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ABSTRACT

Generally, adaptive bitrates for variable Internet bandwidths can
be obtained through multi-pass coding. Referenceless prediction-
based methods show practical benefits compared with multi-pass
coding to avoid excessive computational resource consumption, es-
pecially in low-latency circumstances. However, most of them fail
to predict precisely due to the complex inner structure of modern
codecs. Therefore, to improve the fidelity of prediction, we propose
a referenceless prediction-based R-QP modeling (PmR-QP) method
to estimate bitrate by leveraging a deep learning algorithm with
only one-pass coding. It refines the global rate-control paradigm
in modern codecs on flexibility and applicability with few adjust-
ments as possible. By exploring the potentials of bitstream and
pixel features from the prerequisite of one-pass coding, it can reach
the expectation of bitrate estimation in terms of precision. To be
more specific, we first describe the R-QP relationship curve as a
robust quadratic R-QP modeling function derived from the Cauchy-
based distribution. Second, we simplify the modeling function by
fastening one operational point of the relationship curve received
from the coding process. Third, we learn the model parameters
from bitstream and pixel features, named them hybrid reference-
less features, comprising texture information, hierarchical coding
structure, and selected modes in intra-prediction. Extensive experi-
ments demonstrate the proposed method significantly decreases
the proportion of samples’ bitrate estimation error within 10% by
24.60% on average over the state-of-the-art.
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1 INTRODUCTION

The knowledge of bitrate and corresponding video quality is the nec-
essary prerequisite to make the optimal bitrate allocation strategies
for Internet-based video services, otherwise, it may cause a large of
unnecessary waste or deficiency on clients’ bandwidths. However,
due to the inner complexity of modern codecs, e.g., high efficient
video coding (HEVC) [27] and advanced video coding (AVC) [32],
it has become a challenge to assess the bitrate and video quality in
an accurate and fast way.

Many research focused on the characteristics of bitrate and
quantization parameter (R-QP) of block-level rate-control para-
digm [3] [31], which require a lot of inner algorithm adjustments
for different codecs to execute bit allocation. It might cause fluc-
tuation of temporal qualities due to insufficient bit assignment on
few last coding units (CUs) of coding frames. To solve this issue,
we adopt a global-based rate-control paradigm that considers each
video clip (or frame) as a basic unit [4] [28] [29]. It can work with
most modern codecs without the need for excessive block-level
adjustments, that provide a global strategy of bit assignment to
prevent inconsistent video quality. Moreover, parallel implemen-
tation can be achieved on video clips (or frames) in proportion to
available computational resources.

The global rate-control paradigm certainly has many inherent
advantages over the block-level paradigm. However, previous at-
tempts have shown the fundamental problem of describing the
characteristics of factors in bitrate allocation of the global para-
digm. This bottleneck is mainly caused by the following reasons:
1) The global multi-pass coding method can establish the actual R-
QP relationship curve, but excessive computational cost is needed.
2) Insufficient content or coding information was adopted to de-
scribe the R-QP relationship, e.g., Xu et al. [34] and Santamaria
et al. [26] only used pixel information (original frames). Covell et
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al. [4] and Sun et al. [28] simply took statistic coding domain data
into account. 3) The linear modeling function is insufficient to fit
nonlinear R-QP relationship. While considering situations of multi-
ple resolutions or frame sizes, the fitting performance of the linear
model [4] deteriorates as the resolution of frame size increases [28].
Therefore, to solve this issue, we propose a referenceless prediction-
based R-QP modeling method (PmR-QP) throughout only one-pass
coding needed as a prerequisite to extract the bitstream and pixel
information. It exploits the potentials of hybrid referenceless fea-
tures to track down the quantization processes, which are used to
signal redundant information elimination. Then, leveraging a deep
learning algorithm as the replacement of actual coding [11] [10],
PmR-QP learns the corresponding oblique relationships between
the extracted representatives and bitrate-quality information. To be
specific, firstly, we develop an optimized R-QP modeling function
to characterize the relationship between bitrate and QP. Secondly,
we enhance and unify the features of bitstream in multiple coding
domains to learn the content-dependent R-QP model parameters
from scratch. Currently, we successfully validate the efficiency of
PmR-QP in intra-predicted frames, which occupy the majority pro-
portion of bits in videos. The contributions of this paper list as
followed,

e We derive a quadratic R-QP modeling function from the
Cauchy-based distribution to characterize the relationship
between bitrate and corresponding QP, which is used to
directly control video quality. The quadratic modeling func-
tion can fit the non-linear R-QP relationship better than the
previous linear rate-control modeling function [4]. We have
it tested to prove its feasibility in real cases prevailingly.

e We fasten an operational point on the R-QP relationship
curve from the one-pass coding in passing that no additional
computational cost is needed. As the means of model param-
eter elimination, it can greatly improve the proceeding of
deep learning in inferring speed and estimated accuracy.

o We significantly explore the potentials of bitstream and pixel
information from multi-levels coding domains, e.g., recon-
struction, hierarchical segmentation, and macro-block intra-
prediction. To concatenate them in the proposed network,
we modify these features to a uniform type and structure. To
the best of our knowledge, no previous works have used the
homogeneous scheme because of inconsistency in different
coding domains.

e Performance experiments and ablation studies on DIV2K
dataset [1], demonstrate the PmR-QP method outperforms
the state-of-the-art linear modeling solution.

The remainder of the paper is organized as follows. Section 2
will introduce related researches. In Section 3, we will discuss the
proposed R-QP modeling function, and hybrid bitstream features
in details. The proposed network and hyper-parameters will be
discussed in Section 4. Section 5 will show the detailed experimental
results and Section 6 will present the conclusions and future plans.

2 RELATED WORK

The knowledge of rate and distortion (R-D) relationship is essential
for rate control. It decides how many bits should be provided to
obtain minimal distortion subject to the budget of bits. Ou et al. [24]
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considered a similarity index as a quality metric for R-D model to
correlate bitrate allocation with human perception. Gao et al. [6]
proposed a Nash bargaining solution for optimizing a structural
similarity index (SSIM)-based CTU-level R-D scheme. Both of these
methods need the actual R-D relationship from multiple passes of
coding. Because the R-D data is recorded from real samples, the
accuracy can be assured. However, the excessive computational
cost needs to be reduced while being applied to latency-sensitive
scenarios. Therefore, differing from actual coding, the idea of R-D
estimation was proposed for more practical video applications.

Estimation methods can be divided into two categories depend-
ing on whether adopting a modeling function to calibrate the es-
timated results or not. Non-modeling-based methods implement
end-to-end frameworks to predict R-D relationship directly, while
modeling-based methods derive R-D relationship from modeling
functions. Many researchers have leveraged deep learning algo-
rithms to estimate R-D relationship due to their availability in differ-
ent video applications [16] [36] [12] [35]. For non-modeling-based
methods, Xu et al. [34] and Santamaria et al. [26] proposed CNN-
based R-D estimated methods. They both adopted original frames
as references to estimate the R-D relationship explicitly. In [34],
SSIM maps were attributed as distortion and learned through a
novel CNN in separate with the number of bits. Santamaria et
al. [26] followed a similar framework to estimate the number of
bits (pixel-wise) and absolute distortion mappings instead of SSIM
maps individually, through a neural network with two pipelines.
The notion of nonlinearity for R-D estimation was proposed in [26]
and activated function was improved by adding Parametric Rec-
tified Linear Unit (PReLU) [8] to achieve nonlinear fitting. These
solutions diminished the complexity of codex over multi-passes
coding.

Then, modeling-based R-D estimation methods were proposed
by Covell et al. [4] and Sun et al. [28]. Covell et al. [4] used statistic
coding representatives to predict bitrate and constant rate factor
(CRF) implicitly through a linear logarithmic R-CRF model. Sun
et al. [28] optimized the R-CRF model to second-order function,
which described the nonlinearity of R-CRF relationship better. Both
of them only employed pure statistical coding information, which
has been proved its insufficiency to describe video content. On the
other hand, the disadvantage of current non-modeling-based meth-
ods was the mere adoption of pixel information (frames). Neither
of them used these intersectional domains data to study the R-D
relationship. The boundedness of single domain data might mislead
the algorithms to make a global decision.

3 PROPOSED METHOD

3.1 Overall Framework

In this section, we elaborate upon the framework of PmR-QP method.
As aforementioned, QP is adopted as the quality metric of intra-
frames and used to directly control bitrate by the employed codec.
Fig. 1 shows the details of the framework, whose objective is to
predict the content-dependent R-QP model parameters p, initially,
then derive the corresponding bitrate through the proposed model
with the given QP. As shown, the complete framework can be
divided into three subtasks, R-QP modeling function m(.), refer-
enceless features extraction Ep(.), and network training #(.). With
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Figure 1: (a) Framework of PmR-QP compared with multi-pass coding method. (b) Extraction procedure of intra-mode map-
pings M, rq. (c) Extraction procedure of segmentation mappings Mseg-

the given QP and trained R-QP model parameters p;,, we can derive
the predicted bitrate R as followed,

R = m(QP, pn). 1)

pn are learned from the concatenated hybrid referenceless fea-
tures,

pn = t(cat(Myec, Msegq, Mintra),®©), (@)

where © denotes the set of network variables (weights and biases).

Myec, Mseg, and Minrq represent the hybrid referenceless features

(reconstructed, segmentation, and intra-mode mappings). They are

extracted from the target intra-frames in multiple coding domains,

[Mrec,MsegsMintra] = Ep(y), ®3)

In summary, Eq. (1), Eq. (2), and Eq. (3) can jointly merge to the
PmR-QP method, denoted as Fy(.),

R=Fp(y). 4

3.2 Proposed R-QP Modeling Function

The existing study in [13] clarified the knowledge of Discrete cosine
transform (DCT)’s coefficients’ probability distribution is critical at
the derivation of the relationship between bitrate and Quantization
step (Qstep) (associated with QP). Here, to explore an accurate de-
scription of the bitrate and QP relationship, we formulate the R-QP
modeling function derived from the entropy of DCT’s coefficients.

Generally, bit allocation strategy splits bits into two groups:
header bits Ry, and residual bits R, (dominant fraction of total bit
consumption Ry,;,;). We can assume that

®)

As known, R, is related to the entropy of DCT’s coefficients. Due
to the property of residual bits, the entropy of DCT’s coefficients

Riotal = Rr.
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is extremely sensitive to quantization. Therefore, the approximate
correlation of total bits R;;,; and the entropy of DCT’s coefficients
H(Q) at varying Q (Qstep) can be represented as,

H(Q) ~ Rtoral(Q) ~ Rr(Q). (6)

In [13], the probability distribution function (PDF) of Cauchy
distribution [5] is proven that a better description is on actual
data than Gaussian [7] and Laplacian [22] distributions. Then, the
entropy of quantized DCT’s coefficients in informative theory can
be extended based on Cauchy-PDF,

yQ
¥2 + (n® -0.25)Q2
yQ 1
¥2+(n?-0.250%"
n==+1,+2...,+N,

H(Q) = —% Z tan~!

n=—oo

1 -
xlogs[=tan™?
b

where, nQ denotes as quantization level, while y is the variable
of zero-mean Cauchy-PDF. A linear modeling function between
H(Q) and Q [30] was proposed to simplify Eq. (7), but hardly to
characterize the non-linear H(Q) — Q relationship, especially when
y increases at a large margin. The hypothesis quadratic H(Q) — Q
relationship can be suggested given by the observation of Fig. 2,

In(Q) ec In(H(Q))* + In(H(Q)) + ¢, ®)

where c represents a constant. The transformation between QP and
Q can follow the equation below,

QP =6 -10g2Q + 4, )

Since we need to assess the relationship between bitrate and QP
eventually, Eq. (6), Eq. (8) and Eq. (9) can be joint derived that
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Figure 2: H(Q)-Q log-log plot of Cauchy-PDF-based function
approximation.

the entropy of DCT’s coefficients in varying QP has a quadratic
logarithmic changing trend in approximation,

« 6[In(R(QP))* + In(R(QP))] - 4
In(2) ’
Therefore, based on previous R-D modeling functions [9] [18]

[19] [4], we devise a quadratic logarithmic modeling function from
Eq. (10),

QP (10)

QP = a(y)In(R(QP))* + B(y)In(R(QP)) + u(y), (11)

where a(y), f(y), and pu(y) denote as content-dependent model
parameters related to intra-prediction frame y.

The proposed quadratic R-QP modeling function can fit a wide
range of QP settings to achieve many practical uses precisely. But
the increasing number of model parameters results in prohibitive
levels of training complexity compared with the linear approxima-
tion [4]. To overcome this issue, we further explore the potential
of coding information to simplify the modeling function. An op-
erational R-QP point P is encoded along with bitstream data that
have been ignored previously. We decide to involve it by fastening
the proposed modeling function on Py. Py would not deteriorate
the fitting capacity of function since it is from actual coding. Mean-
while, the freedom of fastened function is limited fractionally with
fewer model parameters to learn. Assume the values of bitrate and
QP at Py are rg and gpo, respectively, then R-QP modeling function
can be eliminated one modeling parameter as followed,

QP = &"(y)[In(R(QP))* = In(ro)’]+

B (n)In(R(QP)) — In(r0)] + gpo,
where a*(y) and f*(y) are the model parameters pending to predict
from network after simplification. This proposed modeling func-

tion successfully balances the trade-off of training difficulty and
predicted precision, evaluated in Sec. 5.3.2.

(12)
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3.3 Hybrid Referenceless Features

The core execution of compression techniques in most modern
codecs is to eliminate overlapped or redundant information in terms
of spatial, temporal, statistical, and visual domains [17]. Bits can
be saved due to the eliminating processes without abandoning any
relevant data. Therefore, as long as we detect the exact number of
bits saved subject to corresponding levels of quality in compression,
the relevance of bitrate and QP can be received in different levels of
quantization. However, due to the complex inner architectures of
modern coding standards, such as HEVC, it is extremely difficult to
approximate the saved bits [2]. Due to the successes of deep learn-
ing algorithms in many multimedia applications, it is natural to
come up with a learning-based method as the fundamental core to
track down the saved bits by exploring the features of information
redundancies in different coding procedures. However, the type
and structure of data in different coding procedures is inconsis-
tent to analyze, which leads that most previous researches only
concentrated on the studies of local procedures partially.

In this paper, we bring out the unification of the type and struc-
ture of data in different coding domains. It takes advantage of the
global features extraction of bitstream and pixel information, as
hybrid referenceless features, to significantly improve the estimated
performance. In detail, the hybrid referenceless features include
the components of texture information, hierarchical coding struc-
ture information, and intra-predicted modes. We unify them into
pictures by mapping them to two-dimension planes, as shown in
Fig. 3.

Fig. 3 demonstrates hybrid referenceless features from two intra-
predicted frame samples with different levels of texture intricacy.
We visualize features by coding in different QP settings (QP={10,
26, 38}) to study the quantized sensitiveness of each feature individ-
ually. Initial assumption indicates the referenceless features mirror
the progression of quantization that leads the possibility to learn
the property of R-QP through the exploration of referenceless fea-
tures. The observation shows that underlying layers (segmentation
and intra-prediction) of coding respond to the changes of QP more
unmistakably. Even though their descriptions of the multifaceted
nature of images and the distribution of high and low frequencies
are not as good as the reconstructed image, they can increase the
quantized sensitiveness of the referenceless features. The following
paragraphs will explain the generalization of each feature step by
step.

3.3.1 Reconstructed Mappings. Reconstructed Mappings My
possess the homologous structure with corresponding original im-
ages since the quantization would not damage the integrity of
reconstructed Mappings My, but simply modify the number of
bits for each symbol [21]. They are defined as the representatives in
pixel-domain to preserve the texture information in low-distorted
details. As the replacement of original images, reconstructed map-
pings M. are extracted to describe the content complexity and
distribution of high- and low-frequency information. As shown in
Section 5, they dominate the circumstances of a single feature as
input. It proves the efficiency of M., especially lacking original
data, e.g., video transcoding [33].
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Figure 3: Hybrid bitstream features in QP settings € {10, 26, 38} in different levels of texture complexity, including M;¢g, Mseg,
and M;p¢rq, respectively.

3.3.2 Segmentation Mapping. The quad-tree coding tree units
(CTUs) architecture is employed with variable sizes of units [23]
in HEVC codec, which can be partitioned into hierarchical coding
units (CUs) and further divided into predicted units (PUs). The
availability of larger block sizes in a quad-tree partitioning struc-
ture decides the most significant improvement of coding efficiency
compared with previous codec generation [14], also preserving
dominant bits saving. The knowledge of CU partition might help
track the arrangement of bits at macroblock (MB) level [25]. For
instance, a larger-size CU requires less bit per pixel (bpp) than a
smaller-size CU, while a deeper depth of CU requires more bpp.

To explore the partitioning information, we extract and visualize
CU information, denoted them as segmentation mappings Mseg,
as shown in Fig. 1(c). To be specific, three types of partitioning
factors are utilized, including the average pixel esteem, size, and
location of each CU. We first create a sharing-sized blank image
with the original frame and split it into number of different scaled
areas according to the corresponding size and location of CUs. The
average pixel esteem is assigned as the shared pixel values for the
complete scaled areas, as shown

Mseg = r([ACu1]w1><h17 [AcuZ]WZth’ B [Acun]w,,xhn)a (13)

where,

3 Vi)
_ ij
Acu, —Z S (14)
i

Here, the sets of {w1, wa...wy, } and {h1, hy...h, } represent the width
and height of corresponding CUs, respectively. ,(.) is the reshap-
ing operator and V),(; ;) denotes as the pixel value at location of
{i,j} in Myec. The operator [.],,xp is to assign the average pixel
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esteem A¢y,, from Eq. (14) to the complete area CU,, with the size of
{wn X hp}. Until now, we finish projecting the partitioning informa-
tion of intra-predicted frame to the blank image, The blocking effect
can be observed in M;eq, which corresponds to the distribution
of frequency information. It is worth noting that we merge some
CUs visually due to the identical Ay, between them, which is not
shown in the HEVC partitioning. Even though, it matches better
with the strategy of actual bit allocation.

3.3.3 Intra-Mode Mappings. Intra-prediction is an operation
in video coding to eliminate pixel similarity for intra-frames [27]. It
executes the predicted mode selection for each PU based on the least
distortion principle to reference samples. 33 angular modes for both
luma and chroma channel and two non-directional modes (DC and
planar) are involved in HEVC/H.265 [27], which exceeds the number
of modes in AVC/H.264. Therefore, HEVC/H.265 explicitly provides
better compression efficiency on erasing the spatial information
redundancies than AVC/H.264.

To generate intra-mode mappings, we first number predicted
modes Pred; from 0 to 34 sequentially. To project modes informa-
tion into pictures, we then evenly distribute different values in the
interval of [0, 238] as the regional pixel esteem according to their
serial numbers, as Fig. 1(b) shown. The value interval follows pixel
value distribution of common pictures. Differing from segmenta-
tion mappings Mseg, we fix the scale of PUs as the square of 16
with observing a slight effect on performance. It is noted that pixels
within an identical unit share an uniform mode. At last, we cluster
and reshape the comprehensive PUs to the uniform size of the rest
of referenceless features,

Mintra = r([Apu; J16x165 [Apuy 116x165 > [Apu, J16x16)s  (15)
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where n is the quantity of PUs in the intra-mode mappings. The
complete extraction of Mjp¢rq is visualized in Fig. 1(b).

4 ARCHITECTURE OF PROPOSED NETWORK

We propose a convolutional neural network (CNN) to learn the
connection between R-QP relationship and hybrid referenceless
features, which can be seen as a typical regression problem. To
highlight our main contributions on modeling optimization and
features enhancement, we give up the adoption of deeper and more
effective neural network but only 5-layers architecture, which is
shown in Fig. 4. We adopt Adam optimizer [15] to train at the
learning rate of 0.0001. ReLu as activated function is configured at
the output of first four layers. To normalize the input and output,
we use the image normalization and StandardScaler to process
the complete referenceless features and model variables separately.
Batch size sets up to 10 and the number of epochs is 100. The loss
function is designed as follow,

1y . )

L©) =~ > llpn — pull*. (16)

"=
where p,, and p;, are the predicted model parameters and ground
truth (n is number of parameters). It trains at NVIDIA GeForce GTX
1080 GPU around 22 hours for each task.

5 EXPERIMENTAL RESULTS

5.1 Simulation Setup

DIV2K dataset [1] includes 900 high-resolution images in vary-
ing scales. To fulfill the experiments, we crop 800 images into the
desirable patches (512x512 and 768x768) stochastically as train-
ing/validation sets and the rest of images as test set. The ratio of
training and validating samples is 90% and 10%. As shown in Fig. 4,
we train the network parameters © strictly in the single quantized
level (QP = 10), which are applicable for circumstances in the rest
of quantized levels (QP € [10, 38]) of identical content frames. As
the labels of network, model parameters p, are calculated by the
least square method [20]. To validate the generalization of PmR-QP,
we test on two frame resolutions and execute the features extraction
at HM 16.9 platform [27].

We take the related bitrate estimation error § as the measure of
accuracy in bitrate estimation as followed,

5 = RQP) - R(©QP)
R(QP)

5.2 Performance of PmR-QP in Bitrate
Estimation

X 100%. (17)

We first evaluate the entire performance improvement of PmR-QP
compared with the linear modeling solution. Table 1 shows the ac-
curacy of bitrate estimation by the proposed and linear prediction-
based modeling method. Here, PmR-QP employs the optimized
quadratic R-QP modeling function to learn their parameters p,
from the overall hybrid referenceless features. For a fair compari-
son of modeling function and training features, the linear solution
is trained by the proposed network as well. The results in Table 1
show that PmR-QP achieves 87.92%, 79.11% and 60.55% of samples’
estimated error § within 30%, 20%, and 10% in 512x512, respectively.
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Table 1: Comparison of PmR-QP and the linear modeling
solution in bitrate estimation

Estimated Error &

Frame Size Model Features Py
30% 20% 10%

Linear  Myec 80.70% 63.14% 35.81%
512x512 PmR-QP  All v 87.92% 79.11% 60.55%
Improvement +7.22% +15.97% +24.74%
Linear  Myec 83.56% 67.40% 38.61%
768x768 PmR-QP  All v 90.43% 81.97% 63.07%
Improvement +6.87% +14.57% +24.46%

14.33%, 22.90%, and 29.83% precision improves in each error re-
gion, which shows that PmR-QP outperforms the linear solution.
In 768x768, the prediction performance of PmR-QP is better than
in 512x512 that 90.43%, 81.97%, and 63.07% in each error region.
5.65%, 13.88%, and 23.57% rises are bought by PmR-QP to the linear
one. In general, PmR-QP significantly promotes the accuracy of
bitrate estimation by 26% (within 10% error) on average in both
resolutions over the linear solution.

5.3 Ablation Studies of PmR-QP Method

Table 2: Performance of R-QP modeling function

Estimated Error §

Frame Size Model Features Py
30% 20% 10%

Linear 90.01% 75.19% 43.45%

Al
512x512  Quadratic 87.92% 79.11% 60.55%
Improvement -2.09% +3.92% +17.1%
Linear 91.64% 78.24% 45.38%

Al
768x768 Quadratic 90.43% 81.97% 63.07%
Improvement -1.21% +3.73% +17.69%

5.3.1 Improvements in Quadratic R-QP Modeling Func-
tion. To show the superiority of proposed R-QP modeling function,
we maintain the identical configuration for the rest optimizations.
The comparison of linear and quadratic modeling function is shown
in Table 2, the proportions of samples’ estimation error within 30%,
20%, and 10% are 87.92%, 79.11%, and 60.55% in 512x512 along with
90.43%, 81.97%, and 63.07% in 768x768 by utilizing quadratic model-
ing function. Compared with the linear function, the increasing pre-
cision is —2.09%, 3.92%, and 17.10% in 512x512 along with —1.21%,
3.73%, and 17.69% in 768x768. It proves the fidelity of quadratic
modeling function at characterizing R-D relationships, especially
in preciser estimation scenarios.
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Figure 4: Architecture of proposed network and the complete procedures of training and testing.

Table 3: Comparison of simplifying by operational point Py
or not

Estimated Error
30% 20% 10%

Frame Size Model Features Py

. 73.59% 56.21% 30.72%
Quadratic ~ All
512x512 v 87.92% 79.11% 60.55%
Improvement +14.33% +22.90% +29.83%
. 84.78% 68.09% 39.50%
Quadratic ~ All
768x768 v 90.43% 81.97% 63.07%

Improvement +5.65% +13.88% +23.57%

5.3.2 Improvementsin Modeling Function Simplification.

As known, higher-order models can improve the estimation ac-
curacy of the R-QP relationship, however, blindly improving the
number of orders would complicate the learning-based estimated
process, even though they can fit complex data well due to the
increasing number of model parameters p,. The notion of model
simplification is to inherit an operational point from the one-pass
coding, using it to reduce model parameters p,,. Table 3 shows a com-
parison of quadratic modeling function based estimated methods
with or without model simplification. In 512x512, the improvement
by adopting model simplification is 14.33%, 22.90%, and 29.83%,
while the estimated error ¢ is below 30%, 20%, and 10%, respectively.
In 768x768, the improvement is 5.65%, 13.88%, and 23.57% corre-
sponding to each error region. Model simplification brings the most

significant promotion in bitrate estimation, which is 9.99%, 18.39%,
and 26.7% on average in each error region. It indicates that most
deterioration of estimation essentially originates from the capacity
of neural network training.

5.3.3 Improvements in the Hybrid referenceless features.
This section discusses the performance of hybrid referenceless fea-
tures. In prior researches, pixel domain features or bitstream fea-
tures are adopted more often due to the inconsistency between
the two different domains. We find a method to extract and unify
multi-domains coding features and observe their R-QP estimation
performance in Table 4, which demonstrates the superiority of en-
tire features combination over other ways to combine features. It
indicates the existence of non-overlapping information from dif-
ferent domains to achieve the performance-boosting of estimation.
Compared with texture domain features M, .., the entire features
combination can bring out 2.98% and 6.54% improvements on av-
erage in each resolution. Meanwhile, it also shows a better im-
provement compared with other coding bitstream domains, e.g.,
Mseg or Mintrq- Note that our method at feature extraction always
performs better in higher resolution scenarios.

Besides, we dig out more facts from the comparison of different
domain features. In single domain level, My, outperforms Mseg4 or
Mintra in estimation, which reveals a fact that richer information
is provided by texture of frames. Even though, Mseg and Mipsrq
show a very close outcome due to partial over-lapping texture
information in these coding domains. Moreover, Ms,4 replenishes
the knowledge of partitioning structure and M;yr, describes the
similarity of neighboring blocks. They represent redundancy in
different aspects. By combining them with M, one by one, we can
observe obvious growths and the best performance while combining
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Table 4: Comparison of different combinations of hybrid ref-
erenceless features

Bitrate Estimated Error §

Frame Size  Model Patterns
30% 20% 10%
Mseg 82.24% 71.07% 51.17%
Mintra 80.88% 70.22% 51.01%
{Mseg»Mintra} 82.80% 72.78% 52.18%
512x512 Quadratic Myee 84.96% 76.41% 56.96%
{Mrec, Mseg}  86.54% 77.32% 58.03%
{Mrec, Mintra} 86.53% 77.53% 58.43%
All 87.61% 79.11% 60.55%
Mseq 81.92% 71.88% 52.64%
Mintra 79.89% 69/88% 51.81%
{MsegyMintra} 84.13% 73.80% 53.43%
768x768 Quadratic Mpec 84.48% 75.18% 56.19%
{Myec, Mseg} 87.16% 78.53% 60.32%
{Myec, Mintra} 88.82% 79.37% 60.42%
All 90.43% 81.97% 63.07%

all. It is noted that only M;e4 as input can achieve 51.1% and 52.64%
(within 10% error) in each resolution, which adopts the lowest
network and coding complexity.

5.4 Observation on Different Behaviors in
Quantization

We investigate R-QP curves by adopting different aforementioned
optimized methods to further claim the outperformance of PmR-
QP. We chose two typical data samples in different quantifying
changing circumstances. It is observed that the best fitting actual
R-QP curve is given by PmR-QP employed the entire hybrid refer-
enceless features and simplified R-QP modeling function compared
with other methods, especially significantly outperform the con-
ventional method. The worst performance is provided by PmR-QP
without simplifying R-QP function, which expresses the deterio-
ration of results originated from the training process. However,
due to fitting limits of linear modeling function, model simplifi-
cation cannot bring any obvious gains. The performance of the
linear modeling based solution is as good as the quadratic method
in uniform quantifying changes but much worse in non-uniform
circumstances.

6 CONCLUSION

In this paper, we propose a referenceless PmR-QP to predict bitrate
in given frames’ quality information precisely throughout only
one-pass coding. This method is built on the root of the global
rate-control paradigm, which takes advantage of inborn systemic
superiority over block-level paradigm in Internet-based multimedia
services. Moreover, it efficiently tackles the defects of prior global
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rate-control methods. In detail, first, we derive the quadratic R-QP
modeling function from Cauchy-based distribution on the entropy
of DCT’s coefficients, which is better at fitting the relationship
between rate and level of quantization than linear function and
applicable in most real cases. Second, efficiently utilizing the coding
information, we involve an operational point to simplify the pro-
posed modeling function. Third, PmR-QP significantly enhances
the description of characteristics between R-QP and the frames’
content information by exploring and unifying bitstream features
from multiple coding domains. Extensive experiments and ablation
studies demonstrate the global improvements in PmR-QP, and the
performance-boosting from each optimized step. Generally, PmR-
QP can achieve 24.60% decreases on samples’ bitrate estimating
error lower than 10% on average compared with the state-of-the-art.

In the future, we intend to expand our work to the inter-prediction
level by exploring features of motion estimation. Likely, the sim-
ilarity of successive inter-frames can be represented by the accu-
mulated motion estimation features since they have been applied
in other compressed video tasks. It is possible to aggregate these
features as elements of hybrid referenceless features to learn R-QP
information of intra- and inter-frames.
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