
An Analysis of Delay in Live 360° Video Streaming Systems
Jun Yi1, Md Reazul Islam1, Shivang Aggarwal2

Dimitrios Koutsonikolas2, Y. Charlie Hu3, Zhisheng Yan1
1 Georgia State University,2 University at Buffalo, SUNY, 3 Purdue University

ABSTRACT
While live 360° video streaming provides an enriched viewing expe-
rience, it is challenging to guarantee the user experience against the
negative effects introduced by start-up delay, event-to-eye delay,
and low frame rate. It is therefore imperative to understand how
different computing tasks of a live 360° streaming system contribute
to these three delay metrics. Although prior works have studied
commercial live 360° video streaming systems, none of them has dug
into the end-to-end pipeline and explored how the task-level time
consumption affects the user experience. In this paper, we conduct
the first in-depth measurement study of task-level time consump-
tion for five system components in live 360° video streaming. We
first identify the subtle relationship between the time consumption
breakdown across the system pipeline and the three delay metrics.
We then build a prototype Zeus to measure this relationship. Our
findings indicate the importance of CPU-GPU transfer at the cam-
era and the server initialization as well as the negligible effect of
360° video stitching on the delay metrics. We finally validate that
our results are representative of real world systems by comparing
them with those obtained with a commercial system.

CCS CONCEPTS
• Information systems →Multimedia information systems.

KEYWORDS
Live 360° video streaming; prototype design; measurement study

ACM Reference Format:
Jun Yi, Md Reazul Islam, Shivang Aggarwal, Dimitrios Koutsonikolas, Y.
Charlie Hu, Zhisheng Yan. 2020. An Analysis of Delay in Live 360° Video
Streaming Systems. In Proceedings of the 28th ACM International Conference
on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3394171.3413539

1 INTRODUCTION
Live video streaming services have been prevalent in recent years [3].
With the emergence of 360° cameras, live 360° video streaming is
emerging as a new way to shape our life in entertainment, online
meetings, and surveillance. A recent study shows that about 70%
of users are interested in streaming live sports in 360° fashion [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413539

Delay is critical to live video streaming. Different delay metrics
have various impacts on user experience. Complex initialization
between a client and a server may lead to an excessive start-up
delay, which decreases users’ willingness to continue the viewing.
The start-up delay may in turn result in a long event-to-eye delay,
i.e., the time interval between the moment an event happens on
the remote scene and the moment when the event is displayed on
the client device. Long event-to-eye delay causes significant lags
in streaming of live events such as sports, concerts, and business
meetings. Moreover, the frame rate of a live video is determined by
how fast frames can be pushed through the system pipeline. A low
frame rate would make the video playback not smooth.

Guaranteeing user experience in 360° live video streaming against
the above negative effects of delay is especially challenging. First,
compared to regular videos, live 360° videos generate far more data
and require additional processing steps to stitch, project, and dis-
play the omnidirectional content. Second, the aforementioned delay
metrics have an independent effect on user experience. For exam-
ple, a short event-to-eye delay does not guarantee a high frame
rate. To prevent undesirable user experience caused by delays, a
key prerequisite is to understand how different components of a
live 360° streaming system contribute to the three delay metrics. In
particular, we must answer the following questions: (1) what tasks
does a live 360° video streaming system have to complete, and (2)
how does the time spent on each task affect user experience?

While a number of measurement studies have been conducted
on regular 2D live video streaming [26, 30, 31], the delay of live 360°
video streaming has not been well understood. Recent works in 360°
video streaming focused on rate adaptation algorithms [15–17, 24]
and encoding/projectionmethods [18, 23, 35]. The only two existing
measurement studies on live 360° videos [22, 33] were performed
on commercial platforms; both were only able to treat the system as
a black box and performed system-level measurements. They were
not able to dissect the streaming pipeline to analyze how each task
of a live 360° video streaming system contributes to the start-up
delay, event-to-eye delay, and frame rate.

In this paper, we aim to bridge this gap by conducting an in-depth
measurement study of the time consumption across the end-to-end
system pipeline in live 360° video streaming. Such an analysis can
pinpoint the bottleneck of a live 360° video streaming system in
terms of different delay metrics, thus prioritizing the system opti-
mization efforts. To our best knowledge, the proposed measurement
study is the first attempt to understand the task-level time consump-
tion across the live 360° video streaming pipeline and their impacts
on different delay metrics and user experience.

Performing such a measurement study is non-trivial because
commercial live 360° video streaming platforms are usually imple-
mented as a black box. The closed-source implementation makes it

https://doi.org/10.1145/3394171.3413539
https://doi.org/10.1145/3394171.3413539

almost impossible to measure the latency of each computing task di-
rectly. To tackle this challenge, we build a live 360° video streaming
research prototype, called Zeus, using publicly available hardware
devices, SDKs, and open-source software packages. Composed of
five components – a 360° camera, camera-server transmission, a
video server, server-client transmission, and a video client, Zeus
can be easily replicated for future live 360° video streaming studies
in areas such as measurement, modeling, and algorithm design.

Using Zeus, we evaluate micro-benchmarks to measure the time
consumption of each task in all five system components. Our mea-
surement study has three important findings. First, video frame
copying between the CPU and GPU inside the camera consumes
non-negligible time, making it a critical task towards achieving a
desired frame rate on the camera (typically 30 frames per second,
or fps). Second, stitching a 360° video frame surprisingly has only a
minor effect on ensuring the frame rate. Third, server initialization
before live streaming 360° videos is very time-consuming. The long
start-up delay leads to a significant event-to-eye delay, indicating
an annoying streaming lag between what happens and what is dis-
played. Overall, the camera is the bottleneck for frame rate whereas
the server is the obstacle for low start-up and event-to-eye delay.

Because of the implementation differences between Zeus and
commercial live 360° video streaming platforms, the absolute val-
ues of the results obtained with Zeus may potentially differ from
those measured on commercial platforms. Therefore, we further
perform measurements on a commercial system, built using Ricoh
Theta V and YouTube, treating it as a black box and compare its
component-level time consumption to the values obtained with
Zeus. We observe that the time consumption of each component in
Zeus has a strong correlation with that of the commercial system,
suggesting that our findings can be generalized to real-world live
360° video streaming systems.

In summary, our contributions can be summarized as follows.
• We identify the diverse relationship between the time con-
sumption breakdown across the system pipeline and the
three delay metrics in live 360° video streaming (Section 4).

• We build an open research prototype Zeus1 using publicly
available hardware and software to enable task-level delay
measurement. The methodology for building Zeus can be
utilized in future 360° video research (Section 5).

• We leverage Zeus to perform a comprehensive measurement
study to dissect the time consumption in live 360° video
streaming and understand how each task affects different
delay metrics (Section 6).

• We perform a comparison of Zeus against a commercial
live 360° video streaming system built on Ricoh Theta V
and YouTube and validate that our measurement results are
representative of real world systems (Section 7).

2 RELATEDWORK
Regular live video streaming. Siekkinen et al. [26] studied user
experience on mobile live video streaming and observed that video
transmission time is highly affected by live streaming protocols.
Researchers [25, 28] studied encoding methods to reduce the trans-
mission time introduced by bandwidth variance. Although these
1https://github.com/junyiwo/Zeus

works are beneficial to regular live video streaming, the observa-
tions cannot be applied to 360° videos because multiple video views
and extra processing steps of the live 360° video streaming.

360° video-on-demand streaming. Zhou et al. [35] studied the
encoding solution and streaming strategy of Oculus 360° video-on-
demand (VoD) streaming. They reverse-engineered the offset cubic
projection adopted by Oculus which encodes a distorted version of
the spherical surface and devotes more information to the view in
a chosen direction. Previous studies also showed that the delay of
360° VoD streaming affects viewport-adaptive streaming algorithms
[19, 20] and the rendering quality. Despite all efforts on 360° VoD
measurement studies, none of them considers the 360° camera and
the management of a live streaming session, which are essential
components in 360° live video streaming. Thus, these works provide
limited insight to live 360° video streaming.

Live 360° video streaming. Jun et al. [33] investigated the
YouTube platform for up to 4K resolution and showed that viewers
suffer from a high event-to-eye delay in live 360° video streaming.
Liu et al. [22] conducted a crowd-sourced measurement on YouTube
and Facebook. Their work verified the high event-to-eye delay and
showed that viewers experience long session stalls. Chen et al. [15]
proposed a stitching algorithm for tile-based live 360° video stream-
ing under strict time budgets. Despite the improved understanding
of commercial live 360° video streaming platforms, none of the
existing studies dissected the delay of a live 360° streaming pipeline
at the component or task level. They failed to show the impacts
of components/tasks on delay metrics (start-up, event-to-eye, and
frame rate). Our work delves into each component of a canonical
live 360° video system and presents an in-depth delay analysis.

3 CANONICAL SYSTEM ARCHITECTURE
In live 360° video streaming, a 360° camera captures the surrounding
scenes and stitches them into a 360° equirectangular video frame.
The 360° camera is connected to the Internet so that it can upload
the video stream to a server. The server extracts the video data
and keeps them in a video buffer in memory. The server will not
accept client requests until the buffered video data reach a certain
threshold. At that time, a URL to access the live streaming session
will become available. Clients (PCs, HMDs, and smartphones) can
initiate the live streaming via the available URL. The server first
builds a connection with the client and then streams data from the
buffer. Upon receiving data packets from the server, the client will
decode, project, and display 360° video frames on the screen.

As shown in the system architecture in Figure 1, the above work-
flow can be naturally divided into five components – a camera,
camera-server transmission (CST), a server, server-client transmis-
sion (SCT), and a client. These components must complete several
computing tasks in sequence.

First, the 360° camera completes the following tasks.

• Video Capture obtains multiple video frames from regular
cameras and stores them in memory.

• Copy-in transfers these frames from the memory to the GPU.
• Stitching utilizes the GPU to stitch multiple regular video
frames into an equirectangular 360° video frame.

• Copy-out is the process of transferring the equirectangular
360° video frame from the GPU to the memory.

Figure 1: The architecture of live 360° video streaming and the tasks of the 5 sys-
tem components. The top rectangle shows one-time tasks whereas the 5 bottom
pipes show the pipeline tasks that must be passed through for every frame.

Figure 2: The Zeus prototype.

• Format Conversion leverages the CPU to convert the stitched
RGB frame to the YUV format.

• Encoding is the task that compresses the YUV equirectangu-
lar 360° video frame using an H.264 encoder.

Then the CST component, e.g., WiFi plus the Internet, delivers
data packets of the 360° video frame from the camera to the server.

Next, the following tasks are accomplished at the server.
• Connection is the task where the server builds a 360° video
transfer connection with the client after a user clicks the live
streaming URL.

• Metadata Generation and Transmission is the process of pro-
ducing a metadata file for the live 360° video and sending it
to the client.

• Buffering and Packetization is the process where the video
data wait in the server buffer, and then, when they are moved
to the buffer head, the server packetizes them for streaming.

The SCT component will then transmit data packets of the 360°
video from the video server to the video client.

Finally, the client completes the tasks detailed below.
• Decoding converts the received packets into 360° video frames.
• Rendering is a special task for 360° videos that projects an
equirectangular 360° video frame into a spherical frame and
then renders the pixels of the selected viewport.

• Display is the process for the client to send the viewport
data to the display buffer and for the screen to refresh and
show the buffered data.

It should be emphasized that the connection and metadata gen-
eration and transmission are one-time tasks for a given streaming
session between the server and a client, whereas all other tasks are
pipeline tasks that must be passed through for every video frame.

4 DISSECTING DELAY METRICS
In this section, we identify three main delay metrics that affect
user experience and explain how they are affected by the time
consumption for different components, denoted by the length of
each pipe as shown in Figure 1.

Start-up delay. This is the time difference between the moment
when a client sends a streaming request and the moment when the
first video frame is displayed on the client screen. An excessive
start-up delay is one primary reason that decreases users’ will-
ingness to continue video viewing [13]. Formally, given the time

consumption for the one-time connection and metadata genera-
tion and transmission 𝑇𝑠𝑟 𝑣,𝑜𝑛𝑐𝑒 , the server-client transmission of
a frame 𝑇𝑠𝑐𝑡 , and the time to process and display a frame on the
client device 𝑇𝑐𝑙𝑛𝑡 , the start-up delay 𝐷𝑠𝑡𝑎𝑟𝑡 can be expressed as,

𝐷𝑠𝑡𝑎𝑟𝑡 = 𝑇𝑠𝑟 𝑣,𝑜𝑛𝑐𝑒 +𝑇𝑠𝑐𝑡 +𝑇𝑐𝑙𝑛𝑡 (1)
The time consumption in the camera and camera-server trans-

mission does not affect the start-up delay. This is attributed to the
system architecture where the live streaming will not be ready until
the server buffers enough video data from the camera. Therefore,
there should have been video frames already in the server before a
streaming URL is ready, and a client request is accepted.

Event-to-eye delay. This is the time interval between the mo-
ment when an event occurs on the camera side and the moment
when the event is displayed on the client device. A long event-to-
eye delay will make users perceive a lag in live broadcasting of
sports and concerts. It will also decrease the responsiveness of real-
time communication in interactive applications such as teleconfer-
ences. It is evident that all tasks in live 360° streaming contribute to
the event-to-eye delay 𝐷𝑒𝑣𝑒𝑛𝑡−𝑡𝑜−𝑒𝑦𝑒 . After camera capture, video
frames must go through and spend time at all system components
before being displayed on the screen, i.e.,
𝐷𝑒𝑣𝑒𝑛𝑡−𝑡𝑜−𝑒𝑦𝑒 = 𝑇𝑐𝑎𝑚 +𝑇𝑐𝑠𝑡 +𝑇𝑠𝑟 𝑣,𝑜𝑛𝑐𝑒 +𝑇𝑠𝑟 𝑣,𝑝𝑖𝑝𝑒 +𝑇𝑠𝑐𝑡 +𝑇𝑐𝑙𝑛𝑡 (2)

where 𝑇𝑐𝑎𝑚 , 𝑇𝑐𝑠𝑡 , 𝑇𝑠𝑟 𝑣,𝑝𝑖𝑝𝑒 are the time consumption of a frame on
the camera, camera-server transmission, and the pipeline tasks in
the server (buffering and packetization). Note that although the
one-time connection and metadata tasks are not experienced by all
frames, their time consumption will be propagated to subsequent
frames, thus contributing to the event-to-eye delay.

Frame rate. This indicates how many frames per unit time can
be processed and pushed through the components in the system
pipeline. The end-to-end frame rate of the system, 𝐹𝑅, must be
above a threshold to ensure the smoothness of video playback on
the client screen. It is determined by theminimum frame rate among
all system components and can be formally represented as follows,

𝐹𝑅 = min{𝐹𝑅𝑐𝑎𝑚, 𝐹𝑅𝑐𝑠𝑡 , 𝐹𝑅𝑠𝑟 𝑣, 𝐹𝑅𝑠𝑐𝑡 , 𝐹𝑅𝑐𝑙𝑛𝑡 } (3)
where 𝐹𝑅𝑐𝑎𝑚, 𝐹𝑅𝑐𝑠𝑡 , 𝐹𝑅𝑠𝑟 𝑣, 𝐹𝑅𝑠𝑐𝑡 , 𝐹𝑅𝑐𝑙𝑛𝑡 are the frame rate of each
system component. It is important to note that the frame rate of
a component, i.e., how many frames can flow through the pipe
per unit time, is not necessarily the inverse of the per-frame time
consumption on that component if multiple tasks in a component
are executed in parallel by different hardware units. As illustrated

in Figure 1, the end-to-end frame rate is determined by the radius
rather than the length of each pipe.

Dissection at the task level. Since the tasks within each com-
ponent are serialized, the time consumption and frame rate for each
component (e.g., 𝑇𝑐𝑎𝑚) can be dissected in the same way as before.
We omit the equations due to page limit.

5 THE ZEUS RESEARCH PROTOTYPE
Commercial live 360° video streaming systems are closed-source
and there is no available tool to measure the latency breakdown of
commercial cameras (e.g., Ricoh Theta V), servers (e.g., Facebook),
and players (e.g., YouTube) at the task level. To enablemeasuring the
impact of the time consumption at the task level on live 360° video
experience, we build a live 360° video streaming system prototype,
Zeus, shown in Figure 2, as a reference implementation to the
canonical architecture. We build Zeus using only publicly available
hardware and software packages so that the community can easily
reproduce the reference implementation for future research.

Hardware design. The 360° camera in Zeus consists of six Go-
Pro Hero cameras ($400 each) [10] held by a camera rig and a laptop
serving as the processing unit. The camera output is processed by
six HDMI capture cards and then merged and fed to the laptop via
three USB 3.0 hubs. The laptop has an 8-core CPU at 3.1 GHz and
an NVIDIA Quadro P4000 GPU, making it feasible to process, stitch,
and encode live 360° videos. The video server runs Ubuntu 18.04.3
LTS. The client is a laptop running Windows 10 with an Intel Core
i7-6600U CPU at 2.6 GHz and an integrated graphics card.

Software design. The six cameras are configured in the Super-
View mode to capture wide-angle video frames. We utilize the VR-
Works 360 Video SDK [5] to capture regular video frames in a
pinned memory. To reduce the effects of camera lens distortion dur-
ing stitching, we first utilize the OpenCV function cv.fisheye.ca-
librate() and the second-order distortion model [1] to calculate
camera distortion parameters [34]. Video frames are then calibrated
during stitching to guarantee that the overlapping area of two ad-
jacent frames will not be distorted. We copy the frames to the GPU
via cudaMemcpy2D() and use nvssVideoStitch() for stitching. Fi-
nally, we use FFmpeg for encoding and streaming the 360° video.
We use Real-Time Message Protocol (RTMP) in the camera to push
the live video for low-delay transmission. This is similar to most
commercial cameras, e.g., Ricoh Theta V and Samsung Gear 360.

For the video server, we run a Nginx-1.16.1 server. We use the
HTTP-FLV protocol to stream the video from the server to the client
because it can penetrate firewalls and is more acceptable by web
servers, although other popular protocols, e.g., HLS, could have also
been used. The HLS protocol consumes time for chopping a video
stream into video chunks with different video quality, thus the start-
up delay might be higher. To enable the server to receive RTMP live
video streams from the 360° camera and deliver HTTP-FLV streams
to the client, Nginx is configured as nginx-http-flv-module [2].

We design an HTML5 based video client using FLV.js, a flash-
based module written in JavaScript. Three.js is used to fetch a
video frame from Flv.js and project it onto the sphere format using
render(). The sphere video frame is stored at the HTML5 element
<canvas>, which will be displayed on webpages. The client is em-
bedded in a Microsoft Edge browser with hardware acceleration
enabled to support the projection and decoding.

Measuring latency. We can measure the time consumption of
most tasks by inserting timestamps in Zeus. The exceptions are
the camera-server transmission (CST) and server-client transmis-
sion (SCT), where the video stream is chunked into packets for
delivery since both the RTMP and HTTP protocols are built atop
TCP. As frame ID is not visible at the packet level, we cannot iden-
tify the actual transmission time of each frame individually. We
instead approximate this time as the average time consumption
for transmitting a video frame in CST and SCT. For example, for
the per-frame time consumption of CST, we first measure the time
interval between the moment when the camera starts sending the
first frame using stream_frame() and themoment when the server
stops receiving video data in ngx_rtmp_live_av(). We then divide
this time interval by the number of frames transmitted.

6 RESULTS
In this section, we report the time consumption of the tasks across
system components and discuss their effects on the start-up de-
lay, event-to-eye delay, and frame rate. We also evaluate the time
consumption of the tasks under varying impact factors to expose
potential mitigation of long delay that affects user experience.
6.1 Experimental setup
We carry out the measurements inside a typical lab environment
located in a university building, which hosts the camera and the
client. We focus on a single client in this paper and leave multiple-
client scenarios as future work. To mimic the real-world conditions
experienced by commercial 360° video systems, we place the server
at another university campus over 800 miles away. Although the
camera and the client are in the same building, this does not affect
the results significantly as the video data always flows from the
camera to the server and then to the client.

The camera is fixed on a table so that the video content generally
contains computer desks, office supplies, and lab personnel. By
default, each GoPro camera captures a 720p regular video, and the
stitched 360° video is configured as 2 Mbps with the resolution
ranging from 720p to 1440p (2K). We fix the resolution during a
session and do not employ adaptive streaming because we want to
focus on the most fundamental pipeline of live 360° video streaming
without advanced options. The frame rate of videos is fixed at 30
fps. The Group of Pictures (GOP) value of the H.264 encoder is
set as 30. A user views the live 360° video using a laptop client. A
university WiFi is used for the 360° camera to upload the stitched
video and for the video client to download the live video stream.
The upload and download bandwidth of the university WiFi are 16
Mbps and 20 Mbps, respectively. For each video session, we live
stream the 360° video for 2 minutes and repeat this 20 times. The
average and standard deviation of the results are reported.

6.2 360° Camera
6.2.1 Video Capture Task. We vary the resolutions of the captured
regular videos and show the video capture time in Figure 3. The
video capture time is short in general. It takes 1.68 ms to capture six
480p video frames and 2.05 ms for six 720p frames. Both resolutions
provide abundant details for stitching and are sufficient to generate
360° videos ranging from 720p to 1440p that are currently supported
in today’s live 360° video platforms [9, 14]. While capturing six

Figure 3: Video capture time
versus capture resolutions.

Figure 4: Copy-in time from
different memory locations.

Figure 5: Copy-out time from
different memory locations.

Figure 6: Frame stitching
time vs. stitching options.

1080p and 1440p regular frames would consume more time, such
high resolutions of input regular videos are typically not required
in current live 360° video applications.

6.2.2 Copy-in and Copy-out Tasks. Figures 4-5 show that the CPU-
GPU transfer time is non-negligible. It takes 6.28 ms to transfer six
720p video frames from pinned memory to GPU before stitching
and as high as 20.51 ms for copying in six 1440p frames. The copy-
out time is shorter than the copy-in time, taking 2.33 ms for a 720p
360° frame using the pinned memory and 4.47 ms using the page-
able memory. This is because the six 2D regular frames have been
stitched into one 360° frame, which reduces the amount of video
data to be transferred. The results indicate that transferring video
data for GPU stitching does introduce extra processing and such
overhead can only be justified if the stitching speed in the GPU is
superior. Moreover, it is evident that pinned memory is preferred in
CPU-GPU transfer. Pinned memory can directly communicate with
the GPU whereas pageable memory has to transfer data between
the GPU and the CPU via the pinned memory.

6.2.3 Stitching Task. Wemeasure the stitching time using different
stitching quality options in the VRWorks 360Video SDK, which
execute different stitching algorithms. For example, “high stitching
quality” applies an extra depth-based mono stitching to improve the
stitching quality and stability. Surprisingly, the results in Figure 6
show that stitching time is not a critical obstacle compared to the
CPU-GPU transfer. It takes as low as 1.98 ms for stitching a 720p
equirectangular 360° video frame with high stitching quality and
6.98 ms for a 1440p frame. This is in sharp contrast to previous 360°
video research [21, 27] that stressed the time complexity of live 360°
video stitching and proposed new stitching methods to improve
the stitching speed. The short stitching time is attributed to the fact
that, given the fixed positions of six regular cameras, modern GPUs
and GPU SDKs can reuse the corresponding points between two

Figure 7: Format conversion
time vs. stitching options.

Figure 8: Encoding time un-
der different bitrates.

adjacent 2D frames for stitching each 360° frame without having to
recalculate the overlapping areas for every frame.

6.2.4 Format Conversion Task. Figure 7 shows the time consump-
tion for converting the stitched 360° frame to YUV format before
encoding. This time is 3.75 ms for a 720p video frame and it is
increased to 10.86 ms for a 1440p frame. We also observe that the
stitching quality has a negligible effect. This is because format con-
version time is primarily determined by the number of pixels to be
converted rather than the choice of stitching algorithms.

6.2.5 Encoding Task. Figure 8 illustrates the encoding time under
different encoding parameters. As expected, encoding time is one
of the major tasks in the camera. Encoding a 1440p 360° frame at 2
Mbps consumes 20.74 ms on average; the encoding time is reduced
to 15.35 ms when the resolution is 720p as fewer pixels need to
be examined and encoded. We also observe that decreasing the
bitrate by 1 Mbps can result in a 16.68% decrease in the encoding
time. To achieve a lower bitrate in an encoder, a larger quantization
parameter (QP) is typically used to produce fewer non-zero values
after the quantization, which in turn reduces the time to encode
these non-zero coefficients. Given the importance of encoding in
the overall camera time consumption, a tradeoff between frame
rate and encoding quality must be struck in the camera.

Furthermore, it is interesting to see that the encoding time in-
creases as the GOP increases, and then it starts decreasing once
the GOP reaches a certain threshold. Increasing the GOP length
enforces the encoder to search more frames to calculate the inter-
frame residual between the I-frame and other frames, leading to a
larger encoding time. However, an I-frame is automatically inserted
at scene changes if the GOP length is too long, which will decrease
the encoding time. Our results indicate that the GOP threshold for
the automatic I-frame insertion is somewhere from 40 to 50.

6.2.6 Impact on DelayMetrics. Our camera can achieve live stream-
ing of 720p 360° videos at 30 fps, which is consistent with the per-
formance of state-of-the-art middle-end 360° cameras such as Ricoh
Theta S [12]. The camera conducts a sequence of tasks for a frame
one by one and does not utilize parallel processing. Therefore, the
frame rate of the camera output is simply an inverse of the total time
consumption of all tasks in the camera. This is consistent to our
results that the overall time consumption of camera tasks for a 720p
frame is less than 33.3 ms. Our results suggest that certain tasks
can be optimized to improve the output quality of the 360° camera.
In addition to the well-known encoding task, the optimization of
CPU-GPU transfer inside the camera is important, since this task
consumes a noticeable amount of time. On the other hand, there is

Figure 9: Encoding time of a
720p frame versus GOP.

Figure 10: CST time under
different bitrates.

Figure 11: CST time versus
upload bandwidth.

Figure 12: Jitter of packet re-
ception time.

little scope to further improve the stitching task since the current
stitching time is already low. Moreover, the parameter space of
major tasks, such as encoding and CPU-GPU transfer, should be ex-
plored to balance the frame rate and the video quality. These efforts
can potentially improve the frame rate to support live streaming of
higher-quality videos that are only offered in high-end cameras or
even unavailable in today’s markets.

Note that tens of milliseconds spent on the camera will not affect
the event-to-eye delay in equation (2) significantly. The typical
event-to-eye delay requirement for interactive applications is no
more than 200 ms [29], and it can be further relaxed to 4-5 seconds
for live broadcasting of events [32].We also reiterate that the camera
has no effect on the start-up delay as defined in equation (1).

6.3 Camera-Server Transmission
We vary the bitrate and resolution of 360° videos sent by the camera
and show the CST time in Figure 10. The transmission time over the
Internet is generally long compared to the time consumption in the
camera. It is clear that the CST time increases when the encoding
quality is higher. For example, it takes 37.83 ms to transmit a 720p
360° frame at 2 Mbps and as long as 73.23 ms for a 1440p frame.

In addition, we throttle the upload bandwidth to 2, 4, and 8 Mbps
using NetLimiter and evaluate the impact of network conditions
on the CST time given the same video bitrate of 2 Mbps. Figure 11
shows that, when the upload bandwidth is reduced to 2 Mbps, the
CST time dramatically increases to 270.79 ms for a 720p 360° frame,
286.13 ms for a 1080p frame, and 318.17 ms for a 1440p frame. We
also observe that when the upload bandwidth is 8 Mbps, the CST
time is similar to the case when there is no bandwidth throttling as
in Figure 10. This confirms that 8 Mbps is sufficient to support the
360° video transmission.

6.3.1 Impacts on Delay Metrics. The time consumption in the CST
component generally has no effect on the frame rate, since the CST
component handles video data packet by packet continuously. As

Figure 13: Connection time
under different download
bandwidths.

Figure 14: Metadata gen. and
tx timeunder different down-
load bandwidths.

long as consecutive packets are pushed back to back to the CST com-
ponent, the output frame rate of the CST will not change regardless
of the processing time of a packet. One exception might be when
the variance of the packet transmission time in the CST component
(jitter) is very large. Fortunately, Figure 12 shows that 90% of the
packets are received 2 ms after the reception of their previous pack-
ets. Thus, packets flow through the CST component continuously
and the negative effects on frame rate are not observed.

Similar to the camera, the CST component does not affect the
start-up delay. However, the large CST time plays an essential role
in satisfying the requirement of event-to-eye delay, especially when
streaming high-quality videos in live interactive applications.

Since modern WiFi (802.11ac) has sufficient bandwidth to sup-
port a reasonable CST time and stable delay jitter, future efforts
should focus on improving the transmission design in terms of the
robustness against challenged networks.

6.4 Video Server
6.4.1 Connection Task. Once enough 360° video frames are re-
ceived from the camera, the server is ready to accept a client re-
quest by proceeding to the connection task. Figure 13 shows that
the time consumption on the connection task is long, taking around
900 ms. The connection task starts with a TCP three-way hand-
shake between the client and the server which consumes tens of
milliseconds. Then the server spends the majority of time (hun-
dreds of milliseconds) preparing the initial response to the client,
which includes information about the streaming session. It creates
new threads, initializes data structures for the live video stream
management, and registers different handler functions, e.g., ngx_-
http_request_handler, for accepting the client request. Finally,
the server transmits the initial HTTP response (excluding video
data) to the client. Since the amount of data transmitted during the
connection task is small, increasing download bandwidth does not
reduce the connection time in a noticeable way.

6.4.2 Metadata Generation and Transmission Task. Figure 14 shows
the metadata generation and transmission time for download band-
width of 2, 4, and 8 Mbps. The time consumption is long because
the server must create and transmit a metadata file detailing the
format, encoding, and projection parameters of the 360° video. This
procedure includes retrieving video information from the camera,
registering functions and creating data structures, generating live
video streaming threads to build the metadata file, and sending it to
the client. Since this is not a parallel process, it takes a long time to
execute these steps. The shortest time is 1512.90 ms for a 720p video

Figure 15: SCT time under
different bitrates.

Figure 16: SCT time versus
download bandwidth.

stream under the download bandwidth of 8 Mbps. Since reducing
the bandwidth from 8 Mbps to 2 Mbps only reduces the task time
slightly, we can infer metadata generation dominates this task.

6.4.3 Buffering and Packetization Task. We found that the time
consumption for the server to buffer video data and packetize it for
downlink streaming is negligible. In other words, the server buffer
is very small in order to send out the received camera captured
frames as soon as possible. Moreover, the Nginx server utilizes
pointers to record the locations of the received video data in the
server buffer and then directly fetches the video data using the
pointers when adding FLV headers to generate HTTP-FlV packets.
No memory copy or transfer is needed for the received video data,
expediting the packetization task.

6.4.4 Impacts on DelayMetrics. Since the connection andmetadata
generation and transmission in the server occurs before any video
frames are pushed into the pipeline for streaming, they do not affect
frame rate. Given the negligible buffering and packetization time,
the end-to-end frame rate would not be impacted by the server.

However, the large time consumption of the connection and
metadata generation and transmission tasks introduces an excessive
start-up delay that may degrade the users’ retention of viewing after
initializing the video session. The start-up delay in turn yields a
long event-to-eye delay. Even though the connection and metadata
tasks occur only once, video data are accumulated in the server
buffer during the session start-up. The subsequent video frames
have to wait until previous frames are sent out, and thus, they also
experience a long event-to-eye delay. The long event-to-eye delay
can undermine the responsiveness requirement (∼ 200 ms [29])
of interactive video applications. To relieve the negative effects of
long start-up and event-to-eye delay, researchers should focus on
optimizing the workflow and data management in the server to
minimize the preparation step during the connection task.

6.5 Server-Client Transmission
Figure 15-16 show the SCT time for streaming a 360° frame from
the server to the client. The time consumption is similar to the CST
task, taking 41.07 ms for a 720p 360° frame and 74.98 ms for a 1440p
frame. This is because the camera and the client are equally far
away from the server in our setup, and both the upload bandwidth
and download bandwidth are high enough to support the video to
be streamed. Similar to the CST time, the SCT time decreases as
the video quality degrades and the download bandwidth increases.

6.5.1 Impacts on Delay Metrics. Unlike the CST component, the
SCT component is an important contributor to the start-up delay

Figure 17: Decoding time ver-
sus 360° frame resolutions.

Figure 18: Rendering time of
different hardware options.

because the first frame has to be streamed to the client before the
display. On the other hand, their impact on the event-to-eye delay
and frame rate are similar. Users will experience lag of events if
the SCT time is high. If the network conditions are not stable, the
continuous packet reception in Figure 12 may not hold for the SCT
component, resulting in a reduced frame rate.

6.6 Client
6.6.1 Decoding Task. Figure 17 shows the decoding time of a 360°
frame in the client. The decoding time is negligible; its average
value over different resolutions is 0.62 ms. Modern computers use
dedicated hardware decoder for video decoding, significantly ex-
pediting the complex decoding procedure that could have taken
much longer in the CPU.

6.6.2 Rendering Task. We show the rendering time under different
hardware configurations in Figure 18. We see that the rendering
time is also negligible, and the hardware acceleration expedites
the task. The time consumption for projecting the equirectangular
frame and rendering the viewport using GPU-based hardware ac-
celeration is 1.29 ms for a 1440p video frame, an 89.13% decrease
from the non-acceleration mode. The performance improvement is
achieved by the massive parallelism of the GPU processing. Note
that, although video frames are transferred to the client GPU for
rendering, this process is much less time consuming than the CPU-
GPU frame transfer in the camera, because a video frame is fetched
from the WiFi module to the GPU through Direct Memory Access.

6.6.3 Display Task. The display task involves two steps. First, the
viewport data are sent to the display buffer. Second, the screen
refreshes at a certain frequency to display themost recently buffered
data. We found that the time consumption for sending data to the
display buffer is negligible, and thus the display time is determined
by the refresh frequency. In our case, the screen refreshes at 60 Hz,
resulting in a 16.67 ms display time.

6.6.4 Impact on Delay Metrics. The frame rate of the client output
is the inverse of its time consumption because of the non-parallel
frame-processing similar to the camera. Although extra projection
and rendering are needed for 360° videos, the tasks of the client can
be completed with a fairly short time consumption to achieve the 30-
fps frame rate. Similarly, the client contribution to the start-up delay
and the event-to-eye delay is much less than the contribution of the
server or SCT component. We conclude that the client has minor
impacts on the user experience due to its negligible contribution
to the three delay metrics, and thus, modern 360° video clients are
ready for high-quality high-requirement applications.

Figure 19: Comparison of component time between Zeus and
a commercial system (denoted by CM).

7 CROSS VALIDATION
To confirm that the results collected by Zeus can be generalized
to commercial live 360° video streaming systems and provide in-
sight for system optimization, we conduct a cross validation by
comparing Zeus to a system using commercial products. As it is
infeasible to break down the task-level time consumption of com-
mercial products, we treat them as black boxes and compare the
component-level time consumption.

Experiment setup. The commercial system uses a Ricoh Theta
V as the camera which has an Adreno 506 GPU for 360° video
processing. An open-source plug-in [6] is installed in the camera
so that it can communicate through WiFi with the server which is
the YouTube live streaming service. For the commercial client, we
use an embedded YouTube client via IFrame APIs and install it on
the same laptop used in Zeus.

Although dissecting the time consumption of each task is infeasi-
ble on commercial products, we can utilize high-level APIs provided
by these products to measure the time consumption on each com-
ponent. We calculate the time consumption of a frame in the Ricoh
Theta V by recording the timestamps when it begins to generate
a 360° video frame (via scheduleStreaming.setSchedule()) and
when the frame transmission starts (via rtmpExtend.startSteam-
()). For the YouTube server, we monitor its status change via the
webpage interface used to configure the camera URL. We measure
the time spent on the server through the timestamps when a packet
is received in the YouTube server and when the server starts stream-
ing. The time consumption on the YouTube client can be measured
by monitoring the buffering status YT.PlayerState. To calculate
the frame transmission time on the CST and SCT components, we
record the timestamps when the first packet is sent and when the
receiver stops receiving data and then divide this time interval by
the total number of frames transmitted.

Cross-validation results. Figure 19 shows the comparison of
the time consumption across the five system components of the
two systems. We observe that the distribution of the time consump-
tion across system components on Zeus is similar to that on the
commercial system. Specifically, the time consumption in the cam-
era, camera-server transmission, and server-client transmission is
almost the same, and the server in both systems consumes signif-
icant time. We quantify the similarity between the two systems
by calculating the Pearson Correlation Coefficient (PCC) [11], the
Distance Correlation (DC) [8], and the Cosine Similarity (CS) [7]
of the time distribution across the five components. In addition to
the default static camera scenario, we further compare the moving
camera scenario, where a person holds the camera rig and walks
around while live streaming 360° videos.

Table 1: Correlation of time consumption across five compo-
nents between Zeus and the commercial system.

Motion Resolution PCC DC CS

Static
720p 0.989045 0.993842 0.990239
1080p 0.987980 0.994173 0.990135
1440p 0.987269 0.994539 0.990206

Moving
720p 0.990334 0.994896 0.992691
1080p 0.990994 0.995165 0.992799
1440p 0.992019 0.995811 0.993636

The results in Table 1 show the correlation between the two sys-
tems under static andmoving scenarios. The PCC and DC values are
larger than 0.98 in both scenarios, indicating the distribution of time
across the five components in the two systems has a strong positive
correlation. The high CS value further implies that the 5-element
vectors of component time for both systems point to roughly the
same direction, indicating that the most time-consuming compo-
nent of the two systems is the same (the server).

The strong correlation and similarity of the component-level
measurement results with the commercial live 360° video streaming
system indicate that our results with Zeus are representative of
commercial live 360° video streaming systems. Our insights can thus
be generalized to minimize the negative effects on user experience
caused by different delay metrics in such systems.

We also observe that the YouTube server consumes more time
because it handles a larger number of clients than the Zeus server.
In addition, it uses DASH that chunks and transcodes a video into
multiple versions and creates an MPD file, which also contributes
to the latency. The longer time at the YouTube client is attributed
to its larger player buffer (∼ 1500 ms) compared to Zeus (∼ 40 ms).

8 CONCLUSION AND FUTUREWORK
In this paper, we conduct the first in-depth analysis of delay across
the system pipeline in live 360° video streaming. We have identified
the subtle relationship between three important delay metrics and
the time consumption breakdown across the system pipeline. We
have built the Zeus prototype tomeasure this relationship and study
the impacts of different factors on the task-level time consumption.
We further validate that our measurement results are representative
of commercial live 360° video streaming systems.

Our observations provide vital insights in today’s live 360° video
streaming systems. First, the bottleneck of achieving a higher frame
rate is the 360° camera. While there is little space for improving
the stitching, optimizing the encoding and CPU-GPU transfer may
elevate the achievable frame rate to the next level. Second, the most
critical component to satisfy the requirement of start-up delay and
event-to-eye delay is the server. Workflow optimization and server
management can be utilized to mitigate the negative effects. In light
of these insights, future work can be focused on algorithm design in
the camera to improve frame rate and in the video server to shorten
the delays as well as to support multiple clients.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
Grant OAC–1948467.

REFERENCES
[1] 2013. Second-order intercept point. https://en.wikipedia.org/wiki/Second-order_

intercept_point.
[2] 2018. Nginx-http-flv-module. https://github.com/winshining/nginx-http-flv-

module.
[3] 2019. 47 Must-Know Live Video Streaming Statistics. https://livestream.com/

blog/62-must-know-stats-live-video-streaming.
[4] 2019. Virtual reality and 360-Degree are the future of live sports video stream-

ing. https://www.bandt.com.au/virtual-reality-360-degree-future-live-sports-
video-streaming/.

[5] 2019. VRWorks - 360 Video. https://developer.nvidia.com/vrworks/vrworks-
360video.

[6] 2019. Wireless Live Streaming. https://pluginstore.theta360.com/.
[7] 2020. Cosine Similarity. https://en.wikipedia.org/wiki/Cosine_similarity.
[8] 2020. Distance correlation. https://en.wikipedia.org/wiki/Distance_correlation.
[9] 2020. Facebook 360 Video. https://facebook360.fb.com/live360/.
[10] 2020. GoPro Hero6. https://www.aircraftspruce.com/catalog/avpages/

goprohero6.php?utm_source=google&utm_medium=organic&utm_campaign=
shopping&utm_term=11-15473.

[11] 2020. Pearson correlation coefficient. https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient.

[12] 2020. Ricoh Theta S. https://theta360.com/en/about/theta/s.html.
[13] 2020. The Video Problem: 3 Reasons Why Users Leave a Website with Badly Im-

plemented Video. https://bitmovin.com/video-problem-3-reasons-users-leave-
website-badly-implemented-video/.

[14] 2020. YouTube. https://www.youtube.com/.
[15] Bo Chen, Zhisheng Yan, Haiming Jin, and Klara Nahrstedt. 2019. Event-driven

stitching for tile-based live 360 video streaming. In Proceedings of the 10th ACM
Multimedia Systems Conference. ACM, 1–12.

[16] Xavier Corbillon, Francesca De Simone, Gwendal Simon, and Pascal Frossard.
2018. Dynamic adaptive streaming for multi-viewpoint omnidirectional videos.
In Proceedings of the 9th ACM Multimedia Systems Conference. ACM, 237–249.

[17] Xavier Corbillon, Alisa Devlic, Gwendal Simon, and Jacob Chakareski. 2017.
Optimal set of 360-degree videos for viewport-adaptive streaming. In Proceedings
of the 25th ACM international conference on Multimedia. ACM, 943–951.

[18] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017.
Viewport-adaptive navigable 360-degree video delivery. In 2017 IEEE international
conference on communications (ICC). IEEE, 1–7.

[19] Yago Sanchez de la Fuente, Gurdeep Singh Bhullar, Robert Skupin, Cornelius
Hellge, and Thomas Schierl. 2019. Delay impact on MPEG OMAF’s tile-based
viewport-dependent 360° video streaming. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 9, 1 (2019), 18–28.

[20] Adam Grzelka, Adrian Dziembowski, Dawid Mieloch, Olgierd Stankiewicz, Jakub
Stankowski, and Marek Domański. 2019. Impact of Video Streaming Delay on
User Experience with Head-Mounted Displays. In 2019 Picture Coding Symposium
(PCS). IEEE, 1–5.

[21] Wei-Tse Lee, Hsin-I Chen, Ming-Shiuan Chen, I-Chao Shen, and Bing-Yu Chen.
2017. High-resolution 360 Video Foveated Stitching for Real-time VR. InComputer
Graphics Forum, Vol. 36. Wiley Online Library, 115–123.

[22] Xing Liu, Bo Han, Feng Qian, and Matteo Varvello. 2019. LIME: understanding
commercial 360° live video streaming services. In Proceedings of the 10th ACM
Multimedia Systems Conference. ACM, 154–164.

[23] Afshin Taghavi Nasrabadi, Anahita Mahzari, Joseph D Beshay, and Ravi Prakash.
2017. Adaptive 360-degree video streaming using scalable video coding. In
Proceedings of the 25th ACM international conference on Multimedia. ACM, 1689–
1697.

[24] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. 2018. Your attention is unique:
Detecting 360-degree video saliency in head-mounted display for head movement
prediction. In 2018 ACM Multimedia Conference on Multimedia Conference. ACM,
1190–1198.

[25] Koichi Nihei, Hiroshi Yoshida, Natsuki Kai, Kozo Satoda, and Keiichi Chono. 2018.
Adaptive bitrate control of scalable video for live video streaming on best-effort
network. In 2018 IEEE Global Communications Conference (GLOBECOM). IEEE,
1–7.

[26] Matti Siekkinen, Teemu Kämäräinen, Leonardo Favario, and Enrico Masala. 2018.
Can you see what I see? Quality-of-experience measurements of mobile live video
broadcasting. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 14, 2s (2018), 1–23.

[27] Rodrigo MA Silva, Bruno Feijó, Pablo B Gomes, Thiago Frensh, and Daniel
Monteiro. 2016. Real time 360 video stitching and streaming. In ACM SIGGRAPH
2016 Posters. 1–2.

[28] Kairan Sun, Huazi Zhang, Ying Gao, and DapengWu. 2019. Delay-aware fountain
codes for video streaming with optimal sampling strategy. Journal of Communi-
cations and Networks 21, 4 (2019), 339–352.

[29] Tim Szigeti and Christina Hattingh. 2004. Quality of service design overview.
Cisco, San Jose, CA, Dec (2004), 1–34.

[30] John C Tang, Gina Venolia, and Kori M Inkpen. 2016. Meerkat and periscope: I
stream, you stream, apps stream for live streams. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. ACM, 4770–4780.

[31] Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y Zhao. 2016.
Anatomy of a personalized livestreaming system. In Proceedings of the 2016
Internet Measurement Conference. 485–498.

[32] XiPeng Xiao. 2008. Technical, commercial and regulatory challenges of QoS: An
internet service model perspective. Morgan Kaufmann.

[33] Jun Yi, Shiqing Luo, and Zhisheng Yan. 2019. A measurement study of YouTube
360° live video streaming. In Proceedings of the 29th ACM Workshop on Network
and Operating Systems Support for Digital Audio and Video. ACM, 49–54.

[34] Zhengyou Zhang. 2000. A flexible new technique for camera calibration. IEEE
Transactions on pattern analysis and machine intelligence 22 (2000).

[35] Chao Zhou, Zhenhua Li, and Yao Liu. 2017. A measurement study of oculus 360
degree video streaming. In Proceedings of the 8th ACM on Multimedia Systems
Conference. ACM, 27–37.

https://en.wikipedia.org/wiki/Second-order_intercept_point
https://en.wikipedia.org/wiki/Second-order_intercept_point
https://livestream.com/blog/62-must-know-stats-live-video-streaming
https://livestream.com/blog/62-must-know-stats-live-video-streaming
https://www.bandt.com.au/virtual-reality-360-degree-future-live-sports-video-streaming/
https://www.bandt.com.au/virtual-reality-360-degree-future-live-sports-video-streaming/
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Distance_correlation
https://facebook360.fb.com/live360/
https://www.aircraftspruce.com/catalog/avpages/goprohero6.php?utm_source=google&utm_medium=organic&utm_campaign=shopping&utm_term=11-15473
https://www.aircraftspruce.com/catalog/avpages/goprohero6.php?utm_source=google&utm_medium=organic&utm_campaign=shopping&utm_term=11-15473
https://www.aircraftspruce.com/catalog/avpages/goprohero6.php?utm_source=google&utm_medium=organic&utm_campaign=shopping&utm_term=11-15473
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://theta360.com/en/about/theta/s.html
https://bitmovin.com/video-problem-3-reasons-users-leave-website-badly-implemented-video/
https://bitmovin.com/video-problem-3-reasons-users-leave-website-badly-implemented-video/
https://www.youtube.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Canonical System Architecture
	4 Dissecting Delay Metrics
	5 The Zeus Research Prototype
	6 Results
	6.1 Experimental setup
	6.2 360° Camera
	6.3 Camera-Server Transmission
	6.4 Video Server
	6.5 Server-Client Transmission
	6.6 Client

	7 Cross Validation
	8 Conclusion and Future Work
	Acknowledgments
	References

