J. Vis. Commun. Image R. 72 (2020) 102908

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci

Full length article R

Check for

Scalable Hash From Triplet Loss Feature Aggregation For Video | e
De-duplication
Wei Jia?, Li Li?, Zhu Li**, Shuai Zhao ", Shan Liu"

a Department of Computer Science and Electrical Engineering, University of Missouri-Kansas City, 5110 Rockhill Rd, Kansas City, MO, 64110-2446, USA
b Tencent Media Lab, 2747 Park Blvd, Palo Alto, CA 94306, USA

ARTICLE INFO ABSTRACT

MSC: The producing, sharing and consuming life cycle of video content creates massive amount of duplicates in
41A05 video segments due to variable bit rate representation and fragmentation in the playbacks. The inefficiency
41A10

of this duplicates to storage and communication motivate researchers in both academia and industry to come

22323 up with computationally efficient video deduplication solutions for storage and CDN providers. Moreover, the
increasing demands of high resolution and quality aggravate the status of heavy burden of cluster storage

Kf?yw"r‘i"' side and restricted bandwidth resources. Hence, video de-duplication in storage and transmission is becoming

B inary hash an important feature for video cloud storage and Content Delivery Network (CDN) service providers. Despite

Binary tree . P . . I e .

Fisher vector of the necessity of optimizing the multimedia data de-duplication approach, it is a challenging task because

Triplet loss we should match as many as possible duplicated videos under not removing videos by mistake. The current

Video de-duplication video de-duplication schemes mostly relies on the URL based solution, which is not able to deal with non-
cacheable content like video, which the same piece of content may have totally different URL identification and
fragmentation and different quality representations further complicate the problem. In this paper, we propose
a novel content based video segmentation identification scheme that is invariant to the underlying codec and
operational bit rates, it computes robust features from a triplet loss deep learning network that captures the
invariance of the same content under different coding tools and strategy, while a scalable hashing solution is
developed based on Fisher Vector aggregation of the convolutional features from the Triplet loss network. Our
simulation results demonstrate the great improvement in terms of large scale video repository de-duplication
compared with state-of-the-art methods.

1. Introduction rate agnostic and coding scheme agnostic content identification and

hashing solution are needed, to characterize media segments across

Modern dynamic adaptive video streaming methods such as MPEG- different representations and with totally different bit streams. Scalable

DASH [1], Apple HLS [2] and Microsoft Smooth Streaming [3] have and robust signatures for media content to support de-duplication at

a great impact on how content providers store and serve the media fine granular spatio-temporal segments granularity, are important to
contents in the cloud, such as a content delivery network (CDN). OTT rip the full benefits of storage de-duplication.

(over the top) content providers are also pushing subscription-based
video on demand (VoD) services that offer streaming services on tele-
vision. The media content creation, sharing and consumption process
generate many duplicates but are not necessarily identical in bit stream.
There is a de-duplication of media content use case for example. If a
content identification scheme can support identification of duplicates
in network caches in core networks and edge nodes, then traffic can be
localized and bandwidth saved. This creates challenges to the existing
Content Delivery Network (CDN) and storage de-duplication schemes
like those based on MD5 [4] hashing of file chunks. New compact

Therefore the massive multimedia data is pushing forward the
paradigm of effective storage on cluster servers. Fig. 1 depicts that
various contents of resolutions and quantized parameters(REQP) are
consumed by very diversified consumers’ platform. In current media
content storage scheme, the storage side has to hold all of the REQP
media content, which is error-prone and not cost-effective. We de-
fine the version as the combination of resolution and quantization
parameter namely REQP in this paper. If users apply the same version
(REQP) of videos from the server ignoring the identical ones in the

* Corresponding author.
E-mail addresses: wj3wr@umsystem.edu (W. Jia), lill @umkc.edu (L. Li), zhu.li@ieee.org (Z. Li), shuai.zhao@ieee.org (S. Zhao), shanl@tencent.com
(S. Liu).

https://doi.org/10.1016/j.jvcir.2020.102908

Received 17 June 2019; Received in revised form 1 February 2020; Accepted 6 September 2020
Available online 8 September 2020

1047-3203/© 2020 Elsevier Inc. All rights reserved.

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:wj3wr@umsystem.edu
mailto:lil1@umkc.edu
mailto:zhu.li@ieee.org
mailto:shuai.zhao@ieee.org
mailto:shanl@tencent.com
https://doi.org/10.1016/j.jvcir.2020.102908

W. Jia et al.

=

Fig. 1. CDN Content Cache. There are multiple versions of videos with different
resolutions and qualities on the CDN. Users visit which version of videos corresponding
to the conditions of their devices.

content delivery network (CDN), the pressure on the network from
video delivery and storage will be quite large. Hence, how to retrieve
and remove the duplicated versions of videos is an essential task for
researchers.

In spite of that leveraging the video de-duplication [5] scheme is
quite necessary and promising, the micro improvement of its
performance exhibits it is difficult to develop. First of all, multimedia
data on the cloud cluster and CDN is all the cherish product from
industry and user, so it is extremely strict to remove any videos. This
results in that we should derive the system of high accuracy and recall.
Especially, we focus on the true positive rate (TPR) under false positive
rate equals 0 because we cannot allow the judgment is error and the
product is deleted accidentally. Secondly, a tremendous quantity of
videos cost the system much time to recognize and match the video
identity if the algorithm is not precise and efficient. A high-delay
method cannot satisfy the real time requirement in the social media
time.

To alleviate the stated problems above, there are two groups of
methods on video de-duplication depending on the comparison domain.
The first group tries to perform video de-duplication directly in the
pixel or frequency domain. They make use of the geometry correlation
in a frame or the time correlation in a sequence to decide based on
comparing the pixels information. The second group tries to use the
hashing representation to replace to pixels. The most representative
work is to use the deep learning features to derive the hash. Though this
method utilized deep learning method to obtain some performance im-
provements, the cross-entropy loss function is in essence unsuitable for
the video de-duplication task. And the lack of dataset is not convincing
enough to claim good video de-duplication results.

Therefore, we propose a novel deep learning based scheme to de-
duplicate the replicated videos in the cluster. Our method comprise
two parts: off-line training model and on-line aggregating model. The
off-line train model means that we employ triplets dataset to train out
triplet loss function embedded VGG11 network. To acquire the hard
and valuable training triplets, we apply the binary-tree partitioning
the samples according to their attributions. Afterward, we perform
the mature triplets VGG11 [6] model to train a variety of Primary
Components Analysis (PCA) [7] models and Gaussian mixture models
(GMM) [8]. For the on-line aggregation model, we first aggregate the
fisher vector [9] by the trained triplets VGG11, PCA and GMM models
above. Then we binary hash the fisher vector with different bits to get
the scalable hash code which is a brief and effective representation for
video de-duplication.

We proposed a deduplication method in our previous work [10].
In this paper, we propose a novel deep learning based scheme for

Journal of Visual Communication and Image Representation 72 (2020) 102908

deduplications. We provide more motivation, analysis, experimental
results and comparison of related works on our proposed method.
Additionally, in order to validate the efficiency of our algorithm, we im-
plement more ablation studies for comparison. Our method comprises
both a offline training and online aggregation model:

« Offline training model: employ triplets dataset to train out triplet
loss function embedded Visual Geometry Group (VGG) network
and acquire the hard and valuable training triplets by applying
the binary tree partitioning the samples according to their at-
tributions. Then mature triplets VGG11 model is performed to
train a variety of Primary Components Analysis (PCA) models and
Gaussian mixture models (GMM)

Online aggregation model: binary hashing the fisher vector (FV)
with aggregated trained triplets VGG11, PCA and GMM models
obtained from offline training.

Our contribution towards video deduplications are summarized as be-
low:

(1) We consider combining triplet loss with Visual Geometry Group
(VGG) deep learning network which is trained of outstanding
performance by huge media dataset to derive the features. Triplet
loss function based network can learn convolutional features
which is invariant to coding method and bit rates.

(2) We propose applying fisher vector to the features for feature

aggregation. We utilize proposed algorithm to extract fisher vec-

tors from outputs of VGG with triplet loss function. Fisher vector

exhibits the powerful expression ability of main features for a

video frame.

Particularly, we propose employing binary tree to obtain the

triplets to boost the performance of the triplet-loss based VGG

network.

(4) We also utilize the extracting algorithm generating the scalable
binary hash. The scalable binary hash can obtain different trade-
offs according to different bitrate requirements.

3

—

The experimental results show that the proposed binary-tree em-
bedded triplet loss network combining with scalable hash from fisher
vector (BTF) algorithm outperforms cross-entropy [11] loss function
with PCA (CP) approach in various scalable hashes.

The remaining of this paper is organized as follows. The instruction
of related work will be in Section 2. We elaborate the principle of
triplet loss function embedding into VGG network and the integral
network structure in Section 3. In Section 4, the Binary-Tree algorithm
to produce the triplets with similar variance attributions is introduced
in detail. We experiment on large-scale video dataset and give the
whole process and results of this in Section 5. We conclude the whole
paper in Section 6.

2. Related work

As mentioned in Section 1, we can divide the video de-duplication
work into two categories. The first type is traditional methods using the
comparison information of pixel or frequency domain. The other one is
deep learning based approaches extracting the convolutional features
as the match evidences.

For conventional ways, Katiyar et al. [13] used a 2-phase video
comparing scheme which is for localizing a short frames clip in a
long video. Paisitkriangkrai et al. [14] defined a new heuristic rule to
measure the degree of resemblance between two clip sequences based
on sequence Shape Similarity method. The work of Greene et al. [15]
recognizes patterns of video content with a first intermediate device
and sends a communication to another one which transmits a cached
version of the video. These works [16-21] roughly present a type of se-
cure system architecture design which bridges together the advantages
of video compression and encrypted data de-duplication. They exploit
clip or layer-level de-duplication, which treats each clip as a unit for

W. Jia et al.

Journal of Visual Communication and Image Representation 72 (2020) 102908

~
I e WY L

Anchor f
320 x 180 Frame,

Positive i
320 x 180 Frame,

Offline

[[N IR

Training

B Negatit
B s B

Triplets Of 16x9 Thumbnails
Generated By Binary Tree

1065
o | | & C A
P comoiution + Rely

e

!

N Positive
320 x 180 Frame,

Triplet Loss VGG11 Model

Negative H reTramed Binary Tree Embedded
320 x 180 Frame, g, Triplet Loss VGG11 Model

=2 Miaxpooing d
Binary Tree Embedded Triplet Loss VGG11 With Full Connected Layers Removed

VY e—,
Anchor Pre-Trained Binary Tree Embedded
320 x 180 Frame, Triplet Loss VGG11 Model

| w— e Trained Binary Tree Embedded

Pre-

s | Traine ! .

PCA
Pre-

— | Trained
PCA

Pre-

(541,5.34,..,43, s2bits: 11..01
302,043, 2.9 6abits; 1100..0111
— frm—| 128bits: 11001001..01110110
3.23,-10.3, -+, 0.32] 256bits: 1100100111001001...0111011001110110,

32bits: 11..01
6abits: 11010111
128bits: 11001000..01110110
256bits: 1100100111001001...0011011001110110
(561,554, ., 4.1, 32bits: 11..00
. 322,023, ., 274 | pm—— 6abits: 1101..0011
w— | Trained rm— - 128bits: 11001011..00110110
pca 3.03,-12.3, --,052) 256bits: 1100100111001011...0101011001110110

Fisher Vector
Regregation N Scalabl Hash Code)

Fig. 2. Scalable hashing framework. Offline training: At first of all we develop the binary-tree [12] generating valuable triplets including anchors, positive samples and negative
samples; Then we input the 320 x 180 frames of triplets into VGG11 of full connected layers removed respectively to train the network, PCA and GMM models. Online aggregating:
we utilize the trained network, PCA and GMM models to calculate the fisher vector aggregation from convolutional features; then we quantize the fisher vectors to scalable binary
hash code involving 32,64, 128 and 256 bits in this paper. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

de-duplication. [22,23] basically generate a hash for each data block.
After determining a processing status for the hash by a model, they
perform another model discarding the duplicate hashes and their data
blocks. As [24] analyzed, secure hash such as fingerprint [25] shows
much more computationally efficient than the traditional compression
approaches in large-scale storage systems.

Their rules incorporate both spatial and temporal information. How-
ever, using the pixel or frequency domain instead of the feature domain
is quite inefficient in real applications. The second category tries to
use the hashing representation with deep learning networks to replace
pixels. The most representative work is to use the convolutional fea-
tures to derive the hash. For example, supervised deep hash approach
constructs binary hash codes from labeled data for large-scale image
search [26]. Radford et al. [27] develop a class of conventional neu-
ral networks (CNNs) called deep convolutional generative adversarial
networks (DCGANSs) learning hierarchy of features to represent general
image. Wu et al. [28] proposed the Procrustean Approach addressing
the problem of learning similarity-preserving binary codes [29] for
efficient similarity search in large-scale image collections [30]. Com-
pact Scalable Hash [30] from Deep Learning Features [31] Aggregation
by Feng et al. developed a novel hash scheme which is scalable and
robust to typical CDN induced transcoding and manipulations [32].
Though this method utilized deep learning Visual Geometry Group
(VGG) network method to obtain some performance improvements,
the cross-entropy loss function is in essence unsuitable for the video
de-duplication task. And due to that there are no comparisons and
subjective frame shown, it is not convincing enough to claim good
video de-duplication results. Xu et al. [33] present a cache design
namely DeepCache with deep learning inference. It exploits temporal
locality in videos to reuse the cached information. Although these work
obtain a good performance by CNN, they do not mine the potential of
more suitable loss function fitting the de-duplication case. We explain
our binary-tree embedded triplet loss CNN comprehensively in next
Section.

3. Triplet loss network for binary hashing model

The overall framework of the proposed scalable hash scheme is illus-
trated in Fig. 2. It consists of two components: (a) Triplet loss network
feature representation generation in Section 3.1; (b) The fisher vector
(FV) feature aggregation using fisher vector for generating scalable
hash in Section 3.2.

3.1. Triplet loss network

In our work, VGG11, as the key method in general to derive accurate
feature representation, is used to generate our convolutional features.
The main novelty of the network is to use the triplet loss [34] to
replace the cross-entropy loss to make the feature more distinguishable
and more suitable for the video de-duplication application. In order to
obtain a reliable triplet loss embedded network, three basic constraints
shall be applied to choose the triplets: First, this loss function should
make sure that an anchor feature x{ is as close with the same type
samples xﬁ.’ as possible. In addition, what is also relatively critical is
that anchor feature x“ is as far with other types samples x”. Moreover,
the distance between anchor feature x{ with positive feature xJ should
be less than the one between anchor feature x{ and negative feature x
at least margin distance.

IF(x) = FGDIS +m < IIF(x) = F&DII3. €3]

where F defines the VGG11 network. According to these conditions,
we express the triplet loss in (1).

To monitor the training process effectively, we keep the fully con-
nected (FC) layers [35] during the training of the VGG11 network. We
employ not only the triplet loss function but also the accuracy indicator
computed in (2) observing the features from FC layers.

The accuracy definition:

XN D,>0) = 14n(D) = &)
@, ()=
ap>lan 4

a,p,n

(2)

where 1,, is the L, distance between positive pairs which mean anchors
and positive samples pairs. 1,, is the L, distance between negative pairs
which mean anchors and negative samples pairs. ¢ is the least margin
distance between 1,, and 1,, which makes sure the base judgment is
correct. @ defines the amount of number which is greater than 0. ¥, , ,
is the total number of triplet pairs in this batch. Here we set ¢ equal
1.0.

Besides of the network training, it is also very important to choose
the appropriate layer to generate the features for aggregation. Hence,
we drop out the full connected layers behind the last max-pooling layer
as the last blue cube shown in Fig. 2 so that we can carry out the
multiple dimensions features as the PCA [36] input data directly. We
train our triplets dataset stated in Section 4 for 81 epochs. And the
best accuracy of validating checkpoint is 92.08% occurring on the 31st
epoch.

W. Jia et al.

3.2. FV aggregation for scalable hash

After obtaining the triplet loss VGG11 model, we trained the PCA
and GMM model respectively with 1000 frames in 1000 iterations as
well. Then the fisher vector is used to aggregate the features to generate
the scalable hash. The specific steps we process are stated as follows.

(1) Derive features whose dimensions are 512 x 10 x 5 from the VGG
triplet loss network;

(2) Apply principle component analysis (PCA) to the reshaped fea-
tures for each frame to generate a kd dimensional vector;

(3) The Gaussian mixture model (GMM) is used to extract the nc main
component.

where nc is the number of main components in GMM. Now we get a
2 X kd x nc fisher vector [37] (involving reshape process).

Note that the fisher vector selection is relatively vital for scalable
hash here. We already have the eigenvalues from trained PCA models
and covariance weights from trained GMM models. We first normal-
ize the eigenvalues of PCA, then apply a method of extracting main
features with the equation below:

ET(m,n) = a xe(m) + (1 —a) X W(n) 3)

Here the £(m) is the normalized eigenvalues matrix [38] of PCA with m
components. The W(n) represents the normalized covariance weights
matrix of GMM with » components. ¢ means the tuning coefficient
ranging from 0 to 1. We choose the first = high value of = as the main
features constituting scalable hash code. 7 is the length of hash code,
such as 32,64, 128 and 256 bits.

To achieve the binary hash, we apply 0 as the threshold. Specifically,
assign the value of the fisher vector which is greater than 0 to be 1,
otherwise define the value of the fisher vector which is less than 0 to
be 0. Now we acquire the quantized binary hash code of scalable length.

Meanwhile we calculate the triplet pair distances between anchor
fisher vector and positive fisher vector or negative fisher vector respec-
tively as follows.

D; (a,p) = | B"(n,(a), B (n,(p)lI3,
D (a,n) = || B"(n,(a), B (n,(m)ll5-

where 7 represents the bits of scalable binary hash. Then we compute
the TPR under False Positive Rate(FPR)= 0 with D;’p and DZ’”, because
this condition reflects the real recall when there is no error positive
sample judgment.

We utilize scalable binary hash because of its three benefits. First,
binary hashing is helpful for simplifying the calculation process through
computing the hamming distance between binary hash codes. Second,
scalable binary hash decreases the calculation complexity for features
matching process due to its less length representation comparing to
original fisher vector. This can accelerate the video de-duplication
dramatically. If it is still a 2 X kd X nc original fisher vector which
is represented by float numbers, we should spend many calculating
resources on every frame feature. Obviously, this is too expensive to
afford for time and computational burden. Third, the scalable binary
hash very is flexible. When the calculation resource is limited, we can
choose shorter binary hash. When there is powerful computing clusters,
we can select longer binary hash code to gain better performance. This
will be verified by experiments shown in Section 5.

4

4. Triplets generation

In this section, we will introduce how binary tree divides the
dataset and generates the triplets. The training samples will be elab-
orated in Section 4.1. The binary-tree based generation process will be
introduced in Section 4.2.

Journal of Visual Communication and Image Representation 72 (2020) 102908

Leaf 1

triplets
NAY

Leaf 2

triplets

Leaf m

ARAS

Leaf m-1

oAy
class 1[negauve list] >

= [---l’l’l’--], [--unnnnu]

P TSI) e ——

O OO0 0O 0 0

Anchor: [positive list],

O Cr—

Fig. 3. Binary-Tree generates hard valuable triplets. LN represents the leaf node. Each
thumbnail represents its coded frame. We employ the Binary-Tree diving the thumbnail
samples according to their attributions of components. Thus we select the thumbnails
of similar features as the hard triplet comprising positive samples and negative samples
for anchor.

4.1. Train sequence selection

Since we should maximize the robust and learning capability of the
deep learning network and models, there are 3 requirements for the
dataset. First, the types of scenes from selected videos should cover
widely. This principle guarantees us not to constrain the learning ability
of the deep learning network and GMM Fisher Vector model. Second,
large dataset size is also important to add the data source diversity for
training the whole network and models. Last but not least, the quality
of these videos data should be high so that we can convert them to
different video versions from high quality to low quality, from high
resolution to low resolution.

Owing to these principles, first of all, we collected 177.7 h original
documentary [39] videos which can provide varieties of scenarios.
They are all 1080p resolutions with Q P23. Actually, refer to all kinds
of videos (involving different resolutions and contents) uploaded from
different users, our target is to de-duplicate the same contents though
they may be with different resolutions on CDN. To simulate this real
application, we transcode the original video to other 6 versions of
REQP videos including 720p Q P23, 720p Q P28, 720p Q P33, 480p Q P23,
480p Q P28, 480p QP33 with the ffmpeg that has been built in GPU
acceleration. In this way, for the same video content, we can have 7
versions in total. We then sample the 7 versions videos to 320 x 180
frames and 16 x 9 thumbnails. The 320 x 180 frames will be used
for training the triplet network, while the thumbnails will be used for
training the GMM model. We process them with the rate of 2 frames (or
thumbnails) per second such that 1-h video exchanges to 7200 frames
(or thumbnails).

4.2. Binary tree based triplets generation

The essential problem for triplet loss function is that how to obtain
the hard and valuable triplets samples. This influences the robust and
efficiency of the network we construct directly. In this work, as drawn
in Fig. 3, we choose Binary-Tree [40] to split the huge video frames
dataset to analyze out valuable and hard triplets. Since binary-tree can
assign the frames with similar textures to the same leaf node, deriving
negative pairs from the same leaf node is beneficial for generating hard
triplets. In the following, we use two steps to explain how to generate
triplets in detail.

We use thumbnails proposed in Section 4.1 as input data for produc-
ing triplets with Binary-Tree. We first convert thumbnails to grayscale
images. Then, we reshape thumbnails from 16 x 9 to 1 x 144. Next, we

W. Jia et al.

Journal of Visual Communication and Image Representation 72 (2020) 102908

:::1531:3 hash code TPR comparison between CP and our BTF when FPR = 0.

CP TPR | our BTF TPR 32 bits 64 bits 128 bits 256 bits

kd 16 - - — kd 16, nc 24, « 0.01 0.3216|0.7454 0.5171/0.8835 0.7140(0.9190 0.8073|0.9445
kd 16 - - — kd 16, nc 24, « 0.2 0.3216]0.7290 0.5171]0.8607 0.7140]0.9069 0.8073]0.9461
kd 16 - - — kd 16, nc 24, « 0.4 0.3216]0.5407 0.5171]0.7802 0.7140/0.9095 0.8073|0.9399
kd 16 - - — kd 16, nc 24, « 0.8 0.3216]0.2473 0.5171]0.6904 0.7140]0.8785 0.8073]0.9302
kd 16 - - — kd 16, nc 24, « 0.99 0.3216/0.2614 0.51710.6797 0.7140]0.8630 0.8073|0.9188
kd 16 - - — kd 16, nc 48, « 0.01 0.3216]0.6928 0.5171]0.8342 0.7140]0.9188 0.8073]0.9409
kd 16 - - — kd 16, nc 48, « 0.2 0.3216]0.7590 0.5171]0.8685 0.7140[0.9180 0.8073]0.9421
kd 16 - - — kd 16, nc 48, « 0.4 0.3216]0.7316 0.5171]0.8457 0.7140]0.9090 0.8073]0.9338
kd 16 - - — kd 16, nc 48, « 0.8 0.3216/0.7371 0.5171]0.8516 0.7140(0.8904 0.8073|0.9295
kd 16 - - — kd 16, nc 48, « 0.99 0.3216]0.7369 0.5171]0.8519 0.7140]0.8878 0.8073]0.9278
kd 24 - - — kd 24, nc 24, « 0.01 0.1319]0.6440 0.3359]0.7007 0.5569]0.8392 0.7323]0.9459
kd 24 - - — kd 24, nc 24, « 0.2 0.1319/0.5809 0.3359(0.7497 0.5569(0.8697 0.7323]0.9557
kd 24 - - — kd 24, nc 24, « 0.4 0.1319]0.4935 0.3359]0.7559 0.5569]0.8721 0.7323]0.9590
kd 24 - - — kd 24, nc 24, « 0.8 0.1319]0.4916 0.3359]0.7288 0.5569]0.8859 0.7323]0.9595
kd 24 - - — kd 24, nc 24, « 0.99 0.1319]0.4883 0.335910.7347 0.5569]0.8478 0.7323]0.9569
kd 24 - - — kd 24, nc 48, « 0.01 0.1319]0.6592 0.3359]0.7835 0.5569]0.9092 0.7323]0.94
kd 24 - - — kd 24, nc 48, « 0.2 0.1319]0.5526 0.3359]0.7673 0.5569]0.8845 0.7323]0.9516
kd 24 - - — kd 24, nc 48, « 0.4 0.1319]0.2169 0.3359]0.5669 0.5569]0.8447 0.7323]0.9442
kd 24 - - — kd 24, nc 48, « 0.8 0.1319]0.1049 0.3359]0.5921 0.5569]0.8259 0.7323]0.9333
kd 24 - - — kd 24, nc 48, « 0.99 0.1319]0.0966 0.3359]0.5923 0.5569]0.8202 0.7323]0.9333

concatenate resized thumbnails to become a large thumbnail block with
N X 144 in memory. N is the total number of thumbnails. Since every
thumbnail has 144 dimensions after reshaping, the number of dimen-
sions is too large to calculate for the next step. PCA is used to perform
dimension reduction. Assume that K is the amount of main feature
dimensions we want to keep. We can now get the N x K thumbnails
matrix as Binary-Tree input data matrix. During the construction of the
binary tree, we also assign the thumbnail with an index to indicate
which video it comes from.

Since then, we can get the valuable and hard triplets from the
generated Binary-Tree. Initially, we classify nodes in a leaf through dif-
ferent content videos. So we aggregate all the frames from an identical
content video into a class together. After sorting frames in one class by
ascending display order, for one frame, we pick out all other frames
with the same display order as its positive samples. However, the
quality and difficulty of negative pairs determines the triplets’ value for
the training. On the one hand, Binary-Tree assembles the near feature
frames together. On the other hand, due to the strong correlation on
time dimension, we should consider it into the negative pair’s decision.
So we should choose the neighbors as near as possible to ensure the
difficulty. Whereas they may be actually identical frames if it is too
close. Therefore here we set a least base time threshold which can assist
to avoid the above problem. Then we search bi-directions involving
front and back basing on the threshold to find the nearest frames. Once
we collect enough negative samples we will stop the search. Fig. 4
compares the normal triplet with Binary-Tree splitting triplet, which
obvious shows that the triplets generated by the binary-tree are more
valuable and harder to learn.

5. Experimental results

In this section, we will first introduce the experimental results of the
overall framework in Section 5.1. Then we will show the influences of
the various aggregation parameters in Section 5.2. In Section 5.3, we
will illustrate the improvements of the proposed algorithm with a few
subjective samples.

Positive [§ .
Pair [Positive

Pair

content
not
identical

content
identical

Negative
Pair

Because
of close,
valuable
and hard

Fig. 4. Comparison between Normal triplet and Binary-Tree triplet. The binary tree
triplet exhibits similar features on its positive sample and negative sample. Especially
for the negative sample, due to the close distance with anchor, it provides the network
with the difficult case and improve its robustness. But normal triplet shows far distance
with anchor. Therefore, it is easy to be learned by VGG11.

5.1. Overall framework test

To demonstrate the effectiveness of the proposed BTF approach, we
compare it with the cross-entropy loss network combined with PCA
(CP). To be more specific, the VGG11 model pre-trained on ImageNet
using cross-entropy loss combined with PCA is used as the anchor. The
VGG11 model trained on our training set using triplet less combined
with scalable hash from fisher vector is used as the test. We test two
cases with kd = 16 and kd = 24 for both the anchor and the proposed
algorithm. We also test two cases with nc = 24 and nc = 48 for GMM.
The « is set as 0.2 in this experiment. We test 32,64, 128 and 256 as the
numbers of scalable hash bits.

Table 1 shows the comparison between the proposed BTF approach
and the CP method. From Table 1, we can see that the proposed BTF
algorithm outperforms the CP method significantly in all the test cases.
When kd equals 16, our BTF exhibits the best performance of 0.9461
TPR under nc 24, a 0.2 and 256 bits. It is 0.1388 higher than the

W. Jia et al.
ROC Comparison Under 256 Bits
1.04 <
e ’/’
’
’
s
’
0.8 4 e
’
’
e ot
©
4 ’
v 0.6 1 7
2 R
3 -,
3 ’
c ’
o /’
2 0.4 ,
= Pid
’
’
-,
021 ——— binary-tree embedded triplet loss kd 16 nc 48 alpha 0.2
) - binary-tree embedded triplet loss kd 24 nc 24 alpha 0.4
1 baseline of cross entropy loss kd 16
’/’ baseline of cross entropy loss kd 24
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(a) ROC comparison results under hash code of 256 bits

ROC Comparison Under 64 Bits

1.0 K_ -1
’
-,
’
’
s
’
0.8 +7
’
e
e ’
0 0.6 7
= o
@
& ,/’
g 0.4 1 7
= Pid
’
’
-,
021 ——— binary-tree embedded triplet loss kd 16 nc 48 alpha 0.2
! - binary-tree embedded triplet loss kd 24 nc 24 alpha 0.4
1 baseline of cross entropy loss kd 16
,// baseline of cross entropy loss kd 24
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(c) ROC comparison results under hash code of 64 bits

Journal of Visual Communication and Image Representation 72 (2020) 102908

ROC Comparison Under 128 Bits

1.04 >
/’k ‘
-,
’
’
s
’
0.8 e
’
’
e ot
©
1 ’
v 0.67 g
2 R
a3 -,
3 ’
a s
o /’
2 0.4 ,
[i
’
’
-,
021 ——— binary-tree embedded triplet loss kd 16 nc 48 alpha 0.2
! - binary-tree embedded triplet loss kd 24 nc 24 alpha 0.4
1 baseline of cross entropy loss kd 16
’/’ baseline of cross entropy loss kd 24
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(b) ROC comparison results under hash code of 128 bits

ROC Comparison Under 32 Bits

1.0
0.8
2
©
o
o 0.6
2
=
o
a
S04
=
021 ——— binary-tree embedded triplet loss kd 16 nc 48 alpha 0.2
' - binary-tree embedded triplet loss kd 24 nc 24 alpha 0.4
1 baseline of cross entropy loss kd 16
-’)
R4 baseline of cross entropy loss kd 24
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(d) ROC comparison results under hash code of 32 bits

Fig. 5. Comparison results of scalable hash ROC between CP method and proposed BTF approach. We test the ROC experiments under scalable bits of 32, 64, 128 and 256
individually corresponding to (d), (c), (b) and (a). Our BTF scheme shows an overwhelming advantage of ROC compared to CP method on each scalable hash bits. Typically, the
ROC curves of BTF hold a high level momentum of TPR under 128 bits and 256 bits. They are above TPR of 0.8721 and 0.9421 respectively.

g::ltilz hash code TPR of BTF comparison between kd 16 and kd 24 when FPR = 0.
kd 16 | kd 24 32 bits 64 bits 128 bits 256 bits
nc 24, « 0.01 0.75]0.64 0.88/0.70 0.92]0.84 0.9410.95
nc 24, a 0.2 0.73|0.58 0.86]0.75 0.91]0.87 0.95]0.96
nc 24, a« 0.4 0.54/0.49 0.78]0.76 0.91]0.87 0.9410.96
nc 24, « 0.8 0.25/0.49 0.6910.73 0.88]0.89 0.93]0.96
nc 24, a 0.99 0.26/0.49 0.6810.73 0.86/0.85 0.9210.96
nc 48, a 0.01 0.69]0.66 0.83]0.78 0.92]0.91 0.94]0.94
nc 48, a 0.2 0.76|0.55 0.87|0.77 0.92|0.88 0.9410.95
nc 48, a 0.4 0.73|0.22 0.85]0.57 0.91]0.84 0.9310.94
nc 48, a 0.8 0.74/0.10 0.85|0.59 0.89]0.83 0.9310.93
nc 48, a 0.99 0.74/0.10 0.85]0.59 0.89]0.82 0.93]0.93

best result 0.8073 of CP. When kd equals 24, our BTF shows the best
performance of 0.9595 TPR under nc 24, « 0.8 and 256 bits. It is 0.2272
higher than the best result 0.7323 of CP. The experimental results
obviously demonstrate the effectiveness of the proposed algorithm.

In addition, as we can see from Table 1, the proposed algorithm
shows consistently better results along with the increase of the bits
spent on the hash representation since more bits can keep more infor-
mation. It should be noted that the TPR of the proposed BTF approach
is always as high as over 0.9 under FRP equals 0. While the performance

is better, it will also lead to high complexity in deduplication compared
with the 32 bits case. In the 32 bits case, the TPR of our BTF framework
is significantly 0.4374 and 0.5273 higher than the one of CP under
kd 16 and kd 24 respectively. Different bits show different trade-offs
between the performance and the complexity. We can choose the
suitable case according to our requirement in various applications.
We also compare the integrated TPR trend as FPR increases in the
receiver operating characteristic (ROC) [41] curves, as described in
Fig. 5. Due to the limited space, we select nc 48« 0.2 and nc 24a 0.4

W. Jia et al.

Journal of Visual Communication and Image Representation 72 (2020) 102908

';‘:a]:;laebl::z hash code TPR of BTF comparison between nc 24 and nc 48 when FPR = 0.
nc 24 | nc 48 32 bits 64 bits 128 bits 256 bits
kd 16, a 0.01 0.75]0.69 0.88/0.83 0.92|0.92 0.94/0.94
kd 16, a 0.2 0.7310.76 0.86]0.87 0.91]0.92 0.9510.94
kd 16, a 0.4 0.54/0.73 0.78/0.85 0.91]0.91 0.94|0.93
kd 16, a 0.8 0.25(0.74 0.69]0.85 0.88]0.89 0.93/0.93
kd 16, « 0.99 0.26/0.74 0.68/0.85 0.86/0.89 0.92/0.93
kd 24, a 0.01 0.64/0.66 0.7010.78 0.84/0.91 0.9510.94
kd 24, a 0.2 0.580.55 0.75(0.77 0.87(0.88 0.96]0.95
kd 24, a 0.4 0.49(0.22 0.76]0.57 0.87]0.84 0.96]0.94
kd 24, « 0.8 0.4910.10 0.73|0.59 0.89]0.83 0.96]0.93
kd 24, a 0.99 0.49(0.10 0.73|0.59 0.85]0.82 0.96]0.93
Table 4
Scalable hash code TPR of BTF comparison in different a of 0.01, 0.2, 0.4, 0.8 and 0.99 when FPR = 0.
32 bits 64 bits 128 bits 256 bits
kd 16, nc 24 0.75|0.73|0.54]0.25]0.26 0.88]0.86/0.78]0.69]0.68 0.92]0.91]0.91]0.88]0.86 0.94]0.95/0.9410.93]0.92
kd 16, nc 48 0.6910.76]0.73|0.74]0.74 0.83]0.87]0.85/0.85]0.85 0.92(0.92]0.91]0.89]0.89 0.94]0.94/0.93]0.93]0.93
kd 24, nc 24 0.640.58|0.49]0.49]0.49 0.70]0.75|0.76/0.73]0.73 0.84]0.87|0.87/0.89]0.85 0.95]0.96/0.96/0.96]0.96
kd 24, nc 48 0.66/0.55]0.22(0.10]0.10 0.78]0.77]0.57|0.59]0.59 0.91]0.88]0.84/0.83]0.82 0.94]0.95]0.94]0.93]0.93

as representations of kd 16 and 24 respectively for the proposed BTF
approach. The ROC curves also show that the proposed BTF approach
outperforms the CP method significantly.

5.2. The influences of the various aggregation parameters

Table 2 illustrates the compared results of our BTF between kd 16
and kd 24. The TPR of kd 16 shows a better TPR under all nc and «
combinations of 32, 64 and 128 bits except nc 24 with « 0.8 or 0.99.
Especially, the TPR difference can be as high as 0.64 under nc 48 and
a 0.8. However there are 7 TPR cases where kd 24 in 256 bits shows
slightly better performance compared with kd 16. The results account
for that TPR does not follow a linear relationship with kd. The larger
kd means that there are more primary components extracted from
512 x 10 x 5 convolutional features. It can represent larger amount
of information more precisely. However, it also requires the hash code
supply bigger capacity loading the abundant convolutional feature
information. If the hash code only provide a few bits for expression,
the hash from the fisher vector of smaller kd (kd 16) fits the features
better than the one from the fisher vector of larger kd (kd 24). As shown
in Table 2, the hash from kd 16 adapts to the features better under bits
of 32, 64 and 128 whereas the hash from kd 24 fits better under bits of
256. The performance is in accordance with the analysis.

The exceptions of individual cases under nc 24 with « 0.8 or 0.99
demonstrate the sensitivity of kd on different convolutional features.
Not all features have similar amount of information. The high variance
or dense textures of features involves more details than flat features.
The kd selection can be flexible on these cases. Meanwhile we find out
that the nc is also vital for hash representation. For instance, the nc
48a 0.8 is in accordance with the analyzed theory.

The comparison results of using different ncs are shown in Table 3.
The best TPR from nc 24 achieving 0.96 is slightly higher than 0.95
from nc 48. The hashes from nc 24 outperform ones from nc 48 on 7
cases under 256 bits. The TPR from nc 48 exceeds the one from nc 24
on 6 and 5 rows under 64 and 128 bits, respectively. They execute even
performance under 32 bits. Indeed, the smaller value of nc aggregates
the components into less classifications while the larger one has the
reversal effect in fisher vector. TPR of nc 48 performing better under 64
and 128 bits compared with nc 24 demonstrates that 64 and 128 bits are
the appropriate quantity for playing a role on the cluster effect from nc
48. More bits like 256 may include more redundancy information from

unimportant features giving rise to inference for matching hash in de-
duplication. Opposed to this, less bits like 64 loses a few main clusters
of features aggregated by nc 48 leading to lack of representation. Hence,
it is not definite larger nc or smaller one performing better. The TPR
does not monotonically increases with nc so that it is not linear as well.
We should select an adaptive nc united with kd consisting of fisher
vector with 2 x kd x nc dimensions fitting the convolutional features
appropriately.

Table 4 compares the TPRs of the proposed BTF method in a variety
of a values when FPR equals 0. The TPRs from « 0.01 and « 0.2 surpass
the one from other « values on 9 and 7 cases individually. The best
hash from « 0.01 obtains TPR 0.94 as the ones from « 0.2, 0.4, 0.8
and 0.99 all reach TPR 0.96 under 256 bits. These results demonstrate
that different a values impact the TPR dramatically as well. As stated
in (3), a is a tunable coefficient for choosing the most representative
features from fisher vector. The smaller a« lowers the scanning priority
of kd components from PCA while improves the one of nc clusters from
GMM in a fisher vector. « 0.01 and « 0.2 assistant tuning the priority
of selecting = bits from main features extracted out by fisher vector
applicably.

5.3. Analysis of subjective samples

We display the comparison of subjective samples between BFT and
CP approaches in Fig. 6 and Fig. 7, respectively. The samples with the
same background are hard for CNN to learn. For instance, as shown in
Fig. 6, under kd 16, we test the anchor with REQP of 1920 x 1080¢p23,
positive sample with REQP of 1280 x 720¢p23 and negative sample
with REQP of 854 x 480gp33. Since the environment of the samples is
identical, it is difficult to learn the difference. But the area of red block
moves an angle, BFT figures out the variation depending on the base
trained by triplets loss. And it applies the configuration of nc 24, « 0.01
and 32 bits generating hash which represents the features excellently.
Finally BFT discards the positive sample as duplication and save the
negative sample correctly. However, CP recognizes the negative sample
as the replication of anchor and deletes it by mistake.

The same situation occurs in Fig. 7 under kd 24 as well. The anchor,
positive sample, and negative sample are with REQP of 1920x1080¢p23,
1280 x 720¢p23 and 854 x 480¢p28, respectively. The negative sample
just adjusts a bit of textures and micro angle in red block as illustrated
in Fig. 7. BFT captures the slight difference with the 128 bits hash
produced by model of nc 48, « 0.2. Then BFT de-duplicates the positive

W. Jia et al.

Journal of Visual Communication and Image Representation 72 (2020) 102908

(a) anchor of 1920 x 1080¢p23

(b) positive sample of 1280 x 720¢p23

(c) negative sample of 854 x 480¢gp33

Fig. 6. Comparison between BTF and CP of the samples under kd 16. Our BTF de-duplicates the positive sample and reserves the negative sample successfully with setting of nc

24, « 0.01 and 32 bits hash while CP deletes the negative one by mistake.

(a) anchor of 1920 x 1080¢p23

(b) positive sample of 1280 x 720¢gp23

Fig. 7. Comparison between BTF and CP of the samples under kd 24. Our BTF de-duplicates the

48, a 0.2 and 128 bits hash while CP removes the negative sample accidentally.

sample and reserves the negative one while CP matches the negative
sample with anchor and removes it. According to these analysis above,
we consider BFT outperforms CP significantly.

6. Conclusion

Prosperous development on multiple media big data producing,
transmission and depleting have occupied the massive memory and
storage in all kinds of devices, network systems, and data clusters of
clouds. Improving the theory and algorithm to recognize the duplica-
tions of multiple media on every layer is an essential and urgent topic
for transmitting and caching media big data quickly and efficiently.
In this paper, we propose a distinct video de-duplication framework
involving a triplet loss network learning convolutional features that
do not vary as codec and rates. Furthermore, we generate the scalable
hash from FV aggregation of the convolutional features. Especially, we
design a novel binary tree embedded algorithm to generate hard triplet
samples for triplet loss function feeding VGG network more robustly.
Experimental results show that this embedding triplet loss function
framework offers a strong and stable network system to process video
de-duplication efficiently.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The work is partially supported by a grant from NSF under award
1747751.

References

[1] Iraj Sodagar, The mpeg-dash standard for multimedia streaming over the
internet, IEEE MultiMedia 18 (4) (2011) 62-67.

[2] M Christopher, Mpeg-dash vs. apple hls vs. microsoft smooth streaming vs. adobe
hds, 2015.

[3]

[4]
[5]

[6]

[7]

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(c) negative sample of 854 x 480¢gp28

positive sample and reserves the negative sample successfully with setting of nc

Alex Zambelli, IIS smooth streaming technical overview, Microsoft Corp. 3 (2009)
40.

Ronald Rivest, The MD5 Message-Digest Algorithm, Technical Report, 1992.

Bo Liu, Zhu Li, Linjun Yang, Meng Wang, et al., Real-time video copy-location
detection in large-scale repositories, IEEE MultiMedia 18 (3) (2011) 22-31.
Karen Simonyan, Andrew Zisserman, Very deep convolutional networks for
large-scale image recognition, 2014, arXiv preprint arXiv:1409.1556.

Thierry Bouwmans, El Hadi Zahzah, Robust PCA via principal component pursuit:
A review for a comparative evaluation in video surveillance, Comput. Vis. Image
Underst. 122 (2014) 22-34.

Douglas Reynolds, Gaussian mixture models, Encycl. Biom. (2015) 827-832.
Philippe-Henri Gosselin, Naila Murray, Hervé Jégou, Florent Perronnin, Revis-
iting the fisher vector for fine-grained classification, Pattern Recognit. Lett. 49
(2014) 92-98.

W. Jia, L. Li, Z. Li, S. Zhao, S. Liu, Triplet loss feature aggregation for scalable
hash, in: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 1918-1922.

Reuven Y Rubinstein, Dirk P Kroese, The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine
Learning, Springer Science & Business Media, 2013.

Julio Alejandro Di Rienzo, Adolfo Washington Guzman, Fernando Casanoves, A
multiple-comparisons method based on the distribution of the root node distance
of a binary tree, J. Agric. Biol. Environ. Stat. 7 (2) (2002) 129-142.

Atul Katiyar, Jon B Weissman, Videdup: An application-aware framework for
video de-duplication, in: HotStorage, 2011.

Sakrapee Paisitkriangkrai, Tao Mei, Jian Zhang, Xian-Sheng Hua, Scalable clip-
based near-duplicate video detection with ordinal measure, in: Proceedings of
the ACM International Conference on Image and Video Retrieval, ACM, 2010,
pp. 121-128.

Spencer Greene, Transparent caching of repeated video content in a network, in:
Google Patents, US Patent 7, 770, 198.

Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, Xi-
aolin Gui, Enabling encrypted cloud media center with secure deduplication,
in: Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, ACM, 2015, pp. 63-72.

Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, Xiaolin
Gui, Toward encrypted cloud media center with secure deduplication, IEEE
Trans. Multimedia 19 (2) (2017) 251-265.

Fatema Rashid, Ali Miri, Isaac Woungang, Proof of storage for video deduplica-
tion in the cloud, in: 2015 IEEE International Congress on Big Data, IEEE, 2015,
pp. 499-505.

Fatema Rashid, Ali Miri, Isaac Woungang, A secure video deduplication scheme
in cloud storage environments using H. 264 compression, in: 2015 IEEE First
International Conference on Big Data Computing Service and Applications, IEEE,
2015, pp. 138-146.

Hongyang Yan, Xuan Li, Yu Wang, Chunfu Jia, Centralized duplicate removal
video storage system with privacy preservation in IoT, Sensors 18 (6) (2018)
1814.

http://refhub.elsevier.com/S1047-3203(20)30146-2/sb1
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb1
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb1
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb2
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb2
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb2
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb3
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb3
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb3
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb4
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb5
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb5
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb5
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb7
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb7
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb7
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb7
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb7
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb8
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb9
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb9
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb9
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb9
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb9
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb10
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb10
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb10
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb10
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb10
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb11
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb11
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb11
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb11
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb11
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb12
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb12
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb12
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb12
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb12
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb13
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb13
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb13
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb14
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb16
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb17
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb17
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb17
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb17
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb17
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb18
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb18
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb18
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb18
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb18
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb19
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb20
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb20
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb20
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb20
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb20

W. Jia et al.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Xuan Li, Jie Lin, Jin Li, Biao Jin, A video deduplication scheme with privacy
preservation in IoT, in: International Symposium on Computational Intelligence
and Intelligent Systems, Springer, 2015, pp. 409-417.

John Edward Gerard Matze, System and method for data deduplication, Google
Patents, US Patent 8, 205, 065, 2012.

Emmanuel Barajas Gonzalez, Shaun E Harrington, David C Reed, Max D Smith,
Efficient video data deduplication, Google Patents, US Patent 9, 646, 017, 2017.
Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu,
Yucheng Zhang, Yukun Zhou, A comprehensive study of the past, present, and
future of data deduplication, Proc. IEEE 104 (9) (2016) 1681-1710.

Jaehong Min, Daeyoung Yoon, Youjip Won, Efficient deduplication techniques
for modern backup operation, IEEE Trans. Comput. 60 (6) (2011) 824-840.
Xiaofang Wang, Yi Shi, Kris M Kitani, Deep supervised hashing with triplet labels,
in: Asian Conference on Computer Vision, Springer, 2016, pp. 70-84.

Alec Radford, Luke Metz, Soumith Chintala, Unsupervised representation learning
with deep convolutional generative adversarial networks, 2015, arXiv preprint
arXiv:1511.06434.

Zuxuan Wu, Ting Yao, Yanwei Fu, Yu-Gang Jiang, Deep learning for video
classification and captioning, 2016, arXiv preprint arXiv:1609.06782.
Mohammad Norouzi, David M Blei, Minimal loss hashing for compact binary
codes, in: Proceedings of the 28th International Conference on Machine Learning,
ICML-11, Citeseer, 2011, pp. 353-360.

Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, Lei Zhang, Bit-scalable
deep hashing with regularized similarity learning for image retrieval and person
re-identification, IEEE Trans. Image Process. 24 (12) (2015) 4766-4779.

Refik Can Malli, Mehmet Aygun, Hazim Kemal Ekenel, Apparent age estimation
using ensemble of deep learning models, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, 2016, pp. 9-16.

Shan Feng, Zhu Li, Yiling Xu, Jun Sun, Compact scalable hash from deep learning
features aggregation for content de-duplication, in: Multimedia Signal Processing
(MMSP), 2017 IEEE 19th International Workshop on, IEEE, 2017, pp. 1-5.

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Journal of Visual Communication and Image Representation 72 (2020) 102908

Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, Xuanzhe Liu, Deep-
Cache: Principled cache for mobile deep vision, in: Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking, ACM,
2018, pp. 129-144.

De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang, Nanning Zheng, Person
re-identification by multi-channel parts-based cnn with improved triplet loss
function, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1335-1344.

Tara N Sainath, Oriol Vinyals, Andrew Senior, Hasim Sak, Convolutional,
long short-term memory, fully connected deep neural networks, in: 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP,
IEEE, 2015, pp. 4580-4584.

Ian Jolliffe, Principal component analysis, in: International Encyclopedia of
Statistical Science, Springer, 2011, pp. 1094-1096.

Florent Perronnin, Jorge Sanchez, Thomas Mensink, Improving the fisher kernel
for large-scale image classification, in: European Conference on Computer Vision,
Springer, 2010, pp. 143-156.

J. Li, L. Ji, Adjusting multiple testing in multilocus analyses using the eigenvalues
of a correlation matrix, Heredity 95 (3) (2005) 221.

DW Documentary, DW documentary, 2018, https://www.youtube.com/channel/
UCW39zufHfsuGgpLviKh297Q, (Accessed Oct 2018).

Michael Greenspan, Mike Yurick, Approximate kd tree search for efficient ICP,
in: Fourth International Conference on 3-D Digital Imaging and Modeling, 2003.
3DIM 2003. Proceedings, IEEE, 2003, pp. 442-448.

Caren M Rotello, Evan Heit, Chad Dubé, When more data steer us wrong: Repli-
cations with the wrong dependent measure perpetuate erroneous conclusions,
Psychon. Bull. Rev. 22 (4) (2015) 944-954.

http://refhub.elsevier.com/S1047-3203(20)30146-2/sb21
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb21
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb21
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb21
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb21
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb24
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb24
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb24
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb24
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb24
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb25
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb25
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb25
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb26
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb26
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb26
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1609.06782
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb29
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb29
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb29
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb29
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb29
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb30
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb30
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb30
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb30
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb30
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb32
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb32
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb32
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb32
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb32
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb33
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb35
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb36
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb36
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb36
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb37
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb37
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb37
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb37
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb37
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb38
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb38
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb38
https://www.youtube.com/channel/UCW39zufHfsuGgpLviKh297Q
https://www.youtube.com/channel/UCW39zufHfsuGgpLviKh297Q
https://www.youtube.com/channel/UCW39zufHfsuGgpLviKh297Q
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb40
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb40
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb40
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb40
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb40
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb41
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb41
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb41
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb41
http://refhub.elsevier.com/S1047-3203(20)30146-2/sb41

	Scalable Hash From Triplet Loss Feature Aggregation For Video De-duplication
	Introduction
	Related work
	Triplet loss network for binary hashing model
	Triplet loss network
	FV aggregation for scalable hash

	Triplets generation
	Train sequence selection
	Binary tree based triplets generation

	Experimental results
	Overall framework test
	The influences of the various aggregation parameters
	Analysis of subjective samples

	Conclusion
	Declaration of competing interest
	Acknowledgements
	References

