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Abstract

An axiomatic foundation for models of multi-component multiphase porous
flow appearing ubiquitously in the engineering literature is developed. This unifies
and extends various disparate and empirical formulations appearing in the literature.
Constitutive restrictions are derived from an appropriate statement of the second
law of thermodynamics, and the corresponding dissipation inequalities establish
stability of solutions. The convexity properties and variational structure of these
models are elucidated.

1. Introduction

A thermodynamically consistent system of balance laws and constitutive
hypotheses are developed which realize the equations used to model geophysi-
cal flows involving multi-component, mulitphase flows in a porous media. These
equations model the gross properties of these flows since a precise description of
the physical system involved is neither available nor tractable. More specifically:

• Even in the case of only a few components forming a small number of phases,
precise balances of mass, force, and energy, for each component and phase
would result in an enormous system of coupled partial differential equations
(PDE’s). Three dimensional numerical simulation involving even one of these
difficulties would greatly exceed the capability of today’s computers.

Tomitigate this issue it is postulated that thermodynamic equilibriumoccurs
on a time scale much shorter than the pore-to-pore transport. Classical thermo-
dynamics can then be used to determine the composition and volume fraction
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of each phase within the pores. With this approximation, precise statements of
the balance laws at the pore scale are approximated using constitutive relations
derived from classical thermodynamics; this tacitly neglects pore scale transfer
of momentum due to phase changes.

• Geophysical flows can take place over many kilometers and a precise descrip-
tion of the pore structure is not available. The porous medium contains fea-
tures which span multiple length scales, and only gross properties, such as the
pore ratio and permeability, can be estimated by interpolating and extrapolating
available geological data.

In the absence of a precise description of themedium,macroscopic transport
of mass, momentum, and energy, are modeled using phenomenological laws
motivated by homogenization theory. Gross properties of the porous medium
are then used to estimate the coefficients in the corresponding Fick, Darcy, and
Fourier laws.

Using Darcy’s law to model momentum balances replaces vector-valued partial
differential equations with algebraic relations. This results in a substantial reduc-
tion in the computational resources needed to simulate these flows, and results in
coarse grained models where (i) a scalar transport equation is used to represent the
balance of mass for each conserved component (species or molecule), and (ii) a
single scalar equation is used to represent the balance of energy if the system is not
isothermal. Currently it is accepted that these models are computationally tractable
and provide acceptable predictive capability [12,15]. These considerations moti-
vated the continuum theory below which utilizes ideas found ubiquitously in the
engineering literature to yield macroscopic approximations of these problems.

1.1. Background

The literature on themodeling and simulation of multiphase porous flow is vast;
see, for example, the monographs [12,15]. The ideas introduced above to develop
macroscopic continuumdescriptions appear ubiquitously, however frequently these
are developed within a specific context where the delineation between kinematic
assumptions, constitutive assumptions, and balance laws, is blurred. In this work
care is taken to provide precise statements that distinguish between balance and
constitutive laws, and to develop constitutive laws which are consistent with the
second law of thermodynamics. By doing so, we are able to expose essential vari-
ational and other mathematical structures that assist in the formulation of effective
numerical schemes. This provides a formulation which encompass essentially all
of the models for porous flow in a rigid medium that appear in the engineering
literature.

Continuum descriptions of porous flow formulate the problem in the context of
mixture theory where the properties of each constituent are described by functions
taking values at every point. Classical mixture theory [9,16,32] treats each compo-
nent as a separate continuum with its own motion and balance laws. This results in
a large system of coupled PDE’s which model many of the fine scale interactions
among the phases. Numerical solution of these systems for geological problems is



Multi-component Multiphase Porous Flow 2173

not tractable, so in the engineering literature coarse scale models are formulated by
assuming that local thermodynamic equilibrium is attained at the microscopic pore
level. This assumption results in a substantial simplification (balance laws/PDE’s
are replaced by constitutive assumptions/algebraic relations) and can be viewed as
a separation of time scales whereby equilibrium at the microlevel is achieved at a
much faster rate than at the macrolevel. In this context constitutive descriptions of
the mixture are derived using the laws of classical thermodynamics. Below, care
is taken to elucidate how classical thermodynamical models for the microstructure
can be integrated into a consistent formulation of the second law for deformable
continua given by the Coleman–Noll procedure [13].

1.2. Classical Thermodynamics

Since there is a substantial schismbetween the classical and continuumnotation,
formulation, and statement of thermodynamic principles, in this section the essential
elements of classical thermodynamics entering our continuum theory are reviewed.
A fundamental outcome of the theory is that the components (constituents) combine
to form phases which constitute a classical homogeneous thermodynamic system.
Identities guaranteed by the structure theorem for homogeneous functions will be
used in an essential fashion to integrate the classical and continuum statements of
the second law.

Classical thermodynamics postulates that for a mixture with mass (or moles)
M̃c of a component c, in a volume Ṽ , with (internal) energy Ẽ , there exists a
concave function, the entropy, S = Ŝ(Ẽ, Ṽ , {M̃c}Nc

c=1) for which ∂S/∂ Ẽ > 0 [31].
In isolation, it is postulated that the system evolves to an equilibrium state for which
the entropy is maximized subject to the constraints that the energy, volume, and
mass of each component are fixed. In this context there exist Lagrange multipliers(
1/θ, p/θ, {μc/θ}Nc

c=1

)
dual to the constraints for which

θ
∂S

∂ Ẽ
= 1, θ

∂S

∂ Ṽ
= p, θ

∂S

∂ M̃c
= −μc,

and which have the physical interpretation of temperature θ , pressure p, and chem-
ical potentials μc. When the mixture takes the form of a homogeneous phase the
entropy satisfies

Ŝ(λẼ, λṼ , {λM̃c}Nc
c=1) = λŜ

(
Ẽ, Ṽ , {M̃c}Nc

c=1

)
, λ � 0,

and Euler’s representation theorem for homogeneous functions gives

θ S = Ẽ + pṼ −
Nc∑

c=1

μc M̃c.

In a continuum description of a porous flow, if V ⊂ Ω is a subset of the porous
medium and Ṽ ⊂ V denotes the volume occupied by this phase, then scaling with
λ = 1/|V | and localizing gives η = Ŝ

(
e, s, {Mc}Nc

c=1

)
, where

(η, e, s, Mc) = lim|V |→0
(1/|V |)(S, Ẽ, Ṽ , M̃c

)
.
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Here (η, e, Mc) are the entropy, internal energy, and mass of component c in this
phase per unit volume of Ω , and s ∈ [0, 1] is the saturation (volume fraction) of
this phase. If e, s, and Mc : Ω → R are defined on Ω , and η = Ŝ

(
e, s, {Mc}Nc

c=1

)
,

then the identity

η∇θ − s∇ p +
Nc∑

c=1

Mc∇μc = 0 (1)

follows from the homogeneity of Ŝ.
Frequently the dominant heat capacity is that of themedium and the fluids in the

pores rapidly take on its temperature. In this “isothermal” setting it is convenient
to introduce the Helmholtz free energy ψ = e − θη. Writing the free energy as
ψ = Ψ̂ (θ, s, {Mc}Nc

c=1), then Ψ̂ is convex and homogeneous in the last variables,
and takes the form

Ψ̂ (θ, s, {Mc}Nc
c=1) = −p s +

Nc∑
c=1

μc Mc, with
∂Ψ

∂s
= −p,

∂Ψ

∂ Mc
= μc,

(2)

and ∂ψ/∂θ = −η. The formulae in this section may be viewed as instances of the
statements d E = T dS − p dV + μ d N and d A = S dT − p dV + μ d N which
appear ubiquitously in classical thermodynamics texts.

1.3. Scaling, Homogenization, and Darcy Laws

Motivated by homogenization theory [1–3,27], porous flow models utilize
Darcy laws as proxies for momentum equations of the fluids. The Darcy law pos-
tulates that the macroscopic velocity of a fluid is a linear function of the pressure
gradient. Scaling the velocity by the density gives the mass flux vector appearing
in the balance(s) of mass. In addition, the Darcy velocity also determines the vis-
cous dissipation which appears as a source term in the energy equation. For the
geological problems under consideration the porosity may vary substantially and
the porous flow equations may degenerate in regions where the strata is impervious
or one fluid is displaced by another. In this section a simple example is presented
to explicitly illustrate how the mass flux and viscous dissipation scale with the
saturation (volume available to a fluid).

If Y ε = [−ε, ε]3 and Y ε
f = {|z| � εs} as in Fig. 1, then Poiseuille’s solution of

the Stokes’ equations [1],

− div(2μD(v) − pI ) = 0, div(v) = 0, in Y ε
f

with D(v) = 1
2 (∇v + ∇v�) and p = p̄ + p′

1x + p′
2y affine, is

vε(x, y, z) =
(

z2 − (εs)2

2μ

)
∇ p, |z| � εs.
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Y ε
f

2sε

2ε

Fig. 1. Poiseuille flow in a pore Y ε

Consider then a porous medium Ω ⊂ R
3 containing a periodic array of these cells

with one of the fluids occupying the pores Y ε
f . When the complement Y ε \ Y ε

f is
essentially immobile (medium and/or other fluids bound to the medium) the fluid
in Y ε

f will exhibit a Poiseuille flow. If the fluid has mass density ρ then the mass
per unit volume of Ω is M = ρs, and the macroscopic mass flux per unit area in
Ω is

q = 1

2ε

∫ sε

−εs
ρvε dz =

(−ρε2s3

3μ

)
∇ p = M

(−ε2s2

3μ

)
∇ p ≡ Mv,

so that the corresponding Darcy law is v = −(s2k/μ)∇ p with permeability k =
ε2/3. For geological flows the small parameter ε << 1 gives rise to small Darcy
velocities. In this situation inertia is frequently negligible, and this is assumed in
the force balance postulated in Section 2.1.

The dissipation per unit volume of Ω is

D = 1

|Y ε|
∫

Y ε
f

2μ|D(vε)|2 dv =
(

ε2s3

3μ

)
|∇ p|2 ≡ f · v,

where f = −s∇ p represents the force the medium exerts on the fluid due to the
no-slip condition which, in turn, gives rise to the velocity gradients responsible for
dissipation. Eliminating the pressure gives f = (sk/μ)−1v; this scaling motivated
the constitutive laws appearing below in Section 3.3, in particular, that the force
scales with the inverse of the saturation.
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2. Balance Laws

The porous medium is assumed to be rigid and to reside in a domain Ω ⊂ R
d .

At each point the fraction of volume occupied by the medium, s0 : Ω → [0, 1], is
specified. Unless explicitly stated otherwise, all densities are taken per unit volume
ofΩ . The presence ofmultiple components and phases necessitates the introduction
of a large number of variables which are collected here for ease of reference.

It is assumed that the volume and motion of each phase are characterized by
the following:

• sπ : Ω → [0, 1] represents the volume fraction of phase 1 � π � Np. With
s0 denoting the volume fraction of the porous medium it is immediate that∑Np

π=0 sπ = 1. Writing s = (s1, . . . , sNp ) ∈ [0, 1]Np , this relation becomes
s · 1 = 1 − s0, where 1 = (1, . . . , 1) ∈ R

Np .
• vπ : Ω → R

d represents the velocity field which transports the mass and
internal energy of each phase, 1 � π � Np.

Laws will be postulated for the balance of the mass of each component, force
balance, energy balance, and an entropy imbalance. Mass balance involves the
following quantities:

• Mcπ : Ω → [0,∞) represents the mass of component c in phase π per
unit volume; the matrix of pore mass densities is denoted as M = [Mcπ ] ∈
[0,∞)Nc×Np .

• mc : Ω → [0,∞) is the mass per unit volume of component 1 � c � Nc;
the vector of mass densities is denoted as m = (m1, . . . , m Nc ) ∈ [0,∞)Nc .
Clearly m = M1. The mass per unit volume of phase π is ρπ = ∑Nc

c=1 Mcπ .
• hc : Ω → R

d represents the mass flux due to diffusion, 1 � c � Nc.
• qc : Ω → R is the supply (sinks and sources) of component c.

Next we list the quantities appearing in the balance of forces. A fundamental
assumption in our formulation is that the phases are viscous fluids, so rather than
postulating a stress tensor, pressures and viscous forces are stipulated for each
phase, as well as forces describing the interactions between the phases.

• pπ : Ω → R represents the pressure (force per unit area in phase π ) of phase
1 � π � Np.

• fπ : Ω → R
d represents the viscous force per unit volume of Ω the medium

exerts upon phase π , 1 � π � Np.
• fππ ′ : Ω → R

d represents the viscous forces per unit volume of Ω that phase
π exerts upon phase π ′, 1 � π, π ′ � Np.

• bπ : Ω → R
d is the body force acting on phase π per unit volume of phase π .

Quantities such as energy and heat appear in the balance of energy.

• e : Ω → R is the internal energy per unit volume of Ω .
• eπ : Ω → R with 1 � π � Np represents the internal energy of phase π per
unit volume ofΩ , and e0 denotes the internal energy of the medium. The vector
of internal energy densities is denoted as e = (e0, e1, . . . , eNp ) ∈ R

Np+1.
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• q : Ω → R
d represents the flux of thermal energy due to heat conduction.

• μc : Ω → R represents the chemical potential of each component 1 � c � Nc.
• r : Ω → R is supply of energy (radiation absorbed or emitted).

Finally, we list the quantities appearing in the entropy imbalance.

• η : Ω → R is entropy per unit volume of Ω .
• ηπ : Ω → R represents the entropy of phase π per unit volume of Ω .
• θ : Ω → (0,∞) represents the (absolute) temperature. The inverse temperature
will be denoted by β = 1/θ .

2.1. Balances for Inertialess Continua

Under the assumption that effects due to inertia are negligible and that the
medium is a rigid, chemically inert heat conductor, we postulate the following
balance laws.

1. Mass balances: For each control volume V ⊂ Ω ,

d

dt

∫

V
mc dv =

∫

V
qc dv −

∫

∂V

(
hc +

Np∑
π=1

Mcπvπ

)
· n da 1 � c � Nc,

where n is the unit outward normal to the boundary of V . The local form of
these balance laws are

(mc)t + div
( Np∑

π=1

Mcπvπ + hc

)
= qc. (3)

2. Force balances:For each control volumeV ⊂ Ω , letVπ be the volumeoccupied
by phase π in V . Assume, for each P ⊂ {1, . . . , Np}, that

0 =
∑
π∈P

[∫

V

(
− fπ −

∑
π ′∈Pc

fππ ′
)
dv +

∫

Vπ

bπ dvπ −
∫

∂Vπ

pπ n daπ

]
,

where dvπ anddaπ are the volume and area elements associatedwith the volume
occupied by phase π and Pc is the complement of P . Upon identifying dvπ

with sπ dv the local form of this law written per unit volume of Ω is
∑
π∈P

(
sπ∇ pπ + fπ +

∑
π ′∈Pc

fππ ′
) =

∑
π∈P

sπ bπ . (4)

3. Energy balance: For each control volume V ⊂ Ω ,

d

dt

∫

V
e dv =

∫

V

(
r +

Nc∑
c=1

μcqc +
Np∑

π=1

sπ bπ · vπ

)
dv

−
∫

∂V

(
q +

Nc∑
c=1

μchc +
Np∑

π=1

(eπ + sπ pπ )vπ

)
· n da. (5)
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The local form of this balance is

et + div
(

q +
Nc∑

c=1

μchc +
Np∑

π=1

(eπ + sπ pπ )vπ

)

= r +
Nc∑

c=1

μcqc +
Np∑

π=1

sπ bπ · vπ .

4. Entropy imbalance: For each control volume V ⊂ Ω ,

d

dt

∫

V
η dv �

∫

V

r

θ
dv −

∫

∂V

(1
θ

q · n +
Np∑

π=1

ηπ vπ · n
)

da.

The local form of this law is

ηt + div
(q

θ
+

Np∑
π=1

ηπ vπ

)
� r

θ
. (6)

Remark 1. The presence of the saturations sπ in several places of the above bal-
ances deserves some comment. First, our mass, energy, and entropy, densities are
taken per unit volume of the domain Ω . Taking these quantities to be per unit mass
in their respective phases, as is often done in the literature, causes difficulties when
the Coleman–Noll procedure is applied (see Proposition 1). Thus, these densities
can be integrated over a volume without reference to the saturation of the phases.
The one exception to this is the body force bπ acting on phase π , which is taken
per unit volume in the phase π . This term is scaled by the saturation sπ in both the
force balance and the energy balance to give equations identical in form to those
appearing in the engineering literature.

The presence of the saturation in relation to the pressure pπ is more subtle.
In the global form of the force balance, the saturation does not appear. Rather, the
pressure is integrated over the boundary of the volume Vπ , which is the portion of V
occupied by phase π , to obtain the total traction force acting on phase π in V . The
saturation appears in the local form of this balance law since the measures dv and
dvπ are related through the identity dv = sπdvπ . The saturations directly appear in
the global form of the energy balance since, as can be seen in (2), saturation times
pressure is a form of energy density. Thus, the term sπ pπ appears with eπ in the
boundary term in (5).

2.2. Basic Consequences of the Balances

Force balance can be used to obtain a law of mutual action for the forces fππ ′ .
Choosing P = {1, . . . , Np} in (4) yields

∑
π∈P

(
sπ∇ pπ + fπ

) =
∑
π∈P

sπ bπ . (7)
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Consider (4) for the choices P equals Q ⊂ {1, . . . , Np} and Qc, add the results,
and utilize (7) to find that

∑
π∈Q

∑
π ′∈Qc

fππ ′ = −
∑

π ′∈Qc

∑
π∈Q

fπ ′π .

Since this holds for any Q, one can deduce that

fππ ′ = −fπ ′π for all π, π ′ ∈ {1, . . . , Np}
using standard arguments in the theory of additive interactions; see, for example,
[23].

It is possible to rewrite the energy balance in several ways that are useful in
different contexts. Using the force balance to eliminate the power expended by the
external body forces gives the alternative statement of energy balance

et + div
(

q +
Nc∑

c=1

μchc +
Np∑

π=1

eπ vπ

)
+

Np∑
π=1

pπ div(sπvπ )

= r +
Nc∑

c=1

μcqc +
Np∑

π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ . (8)

Moreover, the mass balances (3) can be used to eliminate the mass supplies qc to
obtain

et − mt · μ +
Np∑

π=1

div

((
eπ + sπ pπ −

Nc∑
c=1

Mcπμc

)
vπ

)

+
Np∑

π=1

vπ ·
(

− sπ∇ pπ +
Nc∑

c=1

Mcπ∇μc

)

= r − div(q) −
Nc∑

c=1

hc · ∇μc +
Nc∑

π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ . (9)

Finally, this equation can be used to eliminate the radiation term from the local
form of the entropy inequality to find that

θηt − et + μ · mt +
Np∑

π=1

(
θηπ − eπ − sπ pπ +

Nc∑
c=1

Mcπμc

)
div(vπ )

+
Np∑

π=1

(
θ∇ηπ − ∇eπ − pπ∇sπ +

Nc∑
c=1

μc∇Mcπ

)
· vπ

� 1

θ
q · ∇θ +

Nc∑
c=1

hc · ∇μc −
Np∑

π=1

⎛
⎝fπ +

Np∑
π ′=1

fππ ′

⎞
⎠ · vπ . (10)

This last relation is sometimes referred to as the reduced entropy inequality and
does not involve any external influences.
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3. Constitutive Relations

3.1. Local Thermodynamic Equilibrium

At each point it is postulated that the energy, volume, andmass (e, s0, m) corre-
sponds to themacroscopic state of a classical thermodynamic system in equilibrium.
Specifically, we assume that there is a constitutive law

η̂π : R × [0, 1] × [0,∞)Nc → R, (11)

such that η̂π (eπ , sπ , {Mcπ }Nc
c=1) gives the entropy in phase π when this phase has

energy eπ , volume fraction sπ , and consists of the mass densities {Mcπ }Nc
c=1, and

that there is a function

êI : RNp+1 × [0, 1]Np × [0,∞)Nc×Np → R (12)

such that eI = êI (e, s, M) is the interfacial energywithin the poreswhen the energy
of the medium and phases is given by e, the volume fractions are specified by s, and
the distribution of the masses of the components in the different phases is described
by M . Set

Ŝ(e, s, M) = η̂0(e0) +
Np∑

π=1

η̂π (eπ , sπ , {Mcπ }Nc
c=1),

where η̂0 : R → R is the entropy of the medium per unit volume of Ω . Since the
medium is assumed to be rigid and chemically inert its entropy depends only upon
its internal energy. The following local equilibrium assumption is made:

Assumption 1. (Local equilibrium) The macroscopic entropy η is specified by

η̂(e, s0, m) = max
(e,s,M)

{
Ŝ(e, s, M) | e · (1, 1) + êI (e, s, M) = e,

s · 1 = 1 − s0, M1 = m
}

, (13)

where (1, 1) ≡ (1, 1, . . . , 1) ∈ R
Np+1. Moreover, for each argument (e, s0, m) the

maximum is attained at a unique value

(e, s, M) = argmax
(e,s,M)

{
Ŝ(e, s, M) | e · (1, 1) + êI (e, s, M) = e,

s · 1 = 1 − s0, M1 = m
}

. (14)

Because of uniqueness, the local equilibrium assumption yields constitutive laws
for the energy, volume fraction, and mass densities:

(e, s, M) = (ê(e, s0, m), ŝ(e, s0, m), M̂(e, s0, m)). (15)

Under the assumption that the phase entropy functions ηπ are smooth and
that ∂ηπ/∂eπ > 0, the local equilibrium assumption implies there exist Lagrange
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multipliers (θ̃ , p, μ̃)1 and KKT multipliers2 {(λ0π , λ1π , {Λcπ }Nc
c=1)}Np

π=1, all non-
negative, such that

θ̃
∂ηπ

∂eπ

= 1 + ∂eI

∂eπ

, 0 � π � Np,

θ̃

(
∂ηπ

∂sπ

+ λ0π − λ1π

)
= p + ∂eI

∂sπ

, θ̃

(
∂ηπ

∂ Mcπ
+ Λcπ

)
= −μ̃c + ∂eI

∂ Mcπ
,

sπλ0π = 0, (1 − sπ )λ1π = 0, McπΛcπ = 0.

(16)

Moreover, since the value of (e, s, M) is assumed to be unique, we also have the
constitutive relations (θ̂(e, s0, m), p̂(e, s0, m), μ̂(e, s0, m)) for the intrinsic vari-
ables.

The above assumption allows the entropy to be viewed as both a function of a
macroscopic state (e, s0, m) and a microscopic state (e, s, M) so that

η̂(e, s0, m) = Ŝ(e, s, M), (17)

and a calculation involving the chain rule shows that

θ̃
∂η

∂e
= 1, θ̃

∂η

∂s0
= p, and θ̃

∂η

∂mc
= −μ̃c. (18)

In Section 4.1 below it is shown that, in the prototypical situation where the entropy
functions are concave, these expressions for the partial derivatives of η are valid
even if Ŝ is not smooth provided the partial derivatives and KKT multipliers on the
left of Eq. (16) are interpreted as sub-gradients.

3.2. Restrictions Due to the Second Law (Coleman–Noll Procedure)

The Second Law of Thermodynamics, as interpreted by Coleman andNoll [13],
says that the entropy imbalance (6) must hold for any thermodynamic process that
is compatible with the balances of mass, force, and energy. This places restrictions
on the constitutive laws for the various thermodynamics quantities that appear in
the balances. Rather than explicitly state constitutive laws for all of the quantities
introduced at the beginning of Section 2, here we take the approach of finding
sufficient conditions to guarantee that the second law holds and these conditions
will motivate additional constitutive laws that are consistent with the Second Law
of Thermodynamics.

Proposition 1. Assume that local equilibrium, Assumption 1, holds so that the
macroscopic entropy η, is determined by (13) and that the macroscopic energies,
saturations, and densities are determined by (14). Under these constitutive assump-
tions, the entropy imbalance holds for all thermodynamic processes if

1 This choice of notation is justified by Proposition 1.
2 For an introduction toKarush–Kuhn–Tucker (KKT)multipliers,which allow for inequal-

ity constraints, see [8].
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1. The entropy of phase π is

ηπ = 1

θ

(
eπ + sπ pπ −

Nc∑
c=1

Mcπμc

)
; (19)

2. The interfacial energy only depends upon the saturations; that is, eI = êI (s);
3. The temperature, phase pressures, and the chemical potential of the components

are related to the Lagrange multipliers in (16) through

θ = θ̃ , pπ = p + ∂eI

∂sπ

, μc = μ̃c; (20)

4. The diffusive mass fluxes, viscous forces, and heat flux satisfy

Nc∑
c=1

hc · ∇μc � 0,

Np∑
π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ � 0, q · ∇θ � 0.

(21)

Proof. First notice that (20)1,3, together with (18)1,3, implies that

θ
∂η

∂e
= 1 and θ

∂η

∂m
= −μ. (22)

Moreover, taking the gradient of (19), utilizing (16), Item 2 of the proposition, and
(20)2 yields

θ∇ηπ = ∇eπ + pπ∇sπ −
Nc∑

c=1

μc∇Mcπ . (23)

Using the previous two equations as well as Items 1 and 4, we see that
(

θ
∂η

∂e
− 1

)
et +

(
θ

∂η

∂m
+ μ

)
· mt

+
Np∑

π=1

(
θηπ − eπ − sπ pπ +

Nc∑
c=1

Mcπμc

)
div(vπ )

+
Np∑

π=1

(
θ∇ηπ − ∇eπ − pπ∇sπ +

Nc∑
c=1

μc∇Mcπ

)
· vπ

� 1

θ
q · ∇θ +

Nc∑
c=1

hc · ∇μc −
Np∑

π=1

⎛
⎝fπ +

Np∑
π ′=1

fππ ′

⎞
⎠ · vπ .

holds for all thermodynamic processes. From the chain rule

ηt = ∂η

∂e
et + ∂η

∂m
· mt , (24)

it follows that the previous inequality is equivalent to the reduced dissipation
inequality (10). 
�



Multi-component Multiphase Porous Flow 2183

Notice that Item 1 in the previous proposition implies that the entropy ηπ is a
positive homogeneous function of (eπ , sπ , Mcπ ), which is a common assumption
in classical thermodynamics; see, for example, [31]. While the previous result only
yields sufficient conditions for the Second Law to hold, it can be shown that Item
1 is also a necessary condition under the assumption that the energy, pressure, and
chemical potential of each phase is independent of the velocity of that phase. Thus,
the homogeneity of ηπ is necessary for the Second Law of Thermodynamics to
hold in this context.

The relation (19), along with (1) applied to each phase, allows the balance of
energy (9) to be written in a simplified form using the entropy ηπ :

et − mt · μ +
Np∑

π=1

θ div(ηπvπ )

= r − div(q) −
Nc∑

c=1

hc · ∇μc +
Nc∑

π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ . (25)

This form of the energy balance can be used to obtain a dissipation relation. In
particular, by (24), (18), (20), and (25) we obtain the identity

θηt = et − mt · μ (26)

so that

− d

dt

∫

Ω

η dv

+
∫

Ω

1

θ

{
− (1/θ)q · ∇θ +

Nc∑
π=1

(
fπ +

Np∑
π ′=1

fππ ′
) · vπ −

Nc∑
c=1

hc · ∇μc

}
dv

=
∫

Ω

− r/θ +
∫

∂Ω

(
(1/θ)q +

Np∑
π=1

ηπ vπ

)
· n da.

This equality can be used to obtain lower bounds for the entropy and upper bounds
for the dissipation, which are an essential ingredient for any theory for existence of
solutions to PDE’s and stability of numerical schemes. Specifically, Eq. (21) shows
that the integrand of the second term on the left is non–negative. Combining this
with the constitutive laws introduced in the next section provides bounds for the
gradients of the temperature, chemical potentials, and pressures.

To ensure the Second Law of Thermodynamics is not violated, henceforth we
shall assume that Items 1–4 of the previous proposition hold. It follows from (20)
that we now have constitutive laws for θ , pπ , and μc. However, the conditions in
(21) do not fully determine hc, fπ , fππ ′ , and q. These will be discussed in the next
subsection.
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3.3. Fluxes and Darcy’s Law

The requirement that mass and heat diffuse from high to low values of their
potentials is classical. Fick and Fourier laws are prototypical constitutive relations
which realize this:

hc = −K̂c(e, s, M)∇μc, and q = −K̂θ (e, s, M)∇θ, (27)

where K̂c(e, s, M) and K̂θ (e, s, M) are positive semidefinite symmetric tensors.
More general statements of Fick’s law admit coupling between the chemical poten-
tials [19].

One systematicway to formulate constitutive laws for viscous forces that satisfy
the relations (4) is to first introduce a dissipation function (a Raleighian in the

physics literature) of the form Rs({vπ }Np
π=1, {vπ − vπ ′ }π ′<π) and, with Dπ and

D(ππ ′) denoting derivatives with respect to the corresponding arguments, to define

fπ = DπRs, and fππ ′ = 1

2
D(ππ ′)Rs, π ′ < π,

and fπ ′π = −fππ ′ when π ′ > π . If Rs is a non-negative convex function of its
arguments taking values in [0,∞] which vanishes when vπ = vπ − vπ ′ = 0, then
(omitting the arguments of Rs)

Np∑
π=1

(
fπ · vπ +

Np∑
π ′=1

fππ ′ · vπ

)
=

Np∑
π=1

(
DπRs · vπ +

∑
π ′<π

D(ππ ′)Rs · (vπ − vπ ′)
)

� Rs.

Since Rs is assumed to be non–negative these forces satisfy the middle inequality
of Eq. (21), and substituting them into the force balance (7) gives the associated
Darcy laws,

DπRs + (1/2)
∑
π ′<π

D(ππ ′)Rs − (1/2)
∑
π ′>π

D(π ′π)Rs = sπ (bπ − ∇ pπ ).

These Darcy laws are the Euler–Lagrange equations for the convex function

Is({vπ }Np
π=1) = Rs

(
{vπ }Np

π=1, {vπ − vπ ′ }π ′<π

)
+

Np∑
π=1

sπ (bπ − ∇ pπ ) · vπ .

Prototypically dissipation functions are formulated using an inner product on the
set of velocities which, as in Section 1.3, take the form

(
{vπ }Np

π=1, {wπ }Np
π=1

)
s

=
Np∑

π=1

( 1

sπ

(vπ , wπ )Aπ +
∑
π ′<π

2√
sπ sπ ′

(vπ − vπ ′ , wπ − wπ ′)Aππ ′
)
, (28)



Multi-component Multiphase Porous Flow 2185

where the tensors Aπ and Aππ ′ = Aπ ′π are symmetric and positive definite and for
a symmetric, positive definition tensor A, (v, w)A = v · Aw denotes the induced
inner product on vectors. These tensors correspond to the (pseudo) inverses of the
permeability tensors that appear in the engineering and experimental literature.
Letting the velocities be determined by

(
{vπ }Np

π=1, {wπ }Np
π=1

)
s
=

Np∑
π=1

sπ (bπ − ∇ pπ ) · wπ , for all {wπ }Np
π=1 (29)

gives the force system

fπ = 1

sπ

Aπ vπ and fππ ′ = 1√
sπ sπ ′

Aππ ′(vπ − vπ ′),

which satisfies the force balance (4) with (viscous) dissipation

Np∑
π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ = |{vπ }Np
π=1|2s ,

where |.|s = (., .)
1/2
s denotes the norm corresponding to the s-weighted inner

product. In the case of a single phase, substituting (29) into the right-hand side of
the previous equation results in the traditional form of Darcy’s law.

It is well documented that themass flux in certain porousmedia does not depend
linearly upon the pressure gradient. Darcy’s law represents the balance of forces
in a porous flow, so must model the viscous dissipation expressed in Eq. (21)2. A
vast number of modifications of Darcy’s law have been proposed, the most natural
being to postulate a nonlinear relation between the flux and pressure gradient, the
Forchheimer model being prototypical [7,20]. Darcy’s law can be derived as the
weak limit of Stokes’ flow using homogenization [1,2,27], and numerical strategies
have been proposed to numerically determine the homogenized permeabilities for
various pore geometries for both Newtonian and non-Newtonian fluid models [18,
26]. These modifications of Darcy’s law naturally inherit the structural properties
outlined in this section.

To better model the multitude of spatial scales present in many porous flows,
dual porosity models represent the medium as a secondary porous medium. These
models consist of the balance laws for eachmedium, and include exchanges ofmass,
momentum, and energy between the two [6,12]. In certain limits it is possible to
eliminate the equations for one media using, for example, Green’s functions and/or
semigroups. This results in amodel for a single porousmediumwith nonlocal terms
representing the presence of the second medium [28,30]. An alternative strategy is
to simply postulate that the mass flux is a fractional (nonlocal) time derivative [14],
or to replace the pressure gradient with a fractional spatial derivative [17]. To date
this strategy has only been developed for a single phase in the isothermal setting. As
long as the chosen constitutive laws satisfies the appropriate dissipation inequality
in (21), then it is consistent with the Second Law and, hence, is physically viable.
Here we considered relatively simple constitutive relations to not over complicate
the model.
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3.4. Mechanical and Isothermal Case

Frequently it is assumed that the temperature is either constant or that the
transport of energy by the flow is negligible. The latermay happenwhen the thermal
energy stored in the medium dominates that of the fluid(s) in the pores and thermal
equilibrium is quickly attained whereby the fluid(s) take on the temperature of the
medium. In this situation the temperature will satisfy a classical heat equation of
the form

(cθ)t + div (K∇θ) = r, (30)

where c and K are the specific heat and conductivity of the medium respectively.
Thus, the temperature can be solved for independently of the other thermodynamic
quantities. In this case, it is preferable to formulate constitutive laws so that temper-
ature is an independent variable. This is accomplished by introducing theHelmholtz
free-energy density of the system

Ψ̂ (θ, s, M) = ψ̂0(θ) +
Np∑

π=1

ψ̂π

(
θ, sπ , {Mcπ }Nc

c=1

)
+ êI (θ, s, M), (31)

where ψπ = eπ − θηπ is the Helmholtz free-energy density for phase π .
The local equilibrium assumption, Assumption 1, requires Ψ̂ (θ, s, M) to be at

a minimum:

ψ̂(θ, s0, m) = inf
(s,M)

{Ψ̂ (θ, s, M) | s · 1 = 1 − s0, M1 = m}, (32)

and that for each argument (θ, s0, m), the minimum is attained at a unique value:

(s, M) = argmin
(s,M)

{
Ψ̂ (θ, s, M) | s · 1 = 1 − s0, M1 = m

}
. (33)

As in Section 3.1, this gives rise to Lagrange multipliers μ̃ and p and KKT multi-
pliers λ0, λ1, and Λ, for which

∂ψπ

∂sπ

+ λ0π − λ1π = −p − ∂eI

∂sπ

, and
∂ψπ

∂ Mcπ
+ Λcπ = μ̃c.

The analog of Eq. (18)2,3 are

∂ψ

∂s0
= −p, and

∂ψ

∂mc
= μ̃c. (34)

Replacing the entropy with the Helmholtz free energy in the reduced entropy
inequality (10) results in

−ψt − ηθt + μ · mt −
Np∑

π=1

(
ψπ + sπ pπ −

Nc∑
c=1

Mcπμc

)
div(vπ )

−
Np∑

π=1

(
∇ψπ + ηπ∇θ + pπ∇sπ −

Nc∑
c=1

μc∇Mcπ

)
· vπ
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−q · ∇θ −
Nc∑

c=1

hc · ∇μc +
Np∑

π=1

⎛
⎝fπ +

Np∑
π ′=1

fππ ′

⎞
⎠ · vπ � 0, (35)

which is referred to as the free energy imbalance.
The analog of Proposition 1 in this case is the following, which is presented

without proof:

Proposition 2. Assume that local equilibrium holds so that the macroscopic
Helmholtz free energy ψ is determined by (32) and that the macroscopic satura-
tions and densities are determined by (33). Under these constitutive assumptions,
the free energy imbalance holds for all thermodynamic processes if

1. The microscopic entropy is given by ηπ = − ∂ψπ

∂θ
for 0 � π � Np;

2. The Helmholtz free energy of phase π , for 1 � π � Np, is given by

ψπ = −sπ pπ +
Nc∑

c=1

Mcπμc; (36)

3. The interfacial energy only depends upon the saturations; that is, eI = êI (s);
4. The pressures in the phases π , for 1 � π � Np, and the chemical potential of

the components are related to the Lagrange multipliers through

pπ = p + ∂eI

∂sπ

and μc = μ̃c; (37)

5. The diffusive mass fluxes, viscous forces, and heat conductivity satisfy

Nc∑
c=1

hc · ∇μc � 0,

Np∑
π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ � 0, q · ∇θ � 0.

(38)

Notice that Item 2 says that ψπ is a homogeneous function of sπ and {Mcπ }Nc
c=1

for 1 � π � Np. Then upon assuming that Assumptions 1–4 of the previous propo-
sition hold, and using Eq. (1) to simplify the time derivative of ψ = ψ̂(θ, s0, m)

shows that the total Helmholtz free energy evolves according to

d

dt

∫

Ω

ψ dv =
∫

Ω

( Np∑
π=1

sπ∇ pπ · vπ +
Nc∑

c=1

(qcμc + hc · ∇μc)
)
dv

−
∫

Ω

(
ηθt +

Np∑
π=1

ηπ vπ · ∇θ
)
dv

−
∫

∂Ω

Nc∑
c=1

μc

( Np∑
π=1

Mcπvπ + hc

)
· n da.
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Using force balance to eliminate the pressures and assuming isothermal conditions
(θt and ∇θ are negligible) gives the dissipation relation

d

dt

∫

Ω

ψ dv +
∫

Ω

{ Np∑
π=1

(
fπ +

Np∑
π ′=1

fππ ′
)

· vπ −
Nc∑

c=1

hc · ∇μc

}
dv

=
∫

Ω

{ Np∑
π=1

sπ bπ · vπ +
Nc∑

c=1

qcμc

}
dv

−
∫

∂Ω

Nc∑
c=1

μc

( Np∑
π=1

Mcπvπ + hc

)
· n da.

3.5. Summary

Substituting the constitutive postulates into the local forms of the balances of
mass and energy gives the following system of partial differential equations for
the mass densities and internal energy, (m, e), which model multiphase flow in a
porous medium:

∂mc

∂t
+ div

⎛
⎝

Np∑
π=1

Mcπvπ − Kc∇μc

⎞
⎠ = qc, c = 1, 2, . . . , Nc,

and

et − mt · μ +
Np∑

π=1

θ div(ηπ vπ ) = r + div(Kθ∇θ) +
Nc∑

c=1

|∇μc|2Kc
+ |{vπ }Np

π=1|2s .

In these equations qc and r model the source of each components and heat supply
respectively, and the body force bπ on each phase is specified in the Darcy law for

the phase velocities {vπ }Np
π=1. The constitutive input consists of

• Entropy functions (11) for each phase or, equivalently, the free energy functions;
• The interfacial surface and wetting energy (12);
• Mass diffusion tensors for each component and heat conduction tensor (27);
• Diffusion tensors for the phases appearing in the Darcy law (29).

The dependence of microvariables (e, s, M) and Lagrange multipliers (θ, p,μ)

upon (e, s0, m) is then determined by m = M1 and Assumption 1, and the phase
pressures in the Darcy law for the velocities are pπ = p + ∂eI /∂sπ .

4. Structural Properties

4.1. Entropy Maximization

Here we justify the formal calculations done in Section 3.We begin by showing
that if the entropy functions η̂π for each phase are concave, then the entropy of the
mixture η̂(e, s0, m) is also a concave function and can be realized as the maximum
value of a concave function on a convex set.
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Proposition 3. For each 1 � π � Np let η̂π : R × [0, 1] × [0,∞)Nc → R

and η̂0 : R → R be concave functions. Suppose that ∂ηπ/∂eπ � 0 and that the
inequality is strict for at least one phase. Let êI : [0, 1]Np → R be convex and set

Ŝ(e, s, M) = η̂0(e0) +
Np∑

π=1

η̂π (eπ , sπ , {Mcπ }Nc
c=1),

(e, s, M) ∈ S ≡ R
Np+1 × [0, 1]Np × [0,∞)Nc×Np .

For each (e, s0, m) ∈ R × [0, 1] × [0,∞)Nc assume that the maximum in the
definition

η̂(e, s0, m)

≡ max
(e,s,M)∈S{Ŝ(e, s, M) | e · (1, 1) + êI (s) = e, s · 1 = 1 − s0, M1 = m}

is achieved. Then

η̂(e, s0, m)

= max
(e,s,M)∈S{Ŝ(e, s, M) | e · (1, 1) + êI (s) � e, s · 1 = 1 − s0, M1 = m};

(39)

in particular, η̂ is a concave function.

Proof. If the maximum of Ŝ(e, s, M)was achieved at a point in Swhere e ·(1, 1)+
êI (s) < e then there exists ε > 0 for which (e + ε(1, 1)) · (1, 1) + êI (s) = e and
the hypothesis that ∂ηπ/∂eπ > 0 gives the contradiction Ŝ(e + ε(1, 1), s, M) >

Ŝ(e, s, M). It follows that the formula (39) for η̂ holds.
Since êI is convex (and the other constraints are linear), it is immediately

apparent that

K = K(e, s0, m)

≡ {(e, s, M) ∈ S | e · (1, 1) + êI (s) � e, s · 1 = 1 − s0, M1 = m}
is a convex set. Concavity of η̂ then follows from the concavity of Ŝ and the fact
that η is the maximum over all convex combinations of elements of the set in S. 
�

In this context results from convex analysis can be used to elucidate the rela-
tionship between η̂ and Ŝ. The extension of the domain of Ŝ to V = R

Np+1 ×
R

Np × R
Nc×Np by

Ŝ(e, s, M) =
{

Ŝ(e, s, M) if (e, s, M) ∈ S,

−∞ otherwise,

defines a proper, upper semi-continuous, concave function Ŝ : V → R ∪ {−∞}.
For (e, s0, m) ∈ R × [0, 1] × [0,∞)Nc set

ÎK(e, s, M) ≡ Î (e, s, M; e, s0, m) =
{
0 if (e, s, M) ∈ K,

−∞ otherwise
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to be the concave indicator of the (closed and convex) set K ⊂ V over which the
extreme value of Ŝ is to be taken. With these definitions,

η̂(e, s0, m) = max
(e,s,M)∈V

(
Ŝ(e, s, M) + ÎK(e, s, M)

)
.

Since the intersections of the domains of these functions is non-empty, at an
extremim 0 ∈ ∂ Ŝ(e, s, M) + ∂ ÎK(e, s, M). Here ∂ Ŝ ⊂ V and ∂ ÎK ⊂ V are the
super gradients of Ŝ and ÎK, respectively:

∂ Ŝ(e, s, M) =
{
(f, t, N ) ∈ V | (

(f, t, N ), (ẽ, s̃, M̃) − (e, s, M)
)
V

� Ŝ(ẽ, s̃, M̃) − Ŝ(e, s, M), ∀(ẽ, s̃, M̃) ∈ V

}
,

and ∂ ÎK is defined similarly. In this expression the pairing (. , .)V is the usual inner
product on V.

Upon assuming that the entropy functions η̂π are differentiable, classical results
from optimization show

∂ Ŝ(e, s, M) =
{
(DeS, DsS + λ0 − λ1, DM S + Λ) |
λ0,λ1 ∈ [0,∞)Np , Λ ∈ [0,∞)Nc×Np ,

λ0 · s = 0, λ1 · (1 − s) = 0, Λ : M = 0
}
,

where λ0, λ1, and Λ are the KKT multipliers dual to the constraints 0 � sπ � 1
and 0 � Mcπ respectively. When êI is differentiable and e · (1, 1) + êI (s) = e that
is, (e, s, M) ∈ ∂K, a similar calculation shows that

∂ ÎK(e, s, M)

=
{
β
( − (1, 1),−p1 + DseI ,μ ⊗ 1

) | β ∈ [0,∞), p ∈ R, μ ∈ R
Nc

}
,

where β is the KKT multiplier for the inequality constraint and p and μ are the
Lagrange multipliers for the equality constraints scaled by β. The following lemma
is useful in this context:

Lemma 1. ([29, IV.4.3]) Let φ : H → R ∪ {∞} be a proper, convex, and lower
semi-continuous function on a Hilbert space H. If d

dτ
u ∈ L2[0, T ; H ] and if there

exists a g ∈ L2[0, T ; H ] with g(τ ) ∈ ∂φ(u(τ )) almost everywhere on [0, T ], then
φ ◦ u is absolutely continuous on [0, T ] and

d

dτ
φ(u(τ )) =

(
h(τ ), d

dτ
u(τ )

)
H

, almost everywhere τ ∈ (0, T )

for any function h with h ∈ ∂φ(u) almost everywhere on [0, T ].
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We abuse the notation by writing d
dτ

φ(u) = (
∂φ(u), du

dτ

)
H . Combining the above

then shows that if

(e, s, M)(τ ) = argmax
(e,s,M)∈S

{
Ŝ(e, s, M) | e · (1, 1) + êI (s) � e(τ ),

s · 1 = 1 − s0(τ ), M1 = m(τ )
}

(40)

is sufficiently regular in time and τ �→ (e(τ ), s0(τ ), m(τ )) is a smooth function
from [0, T ] toR×R+ ×R

Nc+ , then the derivative of the entropy function in Propo-
sition 3 with respect to τ can be computed as

d

dτ
η̂(e, s0, m) = d

dτ
Ŝ(e, s, M) =

(
∂ Ŝ(e, s, M), d

dτ
(e, s, M)

)
V

=
(
−∂ ÎK(τ )(e, s, M), d

dτ
(e, s, M)

)
V

.

Substituting in the formula for ∂ ÎK(τ ) then shows that

1

β

d

dτ
η̂(e, s0, m) = 1 · eτ + DseI · sτ + p1 · sτ − (μ ⊗ 1) : Mτ

= eτ + p s0τ − μ · mτ .

Substituting τ with position shows that the same formula holds if the time deriva-
tives are replaced by spatial gradients. Also, the hypotheses of Proposition 3 guar-
antee that β > 0, so upon defining θ = 1/β, we see that

θ
d

dτ
η̂(e, s0, m) = eτ + p s0τ − μ · mτ .

This result is used to deduce (18) from (17).

4.2. Variational Structure: (I) Isothermal Setting

The equations for the balance of mass in the isothermal setting with Darcy
laws as in Proposition 2 may be viewed as a maximally dissipative system [4,5,10,
11,21,24]. Specifically, in the absence of mass supplies and diffusion, an implicit
Euler approximation of these equations with time step τ may be constructed as a
sequence of “minimizing movements”; that is, as the Euler–Lagrange equations for
minimizers of

Î
(
s, M, {vπ }Np

π=1

) =
∫

Ω

{τ

2
|{vπ }Np

π=1|2sn−1 − τ

Np∑
π=1

sπ bπ · vπ + Ψ̂ (s, M)
}
dv,

subject to the constraints 0 � sπ � 1, 0 � Mcπ ,

mc + τ div
( Np∑

π=1

Mn−1
cπ vπ

)
= mn−1

c , s · 1 = 1 − s0,
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and vπ · n|∂Ω = 0, with m ≡ M1 and | · |s = (., .)
1/2
s denoting the (semi) norm

characterizing the Darcy law (29). To verify this, introduce Lagrange multipliers μ

and p and formulate the Lagrangian

L̂
(

s, M, {vπ }Np
π=1,μ, p

)
=

∫

Ω

{τ

2
|{vπ }Np

π=1|2sn−1 − (m − mn−1) · μ

+τ

Np∑
π=1

( Nc∑
c=1

Mn−1
cπ ∇μc − sn−1

π bπ

)
· vπ

+Ψ̂ (s, M) + (s0 + s · 1 − 1)p
}
dv.3

Formally computing the variations gives

δ L̂vπ 0 =
(
{vπ }Np

π=1, {δvπ }Np
π=1

)
sn−1

+
Np∑

π=1

( Nc∑
c=1

Mn−1
cπ ∇μc − sn−1

π bπ

)

· δvπ ,

δ L̂ Mcπ 0 = ∂Ψ

∂ Mcπ
+ Λcπ − μc

δ L̂sπ 0 = ∂Ψ

∂sπ

+ λ0π − λ1π + p,

where the KKT multipliers λ0π , λ
1
π , and Λcπ are non-negative and satisfy

Λcπ Mcπ = 0, λ0π sπ = 0, λ1π (1 − sπ ) = 0,

and the variations with respect to μ and p trivially give the mass balance and
the constraint on the saturations. When Ψ̂ takes the form shown in Eq. (31), an
approximation of the Darcy law (29) is recovered,

(
{vπ }Np

π=1, {δvπ }Np
π=1

)
sn−1

=
Np∑

π=1

(
sn−1
π bπ −

Nc∑
c=1

Mn−1
cπ ∇μc

)
· δvπ ,

�
Np∑

π=1

sπ (bπ − ∇ pπ ) · δvπ ,

which, for isothermal conditions, follows from Eq. (1).

3 A priori it is not known that the Lagrange multipliers associated with the mass and
volume fraction constraints are the chemical potential μ and pressure p. However, due to
how these multipliers appear in the equations, it can be shown that indeed these Lagrange
multipliers have the expected physical interpretation.
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4.3. Variational Structure: (II) General Case

Very few variational characterizations of the thermo-mechanical laws of contin-
uum mechanics are available; this section presents one extension of the isothermal
case to include thermal effects. In the absence of heat conduction (q = 0), it is pos-
sible to proceed as in the previous section and construct an implicit Euler scheme
for the porous flow equations which takes the form of a constrained minimization
problem. The associated saddle point problem involves the temperature θ as the
Lagrange multiplier for the energy equation. The temperature gradient is required
to model heat conduction and is not available for the minimization problem; for this
reason the saddle point problem is presented directly. The formulation presented
in this section was not derived from fundamental variational principles such as
Hamilton’s principles or those in [22,25]. Instead an extension of the isothermal
principle was “reverse engineered” give the desired equations.

Upon assuming a Darcy law of the form (29), Fick’s laws as in (27), and using
(26), the energy balance (25) may be written as

∂η

∂t
+ div

( Nπ∑
π=1

ηπ vπ

)
= 1

θ

(
r − div(q) +

Nc∑
c=1

|∇μc|2Kc
+ |{vπ }Np

π=1|2s
)
,

where η = η0 + ∑Np
π=1 ηπ ≡ η · (1, 1). Since ∂ηπ/∂eπ = 1/θ > 0 it is possible to

express the internal energy of each phase as eπ = êπ (ηπ , sπ , {Mcπ }Nc
c=1) where êπ

is homogeneous. Write the total energy as

Ê(η, s, M) = ê0(η0) +
Np∑

π=1

êπ (ηπ , sπ , {Mcπ }Nc
c=1) + êI (s),

and let τ denote a time step. Given (ηn−1, sn−1, Mn−1), set θn−1 = ∂eπ/ηπ , and
let

L̂
(
η, s, M, {vπ }Np

π=1, θ, p,μ
)

=
∫

Ω

{τ

2
(θ/θn−1)2

(
|{vπ }Np

π=1|2sn−1 +
Nc∑

c=1

|∇μc|2Kc

)

+ τ

Np∑
π=1

(
ηn−1

π ∇θ +
Nc∑

c=1

Mn−1
cπ ∇μc − sn−1

π bπ

)
· vπ

+(1/2)|∇(1/θ)|2
K n−1

θ

+ (θ/θn−1)r

+ Ê(η, s, M) − θ(η − ηn−1) · (1, 1)

+ (s0 + s · 1 − 1)p − (m − mn−1) · μ
}
dv,

where K n−1
θ = (θn−1)2Kθ with Kθ denoting the usual heat conductivity tensor

appearing in Fourier’s law. Formally computing the variations gives
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δ L̂vπ 0 = (θ/θn−1)2
(
{vπ }Np

π=1, {δvπ }Np
π=1

)
sn−1

+
Np∑

π=1

(
ηn−1

π ∇θ +
Nc∑

c=1

Mn−1
cπ ∇μc − sn−1

π bπ

)
· δvπ ,

δ L̂θ η + τ div
( Nπ∑

π=1

ηn−1
π vπ

)

= ηn−1 + τ

θn−1

(
r − (θn−1/θ)2 div

(
(θn−1/θ)2Kθ∇θ

)

+ (θ/θn−1)
( Nc∑

c=1

|∇μc|2Kc
+ |{vπ }Np

π=1|2sn−1

))
,

δ L̂μc mc + τ div
( Np∑

π=1

Mcπvπ − (θ/θn−1)2Kc∇μc

)
= mn−1

c

δ L̂ηπ 0 = ∂ E

∂ηπ

− θ,

δ L̂sπ 0 = ∂ E

∂sπ

+ λ0π − λ1π + p,

δ L̂ Mcπ 0 = ∂ E

∂ Mcπ
+ Λcπ − μc,

where λ0π , λ
1
π , andΛcπ are KKTmultipliers. Equation (1) shows that the variations

with respect to vπ gives (an approximation of) the Darcy law (29), and variations
with respect to p yields the constraint on the saturation.
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