
Deep Neural Network based Visual Inspection with 3D Metric
Measurement of Concrete Defects using Wall-climbing Robot

Liang Yang1,3, Bing Li 2, Guoyong Yang 3, Yong Chang 3, Zhaoming Liu 3, Biao Jiang 4, Jizhong Xiao1,∗

Abstract— This paper presents a novel metric inspection
robot system using a deep neural network to detect and measure
surface flaws (i.e., crack and spalling) on concrete structures
performed by a wall-climbing robot. The system consists of
four modules: robotics data collection module to obtain RGB-
D images and IMU measurement, visual-inertial SLAM module
to generate pose coupled key-frames with depth information,
InspectionNet module to classify each pixel into three classes
(back-ground, crack and spalling), and 3D registration and
map fusion module to register the flaw patch into registered
3D model overlaid and highlighted with detected flaws for
spatial-contextual visualization. The system enables the metric
model of each surface flaw patch with pixel-level accuracy
and determines its location in 3D space that is significant for
structural health assessment and monitoring. The InspectionNet
achieves an average accuracy of 87.64% for crack and spalling
inspection. We also demonstrate our InspectionNet is robust to
view angle, scale and illumination variation. Finally, we design
a metric voxel volume map to highlight the flaw in 3D model
and provide location and metric information.

I. INTRODUCTION

Structural health monitoring (SHM) plays a significant
role for performance evaluation and condition assessments
of the Nation’s highway transportation assets, and it can
promote the infrastructure operational safety and longevity
based on data-driven analysis and decisions. The Federal
Highway Administration (FHWA) of the U.S. Department
of Transportation (DOT) has launched the Long-Term Bridge
Performance (LTBP) Program in 2015 to facilitate the SHM
by collecting critical performance data [1]. According to
the FHWA’s latest bridge element inspection manual [2], it
is required to identify, measure, and record the condition
state information during a routine inspection on bridges and
tunnels. Such condition states include spall (delamination
and patched area), exposed rebar, cracking, abrasion (wear),
and damage, etc. In this research, we introduce a data-driven
visual inspection robot for spalling (with or without exposed
rebar) and cracking inspection. The spalling and cracks are
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the main factors affecting the condition states of reinforcing
concrete [3].

Automated visual inspection [4], [5], [6] has become
a popular approach for structural surface inspection with
the advance development of optics device technologies. Re-
searchers in Rutgers University developed a mobile robotic
crack inspection and mapping system, and it uses edge
detection algorithm to detect the cracks on concrete bridge
decks and generate the crack map for bridge maintenance
[5]. Under the support of FHWA LTBP program, an au-
tonomous bridge deck inspection mobile robotic system was
developed with visual cameras and other detection sensors
[6]. Unmanned aerial vehicle (UAV) has also been deployed
for bridge visual inspection [7]. Our wall-climbing robots
provide vertical mobility to perform visual inspection and
acoustic-based subsurface flaw inspection on both vertical
and horizontal surfaces [8].

Fig. 1. Proposed wall-climbing inspection robot field test on the vertical
surface of a bridge-tunnel at Riverside Dr & W 155th St, New York, NY
10032.

Various image processing algorithms have been explored
for concrete structures surface crack and spalling inspection.
As an earlier work, Oh et. al. [9] introduced a median filter,
morphological operations and intensity gradient for crack
detection. A gray-scale histogram analysis and automatic
peaks detection approaches were also used for concrete
surface images inspection. Crack-defragmentation approach
of fragment grouping and fragment connection was proposed
by Wu, and an artificial neural network (ANN) was used for
crack detection classification [10]. More recently, convolu-
tional neural network (CNN) has been deployed for crack
classification on concrete structure images [11]. However,
towards data-driven visual inspection of concrete structures,
there are still some challenges needed to be solved. 1) high-
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Fig. 2. The system architecture of our robotic metric inspection system. The whole system consists of four modules which are visual-inertial SLAM
module, neural network inspection module, 3D frame registration module, and map fusion module.

quality dataset with labeling for detection model training
and ground truth verification; 2) semantic segmentation with
depth augmentation; 3) accurate positioning, registration and
visualization of the detected flaws; 4) the ability to perform
automated inspection on both horizontal surfaces (i.e., bridge
deck) and vertical surfaces (e.g., bridge foundation).

In this paper, we introduce our new generation of the
wall-climbing robot system, as shown in Fig.1. The system
integrates multiple hardware modules within a compact robot
body, including motion control, negative pressure module,
RGB-D camera with pan-tilt mechanism for visual inspec-
tion, visual odometry positioning and 3D mapping software.
This system aims at providing a holistic automated visual
inspection data collection and analysis approach with seman-
tic segmentation and 3D reconstruction to solve the above-
mentioned challenges. In addition, we create a high-quality
concrete structure spalling and crack (CSSC) dataset for deep
learning visual inspection and propose an InspectionNet con-
volutional neural network for semantic segmentation based
on our previous work [12].

II. SYSTEM ARCHITECTURE FOR ROBOTIC METRIC
INSPECTION

This section describes the robotic metric inspection system
architecture as illustrated in Fig.2, which consists of four
modules: Robotic Data Collection, Visual-inertial SLAM
(VI-SLAM), InspectionNet, 3D Registration and Map Fusion
modules.

A wall climbing robot carrying an RGB-D camera and
inertial measurement unit (IMU) sensor is used to collect
RGB images and corresponding depth information of the
concrete surface. Then, the VI-SLAM module takes RGB-D
input and use ORB-SLAM [13] to obtain visual odometry
and fuses with IMU measurement to perform real-time lo-
calization. The output of VI-SLAM module is a sequence of
key-frames (RGB and depth images) and their corresponding
pose estimations. To detect the surface flaws, we pass each
key-frame RGB image through our InspectionNet and each
pixel is classified into three categories (i.e. back-ground,
crack and spalling) with probability prediction. The output

is the class-aware images and can be used to calculate
the metric measurement (i.e. length, width, and area) of
the surface flaws (cracks and spalling). Finally, 2D to 3D
registration and map fusion are performed to incrementally
reconstruct the 3D map that highlights the surface flaws
with different color and display their locations in 3D world
coordination system for better and intuitive visualization.

A. Robotic Data Collection

We developed a wall-climbing robot to automate the data
collect process for visual inspection of infrastructures (e.g.,
bridges, tunnels, dams and building facade). The robot uses
an impeller and adjusts its speed to generate a negative
pressure enclosed in a suction chamber and achieves a
desired balance between strong adhesion force and high
mobility [14]. The robot doesn’t require perfect sealing and
thus can move on both smooth and rough surfaces such as
concrete wall, which is illustrated in Fig.2. The robot carries
an on-board computer (i.e., Intel NUC computer), an Intel
Realsense RGB-D camera and a Phidget IMU for vision-
based inspection and a ground penetrating radar (GPR) for
detection of subsurface objects (not covered in this paper).
The Intel NUC computer connects RGB-D camera via USB
port to collect the RGB and depth images and performs
visual inertial SLAM in real time. It also streams the key-
frame images through WIFI to a ground station computer
with powerful CPU and GPU to perform image segmentation
and 3D reconstruction.

B. Visual Inertial SLAM Module

This module takes the RGB and depth images to esti-
mate the visual odometry of the robot at each frame using
feature matching and optimization approaches proposed in
ORB-SLAM [13]. It allows the odometry information to be
updated at a rate of 30 Hz. We propose a new method to
fuse the visual odometry with IMU measurements using a
multi-state extended Kalman filter (MS-EKF) [15]. Thus the
visual odometry can be updated in higher rate at 100 Hz to
reduce the drift.
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The steps are explained in detail as follows. For each
RGB-D frame {IRGB, IDepth}, we developed a RGB-D visual
odometry inspired by ORB-SLAM [13]. Meanwhile, the
IMU measurements, which are acceleration (ax,ay,az) and
angular velocity (wx,wy,wz), are integrated to estimate the
real time pose (RImu, tImu) of the robot as proposed in [16].
We regard the IMU acts as propagation and the camera
as observation since IMU has a higher update rate. Once
we obtain the estimated camera pose, we perform loosely-
coupled fusion of the camera pose with the IMU pose to
obtain the fused pose (R f , t f ) that will reduce the motion
drift [16]. We further perform local loop-closing check and
bundle adjustment for adjacent frames to obtain the pose
correction Cpose = T (Ro, to)T T (R f , t f ), and update the MS-
EKF state to further reduce the motion drift.

C. Neural Network Based Segmentation Model

Based on our previous work on semantic segmentation
network [12], we introduce inspection neural network (In-
spectionNet) which is depicted in Fig.2. Inspired by VGG-
16 [17], the architecture of InspectionNet has several im-
provements: 1) it adds five groups of deconvolutional layers
to perform upsampling following the U-Net architecture
[18]; 2) it introduces the side-layers which is proposed in
Holistically-nested edge detection (HED) network [19].

The input to the InspectionNet is the key-frames generated
from the VI-SLAM, which is a pair of RGB and depth
images with associated pose. The InspectionNet performs
class-aware segmentation on RGB images to classify each
pixel into three classes (background, crack and spalling)
with probabilistic prediction for each class label. The side-
layers uses 3 channels output of each convolution group. The
second to the last layer of the InspectionNet has a total of
6∗3= 18 channels because we have a total 5 side layers plus
the output from the deconvolutional layers. The last layer has
3 channels indicating the three classes (background, crack
and spalling) with probabilistic prediction for each label. We
implement the InspectionNet in Pytorch and deploy it in a
GPU server for training and testing, which is discussed in
Section.III.

D. 3D Registration and Map Fusion

The goal of our proposed robotic metric inspection system
is not only to detect the existence of surface flaws (i.e.,
cracks and spalling) but also to find their physical location
in 3D space and measure their property (length, width and
area). In this paper, we introduce truncated signed distance
function (TSDF) voxel volume [20] map to perform 2D to
3D reconstruction. For each RGB-D frame, given the camera
intrinsic parameters K [21], we use the back-projection
equation, ∣∣∣∣∣∣∣

X = (u−u0)
fx
· IDepth(u,v)

Y = (v−v0)
fy
· IDepth(u,v)

Z = IDepth(u,v)

∣∣∣∣∣∣∣ (1)

where IDepth(u,v) is the depth of the corresponding pixel
(u,v) in the RGB image, and (X ,Y,Z) is the 3D physical

location corresponding to the pixel.
For the TSDF map, each RGB-D frame will fuse spatially

by using surface reconstruction method proposed in [20] as
follows: 1) perform ray-tracing based on the camera pose
(Ro, to), and obtain the association from 3D voxel cell to 2D
pixel; 2) calculate the ray angle θ to each voxel cell normal;
3) perform weighted fusion of the 3D cell position with
the weight W = cos(θ)/IDepth(u,v) and current 3D position
which is obtained by using Equ.1.

Fig. 3. The fusion of the inspection results is performed in 3D space
using a probabilistic approach. For each voxel volume in the 3D map, it is
a 3D cell with its center position and probability prediction for each class
(background, crack and spalling).

For each voxel volume, it is a cubic cell with the
center located at (X ,Y,Z), and we also assign the class
probability prediction to each cell, that is, each cell vvi
has a class probability for each class label, P(vvi) =
{p(vvi)|p( j|vvi) = c j, i = 0,1, .., j = 0,1,2} as depicted in
Fig.3. Where ∑

j=2
j=0 p( j|vvi) = 1.

It is should be noted that the class probability of a 3D
cell may vary when the camera view changes as robot
moves, thus we introduce a Bayesian fusion method to
perform class probability fusion of each 3D cell. Assuming
we already know the 3D volume class probability prediction
P(vvi) = {p(vvi)|p( j|vvi) = c j, i = 0,1, .., j = 0,1,2} at time
k − 1. As camera view changes, we can obtain the 3D
cell to 2D pixel mapping through ray tracing for new
key-frame at time k. The class probability prediction of
the corresponding pixel in the 2D image can be retrieved
as P(u,v) = {p(ui,vi)|p(ui,vi, j) = c j, i = 0,1, .., j = 0,1,2}.
Then the class probabilistic prediction at each voxel volume
can be updated through a recursive Bayesian filter,

P(vvi)k = P(vvi)k−1P(ui,vi)k (2)

where P(p(vvi)
m)k denotes the class probability of voxel

volume vvi at time K, and P(ui,vi)k denotes the class
probability of pixel (ui,vi) at time K.

After each voxel volume’s class probability is updated,
then we perform a max operation over the probabilistic vec-
tor to classify each voxel cell to one of the three categories,

P(vvi) = max{p(c0|vvi), p(c1|vvi), p(c2|vvi)} (3)

where c0,c1,c2 denote the back-ground, crack, and
spalling, p(c j|vvi) denotes the probability of vvi belong
to c j. The global 3D semantic map can be reconstructed
incrementally using the 3D registration and fusion module
that deals with the camera view changes.
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Fig. 4. The flaw segmentation demonstration on the test data set and the field test data. The field test 1 is performed by manually carrying the camera,
and the field test 2 and 3 are performed by using the robot.

III. INSPECTIONNET TRAINING AND TESTING FOR
METRIC INSPECTION

This section discusses the data preparation and training of
the InspectionNet, and we also discuses the metric fusion of
label in 3D space using a probabilistic fusion approach to
obtain the defects highlighted 3D map.

A. Data Preparation
To train the InspectionNet, we create a Concrete Structure

Spalling and Crack (CSSC) dataset [11] and also use Berke-
ley Segmentation Dataset and Benchmarks 500 (BSDS-500)
which is proposed by Arbelaez et. al. [22]. For BSDS-500,
we directly use it to train the side layers based on edge
detection task. For CSSC dataset, it has 298 spalling images
and 512 crack images, which is not sufficient to train a large
model like InspectionNet. Also, we noticed the following
problems from our field tests,
• The crack and spalling appearance is highly affected by

the distance from the robot camera to the surface.
• The surface flaw images suffer from low illumination

which degrades the performance of the model.
To solve these problems, we introduce several approaches

to augment the dataset. Firstly, considering the illumination
problem, we use the Gamma Correction, I(u,v) = 255×
( I(u,v)

255 )γ [23] to adjust the intensity of the RGB images in
the data set. We adjust the Gamma values ranging from
0.25 to 2.0 with step of 0.25. Thus, we can have a total of
8 intensity different images to perform training. Secondly,
we use random zoom (zoom in and out), elastic distortion,
perspective transformation, size preserving rotation, and size
preserving shearing which are proposed in [24], to augment
the crack and spalling images and labels.

B. Model Training
The InspectionNet is to segment the pixels into 3 classes

(i.e. back-ground, crack, spalling). Since spalling normally
occupies a bigger area in an image and contains a larger
number of pixels than crack, the InspectionNet model tends
to overfit to spalling defects. Thus, we change the loss of
the model as proposed in [18],

loss = ∑
xi∈X

w j(x)log(p(xi, j)) (4)

where xi indicate a pixel given image X , p(xi, j) is the pixel
xi probabilistic prediction over class j, and w j is the weight
of each classes. In this paper, we will discuss whether the
weight affect the segmentation result, and how much does
the weight affect the segmentation result.

To train the InspectionNet, we split the whole training into
two procedures: 1) we train the HED [19] model and have
the side layer output 3 channels using BSDS-500 dataset. We
train the HED model in 100 epochs. 2) we use the HED side
layers’ weight to initialize the side layers of InspectionNet
and use VGG-16 pre-trained model to initialize the left side
convolutional kernel of the InspectionNet. The deconvolu-
tional and the right side convolutional layers are randomly
initialized. For all the layers, the parameters can be updated.

C. 3D Metric Measurement

Our goal is to recognize the metric measurement of each
surface flaw patch and determine its location in 3D space.
For each key-frame image, we classify each pixel into one of
the three classes and find the flaw patch (crack or spalling)
and the depth information using the InspectionNet. Then, the
3D registration and map fusion module register each pixel
back to the 3D space to obtain the physical location of the
corresponding pixel. We further generate a mesh based on
the 3D information of the surface flaw patch [25]. Finally,
we detect and characterize the flaw patch by calculating the
width, height, and area information based on the mesh.

IV. EXPERIMENTAL STUDY

To evaluate our approach, we perform 6 tests which
include CSSC dataset test, two field tests using hand-held
camera, and three automated field tests using the wall-
climbing robot. The field tests of robotic inspection system
were conducted on a vertical wall of a bridge tunnel at
Riverside Dr & W 155th St, New York, NY 10032, as shown
in Fig. 1. A field test demo of robotic inspection system is
shown in video demo video 1.

A. InspectionNet Training and Evaluation

Dataset Based on the CSSC dataset, in which 298 spalling
images and 954 crack image, among them 522 are labeled

1https://tinyurl.com/3DInspectionRobot
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TABLE I
INSPECTIONNET WEIGHT EFFECTS. E MaxF1 IS EVALUATION MAXF1 SCORE, E AP IS EVALUATION AVERAGE PRECISION, T MaxF1 IS TRAINING

MAXF1 SCORE, T AP IS TRAINING AVERAGE PRECISION, T BAP IS TRAINING CONCURRENT PRECISION, AF IS THE AVERAGE FREQUENCY.

InspectionNet
Weight of classes Weight of classes Weight of classes Weight of classes

BG Crack Spalling BG Crack Spalling BG Crack Spalling BG Crack Spalling
0.2 4 1 0.2 4 4 0.2 8 4 0.2 4 8

E MaxF1 53.8389 23.4860 54.6388 46.0032
E AP 50.0527 13.7970 36.0459 28.7359

T MaxF1 58.5810 43.4980 37.8984 31.5302
T AP 55.3143 30.0418 20.2461 18.5447
T BAP 86 80 0.74 0.75

AF 6.1628 6.8887 6.9698 6.8661

images. We first perform data augmentation as explained
in Section III-A, and obtain a total of 58,149 images for
the crack model, where 40,911 images for training, 6,474
for cross-validation, and 10,764 for testing. The spalling
detection model has 8,151 for training, 1,170 for cross-
validation, and 2,210 for testing.

Neural Network Training
We train the InspectionNet on a GTX 1080 GPU server

computer and use Pytorch to deploy the algorithm. For the
InspectionNet, we use the stochastic gradient decent (SGD),
with an initial learning rate at 0.001, momentum as 0.9, and
weight decay of 5× 10−5. The model is set to run in a
12,000 iterations and lasting around half day. To compare
the performance between models, we use metrics such as
batch concurrent accuracy, average precision, and max F1
score.

Accuracy Evaluation We first perform the crack and
spalling inspection validation using the test data set from the
CSSC data set. For testing purpose, we use total of 10,764
crack images, and 2,210 spalling images.

The comparative accuracy performance under different
weight setting of the InspectionNet is given in Table.I,
where we provide a comparison under 4 different weight
settings. Before performing the weight comparison, we first
calculate the number of all the crack, spalling, and back-
ground (BG) pixels, and find the distribution of the three
classes are (20,1,4). It is illustrated in Table.I, the four
settings are (0.2,4,1), (0.2,4,4), (0.2,8,4), and (0.2,4,8).
We can conclude that the inverse weight over the three
classes number distribution, that is, (0.2,4,1) allows the
model to perform an average 10% higher in average accuracy
compared with other settings.

Besides, we also conduct experiments to compare VGG-
Unet and the FCN-8s. We also compared with FCN-32s, and
we found that FCN-32 is not able to perform segmentation
on crack images or segmentation on tiny spalling flaws.
For average precision, the InspectionNet can obtain 83.58%
which is almost 3% higher than VGG-Unet. For FCN-8s,
same as FCN-32s, is not able to perform crack segmentation.

Processing Speed
To evaluate the processing speed, we perform 5 sets of

testing, including 3 for crack detection and 2 for spalling
detection. We calculate the mean processing speed of each

Fig. 5. An extreme demonstration of the segmentation model under low
illumination environment. (a) and (c) shows the green color overlaid results,
and (b) and (d) are the probabilistic distribution of spalling over the original
image.

session. Based on fives test set, we found that our Inspec-
tionNet has average 6.2 frames per second which is sufficient
for online processing.

B. Dataset Testing and Field Test

The evaluation of the visual inspection system is per-
formed in two steps. First, we test the detection performance
on the test dataset and quantitatively evaluate the average
accuracy. In the second step, we perform field tests under a
bridge with 3D reconstruction. In the field tests, we consider
both normal illumination and low illumination situation to
perform inspection and 3D reconstruction.

The performance of detection on CSSC dataset is il-
lustrated in Fig.4. In this image, we overlay the spalling
and crack flaws using green color. In spalling segmentation
results, we show that the model performs a robust inspection
under any visual scale. For the crack inspection, we can see
that the most left image has a huge view-variance compare
to the normal data, and the InspectionNet can still segment
the crack out. We also provide the inspection results of three
field tests. For each field test, we can seen that our model is
robust to surface contrast and the view changes.
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Illumination Robustness
Besides the scale and view robustness, we also test the

model robustness under low illuminated environment. We
perform two set of experiments under the bridge. The result
are illustrated in Fig.5. For image (b) and (d), they are the
class probability prediction, and the white indicate the high
probability region where has flaws and the black denotes the
back-ground. Image (a) and (c) are the green color overlaid
images for better visualization. It can conclude that our
InspectionNet is robust to low intensity images.

3D Metric Semantic Registration
Our goal is to perform metric semantic reconstruction as

illustrated in Fig.6. The 3D reconstruction is performed by
coupling the image frames with pose and time, where the
frames are key-frames from VI-SLAM. Then, the Inspec-
tionNet performs the flaw segmentation on the RGB image.
Thus we can register the key-frame to the 3D space with
semantic information. It is illustrated in Fig.6, the green area
(Fig.6.(a)) and blue area (Fig.6.(b)) denote the flaw patches,
where all the information are with metric scale. Then civil
engineers can determine the location of each flaw patch and
calculate its metric property (width, length, and area).

Fig. 6. The 3D reconstructed result of obtaining the 3D metric information.
(a) is the 3D defects segmented point cloud map, (b) is the corresponding
heat-map point cloud map, where blue denote the defect area.

V. CONCLUSION

This paper introduces a cutting-edge deep learning-based
visual inspection system. The system leverages visual-inertial
SLAM positioning and 3D reconstruction, and uses Inspec-
tionNet for segmentation, the flaw patches are registered
in the 3D model to provide metric information for con-
crete structure condition assessment. The concrete structure
spalling and crack (CSSC) dataset and InspectionNet are
released as source code to the research communities. The
field experiments show the effectiveness of our proposed
metric inspection methodology in field test scenarios.

REFERENCES

[1] N. Gucunski, “Condition assessment of bridge deck using various
nondestructive evaluation (nde) technologies,” LTBP, vol. 5, pp. 1–
7, 2015.

[2] F. H. Administration, “Specification for the national bridge inventory
bridge elements,” 2014.

[3] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth,
“A review on computer vision based defect detection and condition
assessment of concrete and asphalt civil infrastructure,” Advanced
Engineering Informatics, vol. 29, no. 2, pp. 196–210, 2015.

[4] G. Li, S. He, Y. Ju, and K. Du, “Long-distance precision inspection
method for bridge cracks with image processing,” Automation in
Construction, vol. 41, pp. 83–95, 2014.

[5] R. S. Lim, H. M. La, and W. Sheng, “A robotic crack inspection and
mapping system for bridge deck maintenance,” IEEE Transactions on
Automation Science and Engineering, vol. 11, no. 2, pp. 367–378,
2014.

[6] P. Prasanna, K. J. Dana, N. Gucunski, B. B. Basily, H. M. La,
R. S. Lim, and H. Parvardeh, “Automated crack detection on concrete
bridges,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 2, pp. 591–599, 2016.

[7] N. Hallermann and G. Morgenthal, “Visual inspection strategies for
large bridges using unmanned aerial vehicles (uav),” in Proc. of 7th
IABMAS, International Conference on Bridge Maintenance, Safety and
Management, 2014, pp. 661–667.

[8] B. Li, K. Ushiroda, L. Yang, Q. Song, and J. Xiao, “Wall-climbing
robot for non-destructive evaluation using impact-echo and metric
learning svm,” International Journal of Intelligent Robotics and Ap-
plications, vol. 1, no. 3, pp. 255–270, 2017.

[9] J.-K. Oh, G. Jang, S. Oh, J. H. Lee, B.-J. Yi, Y. S. Moon, J. S. Lee,
and Y. Choi, “Bridge inspection robot system with machine vision,”
Automation in Construction, vol. 18, no. 7, pp. 929–941, 2009.

[10] L. Wu, S. Mokhtari, A. Nazef, B. Nam, and H.-B. Yun, “Improvement
of crack-detection accuracy using a novel crack defragmentation
technique in image-based road assessment,” Journal of Computing in
Civil Engineering, vol. 30, no. 1, p. 04014118, 2014.

[11] Y. Liang, L. Bing, L. Wei, L. Zhaoming, Y. Guoyong, and X. Jizhong,
“Deep concrete inspection using unmanned aerial vehicle towards cssc
database,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2017.

[12] L. Yang, B. Li, W. Li, B. Jiang, and J. Xiao, “Semantic metric 3d
reconstruction for concrete inspection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 1543–1551.

[13] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[14] L. Yang, G. Yang, Z. Liu, Y. Chang, B. Jiang, Y. Awad, and J. Xiao,
“Wall-climbing robot for visual and gpr inspection,” in 2018 13th
IEEE Conference on Industrial Electronics and Applications (ICIEA).
IEEE, 2018, pp. 1004–1009.

[15] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[16] L. Armesto, J. Tornero, and M. Vincze, “Fast ego-motion estimation
with multi-rate fusion of inertial and vision,” The International Journal
of Robotics Research, vol. 26, no. 6, pp. 577–589, 2007.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[18] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” pp. 234–241, 2015.

[19] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
1395–1403.

[20] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
2011 IEEE International Symposium on Mixed and Augmented Reality.
IEEE, 2011, pp. 127–136.

[21] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
2015.

[22] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[23] C. Poynton, Digital video and HD: Algorithms and Interfaces. Else-
vier, 2012.

[24] M. D. Bloice, C. Stocker, and A. Holzinger, “Augmentor: an
image augmentation library for machine learning,” arXiv preprint
arXiv:1708.04680, 2017.

[25] X. Liu, N. Qin, and H. Xia, “Fast dynamic grid deformation based
on delaunay graph mapping,” Journal of Computational Physics, vol.
211, no. 2, pp. 405–423, 2006.

2854


