample is distinct 

and inconsistent with other samples; (2) each sample contains 

only an obvious hyperbola. We select 7 different patch samples 

and manually select midpoints from each sample. These points 

are denoted as ( ) ( ) ( )1 1 2 2, , , , , ,i iP x y x y x y=    , 15 25i  , used 

for hyperbolic fitting. Based on this, the correlation coefficients 

( a  and b ) are obtained from the given hyperbola expansion 

and used to compute aspect ratio of the candidate box of each 

sample. Table 2 shows the details of each selected sample along 

with the corresponding hyperbolic coefficients and computed 

aspect ratios. According to the obtained 7 ratios, we roughly 

divide them into three groups:  1 2 3, ,R R R R= , where 

 1 0.3260,0.3476,0.3739R = ,  2 0.5773,0.5039R = ,

 3 0.8960,0.8096R = . Then, the average of each group is 

computed and we obtain three representative aspect ratios 

 0.3492,0.5406,0.8528  and integrate them into the MS R-CNN 

framework as the updated anchors. 

TABLE II 
DETAILS OF THREE GROUPS INCLUDE SELECTED SAMPLES, HYPERBOLIC 

PARAMETERS, AND ASPECT RATIOS. 

Group 1

1 2 3

2 3.0677a =

2 0.0815b =

0.3260ratio =

2 2.8775a =

2 0.0869b =

0.3476ratio =

2 2.6226a =

2 0.0952b =

0.3739ratio =

Group 2

4

2 1.7320a =

2 0.1443b =

0.5773ratio =

Group 3

6 7

2 1.9846a =

2 0.1260b =

0.5039ratio =

2 1.1159a =

2 0.2240b =

0.8960ratio =

2 1.2353a =

2 0.2024b =

0.8096ratio =

5

 

 2) Root Target Segmentation and Localization: To obtain 

useful information, it is crucial to detect and segment targets 

from GPR scans and localize their peaks. First, the improved 

MS R-CNN model is used to detect and segment most 

hyperbola instances from complex background. After that, 

based on the previous work [31], we pick the segmented mask 

patches and extract data points from them for hyperbolic curve 

fitting and object peak localization. After that, the real location 

of underground coarse roots can be evaluated and analyzed. 

IV. RESULTS AND DISCUSSION 

A. Experiment Results 

Compared with the controlled experiments, GPR 

measurement under field condition contains more and stronger 

noise and interference. The conventional field trials were 

conducted in dry sandy soil like in [17], where soil background 

is relatively homogeneous. However, our field data was 

collected under a more complex environment, which is a wet 

soil condition. Underground targets mainly are root targets and 

some disturbances, such as small stone, soil block or soft sand. 

To balance efficiency and accuracy, the detection task is 

focused on all underground targets. Since underground targets 

are often reflected as hyperbolic signatures in GPR profiles, 

underground target detection can be converted to the 

hyperbolic signature detection in GPR profile. 

An example of recognition results for the coarse roots is 

given in Fig. 8. The pre-processed GPR B-scan is shown in Fig. 

8(a). In addition to the several obvious hyperbolae distributed 

in middle of the figure, there are many subtle interferences 

distributed on the top, and the black blocks distributed on the 

bottom caused by the change of the medium. Fig. 8(b) shows 

the detection and segmentation results output by the enhanced 

MS R-CNN, including confidence, green bbox, and yellow 

mask region. Fig. 8 presents the separated mask patches on a 

black background, which provides target clusters information 

to simplify subsequent processing, such as data points 

extraction, curve fitting and peak locating [Fig. 8(d)]. It can be 

found that the improved MS R-CNN can pick most obvious and 

complete hyperbolae and is insensitive to small and dense 

hyperbolae. Fig. 9 provides more details about the intermediate 

procedures, including the acquisition of final localization 

results [see Fig. 8(d)] from each individual mask patch [see Fig. 
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8(c)]. To achieve the goal, operations are conducted to 1) 

extract all mask patches from Fig. 8(c) [Fig. 9(a)]; 2) threshold 

these patches into binary images [Fig. 9(b)]; 3) use the 

combination of opening and closing operations to process these 

binary images [Fig. 9(c)]; 4) eliminate non-target interferences 

and thus extract data points from target region [Fig. 9(d)]; 5) 

obtain hyperbolic fitting results with peaks, indicating the 

position of underground targets [Fig. 9(e)]. 

  
(a) (b) 

  
(c) (d) 

Fig. 8.  First example of GPR root localization results processed by the 
proposed method. (a) Pre-processed root GPR scan. (b) Detected and 
segmented results. (c) Only picked mask clusters. (d) Hyperbolic fitting 
results with peaks (red point). 
 

1 
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3 

     

4 

     

5 

     

6 

     

7 

     
 (a) (b) (c) (d) (e) 
Fig. 9.  The display of intermediate process. Group 1-7: (a) Segmented 
mask patches from Fig. 8(c); (b) Binary threshold results; (c) 

Morphology operation results; (d) Extracted data points; (e) Fitting 
results. 
 

The root signatures in the first scenery are clear and close to 

linear rebar or pipe signatures [31, 43], which is relatively easy 

to identify. Fig. 10 presents the second field example. The GPR 

imaging in second scenery [Fig. 10(a)] is more complicated 

than the first one. As the depth increases, the amplitude of 

hyperbolic reflections becomes weaker, and some reflected 

hyperbolic shapes are incomplete because of overlap and 

intersection with each other. Even under such complex 

condition, the developed model can still accurately detect and 

segment the hyperbolae at different depths [Fig. 10(b)], and 

then visualize multiple mask targets, irrespective of the 

complex background [Fig. 10(c)]. The fitting results can be 

found in Fig. 10(d).  

  
(a) (b) 

  
(c) (d) 

Fig. 10.  Second example of GPR root localization results processed by 
the proposed method. (a) Pre-processed root B-scan. (b) Detected and 
segmented results. (c) Only picked mask results. (d) Hyperbolic curve 
fitting with peaks (red point). 
 

More field results are shown in Fig. 11 and Fig. 12. The 

results demonstrated that the developed model is able to 

detect and segment object signatures in GPR scans in an 

automatic and accurate manner.  

    
 

Fig. 11.  Third example of GPR root localization results. 
 

  
 

Fig. 12.  Fourth example of GPR root localization results. 
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B. Evaluation Metrics 

Average Precision (AP) is used as a criterion for evaluating 

the performance of the bbox and mask. AP  denotes AP at an 

average of IOU from 0.5 to 0.95 with 0.05 interval. 50AP  and 

75AP  mark AP at IoU=0.5, IoU=0.75, respectively. AP for 

objects with different scales: small ( 232area  ) and medium 

( 2 232 96area  ) are denoted as SAP  and MAP . 

Average Recall (AR) is another metric of RPN results. It 

averages the recalls of IOU thresholds between 0.5 and 0.95. In 

particular, 100AR , 300AR  and 1000AR  are defined to explain AR 

performance when an image is assigned with 100, 300, and 

1000 proposals. For small- ( SAR ), medium- ( MAR ), or large- 

( LAR ) scale objects, the AR are computed for 100 proposals. 

The standard COCO metric is used to evaluate the test results, 

and it represents the average mAP level when IOUs varies from 

0.5 and 0.95.   

C. Performance Evaluation 

Fig. 13 plots the learning accuracy and loss curves to reflect 

the performance of the improved MS R-CNN during training 

period. Accuracy varies with iterations in Fig. 13(a). The 

x-coordinate and y-coordinate represent iteration and accuracy, 

respectively. At the beginning of the iteration, its accuracy has 

climbed to 90%. In subsequent iterations, the accuracy remains 

above 90% and gradually increases with iterations. It remains 

stable in 17500-20000 iterations with an accuracy of 

approximately 97%. Fig. 13(b) shows the distributions of three 

losses: classification loss, bbox loss, and mask loss. It can be 

observed all losses remain below about 0.35% after 2500 

iterations. The distribution of the classification loss is almost 

close to the bbox loss, and both are lower than the mask loss.  

 
(a) 

 
(b) 

Fig. 13.  (a) Accuracy and (b) loss distribution (classification loss, bbox 
loss, mask loss) of the improved MS R-CNN.  
 

The performance of the improved MS R-CNN is compared 

with the previous three instance segmentation frameworks from 

the following three aspects: detection, segmentation, and 

proposal. The previous frameworks are implemented using the 

same configuration strategy as our proposed framework. As 

shown in Table 3, the improved MS R-CNN with customized 

anchoring scheme and transfer learning achieves 40.0% AP and 

65.3% AP50, respectively. Compared to the common MS 

R-CNN, it increases AP by 3.2%. In addition, in terms of 

detection results, the common MS R-CNN outperforms Mask 

R-CNN and Cascade Mask R-CNN [44]. Notably, the 

enhanced MS R-CNN gains the highest accuracy of 48.7% at 

APS. This is because most root targets present hyperbola 

signatures with a small size. From Table 4, we can obtain 

acceptable segmentation results with 35.0% AP and 38.6% 

AP50. For small and medium objects, the enhanced MS 

R-CNN outperforms the Mask R-CNN, which demonstrates the 

efficiency of the enhanced MS R-CNN for objects with scale of 
2 21 96area  . Table 5 provides AR to evaluate proposal 

results of the proposed anchoring scheme. The enhanced MS 

R-CNN obtains 35.1% AR100, 40.2% AR300, and 46.1% 

AR1000, respectively, which is superior to the other three 

frameworks. It shows the performance of RPN can be fully 

utilized by effectively balancing training methods. Since the 

improved MS R-CNN customizes the anchor boxes with aspect 

ratios of  0.3492,0.5406,0.8528  in RPN stage, it can generate 

the corresponding proposals to better fit the root target 

signatures.  
TABLE III 

COMPARISON OF DETECTION RESULTS VIA DIFFERENT INSTANCE 

SEGMENTATION FRAMEWORKS (IN PERCENT). 

Framework AP AP50 AP75 APS APM 

Mask R-CNN 30.8 53.3 27.5 40.3 18.2 
Cascade Mask 

R-CNN 
33.9 65.0 25.8 33.3 22.1 

MS R-CNN 36.8 64.6 37.8 37.7 29.7 
Improved MS 

R-CNN 
40.0 65.3 37.0 48.7 24.8 

 
TABLE IV 

COMPARISON OF SEGMENTATION RESULTS VIA DIFFERENT INSTANCE 

SEGMENTATION FRAMEWORKS (IN PERCENT). 

Framework AP AP50 AP75 APS APM 

Mask R-CNN 27.9 31.4 21.2 27.7 27.8 
Cascade Mask 

R-CNN 
34.3 38.2 21.7 32.6 29.5 

MS R-CNN 33.6 35.4 26.9 30.3 36.5 
Improved MS 

R-CNN 
35.0 38.6 24.5 32.7 41.5 

 
TABLE V 

COMPARISON OF PROPOSAL RESULTS VIA DIFFERENT INSTANCE 

SEGMENTATION FRAMEWORKS (IN PERCENT). 

Framework AR100 AR300 AR1000 ARS ARM 

Mask R-CNN 27.0 27.0 28.7 40.0 24.2 
Cascade Mask 

R-CNN 
32.6 33.3 37.4 40.1 32.1 

MS R-CNN 33.0 35.0 36.7 42.5 31.3 
Improved MS 

R-CNN 
35.1 40.2 46.1 52.5 33.1 
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TABLE VI 
RUNNING TIME OF DIFFERENT DEEP FRAMEWORKS. 

Framework Running Time (h:min:s) 

Mask R-CNN 5:10:00 
Cascade Mask 

R-CNN 
4:41:00 

MS R-CNN 5:33:00 
Improved MS 

R-CNN 
5:31:00 

 

Table 6 details the running time of all frameworks. By 

observing the MS R-CNN and the improved MS R-CNN, their 

training time lasted about five and a half hours, which further 

demonstrated that the improved MS R-CNN achieves 

acceptable performance without increasing additional running 

time. 

We evaluated the effectiveness of two components: the 

customized anchoring scheme and the transfer learning 

technique, shown in Fig. 14. The common MS R-CNN 

configured with a single customized anchor component is more 

effective than that without such configuration. It shows our 

work is valuable for generating proposals of feature maps in 

RPN stage by utilizing designed anchors. The single transfer 

learning component also presents an advantage in the aspect of 

recall. Both branches are integrated into the common MS 

R-CNN, which brings obvious improvement to AR1000 and ARS. 

The enhanced MS R-CNN has the ability to capture 

information for small scale objects. 

 

 Fig. 14.  Effect of each component on the improved MS R-CNN. 

D. Comparison of detection result 

To further verify the performance of the improved MS 

R-CNN, an additional comparative experiment is conducted 

based on the machine learning method. In this work, we 

perform a Histogram of Oriented Gradients (HOG) feature 

extraction and train a linear SVM classifier. The code is 

implemented using Python scikit-learn library based on the 

open-source vehicle detection toolbox 

(https://github.com/hortovanyi/udacity-vehicle-detection-proje

ct). Training a SVM classifier requires both positive samples 

(with hyperbolas) and negative samples (without hyperbolas). 

A fixed sample size of 48 × 48 pixels is used to clipped samples 

from the GPR images. A total of 16872 training samples is 

obtained, including 8436 positive samples and 8436 negative 

samples (https://github.com/PouriaAI/GPR-Detection), as 

illustrated in Fig. 15. The HOG implementation used in our 

experiments uses L2-norm normalization. The parameters are 

set as: orient = 9, and pix_per_cell = 16. Then, we implement a 

sliding-window technique over GPR image and use the trained 

classifier to search for hyperbola targets. The sliding window is 

of size 50 × 40 pixels and the overlap value is set to 0.7. Based 

on this technique, many false positive samples and multiple 

overlapping bboxes are obtained. The heatmap method is adapt 

to filter redundant bboxes and estimate a single bbox for each 

hyperbola detected. The count number threshold is set to 4 for 

heatmap. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 15.  Examples of positive samples (a)-(d) and negative samples 
(e)-(h). 

To visualize the comparison performance of the above two 

models, Fig. 16(a) and Fig. 16(b) show the detection results 

using SVM classifier based on the original GPR images Fig. 8(a) 

and Fig. 10(a), respectively. The output results in Fig. 8(b) and 

Fig. 10(b) are generated by the improved MS R-CNN, in which 

the root hyperbolic signatures can be effectively found. 

Compared with Fig. 8(b), Fig. 16(a) detects many redundant 

boxes indicated by green arrow. Compared with Fig. 10(b), Fig. 

16(b) omits one hyperbolic target (marked by yellow rectangle), 

and there are many redundant boxes (marked by green arrows). 

The comparative results illustrate the performance of the HOG 

feature-based linear SVM classifier is inferior to the improved 

MS R-CNN, and it brings many false positive samples and 

many redundant computations. 

 
 

(a) (b) 

Fig. 16.  Detection results obtained by the HOG feature-based linear 
SVM classifier on (a) original GPR image Fig. 8(a), and (b) original GPR 
image Fig. 10(a). (Green arrow indicates redundant box and yellow 
rectangle indicates missing target) 
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V. CONCLUSION 

In this paper, an improved DL model is developed and tested 

with real GPR data for automatic object signature detection and 

segmentation. The MS R-CNN is adopted as the main 

framework. To improve its performance, a novel anchoring 

scheme is proposed and integrated into MS R-CNN to replace 

the previous fixed ones (i.e., scale and aspect ratio). This 

scheme considers the imaging features of underground objects 

and solves the problem of low detection accuracy of small 

targets in GPR scans. Considering the need for large datasets 

for training the DL model, a transfer learning technique is 

developed to address the issue of lacking training data. Due to 

the similarity between rebar and tree root signatures in GPR 

scans, the rebar dataset is picked as the ‘source set’ and a new 

model with pre-trained parameters and weights is obtained. The 

‘target set’, root dataset, is exploited to fine-tune the model. 

The new anchoring scheme and the transfer learning technique 

improve the performance of the MS R-CNN in bbox detection 

task, mask segmentation task, and proposal generation task. 

The experimental results illustrated the feasibility and efficacy 

of the improved MS R-CNN for automating the signature 

recognition procedure.  

There are some limitations that could be addressed in future 

work. First, the proposed method requires a large scale of field 

dataset for training the model. Due to the complexity and 

unpredictability of field site, it is difficult to obtain GPR 

datasets. Efforts need to be made to collect large amount of data 

to improve the performance of the model. Second, DL model 

needs to be designed to match each type of input characteristics. 

Due to the non-intuitive and difficult explanation of features 

extracted by DL model, designing a corresponding model for 

certain problem is a challenge. Therefore, future research can 

concentrate on the exploration and interpretation of the internal 

structure of DL model. Third, the efficacy of this work relied on 

quality of root dataset. Since the dielectric constant is highly 

related to soil condition, in the case of high soil water content, 

the reflected GPR signal is so weak that root targets may be 

missed. Future research could focus on the signal processing 

methods to eliminate clutters and enhance weak hyperbola in 

GPR images. Finally, our recognition about root targets is 

inferior to the linear object recognition such as rebar or pipe. 

That is because root system, compared to those linear objects, 

usually faces more challenges about the identification of root 

characteristics: (1) root distribution is irregular; (2) root size 

and root depth are unknown; (3) underground soil condition is 

complex. These factors do constrain the automatic and 

real-time development of large-scale root system. In future 

studies, a deeper understanding towards root itself property is 

required. In addition, the attention can be paid on the 

distinctions of the hyperbolic signature between root and 

non-root targets. 
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