
Network Update Compression for Federated
Learning

1st Birendra Kathariya
University of Missouri-Kansas City

Kansas City, USA
bkkvh8@umsystem.edu

2nd Li Li
University of Missouri-Kansas City

Kansas City, USA
lizhu@umsystem.edu

3rd Zhu Li
University of Missouri-Kansas City

Kansas City, USA
lil1.umsystem.edu

4th Lingyu Duan
Peking University
Beijing, China

lingyu@pku.edu.cn

5th Shan Liu
Tencent America
Palo Alto, USA

shanl@tencent.com

Abstract—In federated learning setting, models are trained
in a variety of edge-devices with locally generated data and
each round only updates in the current model rather than the
model itself are sent to the server where they are aggregated
to compose an improved model. These edge devices, however,
reside in highly uneven nature of network with higher latency and
lower-throughput connections and are intermittently available for
training. In addition, a network connection has an asymmetric
nature of downlink and uplink. All these contribute to a major
challenge while synchronizing these updates to the server.

In this work, we proposed an efficient coding solution to
significantly reduce uplink communication cost by reducing the
total number of parameters required for updates. This was
achieved by applying Gaussian Mixture Model (GMM) to localize
Karhunen–Loève Transform (KLT) on inter-model subspace and
representing it with two low-rank matrices. Experiments on
convolutional neural network (CNN) models showed the proposed
model can significantly reduce the uplink communication cost in
federated learning while preserving reasonable accuracy.

Index Terms—federated learning, network-update compres-
sion, Karhunen–Loève Transform (KLT)

I. INTRODUCTION

Edge devices such as cellphones, surveillance cameras,
sensors equipped in vehicles etc. have access to unfathomable
amount of data. Learning a better model from these valuable
data is thus suitable to improve upon user experience and
help power more intelligent applications. However, gathering
these data to a centralized location for training is not practical
mainly due to two reasons: data are privacy sensitive and
communication cost involved while uploading voluminous
data in an unreliable bandwidth limited network.

However, with Federated Learning [1] [2], we avoid these
limitations by allowing models to train locally on edge devices
(clients) and collect only model-updates, differential value of
current updated model in clients and global shared model
distributed to client at previous round, to the server thereby
decoupling the edge devices with the server and all the
other devices ensuring the privacy of such sensitive data.
Simultaneously, it also reduces the uplink communication as
model-update which are smaller in size are communicated

Fig. 1. Visual Representation of Federated Learning

rather than large chunk of training data. Visual representation
of Federated Learning is shown in Fig. 1.

Federated Learning, however when considered across mil-
lions of edge devices, poses multiple practical challenges. The
primary constraint is the uneven nature of network connec-
tions these devices reside. Uplink communication is relatively
slower and any device residing on slower and unreliable
network will experience higher latency and are intermittently
available for training. This will suffer overall learning pro-
cess as communication rounds between server and clients
decreases. One way to improve the learning process is by
efficiently compressing the model-updates thus easing up an
uplink communication thereby increasing the communication
rounds.

In this work, we present an efficient method to reduce
uplink communication involving CNN-model for federated
learning. We learn multiple GMM based localized KLT models
in convolutional layer update. Low-rank approximation which
preserves sufficient information of these KLT models are then
communicated to the server thereby reducing total numbers of
update parameters related to the convolutional layers.

978-1-7281-8068-7/20/$31.00 ©2020 IEEE

II. RELATED WORK

There have been plethora of work [3] [4] [5] on compression
of Deep Neural Network (DNN) model. However, federated
learning emerged very recently and very few work can be
found on model-update compression. These works, mostly
burrowed concepts from DNN model compression and can
be broadly categorized as below.

Sparsification : Work that adopts gradient sparsification
approach truncates smaller gradients by hard-thresholding
and transmits only the larger important ones. [6] used this
approach and reduced the gradient exchange to almost 99%
at 0.3% BLEU score loss while 22% speed gain. Similarly,
[7] also used same approach but rather than throwing away
smaller gradient they were accumulated until they become
large enough to send eventually sending all gradients overtime.
Same approach was also adopted by [8] while focusing on
sparsity recovery.

Quantization : This category of work follows gradient
quantization to low-precision values. TernGrad [9] quantized
the gradient to three numerical values {-1, 0, 1}. Similarly,
DoReFa-Net applied 1, 2 and 6 bit quantization to weights,
activations and gradients respectively. 1BitSGD [10] took
an aggressive approach to quantize gradient just to 1-bit
and effectively reduce communication of DNN for acustic
modelling. QSGD [11] proposed Quantized SGD (stocastic
gradient descent) which allows user to trade off between
accuracy and gradient precision. [12] utilized same quanti-
zation approach and conducted an extensive experimentation
to reduce inter model redundancies for various application
scenarios.

Low-rank Approximation : In this approach the number
of parameters to be communicated is reduced by low-rank
approximation of gradient. Server reconstructs to full rank
gradient from the limited information sent by the client.
[13] used similar approach where each layer gradients is
decomposed into two low-rank matrices. However, only one
low-rank matrix is optimized and send to the server and other
is either fixed or compressed in the form of random seed.

III. PROPOSED METHOD

Federated Learning proceeds by distributing a global shared
model from server to n participating edge-devices at time t =
0. These models in their host devices are trained in parallel
with locally generated data. After a fixed interval tc, model-
updates from a subset of available participating devices St ≤ n
are collected to a server for aggregation [14].

We considered a convolutional-layer weights W ∈
Rf×c×k1×k2 , where k1 × k2 is kernel size, c is number of
channels and f is number of filter bank, has a 2D representa-
tion W ∈ Rd1×d2 , where d1 = c× f and d2 = k1×k2. Let at
round t, St clients have updated-models W i

t , i ∈ St, which are
results of multiple steps of stochastic gradient descent (SGD)
on client’s local dataset. The updates of St clients, now can be
written as Hi

t = W i
t −Wt−1, Hi

t ∈ Rd1×d2 , where Wt−1 is a
convolutional-layer weight of global shared model at previous
round t− 1.

A. Learning GMM based localized KLT Model

Deeper layer of CNN-models exhibits large number of
filters. Learning single KLT model on a whole block of Hi

t

could incur large accuracy loss. To circumvent this issue, we
learned multiple KLT models on Hi

t . However, we employed
GMM to optimally localize these models in a distribution of d1
weight-updates. GMM uses famous Expectation-Maximization
Algorithm [15] to learn the model parameters that best explains
multivariate data.

Suppose, GMM learn M gaussian-models that best fit
updates Hi

t . These models can be represented by three pa-
rameters Gc : {µc, Covc, L}, c ∈ M , where µc is centroid
of a distribution, Covc is its covariance and L is likelihood-
probability. L ∈ Rd1×M represents how likely samples of Hi

t

are related M gaussian-models. Since we wanted to represent
data points in Hi

t by M models, we used index to the highest
likelihood in a row of L to assign corresponding data-point in
Hi

t a label I = {x ∈ Rd1 : 0 ≤ x ≤M} for a model.

B. KLT Low Rank Approximation

Let hit,c ⊂ Hi
t , hit,c ∈ Rd×d2 , d < d1 is a group of data point

represented by model Gc. For convenience, we denote hit,c as
hc. The Covc parameter of Gc is the covariance of hc. We
perform singular-value decomposition (SVD) on covariance
matrices Covc using (1) to get corresponding KLT models.

Covc = ΦcΛΦT
c (1)

Here, Φ ∈ Rd2×d2 is an eigen-vector and Λ ∈ Rd2 is eigen-
value. Next, we project hc to a rank k matrix using (2).

Pc = hc × φc (2)

where, φc ∈ Rd2×k is Φ with 1st k columns and Pc ∈ Rd1×k

is projected matrix.

C. Full Rank KLT Reconstruction

Server should receive coefficient φc ∈ Rd2×k, projection
matrix Pc and mean µc for all KLT models c ∈M and for all
convolutional layers. A full-rank reconstruction for data-points
hc represented by a k rank KLT-model is achieved using (3).

ĥc = Pc × φTc + µc (3)

where, ĥc ∈ Rd1×d2 is full-rank approximation of hc. This is
repeated for all KLT-models and for all layers. Once, updates
in a convolutional layer are approximated, label I is used
to reorder them back to their original index position along
1st dimension. Let Ĥi

t ∈ Rd1×d2 be the reconstructed model-
update for a convolutional layer in the server. Next step is to
aggregate these model-updates received from St clients layer-
wise.

D. Update Aggregation

Server aggregates all the reconstructed model-updates Ĥi
t

received from St clients and generates new global shared-
model Wt. This aggregation and generation of new model is
carried out as in (4) [13].

Wt = Wt−1 + ηtHt, Ht :=
1

St

∑
i∈St

Ĥi
t (4)

Here, Ht is aggregated update, Wt is a new shared-model
and ηt is a learning rate chosen by server. Finally, updated
convolutional layer weights Wt are reshaped back to their
original dimensions of f × c× k1 × k2.

E. Parameter Scaling and LZMA Coding

For update reconstruction in server, four parameters: co-
efficient φc, projected matrix Pc, mean µc and gaussian
model label I , are needed to be communicated. We utilized
Lempel–Ziv–Markov chain algorithm (LZMA) [16], a dictio-
nary based lossless compression scheme, to further compress
these parameters before sending them to the server. However,
coefficient, projection matrix and mean are fractional values
in range {−1, 1}. We first converted these values to integer
values using (5).

As = round(a× 10s) (5)

where, a is a fractional value and As is an integer after scaling.
By changing s, we allowed integer value to scale with digits
truncated at s decimal place.

In the server, decoded scaled integer As is converted back
to fractional value using (6).

â = As × 10−s (6)

F. Model-update compression for Dense and BatchNorm
Layer

All update parameters related to fully connected and batch-
normalization layers as well as biases from all layers were
subjected to scaling using (5) and LZMA coding as described
in previous subsection.

IV. EXPERIMENTAL SETUP AND RESULTS

We considered two popular CNN models: vgg16 and
resnet18 with and without batch-normalization (BatchNorm)
respectively for evaluation of our work. Both models were
trained on cifar10 dataset. We setup federated learning with
five edge-devices thus cifar10 dataset was splitted into five
non-overlapping subsets as local dataset. We trained vgg16
models for 150 epochs and resnet18 models for 250 epochs
with local dataset allocated for respective edge-devices. Up-
dates of these independent models were pushed to the server
every 10 epochs for aggregation. For simplicity, we set learn-
ing rate ηt in (4) to 1 and utilized synchronous aggregation
scheme by considering all available devices for aggregation.
After aggregation, new shared model was validated with the
test samples from cifar10 dataset. All the trainings were
conducted with batch-size of 128, learning-rate of 0.05, mo-
mentum of 0.9 and weight-decay of 0.0005.

Baseline of this work transmitted the model updates with
32-bits. Vgg16 has 13 convolutional layers (3x3 kernels) and
3 dense layers with total of 15245130 (without BatchNorm)
parameters. Similarly, resnet18 has 17 convolutional layers

(3x3 kernels) and 1 dense layer with total of 11183562
(with BatchNorm) parameters. The average size of updates
for vgg16 model transmitted from five edge-devices per round
was 15245130 × 32 bits (465.24 Mbits) and for resnet18, it
was 11183562 × 32 bits (341.29 Mbits). Resnet18 is smaller
than vgg16 even though it has 18 layers (plus BatchNorm)
whereas vgg16 has only 16 layers (and no BatchNorm). Most
of the parameters are concentrated in dense layers of vgg16.

We first fixed the number of KLT models M for all
convolutional layers proportional to the number of kernel d1
and is presented in Table I. Then multiple experiments were
conducted where we chose different scale value s from 4 to
2 while adjusting rank k < d2 = 9 of KLT models. The
chosen s and k value with corresponding converged mean
average precision (mAP) and average of compressed update
size (Mega Bits) from all five edge-devices per round of
aggregation are presented in Table II. The reported mAP values
are from the global shared model after completion of training.
We also reported mAP of the global shared model for all
rounds of aggregation which are plotted in Fig. 2 and 3 for
vgg16 and resnet18 respectively. Reduction in model-update
size compared to the baseline is reported as percentage in the
last column of Table II.

TABLE I
NUMBER OF KERNELS (d1) AND CHOSEN NUMBER OF KLT MODELS (M)

d1 4096 8192 16384 32768 65536 131072 262144
M 1 2 4 4 4 8 16

Rank k of KLT model is presented as lists (13 values
for vgg16 and 17 values for resnet18) in the 4th column
of Table II, each value from left to right is chosen for a
convolutional layer from depth 1st to last. We chose smaller
k for deeper layer. Moreover, the first layer was not subjected
to KLT modelling but only scaling and LZMA coding similar
to biases and dense layer. This is because the weights in the
deeper layer contribute lesser on overall accuracy and vice-
versa. Thus updates from deeper layers were represented with
KLT models with smaller rank while from shallower layer
with larger rank. Also, distortion in bias has greater impact
on accuracy compared to weight. Thus, we chose larger scale
value s = 6 for bias.

We made 4 different selections of s and k for vgg16 and 3
different selections for resnet18 which are reported in Table II.
Smaller s value encoded model-update parameters and KLT
model parameters with lesser precision and provided larger
compression but also resulted in larger loss in accuracy. We
minimized this loss by increasing k for all layers, however,
without much burden in the communication bandwidth. In the
last column of Table II we noticed an increase in compression
when s is decreased from 4 to 2 without any significant loss in
test accuracy (mAP). Further decreasing s to 1 failed models
to learn thus we excluded results for s = 1.

TABLE II
TEST ACCURACY (MAP) AND COMPRESSION (MBITS) PERFORMANCE FOR DIFFERENT SELECTION OF s AND k. REDUCTION (%) IS PERCENTAGE

DECREASE OF MODEL-UPDATE WITH RESPECT TO THE BASELINE.

Model S.No. Scale (s) KLT Model Rank (k) mAP Size (MBits) Reduction (%)

vgg16

baseline - - 87.76 465.24 -
test 1 4 *, 5, 5, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3 87.68 36.51 92.15
test 2 4 *, 6, 6, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2 87.97 32.53 93.00
test 3 2 *, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4 87.53 6.23 98.66
test 4 2 *, 7, 7, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5 87.72 6.44 98.61

resnet18
baseline - - 92.48 341.29 -

test 1 4 *, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3 91.55 19.55 94.14
test 2 3 *, 7, 7, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4 91.81 10.38 96.95
test 3 2 *, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4 91.02 2.43 99.28

∗ KLT modelling not applied in the 1st cnn-layer.

Fig. 2. Test Accuracy vs. Communication rounds for vgg16 trained with
cifar10 dataset on five-edge devices

Fig. 3. Test Accuracy vs. Communication rounds for resnet18 trained with
cifar10 dataset on five-edge devices

V. CONCLUSION

In this work we explored model-update compression in
federated learning setting and presented a method that can
efficiently reduce uplink communication by reducing the total
numbers of parameters to be communicated. This was carried
out by an inter-network and intra-update prediction scheme.
Inter-network prediction was achieved through network weight
differentiation. Similarly, intra-update prediction was achieved
by learning multiple localized KLT models using gaussian-
mixture-model (GMM) and compacting the energy in each
kernel-update by projecting KLT models into a reduced
subspace. Eventually, KLT model parameters and update-
parameters from bias and dense layer were further compressed
using LZMA coding. We needed to make a careful selection of

three parameters: numbers of KLT models per convolutional
layer, rank of the KLT model per convolutional layer and scale
value to achieve best accuracy and compression performance.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Fed-
erated learning of deep networks using model averaging,” CoRR,
vol. abs/1602.05629, 2016.

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” CoRR, vol. abs/1902.04885, 2019.

[3] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” CoRR, vol. abs/1512.06473, 2015.

[4] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems 5 (S. J. Hanson, J. D. Cowan, and C. L. Giles,
eds.), pp. 164–171, Morgan-Kaufmann, 1993.

[5] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning separable
filters,” in 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2754–2761, June 2013.

[6] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” CoRR, vol. abs/1704.05021, 2017.

[7] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” CoRR, vol. abs/1712.01887, 2017.

[8] R. Garg and R. Khandekar, “Gradient descent with sparsification: an
iterative algorithm for sparse recovery with restricted isometry property,”
in ICML, 2009.

[9] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
CoRR, vol. abs/1705.07878, 2017.

[10] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” in INTERSPEECH, 2014.

[11] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: randomized
quantization for communication-optimal stochastic gradient descent,”
CoRR, vol. abs/1610.02132, 2016.

[12] Z. Chen, L. Duan, S. Wang, Y. Lou, T. Huang, D. O. Wu, and
W. Gao, “Toward knowledge as a service over networks: A deep learning
model communication paradigm,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 6, pp. 1349–1363, 2019.

[13] J. Konecný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” CoRR, vol. abs/1610.05492, 2016.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (A. Singh and J. Zhu, eds.), vol. 54
of Proceedings of Machine Learning Research, (Fort Lauderdale, FL,
USA), pp. 1273–1282, PMLR, 20–22 Apr 2017.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” JOURNAL OF THE ROYAL
STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38, 1977.

[16] “Lzma coding.” https://www.7-zip.org/sdk.html. Accessed: 2020-7-6.

