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Deep Learning Based Subsurface Target
Detection from GPR Scans

Feifei Hou, Wentai Lei, Shuai Li, and Jingchun Xi

Abstract—Ground penetrating radar (GPR) has
been widely used as a non-destructive technique
to detect subsurface objects. Manual process
and interpretation of GPR data is tedious and
time-consuming. To address this challenge, an
automatic method based on a deep instance
segmentation framework is developed to detect
and segment object signatures from GPR scans.
The proposed method develops the Mask
Scoring R-CNN (MS R-CNN) architecture by
introducing a novel anchoring scheme. By
analyzing the characteristics of the hyperbolic
signatures of subsurface objects in GPR scans, a
set of anchor shape ratios are optimized and
selected to substitute the predefined and fixed
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aspect ratios in the MS R-CNN framework to improve the signature detection performance. In addition, transfer learning
technique is adopted to obtain a pre-trained model to address the challenge of insufficient GPR dataset for model
training. The detected and segmented signatures can then be further processed for target localization and
characterization. GPR data of tree roots were collected in the field to validate the proposed methods. Despite the noisy
background and varying signatures in the GPR scans, the proposed method demonstrated promising results in object
detection and segmentation. Computational results show that the improved MS R-CNN outperforms the other

state-of-the-art methods.

Index Terms—Ground penetrating radar (GPR), deep learning (DL), instance segmentation, root detection, Mask Scoring

R-CNN (MS R-CNN), anchor box.

I.  INTRODUCTION

Ground penetrating radar (GPR) have been adopted for
subsurface mapping as it could provide rich information
regarding the objects buried at varying depths in the subsurface
[1]. GPR has been used in a variety of domains ranging from
civil engineering [2-5], archaeology [6, 7] to agricultural
activities [8-12]. In most of the applications such as
non-destructive bridge assessment [13, 14], underground utility
mapping [15, 16], and tree root detection [17, 18], detecting and
identifying of objects from GPR scans is a vital step to retrieve
meaningful information. However, manual processing GPR
data is time-consuming and labor-intensive, and thus are not
suitable for large amounts of GPR data acquired from the field.
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Therefore, an automatic method is needed for accurate
detection of subsurface objects from GPR scans.

The existing studies have demonstrated the feasibility of
using GPR to scan the subsurface and its promise for extracting
useful information from GPR profiles to locate objects in
subsurface. Li et al. [17] used randomized Hough transform
method to detect tree roots in GPR scans. The performance was
evaluated in controlled and in situ experiments, where root
datasets were collected by GPR with different center
frequencies. The method presented in [19] first identifies
hyperbola regions in GPR scans, and then uses the generalized
Hough transform to locate the hyperbolic signatures of the
buried objects. Studies [20, 21] used a genetic algorithm
(GA)-based technique to identify the linear and hyperbolic
features resulted from subsurface objects in binary GPR images.
Based on the extracted features, Harkat et al. [21] further used a
classifier based on neural network radial basis function (RBF)
to classify windows of GPR radargrams into two classes:
regions with and without objects. The success of technique
presented in [22] demonstrated the potential of using histogram
of oriented gradient (HOG) feature extraction and support
vector machine (SVM) to detect object signatures in GPR scans.
However, most input features need to be recognized by
practical experts, and the classification result depends on the
quality of these features, which are limited by the amount of
GPR data processed.
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In recent years, deep learning (DL) techniques have been
exploited to automatically detect object signatures in GPR
scans [23-25]. DL methods can learn the feature representation
of buried objects from GPR data. In the method developed by
Kien Dinh et al. in [26], first image processing operations
(zero-time correction, migration, filtering, and threshold
segmentation) are used to find the vertices of each hyperbola.
The fixed-size areas around vertices are then extracted and
divided into positive or negative sample, which are used as the
input for convolutional neural networks (CNN) to train the
model. Finally, the trained model is used to test the candidate
dataset. The work in [27] proposed a hybrid deep CNN to detect
and locate moisture damage of bridges from GPR data. This
hybrid model consists of the ResNet50 [28] network for feature
extraction and YOLO v2 [29] network for target recognition.
The typical object detection framework, Faster R-CNN [30], is
used in [24] to classify buried linear objects and narrow down
candidate hyperbola region. The hyperbolic clusters are
segmented from complex background using a double cluster
seeking estimate (DCSE) algorithm. In addition, a novel
column-based transverse filter points (CTFP) method is used to
automatically extract data points from hyperbolic regions.
However, complete information could not be extracted from the
detected hyperbolic signatures in that study. To address issue,
an enhanced DL framework is proposed in [31], which
integrates Mask R-CNN [32] and a novel loss function
computation to simultaneously detect and segment hyperbolic
signatures. Instead of using clustering-based methods to obtain
segmented results as in [24, 33, 34], both the box and mask
patches of hyperbolic signatures can be obtained.

Although the application of DL techniques in GPR data
processing has achieved partial success, the performance of DL
models still remains a concern in real-world applications. First,
the formation of hyperbolic signatures in GPR depends on a
variety of conditions, including the size of the buried object,
buried depth, antenna frequency, and soil condition. Due to the
complex subsurface conditions and the radar wave reflections,
the object signatures in GPR images could also be incomplete
and distorted. This imposes difficulties on developing a DL
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model that could achieve desired performance for specific GPR
application. Second, DL model can be adopted for most
image-related tasks. However, radargram is different from
conventional images. The internal architectures of DL models
have not been well linked with the attributes and characteristics
of radargram and the object signatures. Thus, direct application
of such DL models for GPR data processing may omit useful
information and lead to redundant processing.

We proposed a new method to address the limitations, as
shown in Fig. 1. First, a DL-based framework was developed to
automate the detection and segmentation of object signatures in
GPR scans. The innovation is twofold. The Mask Scoring
R-CNN (MS R-CNN) [35] predefines a set of fixed anchor
shapes (e.g. aspect ratios, scale) to generate proposals.
However, using these generated proposals is not suitable for
detecting various object signatures with different sizes and
shapes in GPR scans. Therefore, we first analyzed the
hyperbolic signatures and develop a new customizable
anchoring scheme to enhance the proposal generation to
improve detection performance for GPR scans. In addition,
DL-based methods need a large number of labeled datasets to
train the model. Unlike conventional image processing tasks,
the labeled GPR datasets are very scare. We adopt the transfer
learning method to solve the problem of inadequate training
dataset and improve the model robustness. The new anchoring
scheme and the transfer learning method are integrated with the
MS R-CNN to process GPR scans to detect and segment object
signatures. Second, the segmented signatures are extracted
from cluttered background, and then hyperbolic fitting is
performed to find the peak that approximately indicate the
object position.

The rest of the paper is organized as follows. Section II
designs a novel anchoring scheme and incorporates it into the
MS R-CNN framework. Section III elaborates the customized
anchors for subsurface targets and transfer learning technique,
and introduces the automatic target recognition scheme based
on the improved MS R-CNN framework. Section IV presents
experimental results, followed by the conclusion and future
research in Section V.

Targets Localization

Mask R-CNN

RasMext101 Foature Map with Propazals

Fretramed Weights

(_Greyacale Rever Dstasst

f/—

_ Module2: Transfer Learning 7

MS R-CNN "

_ Callbrated
[

Frodicted :
k. S

MaskioU Head

I Customized Anchor Box for Hyperbolic
Target

Modulel: Customized Anchoring Scheme

|

Fig. 1. The proposed GPR object signature detection and segmentation framework.
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II. IMPROVED MS R-CNN FRAMEWORK

A new anchoring scheme and a transfer learning technique
are developed and integrated into the MS R-CNN to
automatically detect and segment hyperbolic signatures of
buried objects from GPR scans. Table 1 lists the abbreviations.

TABLE |
SUMMARY OF ABBREVIATIONS

Abbreviation Description
AP Average Precision
AR Average Recall
bbox Bounding Box
CNN Convolutional Neural Networks
DL Deep Learning
FPN Feature Pyramid Network
FCs Fully Connected Layers
GPR Ground Penetrating Radar
GT Ground Truth
loU Intersection over Union
NMS Non-maximum Suppression
RPN Region Proposal Network
Rol Region of Interest
RolAlign Region of Interest Align
R-CNN Region-based CNN
Soft-NMS Soft Non-maximum Suppression

A. Overview of MS R-CNN

The instance segmentation model can simultaneously
classify, detect, and segment objects in the input image. For
most instance segmentation tasks, the quality of segmented
mask is determined by the classification confidence of the
detection branch. However, the mask quality does not
necessarily match with the classification confidence. MS
R-CNN is a typical instance segmentation framework to
address this issue [35]. It integrates an additional network block

‘MaskloU head’ into Mask R-CNN to explore the mask scoring.

Its network architecture consists of three stages as denoted in
Fig. 1. First, a region proposal network (RPN) is leveraged to
generate a set of candidate proposals. The second stage is to use
region of interest align (RolAlign) to extract features from each
proposal and feed them into two standard components:
region-based convolutional neural networks (R-CNN) head and
Mask head. The former generates classification result and
bounding box (bbox) regression result, while the latter
performs mask prediction. The top-k (for example, top100)
score bboxes output by R-CNN head are processed by soft
non-maximum suppression (Soft-NMS), and then sent to Mask
head to get masks. The third stage concatenates the obtained
mask and Rol feature map into MaskloU head to get MaskloU
value.
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Fig. 2 shows the network architecture of the MaskloU head
branch. It includes four convolutional layers and three fully
connected layers (FCs). The kernel size is set to 3 for all the
convolutional layers, and stride is set to 2 for downsampling in
the last convolutional layer. The final FC outputs C classes of
MaskloU. The MaskloU head takes both predicted mask
(generated via Mask head) and IoU features (yielded via
RolAlign) as inputs to re-calibrate mask. There are two tasks:
classifying each mask into correct categories, and regressing
the MaskloU of each proposal for category correction. To
perform these two tasks, the calibrated mask score is computed

by multiplying classification confidence S, and IoU
regression value S, , as in Equation (1).

mask Scla : Si()u (1)

S, is used to classify each candidate proposal into a certain

category at the R-CNN stage, and S,

. 15 used to regress IoU
value between the predicted mask and ground truth (GT) mask
in MaskloU head module. MaskloU head is concatenated in the

R-CNN head and the mask head of Mask R-CNN.

B. Designed Anchor Scheme

1) Overview of Anchor: Most state-of-the-art object detectors
provide an anchor scheme that contains a large number of dense
anchors. Anchors are used to generate proposals, extract the
corresponding region features and regress the location of
bboxes. Because the candidate targets may be unpredictably
distributed in an input image with various shapes, a set of
anchor boxes need to be generated based on the center point of
every sliding window in feature map and is determined by
predefined anchor scales and aspect ratios. The feature map, as
the output of CNN, is used to roughly locate targets. The anchor
scales and anchor aspect ratios are used to respectively
represent the size and shape of target.

Modern object detectors are roughly divided into two-stage
and single-stage pipelines. The two-stage approach is
mainstream in object detection task. Generating anchors via a
sliding window located in feature maps has been widely
accepted in anchor-based object detectors. For instance, Faster
R-CNN [30] innovatively proposed the RPN model to produce
proposals from candidate anchors, and then these generated
proposals are classified and regressed. These anchors are
obtained by scanning feature map using the sliding window.
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The Faster R-CNN defines three scales [8,16,32] and three
ratios [0.5,1.0,2.0] , combing 9 anchor boxes in different

shapes. The Mask R-CNN and the MS R-CNN adopt the same
design as Faster R-CNN. They define 15 anchor boxes with five
scales [32,64,128,256,512] and three ratios [0.5,1.0,2.0]. In

contrast to two-stage frameworks, the single-stage approach
just classifies object to a certain category and predict bbox with
confidence in one evaluation, and skips the stage of generating
object proposal. The single-stage approach still requires the use
of the sliding window to produce anchor boxes. For instance,

. . 11
the SSD [36] sets five different aspect ratios [1,2,3,5,5] to

generate a series of anchors. Facing the challenge of balancing
the proportion of positive and negative samples, the RetinaNet
[37] approach introduces focal loss into backbone to lower the
weight of negative samples in training process to address the
above challenge. Specifically, YOLOv2 [29] and YOLOvV3 [38]
utilize K-means [39] method to learn and yield different
anchors from training set, rather than the combination of scales
and aspect ratios.

2) Customized Aspect Ratios based on Hyperbolic
Signatures: The essence of object detection task in GPR
B-scans is to identify hyperbolic signature. The formation of
hyperbolic signatures in GPR scans depends on the subsurface
object (e.g., object size), underground environment (e.g., soil
dielectric constant), and antenna frequency. Therefore, the
object signatures are of various shapes and sizes. Applying the
fixed anchoring scheme on different types of buried objects or
on different handling of problems will generate many
redundant proposals, which compromise the detection and
segmentation performance. Hence, a new anchoring scheme is
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In this study, we customize the specific anchors based on the
property of hyperbolic curves of buried objects. First, a concept
of ‘candidate box’ is given, which is a rectangle defined by the
location of focus and symmetric center (x,,y,) of a hyperbola,

as well as asymptotes /,/, . The aspect ratio of the candidate

box is computed to approximately represent the shape of
hyperbola. The computed aspect ratio will replace the previous
fixed aspect ratios in the MS R-CNN. Fig. 3 illustrates a
hyperbola and the candidate box for computation of the aspect
ratios. The general equation of hyperbola is denoted in
Equation (2) [40]:

()’_f’o)z_(x_bfo)z:1,(a>0,b>0) @

Where (x,y) represents the arbitrary position in hyperbola,
(x.3,) is the symmetric center of hyperbolic curve. a and b

denote solid semi-axis and imaginary semi-axis respectively.
Equation (3) indicates the corresponding expansion of Equation
(2). Also, Equation (4) [40] gives its asymptote.

—a’ - X’ +b -y +2a°x, x =207y, - y+ by —a’x,} —a’b’ =0
)

Y=y =t—(x-x)) “4)

a
b
We assure the accurate location of F is (x,,y,—c), where

c=+/a’ +b* . Taking the ordinate of F ,i.e., y=y,—c,as input

of Equation (4), we can obtain Equation (5). The line where F
is located and paralleling to X-axis intersects with two
asymptotes /, and /,, and then two intersection points of x,

and x, are obtained in Equation (6).

a a
Lt yo—c=—-x+— -y +x
b b
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a
(6)
X, =X,+—-cC
a

The two vital parameters: width w and height % that belong
to candidate box are computed and given in Equation (7),
respectively. The ratio of w to 4 is computed as candidate
anchor ratio for buried object, shown in Equation (8). Thus, the
properties of hyperbolic signature, ¢ and b , can be used to
directly estimate the aspect ratios of anchors belonging to
different targets.

2bc

wel x| =25
a

h=c (7

w_ 2b
W a ®

ratio =

C. Transfer Learning based on ResNeXt101 in MS
R-CNN

Training the DL model requires a large amount of labeled
positive/negative samples. The limited GPR datasets are not
adequate to support the model training procedure. In this
section, to strengthen the imagery recognition performance and
lower the demand for a large number of labeled samples, a
transfer learning technique is adopted in the improved MS
R-CNN model.
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During pre-training phase, we first give two concepts:
‘source set’ and ‘target set’. The source set is selected to
pre-processing model. The target set is used for experimental
aim and presentation. First, a DL model is pre-trained based on
the source set and the model information is obtained with
updated weights and network parameters. Second, this
pre-trained model is used to promote the training procedure on
the target problem. The effectiveness of pre-training relies
largely on the degree of similarity between source set and target
set. Due to the complexity and uniqueness of GPR
characteristics, it is not easy to search for a suitable and similar
source set for GPR target set. We recognize this challenge and
investigate its acceptable source set for model pre-training.

Inspired by [41], two criteria are used to determine the
source set for pre-training the MS R-CNN framework. First, the
dataset needs to be large enough to train the framework. Second,
the source set should be as similar as possible to our target
dataset in terms of the problem and the data properties. Hence, a
GPR dataset was selected from [31] as the source set of this
work, which was used to identify rebars in grey GPR scans for
bridge deck assessment. This source set was collected on a
concrete bridge deck that consists of 95 grey images with a size
of 512x1676 and contains thousands of annotated object
instances. These instances belong to the category of hyperbolic
signatures.

Fig. 4 illustrates the transfer learning process from three
aspects: input, processing, and output. The ResNeXt101 [42]
model is first trained using both ImageNet dataset and bridge
rebar dataset. Then a set of pre-trained neuron parameters and
weights are generated. These parameters are added to the
training process to obtain the final model, which can predict the
location of multiple boundary boxes and multiple categories of
targets in real time.
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Fig. 4. Flowchart of the transfer learning based on ResNeXt101

network.

Ill. EXPERIMENTS AND IMPLEMENTATION

A. Field Data Collection

The field experiment was conducted in the UT Gardens
(35°56'54.6"N 83°55'52.1"W), Knoxville, USA [Fig. 5]. By
using the GSSI GPR SIR-4000 system with a center frequency
of 2GHz, we collected radargrams of tree roots and will use it to
test our developed method [Fig. 6]. The energy of a 2 GHz
antenna can penetrate to a depth of about 0.5 m.

"% Controller -
.

Fig. 6. In situ tree root experiment. Figure tabs the scan circle lines,
start/end line, GPR control unit, and 2GHz antenna.

B. Experimental Setup

We used the PyTorchl.4.0 implementation of the MS
R-CNN, which is based on the open-source object detection
toolbox, namely mmdetection, released by Facebook research
(https://github.com/zjhuang22/maskscoring rcnn). All tasks
are implemented using the computation environment with
Nvidia GeForce GTX 1060 GPU. The ResNeXt-101 with
feature pyramid network (FPN) is selected as the backbone
network architecture for the MS R-CNN.

The source set has 95 GPR bridge scans containing
thousands of annotated rebar instances. The target set includes
93 GPR root scans. To estimate the parameters and avoid
overfitting, 10-fold cross validation is accepted by using 85%
of the target data as training and 15% as testing at each fold. All
input images are rescaled to [800, 300] for both training and
testing pipeline. We optimize the learning rate to 0.0025 and
run 20000 iterations. In model testing configuration stage, we
evaluate an appropriate threshold value of 0.5 for NMS in RPN
stage and a score threshold of 0.8 in R-CNN stage. In RPN
stage, the anchoring scheme is wupdated with
aspect _scale=[16] , aspect _ratios =[0.3492,0.5406,0.8528] ,

aspect _strides =[2,4,8,16,32] .
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TABLE Il
DETAILS OF THREE GROUPS INCLUDE SELECTED SAMPLES, HYPERBOLIC
PARAMETERS, AND ASPECT RATIOS.

C. Improved MS R-CNN Based Signature Detection
First, background removal and broad band filtering are

applied to preprocess the raw GPR data. Then, the work of

Group 1 Group 3

automatic object recognition is to: (1) customize anchors based
on hyperbolic signature of root targets and integrate them into 0
the instance segmentation model; (2) detect and segment
hyperbolic signatures using the improved model; (3) identify f
targets based on curve fitting and peak localization.

1) Customized Anchors for Targets: Based on the
observation of the hyperbolic signature of root targets, the

o

target signature is relatively small compared to the entire GPR
image, which leads to a small proportion of target in the image.
This indicates a set of small-scale anchors needs to be designed

for matching the root targets. We design a four-step
computation method to obtain the customized aspect ratios
instead of the previous fixed ones. The flowchart is shown in
Fig. 7.
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Picked Patches
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Fitting Results
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Equation Coefficients

Step 4.
Computed Ratios

Extracted Paints and Hyperbolic Fitting Computed Aspect Ratios
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Fig. 7. Flowchart of the designed anchoring scheme for root objects.
Step1: Example of picked representative patches (each patch contains
a hyperbola); Step2: Extracted data points and the corresponding
hyperbolic fitting; Step3: General hyperbola expression with coefficients;
Step4: Parameter list and the computed aspect ratios of each patch.

As shown in Fig. 7, there are four stages to customize
anchors for root objects. The first step is to pick several
representative root samples from GPR images for subsequent
aspect ratios computation. Two criteria are designed for
selecting these samples: (1) the shape of each sample is distinct
and inconsistent with other samples; (2) each sample contains
only an obvious hyperbola. We select 7 different patch samples
and manually select midpoints from each sample. These points
are denoted as P = [(xl,yl),(xz,yz),---,(x,,y,.)] , 15<i<25, used

for hyperbolic fitting. Based on this, the correlation coefficients
(a and b) are obtained from the given hyperbola expansion
and used to compute aspect ratio of the candidate box of each
sample. Table 2 shows the details of each selected sample along
with the corresponding hyperbolic coefficients and computed
aspect ratios. According to the obtained 7 ratios, we roughly
divide them into three groups: R=[R.R,,R;] , where

R =[0.3260,03476,03739]  ,  R,=[0.5773,0.5039]
R, =[0.8960,0.8096] . Then, the average of each group is

computed and we obtain three representative aspect ratios
[0.3492,0.5406,0.8528] and integrate them into the MS R-CNN

framework as the updated anchors.

[é
| ratio=0.3476 |
\

2) Root Target Segmentation and Localization: To obtain
useful information, it is crucial to detect and segment targets
from GPR scans and localize their peaks. First, the improved
MS R-CNN model is used to detect and segment most
hyperbola instances from complex background. After that,
based on the previous work [31], we pick the segmented mask
patches and extract data points from them for hyperbolic curve
fitting and object peak localization. After that, the real location
of underground coarse roots can be evaluated and analyzed.

[V. RESULTS AND DISCUSSION

A. Experiment Results

Compared with the controlled experiments, GPR
measurement under field condition contains more and stronger
noise and interference. The conventional field trials were
conducted in dry sandy soil like in [17], where soil background
is relatively homogeneous. However, our field data was
collected under a more complex environment, which is a wet
soil condition. Underground targets mainly are root targets and
some disturbances, such as small stone, soil block or soft sand.
To balance efficiency and accuracy, the detection task is
focused on all underground targets. Since underground targets
are often reflected as hyperbolic signatures in GPR profiles,
underground target detection can be converted to the
hyperbolic signature detection in GPR profile.

An example of recognition results for the coarse roots is
given in Fig. 8. The pre-processed GPR B-scan is shown in Fig.
8(a). In addition to the several obvious hyperbolae distributed
in middle of the figure, there are many subtle interferences
distributed on the top, and the black blocks distributed on the
bottom caused by the change of the medium. Fig. 8(b) shows
the detection and segmentation results output by the enhanced
MS R-CNN, including confidence, green bbox, and yellow
mask region. Fig. 8 presents the separated mask patches on a
black background, which provides target clusters information
to simplify subsequent processing, such as data points
extraction, curve fitting and peak locating [Fig. 8(d)]. It can be
found that the improved MS R-CNN can pick most obvious and
complete hyperbolaec and is insensitive to small and dense
hyperbolae. Fig. 9 provides more details about the intermediate
procedures, including the acquisition of final localization
results [see Fig. 8(d)] from each individual mask patch [see Fig.
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8(c)]. To achieve the goal, operations are conducted to 1)
extract all mask patches from Fig. 8(c) [Fig. 9(a)]; 2) threshold
these patches into binary images [Fig. 9(b)]; 3) use the
combination of opening and closing operations to process these
binary images [Fig. 9(c)]; 4) eliminate non-target interferences
and thus extract data points from target region [Fig. 9(d)]; 5)
obtain hyperbolic fitting results with peaks, indicating the

position of underground targets [Fig.
- \ g # v

() (d)
Fig. 8. First example of GPR root localization results processed by the
proposed method. (a) Pre-processed root GPR scan. (b) Detected and
segmented results. (c) Only picked mask clusters. (d) Hyperbolic fitting
results with peaks (red point).

%

(a) (b) (c) (d)
Fig. 9. The display of intermediate process. Group 1-7: (a) Segmented
mask patches from Fig. 8(c); (b) Binary threshold results; (c)

Morphology operation results; (d) Extracted data points; (e) Fitting
results.

The root signatures in the first scenery are clear and close to
linear rebar or pipe signatures [31, 43], which is relatively easy
to identify. Fig. 10 presents the second field example. The GPR
imaging in second scenery [Fig. 10(a)] is more complicated
than the first one. As the depth increases, the amplitude of
hyperbolic reflections becomes weaker, and some reflected
hyperbolic shapes are incomplete because of overlap and
intersection with each other. Even under such complex
condition, the developed model can still accurately detect and
segment the hyperbolae at different depths [Fig. 10(b)], and
then visualize multiple mask targets, irrespective of the
complex background [Fig. 10(c)]. The fitting results can be
found in Fig. 10(d).

(c) (d)
Fig. 10. Second example of GPR root localization results processed by
the proposed method. (a) Pre-processed root B-scan. (b) Detected and
segmented results. (c) Only picked mask results. (d) Hyperbolic curve
fitting with peaks (red point).

More field results are shown in Fig. 11 and Fig. 12. The
results demonstrated that the developed model is able to
detect and segment object signatures in GPR scans in an
automatic and accurate manner.

Fig. 12. Fourth example of GPR root localization results.
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B. Evaluation Metrics

Average Precision (AP) is used as a criterion for evaluating
the performance of the bbox and mask. AP denotes AP at an
average of IOU from 0.5 to 0.95 with 0.05 interval. 4P, and

AP mark AP at IoU=0.5, IoU=0.75, respectively. AP for

objects with different scales: small (area <32*) and medium
(32* <area <96 ) are denoted as AP, and AP, .

Average Recall (AR) is another metric of RPN results. It
averages the recalls of IOU thresholds between 0.5 and 0.95. In
particular, 4R, , ARy, and AR, are defined to explain AR

performance when an image is assigned with 100, 300, and
1000 proposals. For small- ( 4R ), medium- ( 4R, ), or large-

(AR, ) scale objects, the AR are computed for 100 proposals.

The standard COCO metric is used to evaluate the test results,
and it represents the average mAP level when IOUs varies from
0.5 and 0.95.

C. Performance Evaluation

Fig. 13 plots the learning accuracy and loss curves to reflect
the performance of the improved MS R-CNN during training
period. Accuracy varies with iterations in Fig. 13(a). The
x-coordinate and y-coordinate represent iteration and accuracy,
respectively. At the beginning of the iteration, its accuracy has
climbed to 90%. In subsequent iterations, the accuracy remains
above 90% and gradually increases with iterations. It remains
stable in 17500-20000 iterations with an accuracy of
approximately 97%. Fig. 13(b) shows the distributions of three
losses: classification loss, bbox loss, and mask loss. It can be
observed all losses remain below about 0.35% after 2500
iterations. The distribution of the classification loss is almost
close to the bbox loss, and both are lower than the mask loss.

98
9

%
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B84
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5000 7500 10000 12500 15000 17500 20000
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Fig. 13. (a) Accuracy and (b) loss distribution (classification loss, bbox
loss, mask loss) of the improved MS R-CNN.

The performance of the improved MS R-CNN is compared
with the previous three instance segmentation frameworks from
the following three aspects: detection, segmentation, and
proposal. The previous frameworks are implemented using the
same configuration strategy as our proposed framework. As
shown in Table 3, the improved MS R-CNN with customized
anchoring scheme and transfer learning achieves 40.0% AP and
65.3% APso, respectively. Compared to the common MS
R-CNN, it increases AP by 3.2%. In addition, in terms of
detection results, the common MS R-CNN outperforms Mask
R-CNN and Cascade Mask R-CNN [44]. Notably, the
enhanced MS R-CNN gains the highest accuracy of 48.7% at
APs. This is because most root targets present hyperbola
signatures with a small size. From Table 4, we can obtain
acceptable segmentation results with 35.0% AP and 38.6%
AP50. For small and medium objects, the enhanced MS
R-CNN outperforms the Mask R-CNN, which demonstrates the
efficiency of the enhanced MS R-CNN for objects with scale of
I’ <area<96> . Table 5 provides AR to evaluate proposal
results of the proposed anchoring scheme. The enhanced MS
R-CNN obtains 35.1% AR100, 40.2% AR300, and 46.1%
AR1000, respectively, which is superior to the other three
frameworks. It shows the performance of RPN can be fully
utilized by effectively balancing training methods. Since the
improved MS R-CNN customizes the anchor boxes with aspect
ratios of [0.3492,0.5406,0.8528] in RPN stage, it can generate

the corresponding proposals to better fit the root target
signatures.
TABLE IlI
COMPARISON OF DETECTION RESULTS VIA DIFFERENT INSTANCE
SEGMENTATION FRAMEWORKS (IN PERCENT).

Framework AP APso AP7s APs APnm
MaskRCNN _ 30.8 533 275 403 182
Cascade Mask 4, 65.0 25.8 333 221
R-CNN : : : : :
MS R-CNN 36.8 64.6 37.8 37.7 29.7
Improved MS
N 40.0 65.3 37.0 48.7 248
TABLE IV

COMPARISON OF SEGMENTATION RESULTS VIA DIFFERENT INSTANCE
SEGMENTATION FRAMEWORKS (IN PERCENT).

Framework AP APso AP7s APs APwm

Mask RCNN  27.9 314 212 27.7 278

Casi‘éﬁkﬂaSk 343 382 217 326 295

MS R-CNN 33.6 35.4 26.9 30.3 36,5

'mpF:?(‘:'S,d\lMs 35.0 38.6 245 327 415
TABLE V

COMPARISON OF PROPOSAL RESULTS VIA DIFFERENT INSTANCE
SEGMENTATION FRAMEWORKS (IN PERCENT).

Framework AR100 AR3z00 AR1000 ARs ARm
Mask R-CNN  27.0 27.0 28.7 40.0 242
Casi‘éeNL/'aSk 326 333 37.4 40.1 32.1
MS R-CNN 33.0 35.0 36.7 425 313
'mpF:?(‘:’SZMS 35.1 40.2 6.1 52.5 33.1
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TABLE VI
RUNNING TIME OF DIFFERENT DEEP FRAMEWORKS.

Framework Running Time (h:min:s)
Mask R-CNN 5:10:00
Casiﬂiw“k 4:41:00

MS R-CNN 5:33:00
'mp;?gﬁdN MS 5:31:00

Table 6 details the running time of all frameworks. By
observing the MS R-CNN and the improved MS R-CNN, their
training time lasted about five and a half hours, which further
demonstrated that the improved MS R-CNN achieves
acceptable performance without increasing additional running
time.

We evaluated the effectiveness of two components: the
customized anchoring scheme and the transfer learning
technique, shown in Fig. 14. The common MS R-CNN
configured with a single customized anchor component is more
effective than that without such configuration. It shows our
work is valuable for generating proposals of feature maps in
RPN stage by utilizing designed anchors. The single transfer
learning component also presents an advantage in the aspect of
recall. Both branches are integrated into the common MS

R-CNN, which brings obvious improvement to AR oo and ARs.

The enhanced MS R-CNN has the ability to capture
information for small scale objects.

60
50
40
3 30
oz
) 20
()]
©
] 10
>
< 0
ARlOG AR3OO AR1000 ARs ARm
mMS R-CNN 36.7 42.5 31.3
® Customized Anchors 33‘8 37.9 39 46.2 32
m Transfer Learning 347 39.2 43.6 49.7 32.8
The developed MSR-| 554 4022 46.1 525 331

= MS R-CNN
m Transfer Learning

m Customized Anchors
The developed MS R-CNN

Fig. 14. Effect of each component on the improved MS R-CNN.

D. Comparison of detection result

To further verify the performance of the improved MS
R-CNN, an additional comparative experiment is conducted
based on the machine learning method. In this work, we
perform a Histogram of Oriented Gradients (HOG) feature
extraction and train a linear SVM classifier. The code is
implemented using Python scikit-learn library based on the
open-source vehicle detection toolbox
(https://github.com/hortovanyi/udacity-vehicle-detection-proje
ct). Training a SVM classifier requires both positive samples
(with hyperbolas) and negative samples (without hyperbolas).
A fixed sample size of 48 x 48 pixels is used to clipped samples

from the GPR images. A total of 16872 training samples is
obtained, including 8436 positive samples and 8436 negative
samples  (https://github.com/PouriaAl/GPR-Detection), as
illustrated in Fig. 15. The HOG implementation used in our
experiments uses L2-norm normalization. The parameters are
set as: orient = 9, and pix_per_cell = 16. Then, we implement a
sliding-window technique over GPR image and use the trained
classifier to search for hyperbola targets. The sliding window is
of size 50 x 40 pixels and the overlap value is set to 0.7. Based
on this technique, many false positive samples and multiple
overlapping bboxes are obtained. The heatmap method is adapt
to filter redundant bboxes and estimate a single bbox for each
hyperbola detected. The count number threshold is set to 4 for
heatmap.

--

e
Fig. 15. Examples of posmve samples (a) (d) and negative samples

(e)-(h).

To visualize the comparison performance of the above two

models, Fig. 16(a) and Fig. 16(b) show the detection results

using SVM classifier based on the original GPR images Fig. 8(a)
and Fig. 10(a), respectively. The output results in Fig. 8(b) and

Fig. 10(b) are generated by the improved MS R-CNN, in which

the root hyperbolic signatures can be effectively found.

Compared with Fig. 8(b), Fig. 16(a) detects many redundant

boxes indicated by green arrow. Compared with Fig. 10(b), Fig.

16(b) omits one hyperbolic target (marked by yellow rectangle),
and there are many redundant boxes (marked by green arrows).

The comparative results illustrate the performance of the HOG

feature-based linear SVM classifier is inferior to the improved

MS R-CNN, and it brings many false positive samples and

many redundant computations.

(a) (b)

Fig. 16. Detection results obtained by the HOG feature-based linear
SVM classifier on (a) original GPR image Fig. 8(a), and (b) original GPR
image Fig. 10(a). (Green arrow indicates redundant box and yellow
rectangle indicates missing target)
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V. CONCLUSION

In this paper, an improved DL model is developed and tested
with real GPR data for automatic object signature detection and
segmentation. The MS R-CNN is adopted as the main
framework. To improve its performance, a novel anchoring
scheme is proposed and integrated into MS R-CNN to replace
the previous fixed ones (i.e., scale and aspect ratio). This
scheme considers the imaging features of underground objects
and solves the problem of low detection accuracy of small
targets in GPR scans. Considering the need for large datasets
for training the DL model, a transfer learning technique is
developed to address the issue of lacking training data. Due to
the similarity between rebar and tree root signatures in GPR
scans, the rebar dataset is picked as the ‘source set’ and a new
model with pre-trained parameters and weights is obtained. The
‘target set’, root dataset, is exploited to fine-tune the model.
The new anchoring scheme and the transfer learning technique
improve the performance of the MS R-CNN in bbox detection
task, mask segmentation task, and proposal generation task.
The experimental results illustrated the feasibility and efficacy
of the improved MS R-CNN for automating the signature
recognition procedure.

There are some limitations that could be addressed in future
work. First, the proposed method requires a large scale of field
dataset for training the model. Due to the complexity and
unpredictability of field site, it is difficult to obtain GPR
datasets. Efforts need to be made to collect large amount of data
to improve the performance of the model. Second, DL model
needs to be designed to match each type of input characteristics.
Due to the non-intuitive and difficult explanation of features
extracted by DL model, designing a corresponding model for
certain problem is a challenge. Therefore, future research can
concentrate on the exploration and interpretation of the internal
structure of DL model. Third, the efficacy of this work relied on
quality of root dataset. Since the dielectric constant is highly
related to soil condition, in the case of high soil water content,
the reflected GPR signal is so weak that root targets may be
missed. Future research could focus on the signal processing
methods to eliminate clutters and enhance weak hyperbola in
GPR images. Finally, our recognition about root targets is
inferior to the linear object recognition such as rebar or pipe.
That is because root system, compared to those linear objects,
usually faces more challenges about the identification of root
characteristics: (1) root distribution is irregular; (2) root size
and root depth are unknown; (3) underground soil condition is
complex. These factors do constrain the automatic and
real-time development of large-scale root system. In future
studies, a deeper understanding towards root itself property is
required. In addition, the attention can be paid on the
distinctions of the hyperbolic signature between root and
non-root targets.
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