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The flow through the collector of a solar chimney power plant model on the roof of the
Aerospace and Mechanical Engineering building at the University of Arizona was investi-
gated numerically for the conditions of the experiment. The measured wall temperature
and inflow velocity for a representative day were chosen for the simulation. The simula-
tion was performed with a newly developed higher-order-accurate compact finite difference
code. The code employs fifth-order-accurate biased compact finite differences for the con-
vective terms and fourth-order-accurate central compact finite differences for the viscous
terms. A fourth-order-accurate Runge-Kutta method was employed for time integration.
Unsteady random disturbances are introduced at the inflow boundary and the downstream
evolution of the resulting waves was investigated based on the Fourier transforms of the
unsteady flow data. Steady azimuthal waves with a wavenumber of roughly four based on
the channel half-height are the most amplified as a result of Rayleigh-Bénard-Poiseuille
instability. Different from plane Rayleigh-Bénard-Poiseuille flow, these waves appear to
merge in the streamwise direction. Oblique waves are also amplified. The growth rates
are however lower than for the steady modes. Because of the strong streamwise flow
acceleration, the growth rates decrease in the downstream direction.

I. Introduction

The solar chimney power plant (SCPP) represents a sustainable energy pathway from solar irradiation
to electrical energy. The collector, turbine and chimney are the three major components of SCPPs. The
air inside the collector is heated by the solar radiation and accelerates towards the collector center, where it
passes through turbines and then escapes through the central chimney. The first solar chimney power plant
was designed by Schlaich, Bergermann and Partner in Manzanares, Spain. It was operated between 1982 to
1989 and produced approximately 50kW of electrical power.' ™ According to Schlaich,! an estimate for the
electrical power can be obtained from
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2 Hymr? I
P= ncmgg% : (1)
where 7. and 7, are the collector and turbine efficiency, g is the gravitational acceleration, I is the solar
irradiation, and T, is the ambient temperature. Different from concentrated and photovoltaic solar power
plants, the generated power scales with the collector area, 7'1'7“30” and the chimney height, Hp,.

The radial channel flow between two horizontal parallel plates with temperature gradient in the wall-
normal direction and opposing gravitational field is known as radial Rayleigh-Bénard-Poiseuille (RBP) flow.
Radial RBP flows as found for example in the collector of a SCPP, can exhibit buoyancy-driven instability.
The onset of flow instability is governed by two dimensionless numbers which are the Reynolds number,

Umazh/2
Re = tmasl/2 2)
14
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with maximum velocity, %m,qz, channel height, h, and kinematic viscosity, v, and the Rayleigh number,

3
Ra — gh*yAT 7 (3)

va
with volumetric thermal expansion coefficient, 7, temperature difference, AT, and thermal diffusivity, a.
The buoyancy-driven instability of plane RBP flows has been investigated in detail in the past. Linear
stability investigations of plane RBP flow by Gage and Reid® provided neutral curves for the onset of both
buoyancy and viscosity-driven instability. For Re < Re, = 5,400 and Ra > Ra. = 1,708, plane RBP flow
exhibits buoyancy-driven instability and the most unstable modes are three-dimensional (3-D) and have a
wave angle of 90 degrees. When the Reynolds number is greater than Re. = 5400 and the Rayleigh number
is less than Ra. = 1708, viscosity-driven instability occurs and two-dimensional (2-D) Tollmien-Schlichting
(T-S) waves with a wave angle of 0 degree are the most amplified. The results by Gage and Reid® were
confirmed by numerous numerical and experimental studies. A linear stability theory (LST) analysis by
Pearlstein® showed that the most critical disturbances for RBP flow are either 2-D transverse or longitudinal
modes. Chang et al.”® investigated plane RBP flow experimentally and found that the flow structures first
developed near the channel side walls. For a channel with finite rectangular cross section, transverse rolls
appeared first at a low Reynolds number.? '© However, 3-D longitudinal rolls developed when the Reynolds
number was increased.

The hydrodynamic instability of radial RBP flows, of particular relevance for the design and operation
of SCPPs at the critical Reynolds and Rayleigh number for the instability to occur, has attracted compara-
tively little attention. Because of continuity (pv o 1/r-relationship), the collector flow is accelerated in the
streamwise (radial) direction. Also different from plane RBP flow, where the channel maintains a constant
aspect ratio and there is no limitation on the transverse wavenumbers, for radial channel flow the trans-
verse wavelength has to be an integer fraction of the circumference. Moreover, since acceleration generally
has a stabilizing effect,!! the stability characteristics of inward radial RBP flow are likely different from
those of plane RBP flow. Bernardes et al.'? numerically investigated various thermo-hydrodynamic prop-
erties, such as the temperature fields, and mass flow rate for different geometric configurations of SCPPs.
Reynolds-averaged Navier-Stokes (RANS) calculations by Pastohr et al.!® revealed that the mass flow rate
and pressure difference across the collector had a strong affect on the efficiency of SCPPs. Xu et al.'* inves-
tigated numerically how the generated power and energy losses of the SCPP system are affected by the solar
radiation and turbine efficiency. Based on their analysis, the large mass flow rate through the chimney is
one of the primary reasons for the energy losses. The influence of the chimney geometry (such as area ratio
between chimney inlet and outlet and divergence angle) on the power output was investigated numerically
by Hu et al.'® The SCPP power output was found to be higher for divergent chimneys than for conventional
cylindrical chimneys. Despite the large volume of literature concerned with the more practical aspects of
SCPP design, scientific literature on the hydrodynamic instability of radial RBP flows is very rare.

A numerical investigation of the radial outward RBP flow between two circular plates was carried out by
Van Santen et al.'617 Their research suggests that streamwise waves are the most unstable at low Reynolds
numbers (10 to 50 with Ra = 2000) which opposes the results by Gage and Reid® according to which 2-D
waves should be stable for this Reynolds number range. Fasel et al.'® 19 carried out large-eddy simulations
for the collector of a 1:33 scale model of the Manzanares SCPP. Both transverse (close to the inlet) and
longitudinal rolls (close to the outlet) were observed in the simulations. Recently, Ladan et al.?’ carried
out an experimental investigation of the flow inside the collector of a 1:33 model of the Manzanares SCPP.
Thermocouple temperature measurements as well as hotwire anemometer velocity measurements provided a
good characterization of the flow in the collector and the wall and collector cover temperatures. However,
because of technical difficulties and the unavoidable freestream noise associated with uncontrolled outdoor
experiments, flow structures inside the collector arising from inherent instabilities were not investigated.
This backdrop provides the motivation for the present numerical analysis of the flow through the collector
of the scaled model.

This paper reports on numerical stability investigations of the flow inside the collector of the 1:33 scale
SCPP model at the University of Arizona. The inflow temperature and bulk velocity as well as the ground
and collector cover temperatures were matched to measurements by Ladan et al.2® for a representative day.
The numerical stability analysis was carried out with a new higher-order-accurate compact finite difference
code. First, the governing equations, discretization, and boundary conditions are described. Next, the
setup of a spatial stability simulation for a specific combination of Reynolds and Rayleigh number that is
representative of the experiment is discussed. The simulation data were Fourier transformed to analyze the

2 of 12

American Institute of Aeronautics and Astronautics



Downloaded by 84.175.167.196 on January 5, 2021 | http://arc.aiaa.org | DOIL: 10.2514/6.2021-0367

growth rates, wave angles, and phase speeds of the disturbance waves. The paper concludes with a brief
discussion of the results.

II. Methodology

A. Governing Equations

The compressible Navier-Stokes equations in cylindrical coordinates?!

0Q O0A 0B 10C 1

I 9B 92 2% ‘p_H 4

8t+3z+8r+r89+r ’ )
with state vector, Q, flux vectors, A, B, C, and source term vectors D and H were solved numerically. The
state vector is

T
Q= p7pu,pv,pw7pe} ; (5)

where u, v, and w are the velocities in the wall-normal (z), radial (r), and azimuthal (0) direction. The total
energy is defined as e = e+ 1/2(u? +v? +w?), with internal energy, € = ¢, T, where T is the temperature and
¢y is the specific heat at constant volume. A reference velocity, uref = Umaz, reference length scale, L.y,
reference temperature, T,.5, and reference density, p,.f, were used to non-dimensionalize the governing
equations. Here, tuyq, is the channel maximum velocity at the inflow and h is the channel height. The
pressure is calculated from the ideal gas equation,

p = pRT, (6)

with gas constant, R, and, non-dimensionalized by pycfu?, 5 The reference Mach number was set to M =
0.025. More details on the governing equations can be found in Hasan and Gross.?? 23

B. Computational Domain and Discretization

A “pizza-slice” shaped computational domain was employed for the present direct numerical simulation
(DNS) of the flow through the collector of the 1:33 scale SCPP model at the University of Arizona (Fig. 1).
With the chosen non-dimensionalization, the collector inflow radius is ro = 125 and the outflow radius is
r1 = 10. A coordinate transformation which clusters grid points near the top and bottom wall was employed
in the wall-normal direction. A total of J grid points were distributed in the wall-normal direction,

tan~" (jc — f1)
zj = | —————=

h
f2 +1 ><§, (7)

where J = 64 is the total number of grid points in the wall-normal direction, f; = Jc*/2 and fo = tan=1(f1),
c¢* = 0.05 is a user-specified constant, and j is the grid line index. An equidistant grid point distribution
was employed in the streamwise direction and a total of 512 points were used. The grid opening angle was
set to 7.5 degrees.

Fifth-order-accurate upwind-biased and downwind-biased compact finite differences** were utilized for
discretizing the convective terms in the wall-normal and radial direction. Fourth-order-accurate compact
finite differences for non-equidistant meshes by Shukla et al.?> were employed for discretizing the viscous
terms. Fast Fourier transforms were used to calculate the derivatives in the azimuthal direction. A fourth-
order-accurate explicit low-storage Runge-Kutta method?® was employed for time integration.

24

C. Boundary Conditions

In the azimuthal direction, periodic boundary conditions were implicitly enforced by the Fourier-based
spectral discretization. No-slip and no-penetration as well as isothermal boundary conditions were employed
at both walls. The bottom, Ty, and top wall, T}, temperature were held constant. When the viscous terms
are neglected, the wall-normal pressure gradient at the walls depends only on the buoyancy term,

L —g(1-p). ®)
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Figure 1. Computational domain.

The 9p/0z derivative was computed with a fourth-order-accurate one-sided finite difference stencil. The
bottom and top wall pressure are obtained from,

—1292727 + 48p1 — 36p2 + 16p3 — 3pa

Do = 12g 9z ’ (9)
25 — RT% an
and o
1295, +48py—1 — 36ps—2 + 16p;—3 — 3ps4
pJs = 25 + 129 0z . (10)
RTj; On

A non-reflecting boundary condition based on Riemann invariants?” was employed at the inflow boundary.
At the outflow boundary, a characteristics-based boundary condition by Gross and Fasel?® was applied. Both
boundary conditions require reference profiles. The reference profiles were obtained by solving the equations
describing one-dimensional laminar plane RBP flow.?2 23

D. Linear Stability Analysis

According to what is customary in linear stability theory (LST), a wave ansatz of the form
w'(r,z,0,t) =Y _d(z)eor et (11)

is made for the disturbance waves where a=q«,.+ic; is the streamwise (radial) wavenumber, 3 is the spanwise
(azimutal) wavenumber, and w is the angular frequency. Here, 4(z) are the eigenfunctions. The real part
of the streamwise, «,., and the spanwise wavenumber, (3, are related to the wavelength via «,. = 27 /A, and
B = 2mw/Xg. The angular frequency is related to the period via w = 27/T. In this paper the modes are
referenced by their temporal, n, and spanwise or azimuthal mode number, k. Spatial disturbance growth
occurs for a; < 0.

The data obtained from the simulations were Fourier transformed in the azimuthal direction and in time.
For example, the disturbance velocity at a given location is described by,

(1, 2,0,t) = Gee(r, 2) coswt cos Brl + aes(r, 2) coswt sin Bro + s (r, z) sinwt cos B0 + ass(r, 2) sinwt sin Br .
(12)
The amplitude (A) and phase (¢0) of the right and left traveling waves are computed from these Fourier

coeflicients and the spatial growth rate is
~ JmnA

Q; = s )

(13)
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where s = ro—r is the stremwise coordinate. The phase speed is obtained from ¢ = w/K with K = /a2 + 52,
and the wave angle is given by ¢ = tan~'(3/a,). The growth rates, phase speeds, and wave angles were
computed from the wall-normal velocity at the channel mid-height. Additional details are provided in Hasan
and Gross.?23

ITI. Results

A. Brief Review of Experimental Results and Calculation of Simulation Parameters

The experiments by Ladan et al.?° provide the foundation for the present numerical analysis of the solar

chimney power plant collector. In this section first a brief description of the exerimental set-up and results
is provided. Then the calculation of the different parameters required for the set-up of the simulation
is investigated. Figure 2a shows the solar chimney power plant model on the roof of the Aerospace and
Mechanical Engineering Department at the University of Arizona. Figure 2b displays the instrumented
section of the collector. The radius of the collector inlet and outlet (chimney inlet) is r.o; = 4.1m and
ren, = 0.15m, respectively, and the chimney height is H., = 5.9m. The collector panels are at a distance of
h = 6.6cm from the ground. Eight thermocouples (four near the collector panels and four at the ground)
were placed at different radial locations. The corresponding radial locations are shown in Fig. 2c. The time-
averaged temperatures at four radial locations are plotted in Fig. 3a. Overall the temperature at the ground
and near the cover is increasing as the flow travels towards the collector outlet. Figure 3b exhibits the radial
velocity at the corresponding four locations inside the collector. The velocity inside the collector increases in
the radial direction according to the radial continuity equations with location 1 having the highest velocity.
More details on the experiment can be found in Ladan et al.2°

Figure 2. a) Solar chimney power plant model at the University of Arizona, b) instrumented section of the
collector, and ¢) schematic side view of the model with thermocouples in position 1, 2, 3 and 4 (Figures
reproduced from Ladan et al.20)

The collector half-height was taken as the reference length scale, L.y = h/2 = 0.033m. Based on this
length scale, the inflow radius of the collector becomes r1 = 124.24 ~ 125. An outflow radius of o = 10 was
chosen for the simulation which gives an outflow radius of approximately 0.3m. Based on the experimental
data, it was decided to choose a bottom wall temperature of T, = 75°C = 348.15K, a top wall (collector
cover) temperature of T3 = 60°C' = 333.15K, and an ambient temperature of T, = T,y = 38.4°C’ =
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Figure 3. a) Time-averaged temperature records at the ground and collector cover, and b) estimated radial
velocity at various radial locations (Figures reproduced from Ladan et al.2%).

311.55K. The reference air density, p, = pres = 1.132kgm ™3, and the density of the air inside the chimney,
pen, = 1.035kgm 2 were calculated from the ideal gas equation. The chimney updraft velocity, v.,, obtained
from the difference in pressure between chimney base and surroundings,

AT 1

= 5PaV¢h > (14)

Ap = pachhTa 5

was approximately 3.28ms~!. A control volume analysis between collector inflow and chimney outflow,
pQQWTIhvin = pchﬂ-""zhvch 5 (15)

was used to calculate the collector inflow bulk velocity, v;, = 0.124ms~!. From this the reference velocity,
Upef = Umaz = (3/2)v;y, was obtained. The reference Reynolds number and Rayleigh number were found to
be approximately 365.90 and 704, 072, respectively.

B. Numerical Analysis

According to the radial continuity equation, the velocity in inward radial channel flow increases almost
hyperbolically (Fig. 4)in the streamwise direction. Previous numerical investigations with random steady
inflow forcing?? 23 suggested that the stability of inward radial RBP flow is quite different from the stability
of plane RBP flow. Because of the stabilizing effect of the streamwise acceleration, the inward radial RBP
flow is expected to be less unstable than the plane RBP flow.

EEA p————
=—-2a=60°

== A=755°
{=m-a=843°
S =895
i a=90°

:|e=—# Simulation

Figure 4. Conditions for present simulation indicated by the symbols in stability diagram by Gage and Reid.®

As the flow accelerates, the local Reynolds number increases above the inflow Reynolds number, Re =
365.90 and the Rayleigh number on the other hand remains constant, Ra = 704,071.57. The local Reynolds
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and Rayleigh number for the present simulation were included in the stability diagram by Gage and Reid®
(Fig. 4). According to Gage and Reid,” for Re < Re, = 5400 and Ra > Ra. = 1708, 3-D waves with a
wave angle of 90 degrees are most amplified. At the inflow the Rayleigh number is almost high enough for
2-D waves with a wave angle of 0 deg to be amplified. As the flow accelerates and the Reynolds number
increases, the range of wave angles for unstable oblique waves becomes increasingly more narrow (e.g. A > 60
for Re =~ 1000 and A > 84.3 for Re ~ 5000).

5000+~
[ Simulation
3 o-—-o Polynomial
4000 .
W I
1E-12 i
8E-13 3000 ]
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0 [
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Figure 5. a) Contours of azimuthal velocity at mid-channel height, and b) local Reynolds number versus
streamwise coordinate.

For the investigated case, a 3-D basic flow (no disturbance) was computed first. Unsteady randomized
disturbances for all three velocity components with a maximum amplitude of 10~® were then added to the
basic flow at the inflow boundary to excite a broad spectrum of frequencies and a wide range of streamwise
and azimuthal wavelengths. The simulation was then advanced in time until all disturbance waves had
reached the outflow boundary. Instantaneous azimuthal velocity contours in Fig. 5a reveal steady 3-D
waves. Unlike for plane RBP flow, as the disturbance waves travel downstream, they appear to merge.
This can be explained by the fact that only integer multiples of the spanwise wavelength are possible for a
given azimuthal extent. In Fig. 5b the local Reynolds number is plotted versus the streamwise coordinate.
The inflow boundary is at s = 0 and the outflow boundary is at s = 115. According to Fig. 5b, the local
Reynolds number behaves almost hyperbolically in the radial direction which confirms the strong streamwise
acceleration. Because of the radial acceleration, the instability associated with inward radial RBP flow is
expected to be different than that of plane RBP flow.

The simulation data obtained from the present DNS were Fourier transformed in time and then Fourier
transformed in the azimuthal direction. From this double Fourier transformed data, the growth rates, wave
angles and phase speeds were computed. According to Gage and Reid,? in addition to the most amplified 3-D
steady waves, oblique waves can also be amplified in buoyancy-driven plane RBP flow. It is therefore very
interesting to see if the oblique modes are also amplified for radial RBP flow. Figure 6 exhibits contours of
the spatial growth rate, a; versus frequency, w and azimuthal wavenumber, 3, for three different streamwise
locations (s = 57.5, 71.875, and 86.25). The total non-dimensional simulation time was T' = 512 which sets
the lowest frequency, w = 27/T = 0.0122. Since data were output every AT = 0.15, the highest frequency
(Nyquist frequency) was w = w/AT = 20.944. The growth rates for w > 10 are very noisy, likely because
the temporal resolution of the output was too low. The plus sign (“43”) indicates right-traveling waves and
the minus sign (“-3”) indicates left-traveling waves. From Figs. 6a,b, and ¢ it can be concluded that the
steady azimuthal modes (w = 0) experience the highest spatial growth rates. The growth rates of the left-
and right-traveling waves are almost identical and decrease towards the higher frequencies which is also the
case for plane RBP flow.?? The contour plots in Figs. 6 indicate the largest spatial growth rates for steady
waves with azimuthal wavenumber 8 =~ +4.2 for all three radial locations. Overall, the growth rates decrease
in the downstream direction which can be attributed to the streamwise acceleration. This observation is in
agreement with stability analyses for boundary layers which show that acceleration is stabilizing. In Fig. 7
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Figure 6. Contours of spatial growth rate, «;, for different frequencies and azimuthal wavenumbers for a)
s =575, b) s="71.875 and ¢) s = 86.25.
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Figure 7. Spatial growth rates at s =57.5 for a) 8 ~ +4.2 and b) w =0 (data extracted from Fig. 6a.)
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Figure 8. a) Radial acceleration versus streamwise coordinate and b) growth rates for steady modes versus
radial acceleration.
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Figure 9. Phase speed versus a) frequency for fixed azimuthal wavenumber, 3 = 4.2, and b) azimuthal wavenum-
ber for fixed frequency, w = 2.045 (s = 57.5).

the growth rates for the most amplified azimuthal wavenumber (8 =~ +4.2) and steady modes (w = 0) are
compared for s = 57.5. Figure 7a confirms that the spatial growth rates for the left and right oblique modes
are almost identical and decrease with frequency. Figure 7b shows that the highest growth rate is obtained
for an azimuthal wavenumber of approximately four. In Fig. 8a it is observed that the radial acceleration
(Ov/0r) increases in the streamwise direction. The spatial growth rates of the steady modes are plotted
over the radial acceleration in Fig. 8b. The lines in Fig. 8b for three radial locations (s = 57.5, 71.875, and
86.25) correspond to the circles in Fig. 8a. Figure 8b reveals that the growth rates decrease with the radial
acceleration. While the higher mode numbers such as k = 6 are more amplified upstream (e.g. s = 57.5), as
the flow travels downstream, the lower azimuthal mode numbers such as k = 3 at s = 86.25 become more
amplified. Nevertheless, the azimuthal wavenumber corresponding to the most amplified steady modes at
the different radial locations (k =6 at s = 57.5, k =4 at s = 71.875, and k = 3 at s = 86.25) remains close
to B = 4.

Along with the investigation of the behavior of the spatial growth rate, it is interesting to see how the
phase speed depends on the frequency and azimuthal wavenumber. In Fig. 9a the phase speed of the right-
and left-traveling oblique waves for 8 = 4.2 is graphed over the frequency for s = 57.5. It is noticed that,
with increasing frequency, the phase speed of both the right- and left-traveling waves increases. For the
same streamwise location, in Fig. 9b the phase speed is plotted over the azimuthal wavenumber for a fixed
frequency, w = 2.045 . The phase speed of the oblique waves decreases with the azimuthal wavenumber. In
Fig. 10a the wave angle for 8 = 4+4.2 is plotted versus the angular frequency and in Fig. 10b the wave angle
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Figure 10. Wave angle versus a) frequency for fixed azimuthal wavenumber, 8 = 4.2, and b) azimuthal wavenum-
ber for fixed frequency, w = 2.045 (s = 57.5).
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Figure 11. Iso-contours of wall-normal disturbance amplitude at channel mid-height for k = 6: a) steady waves
(w = 0), b) right traveling waves (w = 4.09), ¢) left traveling waves (w = 4.09). d) Mode amplitudes versus
streamwise coordinate for k = 6.

for w = 2.045 is plotted versus the azimuthal wavenumber. The wave angle decreases with frequency and
increases with azimuthal wavenumber.

Mode shapes, reconstructed from the amplitude and phase distributions, for w = 0 (steady) and w = 4.09
(oblique) for azimuthal mode number k = 6 in r — § plane at the middle of the channel are shown in Fig.
11. The mode shape for w = 0 (steady mode) reveals wave fronts that are aligned in the radial direction
(Fig. 11a). Figures 11b and 11lc illustrate that the right- and left-traveling oblique modes are symmetric
with respect to each other. The wave angle of the oblique modes increases in the streamwise direction as
the local Reynolds number increases. This findings is in agreement with the neutral curves by Gage and
Reid.? Because of the overall higher amplification, the steady mode reaches a much larger amplitude than
the oblique modes (Fig. 11d).
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Conclusions

The Rayleigh-Bénard-Poiseuille (RBP) flow inside the collector of a solar chimney power plants (SCPPs)
can exhibit both buoyancy and viscosity-driven instability. For plane RBP flow, buoyancy-driven instability
occurs and 3-D waves are most unstable for Re < Re. = 5,400 and Ra > Ra. = 1,708, . On the other hand,
viscosity-driven instability leads to the growth of Tollmien-Schlichting waves for Re > Re. and Ra < Ra.
Despite the fact that plane RBP flow has attracted a lot of attention in the literature, the hydrodynamic
instability of inward radial channel flows with vertical temperature gradient (i.e. collector of SCPP) has not
been investigated much.

An instrumented scaled SCPP experiment by Ladan et a provided the boundary conditions and
geometric dimensions for the present direct numerical simulation of the flow through a collector. Random
noises was introduced at the inflow boundary and the downstream development of the disturbance waves
was investigated. Three-dimensional steady waves were found to be the most amplified in the streamwise
direction. The azimuthal wavenumber remains nearly constant in the streamwise direction. Mass conser-
vation demands that the radial velocity increases almost hyperbolically in the streamwise direction. As a
result of the strong streamwise acceleration, as the flow approaches the outflow, the growth rates sharply
decrease. In agreement with Gage and Reid,? the analysis also revealed amplified traveling oblique waves.
The growth rates of the traveling waves decrease with increasing frequency. The phase speeds increase and
the wave angles decrease with frequency. Because of the stabilizing effect of the flow acceleration and the
low initial amplitude which are typical of the outdoor environment, the disturbance amplitudes never get
large enough to be measurable above the background noise.
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