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Abstract—Deep learning has been revolutionizing many aspects 

of our society, powering various fields including computer vision, 

natural language processing, and activity recognition. However, 

the scaling trends for both datasets and model size are 

constraining system performance. Variability of memory 

requirements can lead to poor resource utilization. Reconfigurable 

photonic interconnects provide scalable solutions and enable 

efficient use of disaggregated memory resources. We propose a 

photonic switched optically connected memory system 

architecture that tackles the memory challenges while showing the 

functionality of optical switching for deep learning models. Our 

proposed system architecture utilizes a “lite” (de)serialization 

scheme for memory transfers via optical links to avoid network 

overheads and supports the dynamic allocation of remote 

memories to local processing systems. In order to test the 

feasibility of our proposal, we built an experimental testbed with a 

processing system and two remote memory nodes using silicon 

photonic switch fabrics and evaluated the system performance. 

The optical switching time is measured to be 119 s and an overall 

2.78 ms latency is achieved for the end-to-end reconfiguration. The 

collective results and existing high-bandwidth optical I/Os show 

the potential of integrating the photonic switched optically 

connected memory to state-of-the-art processing systems.  

 
Index Terms— Deep learning, memory architecture, optical 

switches, silicon photonics  

 

I. INTRODUCTION 

eep learning is a branch of machine learning that has 

drastically improved the state-of-the-art in many 

applications that enhance our daily lives and impact 

various aspects of our society. The computational models used 
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in deep learning, called deep neural networks (DNNs), have 

been successfully applied to various fields including image 

classification [1], language processing [2], and activity 

recognition [3]. The DNNs consist of many processing layers 

whose computation is mainly defined by weights and biases. 

These weights and biases, called parameters of the DNNs, are 

learned during the training and used for the inference. 

Accelerators, such as graphics processing units (GPUs) and 

field programmable gate arrays (FPGAs), are used for 

accelerating these training and inference processes [4], [5]. 

Large convolutional neural network (CNN) architectures, such 

as VGG16 [1], ResNet152 [6], and NASNetLarge [7], contain 

millions of parameters and can require tens of gigabytes (GBs) 

of memory during the training phase for image classification 

applications [8]. More complicated deep learning architectures 

for image captioning [9] and video analysis [10] with recurrent 

neural networks (RNNs), can exacerbate the situation by 

requiring larger model and large-scale dataset size [11]. For 

inference, large embedding tables [12] in deep learning 

recommendation models can also easily exceed tens of GBs. 

Recent studies [13], [14], however, indicate that the deep 

learning datasets and models are continuously scaling, which 

will inevitably exceed the memory capacity in today’s systems 

and limit the performance of deep learning applications.  

While the maximum memory requirement keeps growing the 

real-time memory usage is application dependent and often 

requires on-demand solutions. First, different deep learning 

applications show varying memory requirements based on their 

architectures (for example CNNs, RNNs, CNNs+RNNs, and 

etc.). Second, the memory capacity requirement for various 

batch size [15] and optimization strategies [16] can change 

within a large range, but the method requiring a larger memory 
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size does not always guarantee a better system performance 

[17]. Lastly, the size of embeddings that are used in 

recommendation applications is dependent on the entry size and 

number of models [18]. Having fixed and preconfigured 

amount of memory in the local system for the maximum 

memory capacity requirement is inefficient and will become 

more so. A scalable and dynamic solution is required to address 

the memory challenges for future deep learning applications. 

Several approaches to tackle the memory capacity issue for 

large DNNs have been explored. Virtualizing the memory 

usage of DNNs such that both host and device memory can be 

utilized by a careful study on the data dependency and network 

topology of the DNNs is proposed in [8]. Parallelizing deep 

learning models across multiple GPUs can be another approach: 

data parallelism and model parallelism algorithms presented in 

[19] show how to distribute large networks among GPUs to 

relieve the memory capacity limitation. To reduce the 

communication overhead and achieve better resource 

utilization, in [20] a memory-centric architecture is 

demonstrated in simulation and proposed for future high-

performance computing systems. Memory modules are 

aggregated locally and connected with device nodes using 

NVLink. Ref.[21] proposed using non-volatile memory (NVM) 

for storing embeddings in deep learning models with caching 

data in volatile memory to relieve the constraints. The first three 

approaches tackling the memory capacity issue with 

preconfigured and fixed memory resources do not provide a 

scalable solution to the on-demand memory requirement while 

the last approach can still be limited by the NVM bandwidth. 

Photonic interconnects can enable disaggregated high-

bandwidth networks reconfiguring compute and memory 

resources to meet application requirements in a more efficient 

and scalable network [22] than those using fixed resource 

configurations. Memory resources can be pooled and connected 

to other resources using reconfigurable optical switch fabrics 

[23]. The system can then be adaptively configured, according 

to dynamic resource requirements of deep learning 

applications, to achieve high resource utilization and deliver 

required system performance. Optically connected memory 

technique has been demonstrated using custom network 

interface card [24] with the inevitable overheads in memory-to-

network conversions [20]. An optically connected system with 

emulated processors and a custom memory controller has been 

reported in [25], [26] without an end-to-end program-level 

demonstration. 

In this work, we investigate the feasibility of integrating 

photonic switched optically connected memory into processing 

systems to address memory challenges in deep learning. The 

proposed system architecture enables on-demand allocation of 

additional memory to processing systems with a constant 

reconfiguration time that is independent of the required 

memory size. A “lite” (de)serialization scheme, which avoids 

heavy memory-to-network conversions and directly 

(de)serializes memory requests, responses, and data transfers, 

is proposed to eliminate the network communication overheads. 

The (de)serialization scheme is compatible with standard 

memory interface protocol and is applied to memory transfers 

between the processing system and remote memory nodes via 

optical links at the program-level. We built a testbed with a 

processing system node and two remote memory nodes to 

evaluate the system performance with memory read/write 

operations. This testbed experimentally demonstrates an end-

to-end reconfiguration latency of 2.78 ms and showed a step 

towards deploying photonic interconnects and optically 

connected memory for deep learning. Compared to the latency 

introduced by using storage devices for the DNNs, the proposed 

system achieves a significant speedup with remote memories.  

The remainder of the paper is organized as follows: Section 

II describes the system architecture and implementation details; 

Section III presents the testbed we built to evaluate the system 

performance. Section IV shows the experimental results. In 

Section V, we discuss optical switch requirements, limitations 

of our testbed and technologies to further improve the system 

performance. Lastly, the paper concludes in Section VI. 

II. SYSTEM ARCHITECTURE  

 Figure 1A left depicts the traditional system architecture. 

Each processing system is composed of CPU, memory, storage, 

accelerator, and network resources. In order to achieve better 

 

 
 

Fig. 1. (A) On the left, the traditional system architecture with each processing 
system composed of preconfigured and fixed CPU, memory, storage, 

accelerator and network resources. In our proposed system architecture, on the 

right, each processing system using optical I/Os is also connected to a remote 
memory pool through photonic interconnects. (B) Detailed implementation of 

photonic switched system architecture with optically connected memory. The 

processing system includes additional (de)serialization and transceiver (XCVR) 
helper blocks for (de)serializing memory mapped transactions being transmitted 

through optical links. On the right, remote double date rate synchronous 

dynamic random-access memory (DDR) nodes, are also equipped with the 
(de)serialization and XCVR helper blocks, and the photonic interconnects 

physically connect remote memory nodes to the processing system.  
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accuracy, larger datasets and more complex larger models are 

being used [13]. Adding more fixed memory modules to the 

processing system or to the accelerator for large DNNs is not 

an indefinitely scalable solution that will meet the scaling 

requirements. Furthermore, incorporating new more advanced 

hardware with fixed resources cannot guarantee an efficient 

utilization of compute and memory resources, as the memory 

capacity requirement for DNN models can vary significantly 

with applications [1], [10], [15], [18], [27]. We note, therefore, 

the traditional system architecture suffers from for deep 

learning applications is facing scaling and resource utilization 

challenges. In our proposed system architecture, as shown in 

Fig. 1A right, the reconfigurable photonic interconnects enable 

decoupling of additional memory modules from the processing 

systems and therefore enable flexible allocation of the 

additional memory capacity to systems or accelerators as 

required or on-demand. This system architecture breaks 

through the memory capacity limitation, improves the resource 

utilization, and is compatible with existing processing systems 

using designated (de)serialization and memory mapping 

schemes. Figure 1B shows more details of our proposed 

photonic switched optically connected memory system 

architecture. The processing system on the left is initially 

equipped with CPU, memory, accelerator, network, and storage 

resources. Based upon the memory capacity requirement of the 

deep learning applications, additional remote memory 

resources can be connected to the processing system using 

photonic interconnects through high-speed serial optical links. 

Helper blocks directly (de)serialize memory requests avoiding 

potential overheads introduced by network protocols and the 

NVMs.  

Disaggregated memory blocks can be assigned to the 

processing system using reconfigurable photonic interconnects 

for two cases. In the first case a processing system occupies the 

required memory blocks until it finishes the usage of the 

additional memory capacity. In this case, additional remote 

memory blocks can be assigned solely to that processing 

system. The second case occurs when multiple processing 

systems share remote memory nodes. This case depends on the 

fast switching capability of the photonic interconnects. Remote 

memory nodes can thus be dynamically selected while 

applications are running. The optical switching also enables the 

processing system to access remote memory nodes with limited 

optical transceiver ports. Examples of these two cases can be 

found in the following subsection B. In addition, the proposed 

system architecture can be integrated to current systems with 

minor modifications to current operating systems.  

In this work, we use Xilinx multiprocessor system-on-chip 

(MPSoC) devices to demonstrate the feasibility of integrating 

photonic switched optically connected memory into the 

processing system. Detailed system implementations: (A) a 

“lite” (de)serialization of memory transfers; (B) mapping 

remote DDR into the system address space; (C) Silicon 

Photonic (SiP) switch and control; and (D) accelerator design 

are presented in the subsections below.  

 

A. (de)Serialization of memory transfers  

The MPSoC system uses the AMBA AXI protocol [28] to 

perform memory read/write operations. To access a locally 

memory mapped slave device, master devices such as CPU and 

accelerators can simply launch requests through transaction 

channels, such as read address, read data, write address, write 

data, and write response, in order to finish the memory 

transactions. To access an optically connected remote memory 

slave, however, the AXI memory mapped channel signals have 

to be combined and serialized before being transmitted to the 

remote side through high-speed serial links. We leveraged 

existing IP blocks designed by Xilinx to achieve the “lite” 

(de)serialization of the remote memory transfers. Without using 

any network layer protocol, our scheme directly serializes the 

AXI channel signals and transfers the high-speed serial signals 

to the remote nodes through optical links. On the receiver side, 

the high-speed serial signals are deserialized back to the parallel 

AXI channel signals.  

 We primarily used two IP blocks, AXI chip2chip [29] and 

Aurora 64B/66B [30] IP cores in this system design. The AXI 

chip2chip core converts the AXI memory mapped channel 

signals into AXI streaming signals or vice versa and interfaces 

to the Aurora 64B/66B core. The latter core utilizes a link-layer 

protocol, including transceiver initialization, multi-lane 

handling, and link negotiation for the high-speed serial 

communication between our optically connected nodes. The 

AXI chip2chip core can be connected to the AXI interconnects 

that can be consequently accessed by CPU and accelerators. To 

achieve an error-free operation, specific transceiver control 

 
Fig. 2. (A) An example of case 1, two remote memory resources mapped to two 

AXI chip2chip cores in the local processing system for the unswitched case after 

the resources are assigned. Each chip2chip core is assigned with a unique 
memory address offset (B) An example of case 2, the switching case. Both 

remote DDR #1 and remote DDR #2 are mapped to the AXI chip2chip #1 in the 

processing system. They share the same memory address offset.  
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settings are necessary to be properly configured. These settings 

depend on the link characteristics. Further details are shown in 

Section IV.   

B. Map to Local System Address Space  

 The master CPU and accelerators can only see and 

communicate with the AXI chip2chip IP blocks in the 

processing system. In fact, the AXI chip2chip core exposes the 

remote DDR slave to the local system space. Memory address 

offsets of the AXI chip2chip and the remote DDR are set to be 

the same. In this way, CPU and accelerators can seamlessly 

access the remote DDR as a “local” device. For the case where 

the processing system occupies multiple memory blocks 

without optical switching during the application, the remote 

memory blocks are assigned with different memory address 

offsets (as they are connected to different chip2chip cores). An 

example of this case is shown in Fig. 2A. Remote DDR #1 node 

is projected by chip2chip #1 and remote DDR #2 is projected 

by chip2chip #2. Two remote DDR nodes have different 

address offset values because they are mapped to separate 

chip2chip cores.  However, for the switching case, the memory 

address offset of all the remote DDRs is set to be the same. This 

is due to the fact that CPU and accelerators are accessing the 

remote DDRs through the same AXI chip2chip core. An 

example of two remote DDR nodes projected by a single 

chip2chip core is shown in Fig. 2B. The mapping configuration 

for both cases is one of the modifications to the operating 

systems. 

 

C. SiP Switch and Control  

Lithography-based photonic integration technologies hold 

great promise for large-scale optical integrated switch fabrics 

by reducing the device footprint and also the overhead in terms 

of assembly and calibration [31]. Planar integrated optical 

switches have been developed on several material platforms, 

such as indium phosphide, lithium niobate, silica, and silicon 

[32]–[36].  

Silicon photonics, fabricated in high volume CMOS 

compatible foundries, is promising for low-cost, power-

efficient interconnects. The primary switching cells that are 

being explored are Mach-Zehnder interferometers (MZIs) [36], 

MEMS-actuated couplers [37], and microring resonators 

(MRRs) [38]. Whilst the former two have demonstrated higher-

scale integration [36], [37], the resonant devices have shown 

great potential for ultra-compact and energy-efficient 

applications [35], [39]. In addition, the wavelength-selective 

feature of MRRs can be utilized to route data spectrally and 

spatially [40], which significantly simplifies the device design 

and fabrication. In this work, we use silicon thermo-optic MRR 

based 1×8 switch fabrics as spectral-and-spatial de-

multiplexers for data routing. We use the MRR to select/drop a 

specific wavelength to connect communicating nodes. We note 

that our proposed architecture is agnostic to the choice of 

switching device, although the individual properties of the 

switch cell choice will have an effect on system performance.  

We choose to have an independent switch controller for 

future system scalability. Controlling high-radix SiP switches 

generally requires a large number of analog control pins due to 

the large number of switching elements that forms the switching 

matrix. A scalable solution is to have a separate switch 

controller with the required number of analog pins. The 

processing system will only be required to send configuration 

requests to the switch controller and the switch controller 

applies required analog control signals to the switching 

elements in the SiP switches. We apply this methodology to our 

proposed system architecture and use group peripheral I/O 

(GPIO) pins as the interface to the switch controller. These 

control pins contain 1 bit for triggering and a power of 2 bits for 

the configurations. Based on the physical configuration 

required by users or deep learning applications, the processing 

system will first stabilize the configuration bits and toggle the 

trigger bit from logic high to logic low to initiate the 

reconfiguration process. For the switch controller, the 

procedure is as following: (1) The control logic in the switch 

controller samples the triggering signal and the configuration 

bits; (2) if triggered, it reads registers that contain pre-stored 

digital voltage values associated with each switching element 

for required configurations and (3) applies the parallel digital 

voltage values to digital-to-analog convertors (DACs) that bias 

the switching elements of the SiP switches. 

 

D. Accelerator Design 

We designed a “vanilla” accelerator on the FPGA of the 

ZCU106 board to further evaluate the feasibility of our photonic 

switched optically connected memory system architecture. The 

accelerator uses the standard AXI memory interface and it has 

the access to remote memory nodes through the AXI chip2chip 

core. The accelerator functions as a data mover that can “copy” 

and “paste” data from local DDR to remote DDR or vice versa. 

Although it does not heavily process the fetched data from 

either local or remote memories, the functionality of accessing 

remote memory through a standard memory interface is 

achieved. The ARM CPU in the processing system initially 

comes with AXI interface and it does not require additional 

implementations. 

 

 
 

Fig. 3. SiP switches’ configurations for the dynamic access to remote DDRs. 

(A) Remote memory resources to the processing system direction. (B) The 
processing system to remote memory resources direction. 
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III. TESTBED  

 We built an experimental testbed to evaluate the optical links 

and switching characteristics, and to demonstrate the feasibility 

of integrating SiP switches and remote DDRs into the 

processing system for DNNs. It includes one processing system 

node dynamically connecting two remote DDR memory blocks. 

Two SiP switches connect the processing system to the 

remote DDR nodes. In this specific implementation of our 

architecture only a 1×2 switch and a 1×4 switch are required, 

although we used 1×8 SiP switches for the experiment. As we 

are only accessing the first MRRs, the experimental results are 

not impacted. Based on our system configurations, two MRRs 

in one of the 1×8 SiP switches are used for the direction from 

remote DDR nodes to the processing system and four MRRs in 

the other 1×8 SiP switch are used for the processing system to 

remote DDRs direction. We label them as 1×2 and 1×4 switches 

in the rest of the paper. In addition, each optical link contains 

two bundled lanes. 

Figure 3A shows the direction from remote DDR nodes to the 

processing system. If the processing system requires the 

connection to remote DDR node #1then MRR #1 and MRR #2 

in the 12 switch are tuned to select and forward 1 and 2 to the 

processing node. For the connection to the remote DDR #2, 3 

and 4 are selected. Figure 3B shows the other direction for data 

transactions. If the system is configured as remote DDR #1 node 

being connected to the processing system node, the first two 

MRRs connected to the remote DDR #1 node in this 1×4 switch 

will drop 5 and 6. When the remote DDR #2 node is acquired 

by the processing system, MRR #3 and MRR #4 in the 14 

switch are detuned from 5 and 6 to allow the light to pass 

through while MRR #5 and MRR #6 are tuned to drop and 

forward the light to the corresponding receiver ports of the 

remote DDR #2 node. 

Figure 4A shows the experimental setup. Two Xilinx 

ZCU106 and a Terasic TR4 evaluation boards are used to 

evaluate the system. One of the ZCU106 boards contains both 

the processing system and remote DDR #1 nodes. The physical 

connection is only through the optical link that can be steered 

by the SiP switches. The other ZCU106 only comprises the 

remote DDR #2 logics. Each remote DDR node contains a 2 GB 

64-bit wide DDR4 memory system. Six transceivers in total are 

used to support multi-lane optical communications. Each link 

contains two lanes and each lane operates at 10 Gb/s data rate. 

The maximum throughput for the serial link between the 

processing system and a remote DDR node can reach up to 20 

Gb/s. Four C-band SPF+ transceivers, with wavelengths at 

1545.32 nm (1), 1546.92 nm (2), 1553.33 nm (3) and 1554.94 

nm (4), are used for the two remote DDR nodes to transmit data 

to the processing system, and two wavelengths at 1554.94 nm 

(5) and 1556.56 nm (6) are used for the opposite direction. 

Optical signals are combined by the multiplexers (MUX) and 

then enter the SiP MRR based switch chips. The polarization 

controllers (PC) change the polarization of the light of each lane 

to maximize the optical power being coupled in to and out of 

the SiP chips. An erbium doped fiber amplifier (EDFA) is 

necessary to compensate the loss due to the grating couplers of 

the SiP switch chips. The processing system sends 

configuration requests to the switch controller FPGA, on the 

Terasic TR4 board, which configures each MRR by tuning the 

resonance of each MRR with bias voltage through DACs and 

electrical amplifiers (AMPs). The electrical amplifiers are used 

to provide sufficient voltage levels to the MRRs. The 

configuration and trigger signals are transmitted through GPIO 

pins from the processing system ZCU106 board to the TR4 

board. Figure 4B illustrates the key hardware components that 

enable the evaluation of the system. CPU, FPGA, remote DDRs, 

GPIO, optical transceivers, switch controller and DACs are 

used for the evaluation of optical link and switching 

characteristics. A packaged SiP chip on a printed circuit board 

with SMA interface is shown in Fig. 4C. 

IV. EXPERIMENTS AND RESULTS 

The proposed photonic switched optically connected 

memory system architecture is evaluated by the link 

characteristics and the system performance measurements of 

the physical layer switching time, the end-to-end 

reconfiguration latency, the loading time of the parameters of a 

VGG16 DNN from hard drive to local main memory, the 

execution time to classify an image on CPU, and the time for 

storing data to/loading data from the remote DDR nodes. We 

use the VGG16 DNN model which is a well-known and widely 

used image classification model [1] as an example of a large 

model used in deep learning.  

 

 
 

Fig. 4. (A) Experimental setup demonstrating a case of photonic switched optically connected memory system with dynamic allocation of remote DDR resources 
to the processing system. (B) Key hardware components. One Xilinx ZCU106 board containing the processing system and the remote DDR #1 nodes, another 

ZCU106 board containing only the remote DDR #2 node, and the TR4 switch controller FPGA board. (C) A packaged SiP MRR based switch with electrical SMA 

interface. 
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A. Optical Spectra 

We first demonstrate that the SiP MRR based switches are 

capable of supporting the multi-lane optical communications 

required for the two different physical memory access 

topologies. Figure 5A shows the optical spectra at the drop port 

of each MRR configured for prioritizing the physical 

connection between the processing system to the remote DDR 

#1 node. MRR #1 and MRR #2 are tuned to drop the optical 

wavelengths at 1545.32 nm (1) and 1546.92 nm (2) for the 

lane #1 and lane #2 from the remote DDR #1 node. The 

received optical power of the data signal at the corresponding 

receiver ports is -15.60 dBm and -18.32 dBm respectively. 

MRR #3 and MRR #4 are configured to select and forward the 

wavelengths at 1554.94 nm (5) and 1556.56 nm (6) from the 

processing system to the remote DDR #1 node. The received 

optical power for lane #1 and lane #2 are -17.48 dBm and -16.39 

dBm respectively. For the plots of MRR #1 to MRR #4, the 

highest peak is the optical data signal and other peaks are 

crosstalk from adjacent optical channels. For the plots of MRR 

#5 and MRR #6, the peaks show leakage power from previous 

MRRs, MRR #3 and MRR #4.  
Figure 5B shows the optical spectra at the drop output of each 

MRR for the second case where the remote DDR #2 node is 

connected to the processing system. The optical power received 

by the processing system at 1553.33 nm (3) and 1554.94 nm 

(4) is -14.96 dBm and -18.25 dBm respectively. MRR #3 and 

MRR #4 are detuned to allow the light to pass through these 

MRRs and the light can be dropped by MRR #5 and MRR #6. 
The received optical power at the receivers of DDR #2 node are 

-20.3 dBm and -18.3 dBm respectively. We ensured the 

received optical signal power is above the receiver sensitivity 

of -23 dBm.  
 

B. Eye Diagrams 

 Data transmission at 10 Gb/s non-return-to-zero (NRZ) on-

off keying (OOK) using 231-1 pseudo-random bit sequence 

(PRBS-31) was performed to extract transceiver settings for the 

Aurora 64B/66B IP core. With transmitter driver swing at an 

amplitude of 647 mVPPD, pre-cursor TX pre-emphasis of 0.68 

dB and post-cursor TX pre-emphasis of 1.16 dB, error-free 

operations over the optical links are achieved. All the connected 

paths for the two different configurations show clear eye-

openings as shown in Fig. 6.  

 

C. Switching Time 

We performed measurements of two switching cases 

between two configurations: (1) the remote DDR #2 node 

connected to the processing system, and (2) the remote DDR #1 

node connected to the processing system. The first switching 

case is changing from configuration #1 to configuration #2 and 

the second switching operation happens 330 s after the first 

switching operation, which is changing from configuration #2 

to configuration #1. In Fig. 7, we show the transient responses 

of the received optical power, normalized individually for each 

MRR.  

As shown in Fig. 7A, the first switching case starts at the time 

that approximately equals to 50 s. We notice that MRR #4 

experiences faster rise time than MRR #3 and becomes 

stabilized within a shorter time. The local maxima and the local 

minima of the orange curve are due to the fact that MRR #4 

 

 
 
Fig. 5. Optical spectra at the drop port of each MRR for two different 

configurations. (A) Two SiP switches configured as the processing system 

connecting to the remote DDR #1 node. (B) Two SiP switches configured as the 
processing system connecting to the remote DDR #2 node. (In this figure, the 

MRR numbers are consistent with the MRR numbers shown in Fig. 3.) 

  

 

 
 

Fig. 6. Screen shots of open eye diagrams of connected receiver ports at 10 Gb/s 

PRBS-31. (A) Two SiP switches configured as the processing system (PS) 
connecting to the remote DDR #1 node. (B) Two SiP switches configured as the 

processing system connecting to the remote DDR #2 node.  
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passes through 1554.94 nm (5) during the first switching 

process. MRR #5 and MRR #6 are initially tuned at 1554.94 nm 

(5) and 1556.56 nm (6), and the control bias voltages are not 

changed during the process, thus the transient response of MRR 

#5 is reciprocal to the superposition of the transient responses 

of MRR #3 and MRR #4. The transient response of MRR #6 is 

reciprocal to MRR #4 only. For the configuration #2 to 

configuration #1 case, MRR #3 and MRR #4 are detuned to 

allow the optical signals to pass through, and the transient 

responses can be observed at the time approximately equal to 

380 s. The limiting factor of the switching operation is the 

slowest transient response of all the responses. We can see from 

Fig. 7A that the rise time of MRR #3 for the switching from 

configuration #1 to configuration #2 is the slowest transient 

response and the latency is approximately 119 s. We have, 

however, shown that the thermo-optic switching time can be as 

low as 1.2 s with optimized driving circuitry [41]. 

Figure 7B illustrates the transient responses at the receiver 

ports for MRR#1 and MRR #2 in the two switching scenarios. 

Since both MRR #1 and MRR #2 are dropping optical signals 

for two configuration cases, the transient response of each 

individual MRR is expected to fall first and then rise back 

during the switching process. As we find from Fig. 7B, the 

slowest transient response is approximately 107.5 s at the 

receiver port for MRR #1 in the first switching case.  

 

D. End-to-end reconfiguration time 

The system end-to-end reconfiguration latency consists of 

(1) the time for AXI chip2chip and Aurora 64/66B cores to 

reset, (2) optical switching time, and (3) link re-negotiation 

time. To reconfigure the physical connections between the 

processing system and remote DDR nodes, the AXI chip2chip 

and Aurora 64/66B cores in the processing system are required 

to be put into reset state. This reset action will also be 

propagated to the remote DDR end to restart the link-

renegotiation process. The reset process and the link-

renegotiation process are described in [29], [30]. One 

requirement for this process is that the asserted reset state needs 

to last at least 128 user clock cycles and we chose to set the 

cores to be in reset state for 2 ms. The optical switching time 

shown in the previous section is approximately 119 s and we 

chose to wait 330 s to ensure the optical link is stabilized. The 

reset was then released and the link-renegotiation process 

started. This renegotiation time was measured to be 0.45 ms. In 

total, the end-to-end reconfiguration time was 2.78 ms. 

 

E. Application and Execution Time 

We built a Linux kernel image based upon the system 

implementation using Xilinx PetaLinux tool and booted the 

operating system with Ubuntu 18.04 filesystem on the Xilinx 

ZCU106 board. The kernel image is stored in the SD card boot 

partition while the filesystem is stored in the hard drive root 

partition. The hard drive is connected to the processing system 

through SATA interface. 

We evaluated the system performance by measuring the 

latencies of loading data from storage to local memory, storing 

data from local memory to storage, loading data from remote 

memory to local memory, storing from local memory to remote 

memory, and classifying an image on the ARM Cortex CPU. A 

VGG16 model was pretrained using TensorFlow in Python and 

its parameters, such as weights and biases for each layer in the 

network, are also saved in the hard drive. A feedforward 

implementation of the neural network including the 

convolutional and fully-connected layers is coded in the C 

programming language, thus the processing system is capable 

of running a C program to load the parameters and classify an 

image using the pretrained VGG16 model on the ARM CPU. 

The VGG16 model contains 13 convolutional layers and 3 

fully-connected layers with 138,357,544 parameters and we use 

32-bit floating point data type for each parameter. Thus, the 

total size of the VGG16 is approximately 528MB. The loading 

time from the hard drive to the local main memory is 5.70 s for 

the entire VGG16. The execution time to classify an image is 

63.34 s on the ARM CPU. 

To measure the latencies of using remote DDR for 

storing/loading parameters, i.e. weights and biases, we use our 

designed accelerator in a standalone design (without the 

operating system). The time for storing 528 MB data, the same 

size as the VGG16, from the local contiguous memory 

allocation (CMA) region to the remote DDR takes 1.40 s for the 

accelerator and loading the data from remote DDR to the local 

CMA region takes 1.34 s.  

 

 
 

Fig. 7. Transient responses at the receiver ports of all MRRs for two switching 

cases separated by a time duration of 330 s. (A) Transient responses of MRR 

#3, MRR #4, MRR #5 and MRR#6 in the 14 switch. (B) Transient responses 

of MRR #1 and MRR #2 in the 12 switch.  
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The accelerator’s equivalent throughput for loading from the 

remote memory to local memory is 3.31 Gb/s, and 3.16 Gb/s 

for storing. The limited throughput is due to the fact that the 

designed accelerator operates at 250 MHz with 32-bit AXI data 

channel width, which can theoretically achieve up to 7.8 Gb/s 

without overhead. In addition, the accelerator performs “copy” 

and “paste” operations which lead to an overhead factor of 

approximately 0.5 over the entire system. By increasing the 

clock frequency and data channel width of the accelerator, 

higher throughput can be achieved.  

During training, memory space is required to store each 

layer’s output and its corresponding gradients. This space 

required is the same size as the layer’s output for 

backpropagation when stochastic gradient descent (SGD) [16] 

optimization strategy and ReLu [42] activation function are 

used. To evaluate the feasibility of our proposed architecture 

for increasing the memory capacity for training, we performed 

a forward propagation of the VGG16 with a batch size of 1, 2, 

4, 8, and 16 images in the software. Based upon the memory 

requirement for training, we stored/loaded the intermediate 

layer results and randomly initialized gradients to/from both 

remote memory and the hard drive for the purpose. The 

intermediate results include the output of each convolutional 

layer, max pooling layer and fully-connected layer. There are 

15,087,080 elements of intermediate layer results per image to 

be stored for backpropagation. Considering the gradients, there 

are in total 30,174,160 elements per image that are being 

stored/loaded during the process. The time for storing to the 

hard drive is 1.14 s, 2.49 s, 4.98 s, 10.53 s, and 22.58 s, 

respectively. For loading from the hard drive, the latencies are 

1.26 s, 2.53 s, 5.24 s, 10.61 s, and 20.57 s, respectively. As 

expected, the latencies for storing/loading using remote DDR 

are less than using the hard drive in the testbed. The storing 

latencies using the remote memory are 0.31 s, 0.61 s, 1.23 s, 

2.45 s, and 4.92 s, while the loading latencies are 0.30 s, 0.60 s, 

1.21 s, 2.41 s, and 4.85 s, respectively. Figure 8 compares the 

latencies of using hard drive and remote DDR memory and 

shows that the required memory space for layer output and layer 

gradients grows with the batch size. We note that larger batch 

size will require more memory and the  memory requirement is 

also related to the use of other optimizers [16], but the 

functionality of our architecture and the remote memory 

remains the same. Table I lists the results for the system 

performance measurements.  

Figure 9 compares the three scenarios for the test case of 

inference: processing system loading from storage, processing 

system with remote DDR and optical interconnect, accelerator 

with remote DDR and optical interconnect. The total execution 

time consists of both compute time and the time for data access. 

For the latter, we can achieve a speedup of 4.3 when loading the 

data from remote DDR compared to loading from the storage 

device to the local DDR. The end-to-end reconfiguration 

latency we observed is much shorter than the loading time 

therefore we use 1.34 s as the total time for the processing 

system to load the data from the remote memory. In the case of 

the accelerator, the end-to-end reconfiguration time is the only 

one considered as the accelerator can directly access the remote 

memory without loading. We note that the optical 

reconfiguration time is a constant overhead independent of the 

data size. With increased data size the impact of the overhead 

is amortized.   

 

V. DISCUSSION 

Optical switching technology enables reconfigurable 

disaggregation allowing the processing system to dynamically 

access additional memory resources. In order to successfully 

integrate the photonic switched optically connected memory 

into the system, several requirements for the optical switches 

need to be taken into consideration including: optical power 

budget, reconfiguration time, power consumption and 

scalability.  

 

 
Fig. 8. Loading/storing latencies using hard drive and remote DDR memory 

of different batch sizes.  
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TABLE I 
SYSTEM PERFORMANCE MEASUREMENTS 

Operations Latency 

Optical switching 119 s 

End-to-end reconfiguration   2.78 ms 

Load VGG16 (528 MB) from hard drive to local 
DDR memory 

5.70 s 

Load 528 MB data from remote DDR to local DDR 

CMA region (accelerator) 

1.34 s 

Store 528 MB data from local DDR CMA region to 

remote DDR (accelerator) 

1.40 s 

Load intermediate results and gradients from hard 

drive to local DDR memory (batch size of 16) 

20.57 s 

Store intermediate results and gradients from local 

DDR memory to hard drive (batch size of 16) 

22.58 s 

Load intermediate results and gradients from remote 

DDR to local DDR CMA region (batch size of 16) 

4.85 s 

Store intermediate results and gradients from local 

DDR CMA region to remote DDR (batch size of 16) 

4.92 s 

Classify an image using VGG16 on ARM CPU 63.34 s 
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The optical power budget available is based on the receiver 

sensitivity and the optical power launched by the transmitter. 

The insertion loss of the optical switches should be well below 

this if the system has no optical amplification. If the insertion 

loss of the switch and additional losses in the link go beyond 

this optical power budget, optical amplification is required, 

which is generally not desirable due to energy and cost 

considerations, although recent work with semiconductor 

amplifiers has shown promise [43]. The extinction ratio (ER) of 

the optical switch also depends on the optical transceiver. For a 

transmitter ER of 3.5 dB, we measured more than 10 dB power 

suppression ratio of the optical signal power to the optical 

leakage power which can guarantee error-free operation.  

End-to-end reconfiguration latency is an important network 

parameter. This parameter includes optical switching time, 

transceiver reset and link negotiation. In order to not introduce 

excessive overhead, the optical switch reconfiguration should 

not occupy more than ten percent of the entire reconfiguration 

latency. In this case we have shown that the optical switch 

reconfiguration time is not detrimental to the system 

performance. To decrease the overhead of the optical switching 

and link reconfiguration latency, advanced high-speed devices 

could be employed. Electro-optic switches and burst-mode 

transceivers can be deployed in the system. Electro-optic silicon 

photonic switches provide nanosecond-scale reconfiguration 

time [44] and sub-nanosecond clock and data recovery has been 

demonstrated in an optically switched link via clock phase 

catching [45]. The achievable end-to-end reconfiguration 

latency can thus be reduced to the nanosecond scale.  

The power consumption of the optical switch should be a 

small fraction of the power consumption of the entire system. 

The state-of-the-art GPU [46] can consume up to 280 W while 

reported silicon photonic switches [47], are in the range of 

Watts and are therefore relatively power efficient when 

integrated into the system to support dynamic memory resource 

allocation. For example a 3232 MZI-based switch consuming 

a power of 1.9W [36]. The switch fabric used in this experiment 

consumes approximately 10 mW per MRR. 

Although we demonstrated a 12 switching scenario in the 

testbed, larger NM optical switches in application dependent 

topologies would support the system requirements, depending 

on the number of compute/accelerator nodes (N) and the remote 

memory nodes (M) within the subsystem. Ref. [20] indicates a 

use case of 8 compute and 8 memory nodes. A full analysis of 

the relationship between the radix/topology of the optical 

switch and the overall system performance/cost can be 

performed using the same methodology as shown in our 

previous work [48], for specific applications and switch 

architectures. 

Our experimental testbed was designed to experimentally 

demonstrating the proof-of-concept functionalities of our 

proposed system architecture. Although we used legacy SATA 

based storage devices in our testbed, commercially available 

storage drives can support up to 2,375 MB/s throughput 

(Amazon Web Service [49]). In order for our proposed 

architecture to demonstrate comparable speedup using 

commercial high-end storage devices, one would build an 

optical system with comparable high-end bandwidth optical 

I/Os and optimized transceiver circuitry. Multiwavelength 

terabit optical links are under development with state-of-the-art 

silicon transceivers capable of modulating [50] and detecting 

[51] at over 100 GHz bandwidth.  

In summary, our proposed photonic switched system 

architecture demonstrates the concept of using dynamic 

allocation of memory to tackle the scaling challenge of deep 

learning. Our test cases demonstrate the capability of increasing 

memory capacity at the program-level using an architecture 

based on MRR optical switches, FPGA processing systems, and 

optically connected DDR memories. The designed “lite” 

(de)serialization and memory mapping scheme show a path 

towards lowering the system latency, a critical metric for 

disaggregated systems. The independent switch controller is 

scalable and is able to be applied in the systems requiring large 

number of switching elements as long as they are controlled by 

biasing voltages. The proposed system architecture shows a 

significant step toward deploying photonic interconnects and 

optically connected memory for deep learning applications. 

More generally, with specific optimizations the approach would 

also be applied to other workloads that face the same memory 

challenges. 

VI. CONCLUSION 

We demonstrate a proof of concept system architecture, 

showing the functionality of photonic switched optically 

connected memory for large DNNs in deep learning. It features 

dynamic allocation of additional memory to the processing 

system and a constant reconfiguration latency. The 

experimental testbed demonstrates real memory transactions 

between the processing system and remote memory nodes. We 

measured a 119 s latency for optical switching and an overall 

2.78 ms latency for the end-to-end reconfiguration. Our results 

and silicon-based high-bandwidth I/O capabilities show the 

feasibility of using photonic switched optically connected 

 

 
Fig. 9. Timelines comparing system latencies in different scenarios for 

switching case #2.  
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memory to solve the memory challenges in future deep learning 

applications.  
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