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Abstract—Modeling of power distribution system components
that are valid for a wide range of frequencies are crucial for
highly accurate modeling of electromagnetic transient (EMT)
events. This has recently become of interest due to the im-
provements needed for the resilient operation of distribution
systems. Vector fitting (VF) is a very popular and commonly
used algorithm for wide band representations of power system
components in EMT simulations. In this research, we present
a new multi-input rational approximation algorithm (MIAAA)
and illustrate its advantages with respect to VF using examples
of approximations of admittance matrices discussed in the
literature. We show that MIAAA not only outperforms VF
in terms of achieving better accuracy using lesser number of
poles, but also has no numerical issues achieving convergence.
In contrast to VF, MIAAA is not sensitive to the location of
input sample points and it does not require good estimates for
the location of the desired approximation poles. The novelty of
this research work is the use of recent mathematical results to
solve existing challenges in distribution system modeling and to
develop rational approximations for power system models that
intend to be optimal in terms of accuracy and performance.

Index Terms—Rational approximations, function approxima-
tion, barycentric formula, vector fitting, AAA algorithm, power
system modeling, computational modeling.

I. INTRODUCTION

ELECTROMAGNETIC transients programs (EMTPs) are
essential tools for protection engineering and design, as

well as reliability and resiliency studies on transmission and
distribution systems. Examples of EMTPs include EMTP-RV
[1], PSCAD [2], and ATP-EMTP [3]. Included in these EMTPs
are frequency dependent (FD) line models as well as the
capability to create a frequency dependent network equivalent
(FDNE) from given characteristics. Essential to these FD and
FDNE line models is the ability to accurately and efficiently
approximate frequency dependencies via rational functions

This work was authored by the National Renewable Energy Laboratory,
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department
of Energy (DOE) under Contract No. DE-AC36-08GO28308. This material
is based upon work supported by the U.S. Department of Energy’s Office
of Energy Efficiency and Renewable Energy (EERE) under Solar Energy
Technologies Office (SETO) Agreement Number 34237. The views expressed
in the article do not necessarily represent the views of the DOE or the U.S.
Government. The U.S. Government retains and the publisher, by accepting
the article for publication, acknowledges that the U.S. Government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this work, or allow others to do so, for U.S. Government
purposes.

represented in partial fractions form. The partial fraction repre-
sentation has an explicit, analytic Fourier transform in terms of
exponential functions which is used to quickly compute time
domain solutions via a recursive convolution algorithm [4].

The standard algorithm and associated software package for
multi-input rational approximations used in FD and FDNE
models is the vector fitting (VF) algorithm [5]. While ubiqui-
tous, we believe that VF can be replaced by a more accurate
and stable algorithm that provides shorter representations
(fewer number of common poles in the rational approxima-
tions) and offers a path to achieve optimal approximation order
(minimal number of poles) for any user desired target accuracy.

Adaptive Antoulas-Anderson (AAA) [6] is a well-known
algorithm designed to approximate functions via rational func-
tions through the intermediate use of a barycentric repre-
sentation (a quotient of two partial fractions) which is then
converted to a standard partial fractions representation. To
extend AAA to problems where VF is used, two changes
must be made. First, the AAA algorithm must be modified
to work with multiple input functions. Second, to correctly
capture asymptotic behavior in, for example, characteristic
admittance matrices, AAA must be modified to be able to
compute rational approximations so that their numerator and
denominator may have different degrees. For the ease of
understanding and effortless reproduction of this work, we
present the mathematical background and formulation behind
these approaches before discussing our numerical results.

The layout of the paper is as follows: in Section 2 we review
the VF and the single-input AAA algorithms and in Section 3
we present the new MIAAA algorithm by explaining how
to extend the single-input AAA algorithm to the multi-input
setting. In Section 4 we compare the performance of MIAAA
and VF on two problems from electromagnetic transients
modeling. In Section 5 we conclude our work and discuss
future directions of research.

We say that a rational function r has order (N,M) if
its numerator is a polynomial of at most degree N , and its
denominator of at most degree M , whereas r has exact order
(N,M) if the degrees of numerator and denominator are
exactly N and M .
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II. BACKGROUND

We provide a brief overview of VF and detailed background
on the (single input) AAA algorithm since our multi-input al-
gorithm extends the ideas of that case. AAA is related to VF in
that they are both iterative algorithms that solve a least squares
problem at each step of the iteration and after convergence,
both algorithms find the zeros of a rational function written in
partial fractions form. Thus, both algorithms rely on iterative
solutions of linear systems followed by a nonlinear algorithm
to determine the desired poles of the solution. Once poles are
obtained, residues of the final rational approximation can be
obtained by a linear procedure.

A. Vector Fitting
VF fits a set of sample values {f (sn)}Nn=1 using a rational

function written in partial fraction form

r (s) =
M∑

m=1

rm
s− pm

+ d0 + d1s. (1)

The poles pm, residues rm, and constants d0 and d1 are found
in the following way. A set of initial pole guesses {zn}1≤n≤N
is provided by the user and the corresponding residues and
constants are computed via least squares. The procedure is
iterated to obtain updated poles (pole relocation) until some
convergence criteria is met and the resulting set is used as the
approximation of the target poles pm.

The algorithm is easily generalized to the multi-function
case which takes as input the samples of several functions and
finds partial fractions approximations of all of them using a
common set of poles. For practical use, it is important to keep
the number of poles (and hence, the number of parameters
describing the approximations) as small as possible for a
desired approximation accuracy. Because of the absence of op-
timization with respect to the number of poles, we show in this
paper that VF generates non optimal rational approximations
and that our alternative algorithm can significantly improve
the total number of parameters used in the approximation.

B. Barycentric formula
Given N distinct points zn and samples f (zn), we define

the rational function Bf of order (N − 1, N − 1)

Bf (z) =

∑N
n=1

wnf(zn)
z−zn∑N

n=1
wn

z−zn

, (2)

where wn is an (arbitrary) set of non-zero barycentric weights
and the distinct points zn are referred to as support points. The
function Bf , which is also a ratio of two polynomials, could
have different degrees for its numerator and denominator. In
particular, Bf may be the sum of a proper rational function and
a polynomial. The barycentric formula (2) has two important
properties.

1) Regardless of the particular choice of barycentric
weights wn, the function Bf in (2) interpolates f at
the points {zn}n, that is

Bf (zn) = f (zn) , n = 1, . . . , N.

2) Bf has no poles at the points {zn}n.
Thus, to find the partial fraction representation of Bf we
can first compute the zeros of the barycentric denominator∑N

n=1
wn

z−zn to obtain the poles of Bf and use these poles
together with the barycentric numerator

∑N
n=1

wnf(zn)
z−zn to ob-

tain the residues of Bf and, if present, polynomial coefficients.

C. AAA algorithm

Recent results (implemented in Matlab as part of open-
source package Chebfun, see www.chebfun.org) show that
barycentric approximations can be very accurate and lead to
close to optimal solutions [6]. In contrast with VF, the support
points are not successive approximations of the poles of the
target function but rather carefully selected from the given
set of sample points. The AAA algorithm is fast and flexible,
but it does not necessarily achieve optimality in any particular
norm such as L2 or L∞. For such problems more specialized
methods are currently being developed (see [7]), where the
AAA algorithm plays a role in providing an initial guess.

The main idea behind AAA is to select, from a given set of
sample points Z = {zn}Nn=1 and sample values fn = f (zn), a
subset of M sample points that have the “best” properties to be
used as the barycentric support points. The barycentric weights
are then computed to minimize the error over the remaining
N −M sample points.

We review the steps of the algorithm (see [6]) assuming
the selected support points are labeled z1, . . . , zM and f =
(f1, . . . , fN ) is the vector of sample values. To pick the first
support point, we compute the largest deviation with respect
to the mean of the sample values mean (f) = 1

N

∑N
k=1 fk,

which is

max
n
|fn −mean (f)| = |f1 −mean (f)| . (3)

Then, our first barycentric approximation r1 (z) is

r1 (z) =

w1f1
z−z1
w1

z−z1
≡ f1,

that is, r1 is a constant function of constant value f1. The
logic behind this step is the following. Since the sample point
z1 is responsible for the largest deviation in (3), we pick it
as a support point; in this way, due to the properties of the
barycentric formula, r1 will reproduce f1 at z1 which was the
“most problematic” sample value.

For the next step, we sample r1 at the remaining sample
points {z2, . . . , zN} and compute the largest deviation

max
2≤n≤N

|fn − r1 (zn)| = |f2 − r1 (z2)| = |f2 − f1| . (4)

Defining our next barycentric approximation r2 (z) as

r2 (z) =

w1f1
z−z1 + w2f2

z−z2
w1

z−z1 + w2

z−z2
, (5)

we note that now, by construction, r2 (zn) = fn for n = 1, 2
and that the numerator and denominator of r2 have at most
degree 1. We substitute z by z3, z4, . . . zN in (5) to determine
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the weights w1, w2, then approximate r2 (zn) by fn, and
finally multiply by the denominator in (5) to form the (linear
in the weights!) system

fn

(
w1

zn − z1
+

w2

zn − z2

)
=

w1f1
zn − z1

+
w2f2
zn − z2

, n = 3, . . . , N.

(6)
We write (6) as Lw = 0, where L is the (N − 2)×2 Loewner
matrix of entries L (n, l) = fn−fl

zn−zl . The previous system is
solved in least squares sense with the additional constraint

‖w‖ =

√
|w1|2 + |w2|2 = 1

which prevents the (unwanted) solution w = 0.
Once the weights are obtained, we can evaluate r2 at the

sample points and compute

max
3≤n≤N

|fn − r2 (zn)| = |f3 − r2 (z3)| . (7)

We repeat the previous additional steps to compute the weights
and build the next barycentric approximation. If all goes well,
at the final step M , we found an approximation rM such that

rM (zn) = fn, 1 ≤ n ≤M, rM (zn) ≈ fn,M + 1 ≤ n ≤ N.

D. Secular equation

The AAA algorithm finds the rational approximation in
barycentric form (2). To obtain the partial fractions approxima-
tion, we need to find the zeros of the barycentric denominator.
This type of problem can be formulated as a so-called secular
equation for which several algorithms have been developed
[8, Chap. 9] but the standard results only apply to partial
fraction representations of orders (n, n) or (n− 1, n) (see [9,
p. 231] and [10]). However, in many cases, the barycentric
denominators are not of those orders. This causes the standard
single-input AAA algorithm’s partial fraction computation to
fail. We have developed an approach to secular equations of
arbitrary order and in the examples below our preliminary
algorithm has been used. We will report the details of this
new algorithm in a forthcoming paper.

III. PROPOSED METHODOLOGY

Starting from a set of K functions {ϕk}Kk=1 with sample
values from a common set Z = {zn}Nn=1 ⊆ C, we iteratively
build barycentric approximations following the ideas in Sec-
tion II. Similar to vector fitting, we find a common set of M
support points {zn}Mn=1 and weights wn so that the barycentric
functions

Bk (z) =

∑M
n=1

wnϕk(zn)
z−zn∑M

n=1
wn

z−zn

, k = 1, . . . ,K (8)

are used to approximate the functions ϕk, k = 1, . . . ,K .
Since all Bk have a common barycentric denominator, the
final rational approximations, written in partial fractions form,
have a common set of poles (and, of course, different residues
and, if present, polynomial coefficients).

At step m of the iteration, a greedy choice described below
is used to select an additional support point zm from the initial

sample set Z. We then use least squares to compute a set of
common weights w1, ..., wm for the intermediate barycentric
approximations

B
(m)
k (z) =

N
(m)
k (z)

D(m) (z)
=

∑m
n=1

wnϕk(zn)
z−zn∑m

n=1
wn

z−zn
(9)

and compute the difference between B(m)
k and ϕk on Zm =

Z� {z1, ..., zm} to pick the next support point.
More specifically, the first support point z1 is chosen so that

max
1≤n≤N

K∑
k=1

|ϕk (zn)− ‖Φk‖| =
K∑

k=1

|ϕk (z1)− ‖Φk‖|

where Φk is the vector of entries {ϕk (zn)}1≤n≤N and ‖·‖
denotes the discrete 2-norm. At iteration m > 1, the next
support point zm is chosen from Zm−1 = Z�{z1, ..., zm−1}
such that

max
n∈Zm−1

K∑
k=1

∣∣∣ϕk (zn)−B(m−1)
k (zn)

∣∣∣ =

K∑
k=1

∣∣∣ϕk (zm)−B(m−1)
k (zm)

∣∣∣ . (10)

As for the single input AAA algorithm, at each iteration step
we check which of the remaining sample points is responsible
for the largest deviation and pick it as an additional support
point. Due to property 2 in Section II-B, the updated barycen-
tric approximations will reproduce ϕk at zm and eliminate the
large error caused by zm.

To determine the set of common weights at step m, we seek
approximations

B
(m)
k (z) =

N
(m)
k (z)

D(m) (z)
≈ ϕk (z) (11)

but instead, minimize the linearized equation with respect to
w

min
1≤k≤K

∥∥∥N (m)
k (z)− ϕk (z)D(m) (z)

∥∥∥
z∈Zm

, ‖w‖ = 1. (12)

We terminate the iteration when
maxk

∣∣∣B(m)
k (z)− ϕk (z)

∣∣∣
z∈Z

is less than the desired
tolerance (all the rational approximations are accurate with
respect to the maximum norm).

To solve (12), we rewrite N (m)
k (z)− ϕk (z)D(m) (z) as

m∑
l=1

ϕk (zl)wl

zn − zl
−

m∑
l=1

ϕk (zn)wl

zn − zl
= (Lkw)n , n = M+1, . . . , N,

where Lk is the N − M × M Loewner matrix of entries
Lk (n, l) = ϕk(zn)−ϕk(zl)

zn−zl . We then find the least squares
solution w to the problem

Lw = 0, ‖w‖ = 1, where L =

 L1

...
LK

 .
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Fig. 1. Power system diagram for the admittance matrix example in [11],
[12]. Numbers represent lengths of lines in kilometers.

IV. RESULTS

In order to compare MIAAA with VF, we consider two
examples discussed in the literature. The first one, a problem
with multiple resonance peaks, is presented in [13, Example
4a], [11] and in [12, Section III.D]. A FDNE approximation
is performed on a single column of a 6 by 6 terminal
admittance matrix of a power distribution system. The system
has two 3-phase buses as terminals, denoted as A and B in
Figure 1 and the admittance matrix has been sampled in the
frequency range 10Hz-100kHz. To illustrate the results, the
first two entries, f(1) and f(2), and their approximations
using MIAAA and VF are displayed in Figure 2 and the
fitting errors of both methods are displayed in Figure 3. The
MIAAA approximation is always below the target accuracy
10−6 and fits the linear section of the function with error close
to double precision, while VF performs significantly worse.
Importantly, MIAAA also provides a better approximation
order since it only requires 36 common poles to reach the
target accuracy in contrast with VF which requires 50 poles.
Although MIAAA was also faster than VF, we do not provide
speed comparisons since additional work is necessary for a
more thorough comparison and, for the intended applications,
the final number of poles used in the approximation is the
dominant factor in running time and not the running time of
VF or MIAAA.

In Table I, we report the misfit error on the 6 functions
being approximated, computed using the metrics

εRMS =

√√√√ N∑
n=1

K∑
k=1

|ϕk(zn)− φk(zn)|2/(N ·K), (13)

εrelative =
N∑

n=1

K∑
k=1

∣∣∣∣ϕk(zn)− φk(zn)

ϕk(zn)
× 100

∣∣∣∣ /(N ·K),

(14)

where φk is the MIAAA or VF approximation of the kth

function ϕk.
The second example as well as the VF results reported in

Table II are taken from [12, Section III.C]. We approximate
all entries of the 2 × 2 admittance matrix Y of a simple pi-
circuit with the goal of illustrating the impact on accuracy as

Fig. 2. Comparing vector fitting and MIAAA approximations of the admit-
tance matrix example in [13], [11], [12]. We display results for two entries,
f(1), top, and f(2), bottom, as functions of frequency.

Fig. 3. Comparing vector fitting and MIAAA fitting errors for the two
functions shown in Figure 2. The MIAAA errors correspond to the final partial
fraction approximations, not the intermediate barycentric approximations.

TABLE I
RELATIVE AND RMS ERRORS FOR VECTOR FITTING AND MIAAA

APPROXIMATIONS OF FUNCTIONS f(1), . . . , f(6).

Technique Order εRMS εrelative

VF 50 1.563 · 10−4 2.556

MIAAA 36 6.159 · 10−8 2.702 · 10−3
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we increase the order of the approximation. The entries of the
symmetric matrix Y (admittances of the circuit elements of
the pi-model) are given by

Y11 = Ya + Yb, Y21 = Y12 = −Ya, Y22 = Ya + Yc (15)

where

Ya(s) =
2

s+ 5
+

20± 50j

s+ 30∓ 1000j
+ 0.4 (16)

Yb(s) =
6

s+ 12
+

17± 30j

s+ 35∓ 3000j
+ 0.2 (17)

Yc(s) =
4

s+ 10
+

12± 24j

s+ 15∓ 5500j
+ 0.3. (18)

TABLE II
COMPARISON OF VF AND MIAAA TECHNIQUES FOR FITTING THE 2× 2

ADMITTANCE MATRIX GIVEN BY EQUATIONS (15) – (18)

Technique Order εRMS εrelative

VF
7

2.20× 10−3 8.33× 10−2

MIAAA 2.18× 10−4 3.24× 10−2

VF
8

2.13× 10−4 1.00× 10−2

MIAAA 1.63× 10−5 1.97× 10−3

VF
9

5.10× 10−15 2.69× 10−13

MIAAA 3.75× 10−16 4.15× 10−14

We fit all entries of the matrix Y using VF and MIAAA
with a fix order, that is, by rational functions with a fix number
of common poles. We compute the approximation errors for
7, 8, and 9 poles and report the results in Table II. The RMS
and relative errors are defined as before, using (13) and (14),
respectively.

As expected, the sharp drop in errors of both VF and
MIAAA approximations at order 9 are due to the fact that
there are only 9 distinct poles in the entries of the admittance
matrix. We observe that MIAAA outperforms VF for all orders
considered and, in all but one case, MIAAA outperforms VF
by an order of magnitude.

V. CONCLUSIONS

We presented the MIAAA algorithm, a novel, very general
approach to obtain rational approximations and showed that
outperforms the commonly used VF algorithm on two exam-
ples from the literature of power distribution system models.
However, given the generality of MIAAA, we intend to use it
for many other applications.

We plan to use MIAAA to model underground cables, trans-
mission lines, transformers, and other power system compo-
nents. as well as to generate rational functions representations
for complex components and utilize these representations for
digital real time simulations. We expect that employing a
near-optimal number of poles will have a strong impact on
performance and will help to create complex models that can
be run in real time. We also plan to work on additional MIAAA
features like enforcing passivity as part of the algorithmic
steps and explore how to extend to the multi-input setting the

optimization (minimal order) approach developed in [14], [15],
[16]. For this optimization approach, MIAAA will play the
critical role of providing an initial, sub-optimal but accurate,
rational approximation.
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