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Abstract
Published literature on the energy-water nexus continues to increase, yet much of the supporting
data, particularly regarding energy-for-water, remains obscure or inaccessible. We perform a
systematic review of literature that describes the primary energy and electricity demands for
drinking water and wastewater systems in urban environments. This review provides an analysis of
the underlying data and other properties of over 170 published studies by systematically creating
metadata on each study. Over 45% of the evaluated studies utilized primary data sources (data
collected directly from utilities), potentially enabling large-scale data sharing and a more
comprehensive understanding of global water-related energy demand. The most prevalent
geographic scale of the existing literature was at the individual city scale (39%), limiting
comparisons between utilities. Additionally, energy-for-water studies span 34 different countries
with 11 countries having at least 4 published studies. The analyzed literature often considered
greenhouse gas emissions of energy demand as an important input for life cycle analysis,
highlighting the broader impact of the energy-water nexus. As a result of the review, we identify
several common practices for filling data gaps, discover that research and data are primarily
concentrated in three countries (Australia, China, and the United States), and offer suggestions for
the future of the energy-water nexus, specifically regarding energy-for-water.

1. Introduction

Since the mid 1990s, there has been an increas-
ing volume of literature published on the energy-
water nexus, specifically quantifying water-related
energy or energy-for-water. Gleick [1] provided one
of the first assessments of the relationship between
energy and water resources. Energy is required to
supply, treat, distribute, and reclaim water resources
within urban environments [2]. Additionally, there
are other types of water-related energy demand in less
developed urban environments, such as the energy
required for water trucks in Kenya [3] andmany other
locations globally. As various policies direct water
treatment practices and/or set water quality stand-
ards, there is a growing demand for energy resources
to treat water to policy thresholds [4]. Managing
water and energy as joint resources provides further

benefits for conservation [5] and can significantly
reduce operating costs for a utility [6].

Liu et al [7] estimate that water-related energy
consumption totals 1.7–2.7% of total global primary
energy production. Depending on the inclusion of
water end uses in the energy-for-water boundary, pre-
vious studies estimate that water demands 12.6% of
total primary energy in theUnited States [8] and 5.8%
of total electricity production in Spain [9]. How-
ever, the data associated with studying energy-for-
water are scattered, scarce, and uncertain. Recently,
there have been more efforts to publish energy-for-
water data concurrently with research studies, result-
ing in a discussion on the importance of a broader
data collaborative for this component of the energy-
water nexus [10–13]. We perform a systematic review
of literature related to energy consumption for water
resources (at the utility-scale) in urban environments
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across the globe to determine the source of data, tem-
poral scale of available data, and geographic spread
of studies before discussing the implications for a
global dataset of energy-for-water data. While there
have been several important reviews of this literature
space [14–16], these reviews focus on the exact val-
ues and statistical ranges of energy demand for water
resources and do not investigate the availability and
type of data used. Along this vein, our review provides
a unique exposition on the state of the literature by
focusing on several questions that inform the future
of the energy-water nexus:

• Are studies using primary data or do they rely
solely on previously published works?

• Where in the world are data for evaluating the
energy-for-water demands available?

• What other nexus decisions do the literature
address? (i.e. life-cycle assessments, climate, etc)

• How are researchers filling in the gaps when site-
specific data are not available?

Recently, there have been several papers that
identify the data gap in this field and attempt to col-
lect and compare data from various cities [11, 12, 17].
Answering these four proposed questions provides
an important path forward for policy to strengthen
the understanding of the energy-water nexus and
address data sharing opportunities for cities. This
review creates and analyzes metadata of over 170
publications and their underlying data, identifying
previously obscured trends that point to the future
of the energy-water nexus. Understanding the nexus
of resources, including energy and water, and data
availability provides important pathways for advan-
cing sustainability and resource management goals
[18–20].

2. Methods

We utilized three literature search engines to cre-
ate a database of journal publications: Web of Sci-
ence, Scopus, and Google Scholar. We used a set
of keywords to identify relevant literature with each
search engine; see table S1, which is available online
at https://stacks.iop.org/ERL/15/123011/mmedia, for
a list of the keywords in the search. Following the
stated goal of the manuscript, we only considered
peer-reviewed journal literature. Technical reports by
state or federal agencies, non-profits, and other agen-
cies (such as the International Energy Agency) were
not reviewed or categorized in this manuscript. Addi-
tionally, through the review of the literature, there
were often studies identified in the introduction and
background sections of publications that were not
captured in the initial search criteria. These identi-
fied studieswere then located and included in the ana-
lysis. Finally, one significant limitation to the review
is that only publications in English were considered.

Peer-reviewed articles available online after May 2019
or before 2000 were not considered. We exclude stud-
ies before 2000 in the review to discuss trends for the
current century. The method resulted in 172 papers,
capturing a large amount of the research space. We
recognize that it is impossible to be confident in cap-
turing all relevant articles, but we suggest that our
data sample is sufficient to make broad statements
and analysis of the current state of the field through
this systematic review. A list of all the papers included
in the review can be found in the supporting inform-
ation, Text S1.

Kenway and Lam [2] identify four compon-
ents of the urban water cycle that require energy:
(i) water supply, (ii) water end-use, (iii) wastewa-
ter, and (iv) non-operational activities. The relation-
ship between energy and water in these four com-
ponents is shown in figure 1. This review focuses
on energy-for-water in water supply and wastewa-
ter systems. We limit our review to the municipal
scale of energy-for-water, omitting building-scale or
residential water end-use. Additionally, we exclude
non-operational activities of urban water that would
include embodied energy through the life cycle of
water system construction. While end-use water-
related energy demands can be significant [16], the
data are often hidden behind privacy concerns as
they relate to individual behaviors. Additionally, the
focus on the utility-level is consistent with the lit-
erature that often evaluates the four components of
energy-for-water separately due to different scopes
and objectives of the research. Finally, the energy
demand in water end-use varies between residen-
tial, commercial, and industrial users that have dif-
ferent water uses and functions. Each of these users
pays for their own energy demands associated with
water, while utility energy demand is wrapped into
the total rate of water. The utility-level scope enforces
the goals of the review to expose the challenges in
energymanagement ofwater resources at a city/urban
scale.

To facilitate a uniform review, we analyzed each
article using a standardized form. This form included
multiple choice, short answer, and check box fields.
A team of three researchers read each of these papers
over the course of four months. The process, utiliz-
ing a standardized form, created metadata for each
literature article. The information collected included
general citation information, scale and location of
each reviewed study, type of energy considered, urban
water process (drinking water, wastewater, water
reuse), and type of data included. See the supporting
information, Text S2, for a list of questions included
on the standardized form. These analysis questions
were asked of each reviewed study to ensure a sys-
tematic and cohesive review of the collected studies in
Text S2. Additionally, Dataset S1 provides the evalu-
ation of each included study for generating figures 2–
5 in the manuscript.
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Figure 1. The four categories of water-related energy use include water supply, water end-use, wastewater, and non-operational
activities. This review focuses on the systems of water supply and wastewater. Solid blue lines indicate flows of water, with dashed
blue lines indicating potential flows. Energy flows are denoted by solid orange arrows. Green lines show the influences of
non-operational activities on the systems. [2] adapted by permission of the publisher (Taylor & Francis Ltd, http://www.
tandfonline.com).

The type of data utilized within the study were
binned into four general categories: primary data,
secondary data, modeling, and technical reports.
Primary data include data obtained directly by the
author(s) related to the utility under investigation
through communication with the utility or through
their website materials. Secondary data, for the pur-
poses of this review, reference data that were obtained
via previously published peer-reviewed literature.
Modeled data include estimations generated from
EPANET or similar software packages to predict
energy consumption and any hydraulic calculations
(e.g., depth of groundwater to pump energy). Tech-
nical reports represented data that were obtained
from large-scale studies performed by state or federal
agencies, non-governmental organizations, or other
institutions that were published outside the tradi-
tional peer-review process. Only data included within
individual studies’ results or methods sections were
included, and studies often utilized multiple types of
data.

3. State of the data

3.1. Data sources
Figure 2 displays a histogram of the type of data util-
ized within peer-reviewed journal papers published
between 2000 and 2018. The year 2019 was excluded
due to the online publishing cutoff of May 2019. The
papers are separated based on geographic scale of
each reviewed study. Around 2008–2009, the amount
of published papers began increasing much more
rapidly than in the first few years of the 21st century.

The abundance of orange dots—56 papers total—
illustrates the reliance on technical reports for stud-
ies, the data for which has not undergone the typical
peer review process (n= 137). Although not gathered
within a formal peer-reviewed framework, technical
reports are a common form of presenting data. While
primary data are often the preferred data source, these
data are not always available or practical to obtain.
The other three data sources (technical reports,
modeling, and secondary data) each have pros and
cons for utilization depending on the scope of
analysis.

While technical reports are a common data
source, surprisingly, primary data (i.e., data collected
directly from utilities) was the most prevalent source
of data used, occurring in 62 papers. In comparison,
24 papers used secondary data as a data source. The
use of primary data over secondary suggests that there
is minimal continuity in the field (i.e., researchers are
not using previously published data, potentially due
to relevance or inaccessibility). This trend speaks to
either the scope of existing studies being somewhat
limited and/or the lack of data published in an access-
ible format. The type of data used in studies varies
based on the geographic scale of each reviewed study.
Most larger scale studies cite technical reports, and,
as the study scale gets smaller, primary data are used
more often. In larger studies (regional, country, and
multi-country level), technical reports were cited 40
times and primary data cited 19 times. This trend
reverses in smaller studies (multi-city and individual
city) with primary data cited as the predominant
source. Fourteen large geographic scale studies used a
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Figure 2. Reviewed studies are grouped by geographical scope and are defined by their data source. A majority of the reviewed
studies only analyze a single city as its geographical scale. Each circle represents one journal paper, and the color of the circle
corresponds to the type of data used in each reviewed study: primary, secondary, technical report, and/or modeling. Studies that
used multiple data types have been split into halves or thirds and show the colors of all data types used.

combination of data sources and 17 studies at a smal-
ler scale used a combination of data sources.

Before 2014, seven papers used modeling in com-
bination with other data; since 2014, modeling has
been used alongside other data five times in our lit-
erature review set. We define modeled data as estim-
ations generated from EPANET or similar software
packages to predict energy consumption and any
hydraulic calculations (e.g., depth of groundwater to
pump energy). The use of modeling in conjunction
with other data sources provides opportunities to val-
idate or enhance the complexity of the energy-water
nexus study. Recent studies have utilized regression
models [21] or hydraulic models [22, 23] to account
for water-related energy demand.However, one of the
most common uses of modeling was a calculation of
energy to pump water from groundwater depths (see
section 6.1).

3.2. Data scale
To illustrate the scale and scope of data utilized in
studies, figure 3 shows the type of water system

(drinking water, wastewater, wastewater reuse), the
energy type, and the temporal scale of the data
used within each reviewed journal article. The
difference in number of studies within the cat-
egories of figures 2 and 3 is due to uncertain
or unclassified data sources or types. See Data-
set S1 for the detailed metadata on each reviewed
study.

Most analyses only evaluated electricity demand
as a source of energy-for-water, neglecting natural
gas or other primary energy sources. In some cases,
the inclusion of only electrical energy is limited by
the geographic scale of the study. For example, Gan-
ora et al [24] provide a survey of wastewater treat-
ment facilities across Europe and cite the exclu-
sion of non-electrical energy due to the broad scope
of the study. This limited scope of energy data is
counter to the findings of Chini and Stillwell [11],
which demonstrated the large impact of natural gas,
especially in the winter months at U.S. utilities.
Additionally, as more wastewater facilities adopt bio-
gas or digester gas reclamation technologies to offset
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Figure 3. Reviewed studies are grouped by their geographical scope and represented by the system evaluated, temporal scale, and
energy type. Nearly all reviewed studies occur at an annual scale, with only eight studies using data of a sub-annual time step. The
papers are separated based on geographic scale of the reviewed study, where each circle represents a single article. The color of the
circle represents the water system; studies that analyze more than one system are represented by a circle divided into colors for
each system. The energy type is shown by a glow (or absence of glow) around the outside of the circle. The size of the circle
indicates the temporal scale of the data.

energy demand, it is important to evaluate the oppor-
tunity and ensure economic and environmental viab-
ility of the technology [25–28]. Better collection of
data that includes all energy types consumed will
provide better insights to achieve life-cycle green-
house gas reduction and sustainable development
goals.

Based on data collected in this review, 84%
of papers included drinking water in their ana-
lysis (n= 139). Of the papers that studied drinking
water, 48% of them studied both drinking water and
wastewater, but only 3% of research studies evalu-
ated the full urban water cycle including drinking
water, wastewater, and wastewater reuse. Wastewater
was included in 59% of all energy-water nexus stud-
ies. Wastewater reuse, however, was studied in only
11% of all papers, but the number of papers study-
ing wastewater reuse systems has increased in recent
years.

Moving forward, primary data need to be collec-
ted and shared across larger geographic and smaller
temporal scales. A database on energy-for-water
data available to researchers would provide a
platform to enable sharing of primary data and

increase the amount of reliable secondary data used,
supplementing technical reports that reside outside
the traditional peer review process. Further, there
are opportunities to promote research that studies
multiple water systems using data with a sub-annual
temporal scale and including all energy required, bey-
ond only electricity. Only eight of the evaluated stud-
ies included evaluation of sub-annual variation in
the energy-water nexus. Previous research by Chini
and Stillwell [11] and Escriva-Bou et al [29] illus-
trate the significant seasonal variation in energy-
for-water demand, suggesting a necessary inclusion
of these data. Additionally, Slagstad and Brattebø
[30] utilize primary data including fuel oil demand
and biogas production in their LCA study, while
Spang and Loge [31] evaluate energy intensity at a
sub-annual timescale for seasonal adaptation and
decision-making. In this review, we do not expli-
citly evaluate the temporal nature of the data beyond
cataloging the number of sub-annual analyses due to
the relatively small sample size of reviewed studies.
Energy reduction goals could be more easily achieved
if data from studies with primary sources were more
accessible.
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3.3. Citing data
During the systematic review, there were three inter-
esting themes associated with sources and citation of
data: (i) use of technical reports, (ii) misattribution
of sources and data, and (iii) data in review studies.
These three themes were common throughout mul-
tiple reviewed studies.

First, there was minimal repeated citing of sec-
ondary literature. Authors tend to cite their previ-
ous papers or major review papers, such as Plappally
and Lienhard [16], and not necessarily reference pre-
viously published, peer-reviewed literature. Instead,
many studies rely upon data from technical reports.
Themain technical reports cited originate out of three
countries: the United States, Australia, and China,
corresponding to the countries in which most of the
studies have occurred (see figure 4). Table 1 describes
the main reports used in energy-for-water studies,
their location of origin, and year published. The use of
technical reports as a main source of data shows their
value to the field of the energy-water nexus. While
we did not specifically review technical reports in the
systematic review, we evaluate cited technical reports
as sources of data for published studies. Technical
reports often provide data in a well-constructed and
easily identifiable manner. For example, a study that
assesses the energy intensity of water across a large
region, such as the western United States, would have
been substantially more difficult without the utiliza-
tion of a national report [32], requiring data collec-
tion from hundreds or thousands of municipal water
utilities.

Additionally, technical reports provide an oppor-
tunity to translate data from other languages to an
additional audience, such as English. For example,
the urban water supply yearbooks of China are pub-
lished in Mandarin, posing a barrier to access for
non-Mandarin literates that ismitigated through sub-
sequent citation and publication in English or other
languages. The supplementary information of Lam
et al [17] similarly shows a number of non-English
technical reports made accessible through translation
and publication.

While the use of technical reports is prevalent in
the field, this type of data comes with its own distinct
set of challenges. Data aggregation, which often hap-
pens in broad technical reports, reduces data resol-
ution and the distribution of variability in the data.
Such is the case for national case studies of data like
the Electric Power Research Institute report, table 1.
Additionally, these technical reports are location spe-
cific and often are not frequently updated, leading to
outdated and misapplied data.

Second, through the systematic review of the lit-
erature, there were several instances of misattribu-
tion of data both through sources and geographical
location. Cited data sometimes would not reference
the original source and instead reference another
paper, which, in turn, referenced the original data.

This trend is especially evident in the citation of
review papers for data, but was also visible in non-
review papers. Misattribution of data was found in
several reviewed studies associated with using data
from a different geographical region, which could
potentially be compounded and distort estimations
and the decision-making power of the analysis. There
are significant variations of embedded or operational
energy in water resources even within a country and
using non-country specific data introduces challenges
and uncertainties in the results. However, the use of
data from another geographic location might be the
only viable option for an order of magnitude estimate
when no local data are available.

Finally, review papers accounted for 22 of the 172
papers analyzed. It was important to consider review
papers as part of this systematic review as they provide
important insights into the state of the field and the
availability of data. In most fields, literature review
papers focus predominantly on reporting and analyz-
ing peer-reviewed literature. However, a significant
number of references in the energy-for-water review
papers were not from peer-reviewed sources. Approx-
imately 30% of the references in these review papers
were fromnon-peer reviewed sources, including tech-
nical reports, data from utility websites, etc. Includ-
ing technical reports within a review paper provides
another pathway for exposing data to researchers,
but comes with limitations on data aggregation and
misattribution. Through the review papers and the
overall systematic review process, we recognize the
importance of technical reports in the field of the
energy-water nexus.

4. Geographical analysis

As part of this systematic review, we identified the loc-
ations where energy-for-water studies are occurring
and fromwhere the research is originating. Of the 172
papers that were analyzed, energy-for-water studies
occurred in 34 countries with most of the reviewed
studies occurring in three countries, figure 4. The
United States, China, and Australia were the predom-
inant locations of research,with studies in these coun-
tries ranging from the city to the regional and country
scale. A few of the articles considered in our analysis
evaluated multi-country regions including Europe
[33, 24], the Middle East and North Africa (MENA)
[34, 35], and Cooperation Council for the Arab States
of the Gulf [36]. Several studies also compared cit-
ies or regions from multiple countries [17, 37–41].
Lam et al [17] is notably comprehensive in comparing
40 cities across 13 countries, including a visualization
of annual changes across multiple years for several of
these cities.

There were 11 countries that had at least 4 differ-
ent published energy-water nexus studies. The data
sources associated with each of the 11 countries were
largely varied. Italy, Norway, Australia, South Africa,

6
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Table 1. The reviewed literature references several common technical reports for data from three main countries.

Location Name of technical report Author/organization Year

Australia Energy use in the provision and Kenway, et al 2008
consumption of urban water in Australia
and New Zealand

China Urban water supply yearbook China Urban Water 2012
Association

United States US Electricity Consumption for Water Energy Power Research 2002
Supply and Treatment—The Next Half Institute
Century
Energy Index Development for American Water Works 2007
Benchmarking Water and Wastewater Association Research
Utilities Foundation

California (US) California’s Water–Energy Relationship California Energy 2005
Commission

Embedded energy in water studies. California Public 2010
Study 1: State-wide and regional Utilities Commission
water–energy relationship

Figure 4. Reviewed studies were geographically spread across the globe with studies evaluating the energy demands of municipal
water systems in 34 countries. A majority of the reviewed studies are located in the United States, China, and Australia. Pie charts
indicate the relative proportions of available data sources in studies conducted within countries (minimum 4 studies).

and Spain had the largest proportions of primary
data utilized within their studies (> 50% of stud-
ies). China had the lowest percentage of primary data
usage. However, this statistic is slightly misleading as
literature often cites country-wide technical reports
of reported energy and water usage. Only 24 of the 55
studies (44%) in the United States utilized primary
data, with technical reports also being a large source
of data.

5. Considering the diverse impacts of the
energy-water nexus

There are diverse impacts of urban water systems
on the surrounding environment that are not solely

captured through a lens of energy [42]. In recog-
nition of these diverse impacts and system interde-
pendencies, literature that describes urban energy-
for-water resources often includes other aspects
of the urban water cycle. For example, electricity
and energy demands of water resources are often
used as input for life-cycle assessment studies [43].
Figure 5 showcases the variety of ancillary stud-
ies and other nexus components included in the
reviewed literature. The intent of this figure is to
illustrate the breadth of the energy-water nexus and
that utility-scale operations are only part of the
discussion.

The most common inclusion was an estimation
of greenhouse gas or carbon emissions (GHG on
figure 5). This additional consideration often came

7
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Figure 5. The reviewed studies often included additional analyses, considering a broad range of other interactions, including:
embodied energy in the construction phase (EE), end-use energy-for-water demands (EU), water-for-energy (W4E), life-cycle
analyses (LCA), and carbon or greenhouse gas emissions (GHG). This figure was constructed using the UpSetR package [44]. The
additional analyses are listed in the bottom portion of the figure. The corresponding number of articles that performed these
additional analyses are represented in the bar plot. Lines connecting multiple dots show the number of reviewed studies that
included multiple additional analyses. The horizontal bar plot shows the total number of reviewed studies that included each
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in the form of identifying location-specific carbon
intensity factors and applying them to electricity
demands [45]. However, this process of assigning car-
bon footprints to electricity consumption is often
challenging due to differences in primary and sec-
ondary energy, the interconnected electricity grid,
and how renewables are treated. To capture this
variability, Siddik et al [46] analyze and capture
the variability of assigning carbon and water foot-
prints of electricity generation with various attri-
bution methods. We separate this category from
another frequently included component, life cycle
assessment (LCA), which accounts for other environ-
mental impact factors and, generally, involves a more
robust and standardized methodology [47, 48]. For a
complete discussion on the use of LCA in water sys-
tems, see Byrne et al [49].Only LCA studies that expli-
citly discuss and break out energy contributions to the
system were included in this review. Several reviewed
studies also investigated thewater demands for energy
[35, 50, 51], representing a more holistic view of
the energy-water nexus. Not included in figure 5 are
inclusions of food or energy intensity for agricultural
demand that are part of the broader food-energy-
water nexus [52, 51].

Returning to figure 1, there are two commonly
included water-related energy demands that were

excluded from of this review: embodied energy
and end-use water-for-energy. While embodied and
embedded energy are often utilized interchangeably
throughout the literature, we distinguish between
the two terminologies and define embodied energy
demands as the indirect energy consumed in either
the construction of the urban water system, energy
use by maintenance, or in the production of required
chemicals. Mo et al [53–58] provide a robust descrip-
tion of the role of embodied energy in urban water
systems. We, therefore, define embedded energy as
the operational energy requirements that are attrib-
uted to the production of drinking water or treatment
of wastewater resources. Energy demand in end-use
water can be found in the industrial, commercial, and
residential sectors. This energy demand often comes
in the form of water heating [16, 45] and can signific-
antly increase the assessment of water-related energy
demand [8].

6. Data challenges

6.1. Filling in missing data
A significant challenge in energy-water nexus stud-
ies is a lack of available data. Site-specific, primary
data on energy demands for water resources are
scarce, even in relatively data-abundant countries
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[10]. These data often have to be requested from
municipal authorities or other governing bodies and
can be associated with concerns over privacy and
data sharing [10]. Recognizing these challenges in
procuring data, research studies often must turn to
other sources for estimating energy demand of water
utilities. During the review, we noticed three com-
mon practices for filling in missing data: (i) substitu-
tion, (ii) estimations, and (iii) cost estimations. Each
of these practices is associated with varying degrees
of uncertainty but were utilized in the place of site-
specific information.

The first practice, substitution, often involved
utilizing data from technical reports from different
geographic locations. For example, there are two tech-
nical reports on energy demands of water resources
in California. Both of these reports were heavily
cited and were utilized for data in multiple studies.
Reviewed studies using these California data ranged
from India to Spain [38, 9]. The State of Califor-
nia has been extensively studied with respect to its
energy demand for water resources [45, 59–61] and
presents an interesting case study. However, there are
large water transfer projects for Southern California
that inflate energy demands for the region, which
could potentially skew results in the subsequent stud-
ies. Assuming a singular value for energy intensity of
delivered water, especially in arid regions, can be sig-
nificantly inaccurate if applied generally [61]. Addi-
tionally, multiple reviewed studies that compare large
numbers of cities show the wide range of embedded
or operational energy within even neighboring water
systems [11, 12, 17].

Next, estimations are utilized for the purposes of
groundwater pumping or conveyance. These estim-
ations are based on the theoretical energy to move
a unit of water a vertical distance or through a
length of pipe. These modeled values represent best
engineering estimates. However, they do not account
for varying pipe and pump conditions, potentially
propagating uncertainties in subsequent analyses.
These assumption do provide the ability to forecast
changing energy demands from depleting groundwa-
ter resources.

Finally, some reviewed studies estimate energy
consumption using operational costs and an assumed
price for energy. Several studies cited energy con-
sumption as a significant operational cost associated
with water treatment facilities [37, 62]. Therefore,
by utilizing a price of electricity towards an opera-
tional budget, an estimation of the total electricity
consumption can be determined. While 73% of the
reviewed studies evaluated only include electricity
demand as water-related energy demand, there are
other energy demands associated with water treat-
ment, including natural gas [11]. Therefore, this
method has considerable uncertainty, especially if
the utility has a variable pricing structure for pur-
chasing electricity from the grid, generates their

own power, or has significant other operational
expenses.

6.2. The challenges and necessity of data
normalization
One of the main challenges associated with report-
ing water-related energy demands comes in the form
of normalization. There is no standard approach
throughout literature to describe and present the
energy demands of water resources. Literature has
broken down these energy demands per unit process
[48], per capita [48, 17], per user [48], per popu-
lation equivalent (for wastewater) [24], or without
any normalization [63]. The most commonmeans of
normalization, however, comes in the form of energy
per volume of water treated/distributed [8, 11].
Normalization of data promotes comparison and
benchmarking by evaluating the scale of energy
demands relative to other locations. However, there
are concerns of information loss associated with these
strategies. For example, simply normalizing energy
demand based on water volume does not indicate
efficiencies of scale or give indications on the size of
the treatment facility. Similarly, normalizing energy
demand on a per capita basis provides an understand-
ing of potential impacts based on population growth,
but does not allow for understanding the implications
of water conservation. Therefore, while it is import-
ant to normalize data for comparison and categoriz-
ing impacts, it is also necessary to provide raw data to
support these normalizations and allow for the reuse
of data in subsequent analyses.

7. Discussion: future directions of the
energy-water nexus

There are distinct opportunities available to pro-
mote the future of the energy-water nexus, but these
goals require actionable decisions, legislative support,
and increased data availability. Several studies remark
on the strong contribution of literature analyzing
California’s energy-water nexus [64, 65] to research
across the globe. California’s contribution is a res-
ult of recent legislation and data strategies that have
strengthened and supported joint management of
the two resources due to the region’s water scarcity
concerns and large intrastate water transfer projects.
Through this analysis on data and the joint man-
agement of water and energy in cities, we suggest
two main thrusts of research and policy to facilit-
ate the future of the energy-water nexus: (i) creating
actionable decisions through scenario analysis and
(ii) promoting data for benchmarking and life-cycle
assessments.

Nine reviewed studies evaluated future scenarios
of energy demand on water resources for their study
region. These studies ranged from the United King-
dom of Great Britain and Northern Ireland to South
Africa to the United States [66–68] and help inform
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both energy intensity and carbon intensity changes
to water resources. For example, Amores et al [69]
evaluated the energy intensity of different water
supply plans using scenarios. Scenario-based stud-
ies provide important decision-making strategies for
policy implementation by showcasing future possibil-
ities and potential system or resource vulnerabilities.
Future energy-for-water analyses have an opportun-
ity to use various decision-making strategies to influ-
ence policy. Additionally, the incorporation of cli-
mate uncertainty and energy transitions in scenario-
based analyses has the potential to be influential in
policy development [70, 71].

Accessible and reproducible data are critical in
further benchmarking the energy intensity of urban
water resources. Available data have been highlighted
throughout this manuscript. However, these data
were often challenging to identify within some of
the reviewed studies. For example, Mizuta and Shi-
mada [63] considered multiple years and locations of
wastewater energy intensity across Japan; however, it
was difficult to disaggregate which datum was associ-
ated with location. While the analysis and data util-
ized were robust, the data were minimally reprodu-
cible. This relative inaccessibility of published energy
data was characteristic across many of the evaluated
studies. In certain contexts, these raw data might be
perceived as sensitive or critical information [10].
However, there are additional variables that might be
used in lieu of primary data to inform energy con-
sumption, such as facility size, treatment processes,
quality and type of source water, etc. These bench-
marks, in turn, inform decision-makers and reveal
potential system inefficiencies. Energy consumption
of water and wastewater resources was widely cited
as a major contributor to the direct carbon foot-
prints of the facilities. As such, energy data play an
important role in developing life-cycle assessments
that are widely utilized in assessing the impacts of
urban water resources [49]. Additionally, locally-
specific data, which are predicated on accessible and
refined data, further aid the endeavors of life-cycle
assessment and decreasing uncertainty.

In summary, there is a general trend both in lit-
erature and policy that a better understanding of
energy and water interdependencies is a priority [64].
The breadth of literature available on water-related
energy demand suggests a need for further data col-
lection and availability to account for vital urban
water resources and their energy requirements [10].
A centralized database or collaborative space for shar-
ing specific energy-for-water data would enable both
the advancement of academic research and critical
benchmarking for enhanced energy efficiency [11].
There are also possibilities to extend this type of
database beyond the utility-scale to include energy
demands for the end use of water or non-operational
water utilities, as identified in figure 1. Further
work on the nexus should facilitate an openness of

data where applicable. There are opportunities for
researchers to collaborate and promote a centralized
repository of these data that fills knowledge gaps
around the globe. The future of the energy-water
nexus is predicated upon promoting open data and
actionable policy suggestions using scenario-based
analysis for decision-making support.
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